# Analise e Seleção de Variáveis

# Tópicos

- Por que atributos irrelevantes são um problema
- Quais tipos de algoritmos de aprendizado são afetados
- Abordagens automáticas
  - Wrapper
  - Filtros

# Introdução

- Muitos algoritmos de AM são projetados de modo a selecionar os atributos mais apropriados para a tomada de decisão
  - Algoritmos de indução de árvores de decisão são projetados para:
    - Escolher o atributo mais promissor para particionar o conjunto de dados
    - Nunca selecionar atributos irrelevantes
  - Mais atributos implica em maior poder discriminatório?

### Atributos irrelevantes

- Adição de atributos irrelevantes às instâncias de uma base de dados, geralmente, "confunde" o algoritmo de aprendizado
- Experimento (exemplo)
  - Indutor de árvores de decisão (C4.5)
  - Base de dados D
  - Adicione às instâncias em D um atributo binário cujos valores sejam gerados aleatoriamente
- Resultado
  - A acurácia da classificação cai
    - Em geral, de 5% a 10% nos conjuntos de testes

# Explicação

- Em algum momento durante a geração das árvores:
  - O atributo irrelevante é escolhido
  - Isto causa erros aleatórios durante o teste
- Por que o atributo irrelevante é escolhido?
  - Na medida em que a árvore é construída, menos e menos dados estão disponíveis para auxiliar a escolha do atributo
  - Chega a um ponto em que atributos aleatórios parecem bons apenas por acaso
  - A chance disto acontece aumenta com a profundidade da árvore

# Atributos Irrelevantes *x* Algoritmos de AM

#### Algoritmos mais afetados

- Indutores de árvores e regras de decisão
  - Continuamente reduzem a quantidade de dados em que baseiam suas escolhas
- Indutores baseados em instâncias (e.g., k-NN)
  - Sempre trabalha com vizinhanças locais
    - Leva em consideração apenas algumas poucas instâncias (k)
  - Foi mostrado que para se alcançar um certo nível de desempenho, a quantidade de instâncias necessária cresce exponencialmente com o número de atributos irrelevantes

# Seleção de atributos antes do aprendizado

- Melhora o desempenho preditivo
- Acelera o processo de aprendizado
  - O processo de seleção de atributos, às vezes, pode ser muito mais custoso que o processo de aprendizado
  - Ou seja, quando somarmos os custos das duas etapas, pode não haver vantagem
- Produz uma representação mais compacta do conceito a ser aprendido
  - O foco será nos atributos que realmente são importantes para a definição do conceito

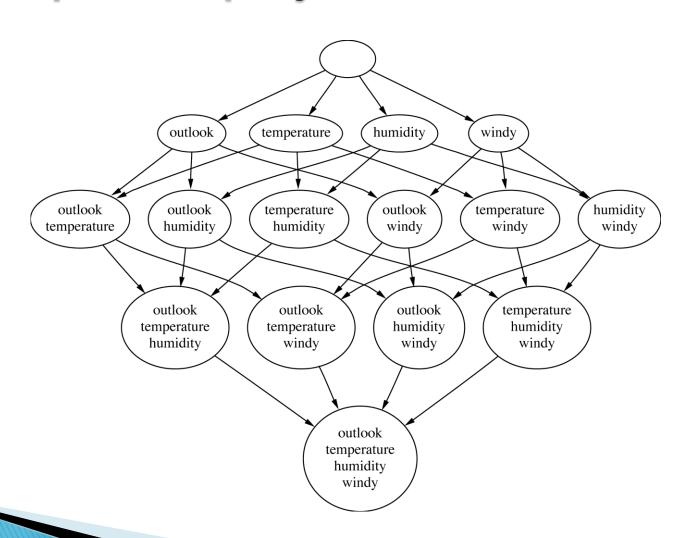
# Analise e Seleção de Variáveis

- Parte de uma área chamada de Redução de Dados
- Obtenção de uma representação reduzida em volume mas que produz resultados de análise idênticos ou similares
- Melhora o desempenho dos modelos de aprendizado
- Objetivo: Eliminar atributos redundantes ou irrelevantes

## Métodos de Seleção de Atributos

#### Manual

- Melhor método se for baseado em um entendimento profundo sobre ambos:
  - · O problema de aprendizado
  - O significado de cada atributo


#### Automático

- Filtros: método usado antes do processo de aprendizado para selecionar o subconjunto de atributos
- Wrappers: o processo de escolha do subconjunto de atributos está "empacotado" junto com o algoritmo de aprendizado sendo utilizado

# Seleção Automática

- Implica em uma busca no "espaço" de atributos
  - Quantos subconjuntos há?
  - 2<sup>N</sup>, em que N é o número total de atributos
  - Portanto, na maioria dos casos práticos, uma busca exaustiva não é viável
  - · Solução: busca heurística

## Exemplo: Espaço de Atributos



# Busca Heurística no Espaço de Atributos

- Busca para Frente (Seleção Forward)
  - A busca é iniciada sem atributos e os mesmos são adicionados um a um
  - Cada atributo é adicionado isoladamente e o conjunto resultante é avaliado segundo um critério
  - O atributo que produz o melhor critério é incorporado

# Busca Heurística no Espaço de Atributos

- Busca para trás (Eliminação Backward)
  - Similar a Seleção Forward
  - Começa com todo o conjunto de atributos, eliminando um atributo a cada passo
- Tanto na Seleção Forward quanto na Eliminação Backward, pode-se adicionar um viés por subconjuntos pequenos
  - Por exemplo, pode-se requerer não apenas que a medida de avaliação crescer a cada passo, mas que ela cresça mais que uma determinada constante

# Busca Heurística no Espaço de Atributos

- Outros métodos de busca
  - Busca bidirecional
  - Best-first search
  - Beam search
  - Algoritmos genéticos
  - •

# Abordagens para Seleção de Atributos

#### Filtros

 O processo de escolha do subconjunto acontece antes do processo de aprendizado

#### Wrapper

 O processo de escolha do subconjunto de atributos está "empacotado" junto com o algoritmo de aprendizado sendo utilizado

## Analise e Seleção de Variáveis

- Métodos Dependentes do Modelo (Wrapper)
- Métodos Independentes do Modelo (Filter)

## **Exemplo: Filtros**

- Uso de uma indutor de árvores de decisão (AD) como filtro para o k-NN
  - 1) Aplique um indutor de AD para todo o conjunto de treinamento
  - 2) Selecione o subconjunto de atributos que aparece na AD
  - 3) Aplique o k–NN a apenas este subconjunto
- A combinação pode apresentar melhores resultados do que cada método usando individualmente

### **Filtros**

- Abordagens
  - baseada nas características gerais dos dados
  - Encontrar o menor subconjunto que separe os dados
  - Utilizar diferentes esquemas de aprendizado.
    - Usar os atributos que aparecem no c4.5, 1R

## Wrapper

- Busca para Frente (Seleção Forward) + Naive Bayes
  - (1) Inicialize com o conjunto vazio S={}
  - (2) Resultado\_S=0
  - (2) Para cada atributo *s<sub>i</sub>* que não esteja em S
    - Avalie o resultado de (S U s<sub>i</sub>): Resultado\_ s<sub>i</sub>
  - (3) Considere o atributo com maior Resultado\_ s<sub>i</sub>

```
    SE (Resultado_ s<sub>i</sub> > Resultado_S)
        ENTAO
        (S=S U s<sub>i</sub>) & (Resultado_S= Resultado_ s<sub>i</sub>)
        Volte para o Passo (2)
        SENAO
        Pare
```

# Transformação de Dados

- Transforma atributos contínuos em atributos categóricos
- Absolutamente essencial se o método inteligente só manuseia atributos categóricos
- Em alguns casos, mesmo métodos que manuseiam atributos contínuos têm melhor desempenho com atributos categóricos

- Diversos métodos de discretização
- ▶ □ Discretização pelo Método 1R (1-rule)
- Discretização Não-supervisionada

- Discretização pelo Método 1R (1-rule)
- Sub-produto de uma técnica de extração automática de regras
- Utiliza as classes de saída para discretizar cada atributo de entrada separadamente
- Ex: Base de dados hipotética de meteorologia x decisão de realizar ou não um certo jogo

## Discretização pelo Método 1R (1-rule)

- Base de Dados Meteorológicos
- Tempo Temperatura Umidade Vento Jogar? (CLASSE)

Sol 85 85 Não **Não** 

Sol 80 90 Sim **Não** 

Nublado 83 86 Não Sim

Chuva 70 96 Não Sim

Chuva 68 80 Não Sim

Chuva 65 70 Sim Não

Nublado 64 65 Sim Sim

Sol 72 95 Não **Não** 

Sol 69 70 Não **Sim** 

Chuva 75 80 Não Sim

Sol 75 70 Sim **Sim** 

Nublado 72 90 Sim Sim

Nublado 81 75 Não Sim

Chuva 71 91 Sim Não

## Discretização pelo Método 1R (1-rule)

#### Primeiro passo: ordenar pela coluna Temperatura

| Tempo   | Temperatura | Umidade | Vento | Jogar? (CLASSE) |
|---------|-------------|---------|-------|-----------------|
| Nublado | 64          | 65      | Sim   | Sim             |
| Chuva   | 65          | 70      | Sim   | Não             |
| Chuva   | 68          | 80      | Não   | Sim             |
| Sol     | 69          | 70      | Não   | Sim             |
| Chuva   | 70          | 96      | Não   | Sim             |
| Chuva   | 71          | 91      | Sim   | Não             |
| Sol     | 72          | 95      | Não   | Não             |
| Nublado | 72          | 90      | Sim   | Sim             |
| Chuva   | 75          | 80      | Não   | Sim             |
| Sol     | 75          | 70      | Sim   | Sim             |
| Sol     | 80          | 90      | Sim   | Não             |
| Nublado | 81          | 75      | Não   | Sim             |
| Nublado | 83          | 86      | Não   | Sim             |
| Sol     | 85          | 85      | Não   | Não             |
|         |             |         |       |                 |

#### Segundo passo: discretizar pela Classe de saída

| Tempo   | Temperatura | Umidade | Vento | Jogar? (CLASSE) |
|---------|-------------|---------|-------|-----------------|
| Nublado | 64          | 65      | Sim   | Sim             |
| Chuva   | 65          | 70      | Sim   | Não             |
| Chuva   | 68          | 80      | Não   | Sim             |
| Sol     | 69          | 70      | Não   | Sim             |
| Chuva   | 70          | 96      | Não   | Sim             |
| Chuva   | 71          | 91      | Sim   | Não             |
| Sol     | 72          | 95      | Não   | Não             |
| Nublado | 72          | 90      | Sim   | Sim             |
| Chuva   | 75          | 80      | Não   | Sim             |
| Sol     | 75          | 70      | Sim   | Sim             |
| Sol     | 80          | 90      | Sim   | Não             |
| Nublado | 81          | 75      | Não   | Sim             |
| Nublado | 83          | 86      | Não   | Sim             |
| Sol     | 85          | 85      | Não   | Não             |

#### Segundo passo: discretizar pela Classe de saída

| Tempo   |
|---------|
| Nublado |
| Chuva   |
| Chuva   |
| Sol     |
| Chuva   |
| Chuva   |
| Sol     |
| Nublado |
| Chuva   |
| Sol     |
| Sol     |
| Nublado |
| Nublado |
| Sol     |

| Temperatura | Umidade | Vento | Jogar? (CLASSE) |
|-------------|---------|-------|-----------------|
| 64          | 65      | Sim   | Sim             |
| 65          | 70      | Sim   | Não             |
| 68          | 80      | Não   | Sim             |
| 69          | 70      | Não   | Sim             |
| 70          | 96      | Não   | Sim             |
| 71          | 91      | Sim   | Não             |
| 72          | 95      | Não   | Não             |
| 72          | 90      | Sim   | Sim             |
| 75          | 80      | Não   | Sim             |
| 75          | 70      | Sim   | Sim             |
| 80          | 90      | Sim   | Não             |
| 81          | 75      | Não   | Sim             |
| 83          | 86      | Não   | Sim             |
| 85          | 85      | Não   | Não             |

### Terceiro passo: ajustar divisões

| Tempo   |
|---------|
| Nublado |
| Chuva   |
| Chuva   |
| Sol     |
| Chuva   |
| Chuva   |
| Sol     |
| Nublado |
| Chuva   |
| Sol     |
| Sol     |
| Nublado |
| Nublado |
| Sol     |

| Temperatura | Umidade | Vento | Jogar? (CLASSE) |
|-------------|---------|-------|-----------------|
| 64          | 65      | Sim   | Sim             |
| 65          | 70      | Sim   | Não             |
| 68          | 80      | Não   | Sim             |
| 69          | 70      | Não   | Sim             |
| 70          | 96      | Não   | Sim             |
| 71          | 91      | Sim   | Não             |
| 72          | 95      | Não   | Não             |
| 72          | 90      | Sim   | Sim             |
| 75          | 80      | Não   | Sim             |
| 75          | 70      | Sim   | Sim             |
| 80          | 90      | Sim   | Não             |
| 81          | 75      | Não   | Sim             |
| 83          | 86      | Não   | Sim             |
| 85          | 85      | Não   | Não             |

### Terceiro passo: ajustar divisões

| Tempo   |
|---------|
| Nublado |
| Chuva   |
| Chuva   |
| Sol     |
| Chuva   |
| Chuva   |
| Sol     |
| Nublado |
| Chuva   |
| Sol     |
| Sol     |
| Nublado |
| Nublado |
| Sol     |

| Temperatura | Umidade  | Vento     | Jogar? (CLASSE) |
|-------------|----------|-----------|-----------------|
| (1)64       | 65       | Sim       | Sim             |
| 65 (2)      | 70       | Sim       | Não             |
| 68          | 80       | Não       | Sim             |
| (3)69       | 70       | Não       | Sim             |
| 70          | 96       | Não       | Sim             |
| 71          | 9.1      | Sim       | Não             |
| 72 4        | MIJITAS  | S DIVISÕI | S! Não          |
| 72          | 10101111 | DIVISOI   | Sim             |
| (5)75       | 80       | Não       | Sim             |
| 75          | 70       | Sim       | Sim             |
| 80 (6)      | 90       | Sim       | Não             |
| (7) 81      | 75       | Não       | Sim             |
| <b>U</b> 83 | 86       | Não       | Sim             |
| 85 (8)      | 85       | Não       | Não             |

#### Quarto passo: mínimo de valores da maior classe (ex: 3)

| Tempo   | Temperatura | Umidade | Vento | Jogar? (CLASSE) |
|---------|-------------|---------|-------|-----------------|
| Nublado | 64          | 65      | Sim   | Sim             |
| Chuva   | 65          | 70      | Sim   | Não             |
| Chuva   | 68          | 80      | Não   | Sim             |
| Sol     | 69          | 70      | Não   | Sim             |
| Chuva   | 70          | 96      | Não   | Sim             |
| Chuva   | 71          | 91      | Sim   | Não             |
| Sol     | 72          | 95      | Não   | Não             |
| Nublado | 72          | 90      | Sim   | Sim             |
| Chuva   | 75          | 80      | Não   | Sim             |
| Sol     | 75          | 70      | Sim   | Sim             |
| Sol     | 80          | 90      | Sim   | Não             |
| Nublado | 81          | 75      | Não   | Sim             |
| Nublado | 83          | 86      | Não   | Sim             |
| Sol     | 85          | 85      | Não   | Não             |

#### Quarto passo: mínimo de valores da maior classe (ex: 3)

| Tempo   | Temperatura | Umidade | Vento | Jogar? (CLASSE) |
|---------|-------------|---------|-------|-----------------|
| Nublado | 64          | 65      | Sim   | Sim             |
| Chuva   | 65          | 70      | Sim   | Não             |
| Chuva   | 68          | 80      | Não   | Sim             |
| Sol     | 69          | 70      | Não   | Sim             |
| Chuva   | 70          | 96      | Não   | Sim             |
| Chuva   | 71          | 91      | Sim   | Não             |
| Sol     | 72          | 95      | Não   | Não             |
| Nublado | 72          | 90      | Sim   | Sim             |
| Chuva   | 75          | 80      | Não   | Sim             |
| Sol     | 75          | 70      | Sim   | Sim             |
| Sol     | 80          | 90      | Sim   | Não             |
| Nublado | 81          | 75      | Não   | Sim             |
| Nublado | 83          | 86      | Não   | Sim             |
| Sol     | 85          | 85      | Não   | Não             |

| Tempo   | Temperatura | Umidade | Vento | Jogar? (CLASSE) |
|---------|-------------|---------|-------|-----------------|
| Nublado | 64          | 65      | Sim   | Sim             |
| Chuva   | 65          | 70      | Sim   | Não             |
| Chuva   | 68 (1)      | 80      | Não   | Sim             |
| Sol     | 69          | 70      | Não   | Sim             |
| Chuva   | 70          | 96      | Não   | Sim             |
| Chuva   | 71          | 91      | Sim   | Não             |
| Sol     | 72          | 95      | Não   | Não             |
| Nublado | 72 (2)      | 90      | Sim   | Sim             |
| Chuva   | 75          | 80      | Não   | Sim             |
| Sol     | 75          | 70      | Sim   | Sim             |
| Sol     | 80          | 90      | Sim   | Não             |
| Nublado | 81          | 75      | Não   | Sim             |
| Nublado | 83 (3)      | 86      | Não   | Sim             |
| Sol     | 85          | 85      | Não   | Não             |

| Tempo   | Temperatura | Umidade | Vento | Jogar? (CLASSE) |
|---------|-------------|---------|-------|-----------------|
| Nublado | 64          | 65      | Sim   | Sim             |
| Chuva   | 65          | 70      | Sim   | Não             |
| Chuva   | 68 (1)      | 80      | Não   | Sim             |
| Sol     | 69          | 70      | Não   | Sim             |
| Chuva   | 70          | 96      | Não   | Sim             |
| Chuva   | 71          | 91      | Sim   | Não             |
| Sol     | 72          | 95      | Não   | Não             |
| Nublado | 72 (2)      | 90      | Sim   | Sim             |
| Chuva   | 75          | 80      | Não   | Sim             |
| Sol     | 75          | 70      | Sim   | Sim             |
| Sol     | 80          | 90      | Sim   | Nao             |
| Nublado | 81          | 75      | Não   | Sim             |
| Nublado | 83 (3)      | 86      | Não   | Sim             |
| Sol     | 85          | 85      | Não   | Não             |

| Tempo   | Temperatura | Umidade | Vento | Jogar? (CLASSE) |
|---------|-------------|---------|-------|-----------------|
| Nublado | 64          | 65      | Sim   | Sim             |
| Chuva   | 65          | 70      | Sim   | Não             |
| Chuva   | 68 (1)      | 80      | Não   | Sim             |
| Sol     | 69          | 70      | Não   | Sim             |
| Chuva   | 70          | 96      | Não   | Sim             |
| Chuva   | 71          | 91      | Sim   | Não             |
| Sol     | 72          | 95      | Não   | Não             |
| Nublado | 72          | 90      | Sim   | Sim             |
| Chuva   | 75          | 80      | Não   | Sim             |
| Sol     | 75          | 70      | Sim   | Sim             |
| Sol     | 80          | 90      | Sim   | Não             |
| Nublado | 81          | 75      | Não   | Sim             |
| Nublado | 83 (2)      | 86      | Não   | Sim             |
| Sol     | 85          | 85      | Não   | Não             |

| Tempo                   | Temperatura                                                              | Umidade | Vento | Jogar? (CLASSE) |  |  |
|-------------------------|--------------------------------------------------------------------------|---------|-------|-----------------|--|--|
| Nublado                 | 64                                                                       | 65      | Sim   | Sim             |  |  |
| Chuva                   | 65                                                                       | 70      | Sim   | Não             |  |  |
| Chuva                   | 68 (1)                                                                   | 80      | Não   | Sim             |  |  |
| Sol                     | 69                                                                       | 70      | Não   | Sim             |  |  |
| Chuva                   | 70                                                                       | 96      | Não   | Sim             |  |  |
| Chuva<br>Sol<br>Nublado | 71 Categoria 1: Temperatura ≤ 77.5<br>72 Categoria 2: Temperatura > 77.5 |         |       |                 |  |  |
| Chuva                   | 75                                                                       | 00      | NaO   | உயி             |  |  |
| Sol                     | 75                                                                       | 70      | Sim   | Sim             |  |  |
| Sol                     | 80                                                                       | 90      | Sim   | Não             |  |  |
| Nublado                 | 81 (2)                                                                   | 75      | Não   | Sim             |  |  |
| Nublado                 | 83                                                                       | 86      | Não   | Sim             |  |  |
| Sol                     | 85                                                                       | 85      | Não   | Não             |  |  |

- Discretização Não-Supervisionada
  - O método 1R é supervisionado. Considera a variável de saída (classe) na discretização
- Métodos Não Supervisionados consideram somente o atributo a ser discretizado
  - São a única opção no caso de problemas de agrupamento (clustering), onde não se conhecem as classes de saída

- Três abordagens básicas:
  - Número pré-determinado de intervalos
    - uniformes (equal-interval binning)
  - Número uniforme de amostras por intervalo
    - (equal-frequency binning)
  - Agrupamento (clustering): intervalos arbitrários

- Número pré-determinado de intervalos uniformes
  - (equal-interval binning)
- No exemplo (temperatura):
   64 65 68 69 70 71 72 72 75 75 80 81 83 85
- ▶ Bins com largura 6:  $x \le 60$

```
60 < x \le 66
66 < x \le 72
72 < x \le 78
78 < x \le 84
84 < x < 90
```

- Número pré-determinado de intervalos uniformes
  - (equal-interval binning)
- No exemplo (temperatura):
   64 65 68 69 70 71 72 72 75 75 80 81 83 85
- ▶ Bins com largura 6:  $x \le 60$ : n.a.

```
60 < x \le 66: 64, 65

66 < x \le 72: 68, 69, 70, 71, 72, 72

72 < x \le 78: 75, 75

78 < x \le 84: 80, 81, 83

84 < x \le 90: 85
```

- Equal-interval binning: Problemas
- Como qualquer método não supervisionado, arrisca destruir distinções úteis, devido a divisões muito grandes ou fronteiras inadequadas
- Distribuição das amostras muito irregular, com algumas bins com muitas amostras e outras com poucas amostras

- Número uniforme de amostras por intervalo
  - (equal-frequency binning)
- Também chamado de equalização do histograma
- Cada bin tem o mesmo número aproximado de amostras
- Histograma é plano
- ightharpoonup Heurística para o número de bins:  $\sqrt{N}$
- N = número de amostras

- Número uniforme de amostras por intervalo
  - (equal-frequency binning)
- No exemplo (temperatura):
- 64 65 68 69 | 70 71 72 72 | 75 75 80 | 81 83 85
- ▶ 14 amostras: 4 Bins
  - $x \le 69,5:64,65,68,69$
  - $\circ$  69,5 < x \le 73,5: 70, 71, 72, 72
  - $\circ$  73,5 < x  $\leq$  80,5: 75, 75, 80
  - $\cdot x > 80,5:81,83,85$

- Agrupamento (Clustering)
- Pode-se aplicar um algoritmo de agrupamento
- no caso unidimensional
- Para cada grupo (cluster), atribuir um valor discreto

## Transformar

## Análise de Componentes Principais (PCA)

Dado um conjunto D com n instâncias e p atributos (x<sub>1</sub>, x<sub>2</sub>,..., x<sub>p</sub>), uma transformação linear para um novo conjunto de atributos z<sub>1</sub>, z<sub>2</sub>,..., z<sub>p</sub> pode ser calculada como:

$$\begin{aligned} z_1 &= a_{11} \, x_1 + a_{21} \, x_2 + \dots + a_{p1} \, x_p \\ z_2 &= a_{12} \, x_1 + a_{22} \, x_2 + \dots + a_{p2} \, x_p \\ \dots \\ z_p &= a_{1p} \, x_1 + a_{2p} \, x_2 + \dots + a_{pp} \, x_p \end{aligned}$$

 Componentes Principais (PCs) são tipos específicos de combinações lineares que são escolhidas de tal modo que z<sub>n</sub> (PCs) tenham as seguintes características

#### PCA: Características

- As p componentes principais (PC) são não-correlacionadas (independentes)
- As PCs são ordenadas de acordo com quantidade da variância dos dados originais que elas contêm (ordem decrescente)
  - A primeira PC "explica" (contém) a maior porcentagem da variabilidade do conjunto de dados original
  - A segunda PC define a próxima maior parte, e assim por diante
  - Em geral, apenas algumas das primeiras PCs são responsáveis pela maior parte da variabilidade do conjunto de dados
  - O restante das PCs tem uma contribuição insignificante
- PCA é usada em Aprendizado de Máquina principalmente para a redução de dimensionalidade

#### PCA: Cálculo

- PCA pode reduzida ao problema de encontrar os autovalores e auto-vetores da matriz de covariância (ou correlação) do conjunto de dados
- A proporção da variância do conjunto de dados originais explicada pela i-ésima PC é igual ao i-ésimo auto-valor divido pela soma de todos os p auto-valores
- Ou seja, as PCs são ordenadas decrescente de acordo com os valores dos auto-valores
- Quando os valores dos diferentes atributos estão em diferentes escalas, é preferível usar a matriz de correlação em lugar da matriz de covariância

# Análise de Componentes Principais

- Principais Limitações
  - Assume apenas relações lineares entre os atributos
  - A interpretação dos resultados (e.g., classificador gerado) em termos dos atributos originais pode ficar mais difícil