
Practical Data Mining

COMP-321B

Tutorial 5: Article Identification

Shevaun Ryan
Mark Hall

August 15, 2006

c©2006 University of Waikato

1 Introduction

This tutorial will focus on text mining, using text documents instead of attribute
tables.

Before you start, please note that the data sets are large and take some time
to process. You may also find that you run out of memory on the Java heap;
if this happens WEKA closes with an error message. To avoid this, run the
following command line to start WEKA:

java -Xmx1024m weka.gui.explorer.Explorer

This increases the Java heap to 1024m. You can also avoid this problem by
deleting old classification models that you no longer need. Just select the name
of the test in the ‘results list’ and press the delete key.

In the tasks we will be using a couple of data sets made up of hundreds of
newspaper articles. Each article has been classified with a 1 if the article is
related to the title of the document, and 0 if the article is unrelated. The goal
of this tutorial is to see if WEKA can correctly classify articles based solely on
the words in the article. In order to do this we must turn each word into an
attribute; either a binary attribute indicating whether the word is found in a
document, or a whole number indicating the number of times the word appears
within a document (the word count).

Another difference with this tutorial is the section of the output that we are
interested in. We will be recording and comparing the True Positive and False
Positive Rates, as well as the ROC area. This data is more useful than the
accuracy percentage, as we will see later in the tutorial.

The classifiers we will be using in this tutorial are:

Naive Bayes (weka.classifiers.bayes.NaiveBayes), Naive Bayes Multinomial
(weka.classifier.bayes.NaiveBayesMultinomial) and Support Vector Classifier
(weka.classifiers.functions.SMO).

We will also be using the Attribute Selected Classifier
(weka.classifers.meta.AttributeSelectedClassifier) with
InfoGainAttributeEval (weka.attributeSelection.InfoGainAttributeEval) as the
evaluator and Ranker (weka.attributeSelection.Ranker) as the search method.

Use Cross-Validation with 10 folds for each classification.

NB: The class attribute for these data sets is the first attribute in the
list, instead of the last one (which is the WEKA default). Before running any
classifier, make sure to select the correct class attribute from the list just above
the Start button.

1.1 Introduction to the data sets used

Both of these data sets contain a collection of newspaper articles on various
topics. The files have been processed into ARFF format, so they are made up
of a number of instances - each instance consists of a string attribute (the article

1

itself) and a binary class attribute indicating whether the article is related to
the title of the data set, or not.

The data sets can be found in /home/ml/321/Tutorial5/.

ReutersCorn-train.arff This data set contains 1554 articles, 45 of which are
about corn.

ReutersGrain-train.arff This data set contains 1554 articles, 103 of which
are about grain.

2 Using Binary Attributes

In order to use the words of each article as attributes, we will be using a filter
called StringToWordVector
(weka.filters.unsupervised.attribute.StringToWordVector).

2.1 Exercise A: Classify articles based on the words that
appear in the articles

Load the ReutersCorn-train.arff data set.

Task A1: Select the ‘StringToWordVector’ filter and change the following set-
tings: lowerCaseTokens = True, onlyAlphabeticTokens = True, wordsTo-
Keep = 2500. Apply the filter and browse the attribute list. What did
this filter do? What percentage of instances are positive (have a class label
of 1)?

Task A2: Go to the Classify panel. Classify the data using Naive Bayes and
then SMO. Record the TP and FP rate for the positive instances and the
ROC area.

Task A3: Compare the results from the above task. Which model was better at
classifying the articles and why (include your knowledge of TP/FP rates
and ROC area in your answer)?

The relevance of the TP/FP rates can change, depending on the goal of the
classification and the data being used. For example, if you were classifying
email spam from real email one of the most important goals would be to
keep the FP rate as close to zero as possible, because otherwise the model
is throwing away real emails. Having a high TP rate is good also, but in
this situation it’s better to have a few spam emails make it through the
filter as long as the recipient is not losing important emails.

Which do you think is more important for classifying newspaper articles,
the TP rate or the FP rate, and why?

Task A4: Reclassify the data using the Attribute Selected Classifier with the
same classifiers used in Task A2, using InfoGain as the attribute evaluator
and Ranker as the search method. In the Ranker settings, change the

2

numToSelect to 100. This means that the algorithm will rank all the
attributes but only retain the top 100 and classify the data based on those
attributes. Record the TP and FP rate and ROC area of each model.

Task A5: Scroll up in the output window to view the Ranker results (from
Task A4). Browse the words (attributes) that have been retained. How
do you think the evaluator performed? Are the words relevant to articles
about corn? Inspect the top 20 words and write down any that you think
are unimportant (or not specific to corn articles). Explain why you think
they made it on the list.

Task A6: Compare the results from Tasks A2 and A4 and comment on your
findings (did ranking the attributes give a better or worse result? Why?).

3 Word Count Attributes

3.1 Exercise B: Classify articles using the frequency of
words appearing in the articles

Load the ReutersGrain-train.arff data set.

Task B1: Select the StringToWordVector filter and change the following set-
tings: lowerCaseTokens = True, onlyAlphabeticTokens = True, word-
Count = True, wordsToKeep = 2500. Apply the filter and browse the
attribute list. What is different about the attribute values and what do
the numbers represent? (It may help to look at the data in the Edit
window.)

Task B2: Go to the Classify panel. Classify the data using Naive Bayes
Multinomial and then SMO. Record the TP and FP rate for the positive
instances and the ROC area.

Task B3: Compare the results from the above task. Which model was better at
classifying the articles and why (include your knowledge of TP/FP rates
and ROC area in your answer)?

Task B4: Go back to the Preprocess panel and undo the StringToWordVec-
tor. Redo it, but change the wordCount setting to false. Return to the
Classify panel and reclassify the data using the Attribute Selected Classi-
fier with Naive Bayes (not Naive Bayes MultiNominal) classifier, InfoGain
as the attribute evaluator and Ranker as the search method. Run the test
three times, the first time set the numToSelect (in the Ranker settings) to
100, the second time change it to 50 and the third time change it to 25.
Run the tests again with the AttributeSelectedClassifer and SMO and the
settings 100, 50 and 25. Record the TP/FP rate and ROC area for each
test.

Task B5: Compare the results from the above task and comment on your
findings. (e.g. which test performed the best and why?)

3

Task B6: Compare the results from Task B2 with the results from Task A2. Did
SMO perform better with binary attributes or with word count? Which
performed better out of Naive Bayes and Naive Bayes Multinomial? Give
an explanation for each outcome.

4 Working with Unknown Instances

In this section of the tutorial you will get to have a go at classifying a couple
of instances that have their class attribute missing. The aim of this task is to
build models using the techniques you learned in the above exercises, and to
use the models to successfully classify the unknown instances. Before you start
there are a few things to note about this exercise.

Because we want to use two different data files on the same model (one to
train and one to test), the headers and attributes of both files must be identical.
The test files have already been set up for you (so that you can’t see where they
came from), so the only thing you need to do is to apply the exact same filter
to any training files you use.

The filter you will need to use is:

weka.filters.unsupervised.attribute.StringToWordVector

and you will need to change the following options: doNotOperateOnPerClass-
Basis = True, lowerCaseTokens = True, onlyAlphabeticTokens = True, output-
WordCounts = True, wordsToKeep = 1000.

Hint: If you click ‘Save’ after running the filter on your training data, you
can save the filtered data as a new .arff file (i.e. FilteredGrain.arff), and then
you can reload this file each time you need to use it, instead of having to load
the original file and filter it again and again.

The basic procedure for creating a model and then using it to classify an
unknown instance is as follows:

Run the classifier on the training data (use training set for testing as it
doesn’t matter at this stage). Now that you have a model, change the test
options to ‘Supplied test set’ and select the file you want to test (in this exercise
it will be Mystery1.arff or Mystery2.arff).

Click the ‘More options...’ button, tick the ‘Output predictions’ box and hit
‘OK’. Now right-click on the model you just built in the ‘Result list’ (generally
the last item in the list) and select ‘Re-evaluate model on current test set’. This
will run the test instance through the classification model and the prediction
results will appear under ‘Predictions on test set’.

Here’s a short explanation of the following columns:

inst#: The instance number - in this case it will always be 1.
actual: The actual classification of the instance - in this case it will be a
question mark.
predicted: The predicted classification. The first number is the index of the
class value, the second number is the predicted class - in this case 0 or 1.

4

probability distribution: these two numbers represent the model’s predicted
probability of each class value being correct. The first number applies to the
first class value in the Confusion Matrix (in this case, 0) and the second number
applies to the second class value (1).
Consequently, the higher the probability a value has, the surer the model is of
its classification.

4.1 Classifying Unknown Instances

In this task we will be using both the ReutersCorn-train.arff data set and
the ReutersGrain-train.arff data set as training sets and Mystery1.arff
and Mystery2.arff as test sets.

Mystery1 and Mystery2 are files that contain one instance each. They have
been modified so that the class value of both instances are missing. The in-
stances have come from the Reuters test files, but the text has been replaced
by attribute indices and word counts so they will appear unreadable.

Task C1: Use the above knowledge to help you classify the instance in the file
Mystery1.arff. Use the Naive Bayes Multinomial classifier to build your
models (for both corn and grain), and record the predicted outcome and
the probability distribution for each model.

Task C2: Analyse your results from the above task. Is this instance an instance
of the Corn data set, the Grain data set, or neither? Explain your answer.

Task C3: Now repeat Task C1, but use the SMO classifier instead of the Naive
Bayes Multinomial classifier. Record the predicted outcome and the prob-
ability distribution for each model.

Task C4: Compare the above findings to your findings in Task C2. Do you still
think your previous classification was correct or have you changed your
mind (and to what)? Why/why not?

Task C5: Use Naive Bayes Multinomial classifier to classify the instance in
Mystery2.arff. Does it belong to the Corn data set, the Grain data set,
or neither? Record the predicted outcome and the probability distribution
for each model, and comment on your findings (i.e. give an explanation
for the results you got, and explain why you chose the category that you
did).

5

5 Answers

Answer A1:

Answer A2: Naive Bayes: TP Rate FP Rate
ROC Area
SMO: TP Rate FP Rate ROC Area

Answer A3:

Answer A4: Ranked Naive Bayes: TP Rate FP Rate
ROC Area
Ranked SMO: TP Rate FP Rate ROC Area

Answer A5:

Answer A6:

————————————————————————————

Answer B1:

Answer B2: Naive Bayes Multinomial: TP Rate FP Rate
ROC Area
SMO: TP Rate FP Rate ROC Area

Answer B3:

6

Answer B4: Ranked (100):
Naive Bayes: TP Rate FP Rate
ROC Area
SMO: TP Rate FP Rate ROC Area

Ranked (50):
Naive Bayes: TP Rate FP Rate
ROC Area
SMO: TP Rate FP Rate ROC Area

Ranked (25):
Naive Bayes: TP Rate FP Rate
ROC Area
SMO: TP Rate FP Rate ROC Area

Answer B5:

Answer B6:

————————————————————————————

Answer C1: NBM:
Corn Training Data: Predicted Outcome Probability of ‘0’
Probability of ‘1’
Grain Training Data: Predicted Outcome Probability of ‘0’
Probability of ‘1’

Answer C2:

Answer C3: SMO:
Corn Training Data: Predicted Outcome Probability of ‘0’
Probability of ‘1’
Grain Training Data: Predicted Outcome Probability of ‘0’
Probability of ‘1’

Answer C4:

7

Answer C5: NBM:
Corn Training Data: Predicted Outcome Probability of ‘0’
Probability of ‘1’
Grain Training Data: Predicted Outcome Probability of ‘0’
Probability of ‘1’

Comments:

8

