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Preface

Combinatorial optimization is concerned with finding the optimal solution of problems
with discrete variables. The field originates from applied mathematics and computer
science, but it has seen contributions from operational research, decision-making,
artificial intelligence, and machine learning. It is key to tackling diverse problems in
science, industry, and business applications. These problems usually cannot be solved
by exact methods within a reasonable time limit, and instead require the use of heuristic
methods to provide high-quality or low-cost solutions in as short a time as possible.
Heuristic methods include not only problem-specific heuristics, but most prominently
metaheuristics, which are general-purpose methods that are relatively simple to apply
to new problems. Among the earliest and most successful metaheuristics are evolu-
tionary algorithms, originally inspired by the evolution of species by natural selection,
together with various other stochastic local search methods, such as simulated
annealing. More recent methods include ant colony optimization, inspired by the for-
aging behavior of some species of ants, and hybrid methods, such as matheuristics that
combine exact and heuristic methods. The successful application of these methods to
real-world combinatorial optimization problems is one of the main topics of these
proceedings.

This volume contains the proceedings of EvoCOP 2017, the 17th European Con-
ference on Evolutionary Computation in Combinatorial Optimization, that was held in
Amsterdam, The Netherlands, during April 19–21, 2017. EvoCOP was held in 2001 as
the first workshop specifically devoted to evolutionary computation in combinatorial
optimization. It became an annual conference in 2004. EvoCOP is one of the four
events of Evostar 2017. The other three are EuroGP (20th European Conference on
Genetic Programming), EvoMUSART (6th International Conference on Evolutionary
and Biologically Inspired Music, Sound, Art and Design), and EvoApplications (20th
European Conference on the Applications of Evolutionary Computation, formerly
known as EvoWorkshops).

Previous EvoCOP proceedings were published by Springer in the series Lecture
Notes in Computer Science (LNCS volumes 2037, 2279, 2611, 3004, 3448, 3906,
4446, 4972, 5482, 6022, 6622, 7245, 7832, 8600, 9026, 9595). The table on the next
page reports the statistics for each conference.

This year, 16 out of 39 papers were accepted after a rigorous double-blind process,
resulting in a 41% acceptance rate. We would like to thank the quality and timeliness of
our Program Committee members’ work, especially since the reviewing period coin-
cided with the Christmas holidays. Decisions considered both the reviewers’ report and
the evaluation of the program chairs. The 16 papers accepted cover both empirical and
theoretical studies on a wide range of academic and real-world applications. The
methods include evolutionary and memetic algorithms, large neighborhood search,
estimation of distribution algorithms, beam search, ant colony optimization,
hyper-heuristics, and matheuristics. Applications include both traditional domains, such



as the knapsack problem, vehicle routing, scheduling problems and SAT; and newer
domains such as the traveling thief problem, location planning for car-sharing systems,
and spacecraft trajectory optimization. Papers also study important concepts such as
pseudo-backbones, phase transitions in local optima networks, and the analysis of
operators. This wide range of topics makes the EvoCOP proceedings an important
source for current research trends in combinatorial optimization.

We would like to express our appreciation to the various persons and institutions
making this a successful event. First, we thank the local organization team led by Evert
Haasdijk and Jacqueline Heinerman from the Vrije University Amsterdam. We thank
Marc Schoenauer from Inria Saclay for his continued assistance in providing the
MyReview conference management system and Pablo García Sánchez from the
University of Cádiz for EvoStar publicity and website. Thanks are also due to SPECIES
(Society for the Promotion of Evolutionary Computation in Europe and its Surround-
ings); in particular, Marc Schoenauer (President), Anna I Esparcia-Alcázar (Secretary
and Vice-President), Wolfgang Banzhaf (Treasurer), and Jennifer Willies (EvoStar
coordinator). Finally, we wish to thank the keynote speakers, Kenneth De Jong and
Arthur Kordon.

Special thanks also to Christian Blum, Francisco Chicano, Carlos Cotta, Peter
Cowling, Jens Gottlieb, Jin-Kao Hao, Jano van Hemert, Peter Merz, Martin Midden-
dorf, Gabriela Ochoa, and Günther R. Raidl for their hard work and dedication at past
editions of EvoCOP, making this one of the reference international events in evolu-
tionary computation and metaheuristics.

February 2017 Bin Hu
Manuel López-Ibáñez

EvoCOP LNCS vol. Submitted Accepted Acceptance (%)
2017 10197 39 16 41.0
2016 9595 44 17 38.6
2015 9026 46 19 41.3
2014 8600 42 20 47.6
2013 7832 50 23 46.0
2012 7245 48 22 45.8
2011 6622 42 22 52.4
2010 6022 69 24 34.8
2009 5482 53 21 39.6
2008 4972 69 24 34.8
2007 4446 81 21 25.9
2006 3906 77 24 31.2
2005 3448 66 24 36.4
2004 3004 86 23 26.7
2003 2611 39 19 48.7
2002 2279 32 18 56.3
2001 2037 31 23 74.2
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A Computational Study of Neighborhood
Operators for Job-Shop Scheduling Problems

with Regular Objectives

Hayfa Hammami(B) and Thomas Stützle

IRIDIA, Université libre de Bruxelles (ULB), Brussels, Belgium
{Haifa.Hammami,stuetzle}@ulb.ac.be

Abstract. Job-shop scheduling problems have received a considerable
attention in the literature. While the most tackled objective in this area
is makespan, job-shop scheduling problems with other objectives such as
the minimization of the weighted or unweighted tardiness, the number of
late jobs, or the sum of the jobs’ completion times have been considered.
However, the problems under the latter objectives have been generally
less studied than makespan. In this paper, we study job-shop scheduling
under various objectives. In particular, we examine the impact various
neighborhood operators have on the performance of iterative improve-
ment algorithms, the composition of variable neighborhood descent algo-
rithms, and the performance of metaheuristics such as iterated local
search in dependence of the type of local search algorithm used.

1 Introduction

Scheduling problems have received a great deal of attention in the research com-
munity both from an application side due to their practical relevance and from
an algorithmic side due to the difficulty that poses their solution [13]. Job-shop
scheduling problems concern the scheduling of jobs on machines where the order
in which the jobs are to be processed on the various machines may differ from
job to job. Among job-shop scheduling problems, various variants exist and one
difference among these can be the objective function that is to be minimized.
The most common variant is the minimization of the makespan, that is, the com-
pletion time of the last job [12,15]. However, in many practical situations, other
objectives are more relevant. For example, if jobs have associated due dates, a
common objective is to minimize the tardiness of the jobs, possibly weighted by
their importance [4,14,17]. Other objectives may be to minimize the (weighted)
sum of the completion times of jobs, or the weighted number of tardy jobs [9,13].
However, these alternative objective functions have received less attention than
the makespan objective.

In this paper, we study the impact that various neighborhood operators have
on the performance of local search algorithms for job-shop problems under three
objectives, the minimization of (i) the total weighted tardiness, (ii) the total
weighted computation, (iii) and the weighted number of late jobs. In particular,
c© Springer International Publishing AG 2017
B. Hu and M. López-Ibáñez (Eds.): EvoCOP 2017, LNCS 10197, pp. 1–17, 2017.
DOI: 10.1007/978-3-319-55453-2 1



2 H. Hammami and T. Stützle

we consider six neighborhood structures and these types of algorithms: iterative
improvement algorithms under the best- and first-improvement pivoting rules;
extensions of these algorithms to variable neighborhood descent algorithms [3]
that use two or three neighborhood structures; integrating the various neighbor-
hood structures into simple iterated local search algorithms [8].

The studies in the literature closest to ours are those by Kuhpfahl and Bier-
wirth [6] and Mati et al. [9]. The former considers various neighborhoods for the
job-shop scheduling problem under the minimization of the total weighted tar-
diness. Here, we implemented a subset of the neighborhoods used in [6], which
comprises the most promising ones identified there. We extend the study in
[6] considering additional objectives (weighted sum of completion times and
weighted number of tardy jobs), pivoting rules (first-improvement), and addi-
tional algorithms (iterated local search). The latter study by Mati et al. proposes
an iterated local search algorithm that tackles job-shop problems under differ-
ent objective functions [9]. Here, we adopt their iterated local search algorithm
by re-implementing its structure and extend it considering different additional
neighborhoods, the usage of variable neighborhood descent, and an additional
fine-tuning of the algorithm by using the irace software [7]. Our experimental
study shows that the adoption of the first-improvement pivoting rule seems ben-
eficial across all problems. The usefulness of considering a variable neighborhood
descent algorithm depends on the particular objective considered; and the final
iterated local search algorithms generally reach high-quality results.

The article is structured as follows. In the next section, we introduce the
tackled problems more formally and present the disjunctive arc representation.
In Sect. 3, we give details on the neighborhood structures we have considered
and in Sect. 4 we present the experimental results. We conclude in Sect. 5.

2 The Job-Shop Scheduling Problem

The job-shop scheduling problem is defined by n jobs that are to be processed
on m machines in a given order. Each job Ji, i = 1, 2, . . . , n, can have a different
number of operations and has its own processing order on the machines. The
common assumptions of the job-shop scheduling problem are that all processing
times of the jobs on the machines are fixed and known in advance. The process-
ing of a job on a machine is called operation. Once started, preemption of an
operation is not allowed. The machines are continuously available (no break-
downs), each machine can process at most one job at a time and each job can
be processed on at most one machine at a time. Infinite in-process storage is
allowed. The objective is to obtain a production sequence of the jobs on the
machines so that the processing constraints are satisfied and a given criterion is
optimized. Most scheduling criteria use the completion times of the jobs at the
machines, which are denoted as Cij (i ∈ n, j ∈ m); Ci is the completion time of
job Ji on the last machine. Here, we focus on minimizing objectives related to
the due dates of jobs and to the flow time that are less used in literature than
makespan but might be more relevant in practical situations.
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Table 1. An instance of the job shop scheduling problem with three machines and
three jobs.

Job Routing Processing

M1 M2 M3 M1 M2 M3

J1 2 3 1 3 6 1

J2 1 3 2 8 10 5

J3 3 2 1 8 4 5

The flow time of a job is the time between its release and completion time.
Here we assume that all release times of jobs are zero. In this case, the flow time of
a job Ji corresponds to its completion time Ci. Generally, minimizing the sum of
completion times of all jobs,

∑
i Ci, might be more interesting than the maximum

completion time of jobs Cmax, especially in service-oriented environments. We
can also minimize the total weighted flow time

∑
i wiCi by introducing a weight

wi to job Ji that specifies its relative importance. Tardiness and lateness based
objectives consider the due dates di of jobs, which denote the desired completion
time of job Ji on the last machine. We aim at minimizing the total weighted
tardiness

∑
i wiTi related to the importance of each job. Let Ui be one if Ti > 0

and zero otherwise. Then, another relevant criterion is to minimize the number
of tardy jobs

∑
i Ui or the weighted number of tardy jobs

∑
i wiUi, which is

related to satisfying customers on time or not.
The job-shop scheduling problem can be represented with a disjunctive graph

noted G = (V,C,D) as proposed by Singer and Pinedo [14]. The set of nodes V
represent the operations of the jobs; to these are added a dummy node 0 that
represents the starting node and a set of n sink nodes Bi i = (1, ..., n), which
represent the ending nodes of each job Ji. Each operation has a weight pij , which
is equal to the processing time of job Ji on machine Mj . A set of conjunctive
arcs C represent the precedence constraints between operations of each job.
The undirected arcs are the set of disjunctive arcs D and represent machine
constraints. Each pair of operations that requires the same machine cannot be
executed simultaneously. Figure 1(a) shows an example of a disjunctive graph
G for a 3-job, 3-machine instance described in Table 1. A feasible solution is
obtained if and only if all the undirected arcs are turned into directed ones and
the resulting graph G′ is acyclic.

The length of the longest path from 0 to the sink node Bi represents the
maximal completion time of job Ji. This path is the critical path, which is com-
posed of critical blocks. Each critical block contains critical operations executed
on the same machine without idle time. A critical arc connects two adjacent
critical operations in a critical block. Figure 1(b) represents a feasible solution of
the instance by randomly selecting one arc of each pair of disjunctive arcs. The
length of the longest path of job J1 starting from 0 to B1 is C1 = 17, C2 = 27
for J2 and C3 = 19 for J3.
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Fig. 1. Disjunctive graph model and a solution for the example from Table 1.

3 Neighborhood Structures for Job Shop Scheduling

A common approach for tackling job-shop scheduling problems is by local search
algorithms. In local search, iteratively the current solution is replaced by a neigh-
boring one. A basic local search algorithm is iterative improvement, where at
each step an improving candidate solution is accepted until no more improve-
ments can be found in the neighborhood of the current solution; in other words,
the algorithm stops in a local optimum. In job-shop scheduling, a neighboring
solution is commonly obtained (either improving or not) by some specific mod-
ification on its critical path. A modification defined by reversing critical arcs in
the disjunctive graph representation of a feasible solution always yields another
feasible one [15]. Some larger modifications lead to infeasible solutions, so that
a feasibility test is needed. Well known operators are the transpose, insert and
sequence moves. In this section, we present different neighborhoods used by Kuh-
pfahl and Bierwirth [6]. In their paper, they have evaluated existing and newly
designed neighborhoods for the job-shop scheduling problem with total weighted
tardiness objective (JSSP-WT). In their work, transpose-based neighborhoods
and insertion-based neighborhoods are considered to be the most interesting ones
regarding the average gap to the best known solutions. Here, we briefly review
the six of these neighborhood structures that we consider in this paper.

CT: The critical transpose neighborhood [15] consists in reversing a pair of
adjacent operations u and v assigned to the same machine on a critical path. It
is shown by Van Laarhoven et al. [15] that any solution obtained by the critical
transpose operator is feasible.

CET: A restricted version of the CT operator called critical end transpose which
considers only the first or the last adjacent operations of a critical block to be
swapped [12]. The feasibility of the new schedules provided by CET neighbor-
hood always holds since it is a subset of the CT neighborhood operator.

CET+2MT: This perturbation affects multiple machines in a schedule, called
critical end transpose + 2-machine transpose. It is an extension of the CET
neighborhood operator by swapping two further arcs related to predecessors and
successors of the critical arc (u, v). We denote by SJ(i) and PJ(i) the operation
of the job succeeding or preceding operation i, respectively. SM(i) and PM(i)
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denote the successor and predecessor machine of operation i respectively. With
the CET+2MT operator, two additional arcs associated to (u, v) are reversed,
which are (SJ(u), SM(SJ(u))) and (PM(PJ(v)), PJ(v)), provided that some
conditions are satisfied, see [10]. The feasibility guarantee also holds for this
operator since it requires no machine idle time in the processing of the adjacent
operations corresponding to the three arcs.

ECET: This new neighborhood operator is proposed by Kuhpfahl and Bierwirth
[6] called the extended critical end transpose neighborhood, which considers not
only the first or the last arc of a critical block to be inverted but also both
simultaneously. The feasibility guarantee holds in this perturbation, see [6].

CEI: This operator, proposed by Dell’Amico and Trubian [2], moves an opera-
tion inside a critical block to the first or the last position of the block to which it
belongs. This operator is called critical end insert neighborhood. The neighbor-
ing solution obtained by this operator might be infeasible; therefore a feasibility
test is required for each move and infeasible schedules are discarded.

CEI+2MT: This perturbation introduced in [5], is an extension of the CEI
operator named critical end insert + 2-machine transpose. The principle of this
neighborhood is like that of the CET+2MT operator; it consists of a CEI move
with a reversal of two additional arcs related to predecessors and successors
of the critical arc under consideration provided that some conditions hold, see
[6]. This operator also does not ensure the feasibility of the solutions, thus a
feasibility test is executed in the neighboring schedules as in the CEI operator.

The neighborhood operators described above have been shown by Kuhpfahl
and Bierwirth [6] to be the best performing over a set of 53 instances using an
iterative best-improvement algorithm as the local search algorithm. The types
of experiments were considered to assess and compare the performance of neigh-
borhood operators for the JSSP with total weighted tardiness as the only objec-
tive. In the subsequent section, we compare the performance of each neighbor-
hood operator presented above within iterative first- or best-improvement local
searches on different objectives of the job-shop scheduling problem.

4 Experimental Study

4.1 Experimental Evaluation

In this section, we compare the performance of the neighborhoods on different
objectives using iterative best- and first-improvement algorithms. For different
objectives based on weights and due dates, we consider the same procedure
used by Singer and Pinedo [14] to define the job weights and the due dates.
In particular, the first 20% of the jobs are very important and have weights
wi = 4, 60% of the jobs are of average importance and their weights are equal
to wi = 2 and the last 20% of jobs have a weight of wi = 1. The due date of a
job depends on the processing times of its operations and it is calculated using
the following formula di = f ·∑m

j=1 pij where f is a tightness factor equal to 1.3
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for all experiments. The computational tests are done over a set of 22 instances
with 10 jobs and 10 machines proposed by Singer and Pinedo [14]. Notice that
the last five jobs of instances LA21–24 are removed to make them 10 × 10.

All code is implemented in Java and experiments presented in this paper
are run on an Intel Xeon E5-2680 CPU (2.5 GHz) with 16 MB cache, under
Cluster Rocks Linux. If nothing else is said, we assess the statistical significance
of possible differences with a paired Student t-test at significance level α = 0.05.

4.2 Iterative Best Improvement Versus Iterative First Improvement
for Single Neighborhoods

In the experimental evaluation, we assess the neighborhoods on different objec-
tives by the two iterative best and first improvement algorithms. We start the
iterative best improvement algorithm by generating a sequence of random start
solutions si = (s1i , s

2
i , ...) for each of the 22 problem instances. Each neighbor-

hood operator of the six operators is executed in the following way to reach local
optima for each instance. In the best-improvement case, starting from an initial
solution, all neighboring solutions are generated by the neighborhood operator
and the best neighboring one is accepted as the next one. This process contin-
ues iteratively until no improvement is found anymore, that is a local optimum
is reached. This process is repeated by generating new local optima, starting a
new local search process from the next random solution from the sequence si,
until one of two termination criteria is reached. (This experimental setup with
the two stopping criteria follows Kuhpfahl and Bierwirth [6].) The first termina-
tion criterion (experiment 1) is a fixed number of local optima reached by each
neighborhood operator on each problem instance and the second termination cri-
terion (experiment 2) is a fixed number of neighboring schedules evaluated for
every operator and for every problem instance. The entire procedure is repeated
for the iterative first improvement algorithm, where the local search immedi-
ately accepts a new candidate solution as soon as it is found. This procedure
is tested on each one of the objective functions we consider in this paper: the
total weighted tardiness,

∑
i wiTi; the total weighted flow time,

∑
i wiCi; and

the weighted number of tardy jobs,
∑

i wiUi.

Experiment 1. In this experiment, we generated 100 local optima for each
problem instance and each neighborhood operator and we compare for each
operator the average of 100 local optima found in each instance for the best-
and first-improvement pivoting rules minimizing the total weighted tardiness
objective JSSP-WT. A first result is that for all neighborhood operators, the
first-improvement algorithm is significantly better than best-improvement algo-
rithm with the only exception being the CEI neighborhood operator, where the
difference between first and best improvement is not statistically significant. This
is shown in Fig. 2, which clearly shows the dominance of the first-improvement
algorithm on all instances and for each operator (all instances start from the
same initial solutions provided in sequence si): the diagonal is showing the line
of equal performance and points below the line indicate better performance of
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Fig. 2. Plots of the average solution cost per instance comparing first- (value on y-
axis) and best-improvement (value on x-axis) of neighborhood operators with 100 local
optima per instance for the JSSP-WT (Experiment 1)

the first-improvement operator. Only for the CEI operator most points are on
the diagonal, indicating similar performance of the two algorithms.

For each operator and both best- and first-improvement, Table 2 presents the
gap to the best known solutions, which is computed as

Gap(j) =
1
22

22∑

i=1

BFS(i, j) − BKS(i)
BKS(i)

× 100 (1)

where BKS is the best known solution, and BFS the best found solution by
operator j in the experiment, and other statistics explained in the table caption.
It is clear that best-improvement consumes almost five times the number of
evaluations used by the first-improvement algorithm and consequently its com-
putation time is much higher. This is due to that best improvement algorithm
requiring a complete evaluation of all neighbors in each search step. Concerning
the solution quality indicated by the gap value, the first-improvement algorithm
also performs better than the best-improvement algorithm, making it clearly
preferable. First-improvement also requires a larger number of improving steps
to reach local optima, but needs less scans of the entire neighborhood to do so,
therefore also resulting in shorter computation times.

Summarizing, our implementations of first-improvement are superior to the
best-improvement versions of the iterative improvement algorithms for all oper-
ators. Overall, the CT operator performed the best with the CEI operator giving
overall the worst performance. The high computation times of the latter are in
large part due to the additional feasibility tests it requires.
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Table 2. Experimental results for single neighborhood operators with a fixed number
of local optima for JSSP-WT. Given for each of best- and first-improvement the gap to
the best known solutions (Gap), the total number of schedule evaluations in millions
(across all instances) (#Eval), the average number of improvements in one execution of
iterative improvement (#Imp), the rank of the algorithms w.r.t. solution quality (Rank)
and the total number of seconds (Sec) to execute the experiment for the operator on
all instances. (The total running time per instance could be obtained by dividing the
total number of seconds by the number of instances.)

Experiment 1

Operator Best-improvement First-improvement

Gap #Eval #Imp Rank Sec Gap #Eval #Imp Rank Sec

CT 172.36 5.093 21.68 1 683 148.88 1.112 31.73 1 173

CET+2MT 202.89 3.101 18.85 2 435 175.23 0.61 28 2 131

ECET 210.82 3.309 17.74 3 534 180.82 0.690 27.43 3 140

CET 211.13 2.978 18.77 4 394 185.98 0.583 27.38 4 106

CEI+2MT 240.09 1.957 14.78 6 893 217.05 0.562 24.98 5 291

CEI 227.51 3.051 16.66 5 1686 227.97 0.664 24.02 6 519

Table 3. Experimental results for single neighborhood operators with a fixed number
of evaluations for JSSP-WT. #Lopt gives the number of local optima generated. For
the meaning of the other table entries, we refer to the caption of Table 2.

Experiment 2

Operator Best improvement First improvement

Gap #Lopt #Imp Rank Sec Gap #Lopt #Imp Rank Sec

CT 191.63 1008 21.78 1 241 141.98 4671 31.23 1 289

CET+2MT 208.67 1608 18.83 2 285 154.52 8230 27.8 2 355

ECET 220.55 1512 17.85 4 315 158.45 7316 27.28 4 385

CET 214.31 1669 18.78 3 266 158.4 8646 27.21 3 335

CEI+2MT 234.21 2612 14.63 5 880 165.7 9083 24.52 5 913

CEI 231.56 1660 16.55 6 1076 181.89 7795 23.75 6 1501

Experiment 2. In this experiment, the number of schedule evaluations per
instance is fixed to a maximum number of 10 × n2 × m2 evaluations, following
[6]. In our experiments on Singer and Pinedo’s instances this means 100 000
evaluations per instance. The results of this experiment are reported in Table 3.
Due to the typically higher number of evaluations (corresponding to a total of
2.2 × 106 evaluations), especially for the first-improvement versions many more
local optima than in experiment 1 could be seen, amplifying the advantage of
the first-improvement versions over the best-improvement ones.

Next, we report the results of the same analysis for the job shop schedul-
ing problems minimizing the total weighted flow time (JSSP-WC) and the total
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Table 4. Experimental results for single neighborhood operators with a fixed number
of local optima for JSSP-WC and JSSP-WU. For the meaning of the table entries, we
refer to the caption of Table 2.

Experiment 1

Criterion Operator Best improvement First improvement

Gap #Eval #Imp Rank Sec Gap #Eval #Imp Rank Sec
∑

i
wiCi CT 15.98 5.093 21.93 1 691 12.96 1.115 31.7 1 177

CET+2MT 17.66 3.098 18.95 2 442 15.73 0.607 27.73 2 121

ECET 18.59 6.613 17.83 4 1084 15.96 0.688 27.23 3 144

CET 18.21 2.97 18.83 3 401 16.17 0.581 27.19 4 109

CEI+2MT 20.63 1.962 14.87 6 908 18.17 0.561 24.79 5 295

CEI 19.08 3.062 16.77 5 1638 19.23 0.664 24 6 504
∑

i wiUi CT 112.31 0.291 0.14 1 71 112.31 0.264 0.15 1 69

CET+2MT 115.28 0.216 0.14 4 59 115.28 0.196 0.14 3 55

ECET 115.28 0.246 0.14 5 75 115.28 0.223 0.14 5 68

CET 115.28 0.213 0.13 3 58 115.28 0.193 0.13 4 56

CEI+2MT 115.23 0.17 0.13 6 108 115.23 0.185 0.13 6 117

CEI 114.58 0.239 0.14 2 152 114.58 0.217 0.14 2 158

weighted number of late jobs (JSSP-WU). The evaluation of the operators is
performed with first and best improvement on the same 22 instances. The exper-
imental results are given in Table 4 for experiment 1 and in Table 5 for experi-
ment 2. Given the lack of best known solutions in these instances for JSSP-WC
and JSSP-WU, we have executed an iterated local search algorithm for a large
number of iterations, taking the best solutions found as best-known ones.

The results for the JSSP-WC match relatively closely the main conclusions
on the performance of the operators from JSSP-WT. First, the first-improvement
versions are faster then the best-improvement versions of our implementation.
Concerning the quality of the solutions the operators obtain, again CT is the
best performing one and the ranking overall is almost the same as for JSSP-WT.
The second experiment is confirming these conclusions. Considering JSSP-WU,
the behavior of the algorithms is very different, mainly because the problem is
dominated by very large plateaus in the search landscape, making it difficult
to identify improvements. Hence, whether one uses a best-improvement or first-
improvement local search does essentially not make any significant difference, as
both require at least one full scan of the neighborhood. In the first experiment,
CT appears to be the best performing one, while in the second experiment, this
is not anymore the case. In fact, in the latter experiments the CEI+2MT and
CET+2MT operators appear to be preferable as they probably can identify some
improvements through the machine transpose moves.

4.3 First-Improvement Variable Neighborhood Descent

The performance of the local search with single neighborhood operator depends
on the underlying neighborhood relation and, in particular on the size of the
neighborhood. Generally using large neighborhoods rather than small ones can
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Table 5. Experimental results for single neighborhood operators with a fixed number
of schedule evaluations for JSSP-WC and JSSP-WU. For the meaning of the table
entries, we refer to the caption of Table 2.

Experiment 2

Criterion Operator Best improvement First improvement

Gap #Lopt #Imp Rank Sec Gap #Lopt #Imp Rank Sec
∑

i
wiCi CT 17.68 1010 21.97 1 245 12.68 4647 31.18 1 298

CET+2MT 18.35 1602 18.96 2 291 13.61 8219 27.46 2 372

ECET 19.26 1510 17.98 4 320 14.18 7315 27 4 399

CET 18.61 1674 18.84 3 270 14.17 8628 26.92 3 350

CEI+2MT 20.24 2604 14.72 6 874 15.06 9047 24.42 5 940

CEI 19.43 1654 16.67 5 1069 15.64 7782 23.68 6 1465
∑

i wiUi CT 89.85 17136 0.16 3 469 91.14 19168 0.16 5 501

CET+2MT 87.82 22794 0.14 2 491 86.65 25398 0.14 2 508

ECET 90.98 20118 0.14 4 523 89.12 22447 0.15 4 572

CET 87.82 23199 0.14 2 508 87.3 25795 0.14 3 510

CEI+2MT 86.6 29215 0.14 1 1043 86.16 27398 0.15 1 1004

CEI 93.81 20823 0.14 5 1183 92.51 23251 0.15 6 1205

offer chances for finding improving search steps. Variable neighborhood descent
(VND) [3] is a well-known approach of improving iterative improvement algo-
rithms by considering various neighborhoods.

In this section, we study two different possible VNDs, considering a VND
with two neighborhood operators (VND-2op) and a VND with three neighbor-
hood operators. In our experiments here, we only consider VNDs where the
neighborhoods are searched in a first-improvement order as the previous experi-
mental results clearly indicate this as the better choice. In the case of VND-2ops
there are a total of 30 possible combinations of how to define a VND. We have
implemented all and run experiments following the setup of experiment 1 from
the previous section. From these 30 possible combinations, we have selected six
promising configurations as judged by the quality of the solutions generated and
the computation time. In particular, we preferred combinations resulting in the
best quality solutions taking into account that they result in short computation
times. In particular, in the set of six VNDs are included the best four accord-
ing to the solution quality they generate are included, complemented by others
that are very fast but still reach good quality solutions. For instance, we did not
combine the CEI operator with other operators due to the high running times
of this operator. Table 6 shows the most promising combinations over 30 possi-
ble configurations using Experiment 1 as the evaluation process. Comparing the
solution quality reached by the VNDs, one can notice a significant improvement
over using only a single operator (see Table 2).

When we want to test a VND with three operators (VND-3op), the number
of possible combinations increases to 120. To avoid evaluating all of them, we
have used iterated F-race [1] as implemented in the irace automatic configuration
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Table 6. Best configurations of VND-2op first improvement for JSSP-WT

Operator 1 Operator 2 Gap #Eval #Imp Rank Sec

VND1 CT CEI+2MT 135.24 1.434 33.59 1 311

VND2 CET+2MT CT 146.81 1.368 32.08 4 194

VND3 CT CET+2MT 147.79 1.273 31.98 5 205

VND4 CET CT 145.92 1.351 31.46 3 194

VND5 ECET CT 143.93 1.476 31.51 2 230

VND6 CET CET+2MT 182.11 0.746 27.72 6 132

Table 7. Best configurations of VND-3op obtained by i-race with first improvement
for JSSP-WT

Operator 1 Operator 2 Operator 3 Gap #Eval #Imp Rank Sec

VND1 CT CEI CEI+2MT 134.13 1.748 34.79 1 463

VND2 CET CT CEI 138.17 1.848 33.73 2 380

VND3 ECET CT CEI 138.85 1.979 33.75 3 419

VND4 CT CET+2MT CEI 142.07 1.733 34.22 5 384

VND5 CT CEI CET+2MT 142.96 1.682 34.22 6 374

VND6 CET+2MT CT CEI 139.3 1.855 34.31 4 397

tool [7] to select the most promising configurations of a VND-3op. In order to
discard the worst combinations of the operators, we apply irace using as ini-
tial candidates configurations all 120 possible VND-3ops and let irace select
among these the 10 best ones. Among these ten, we have selected six of the most
promising ones analogous to how we have done the selection for the VND-2op. In
Table 7, these six configurations are evaluated according to the scheme of experi-
ment 1. We observe that the CT operator is presented in each configuration since
it consists on swapping every critical arc in a critical block and it is considered
the best operator with the smallest gap in the previous experiments. These best
combinations are based on CEI and CEI+2MT operators in the second or the
third position of the configurations. When compared to the results of VND-2op,
overall the quality of the solutions reached by the VND-3op algorithms is better,
however, this comes at the cost of further increased computation times.

The variants of the VND-2op and VND-3op for the JSSP-WC and JSSP-WU
have been chosen in a similar process as reported above. Considering JSSP-WC
(see Tables 8 and 9), the high-level conclusions are similar to those of JSSP-
WT; the VND-2op and VND-3op reach better quality solutions with those of
VND-3op naturally being the best, however, at an increased computation time.
For the JSSP-WU this same process led, as expected, only to minor differences
among the solution quality of the VNDs, as the major improvement should
come through the frequent execution of local searches. We nevertheless selected
various VNDs, all making use of the CT operator as the first one, except for one
VND-2op, where CT is used as the second operator.
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Table 8. Best configurations of VND-2op first improvement for JSSP-WC

Operator 1 Operator 2 Gap #Eval #Imp Rank Sec

VND1 CT CET 12.96 1.242 31.7 5 209

VND2 CT CEI 12.56 1.504 33.89 2 383

VND3 CT CET+2MT 12.89 1.275 31.96 4 219

VND4 CT CEI+2MT 12.09 1.433 33.58 1 330

VND5 CET CET+2MT 15.68 0.742 27.54 6 136

VND6 CET+2MT CT 12.82 1.371 32.03 3 224

Table 9. Best configurations of VND-3op obtained by irace for JSSP-WC

Operator 1 Operator 2 Operator 3 Gap #Eval #Imp Rank Sec

VND1 CET+2MT CEI CT 12.14 1.842 34.27 2 421

VND2 CET+2MT CT CEI 11.98 1.845 34.21 1 372

VND3 CT CEI CEI+2MT 12.15 1.740 34.76 3 434

VND4 CT CET+2MT CEI 12.17 1.724 34.22 4 370

VND5 CT CEI CET+2MT 12.35 1.672 34.2 5 366

VND6 CT CET CEI 12.56 1.683 33.89 6 365

4.4 Iterated Local Search Algorithm

As a next step, we considered the various iterative improvement algorithms as
local searches inside an iterated local search (ILS) algorithm [8]. For a generic
outline of ILS, see Fig. 3. For the specific ILS algorithm, we followed the three-
step approach described by Mati et al. [9]. We made this ILS a parametrized
algorithm in which we can choose according to a parameter the iterative improve-
ment algorithm to be used, different possibilities for the perturbation (either a
fixed number of perturbation steps or a randomly chosen number within some
interval) and different acceptance criteria.

The local search step in this ILS has two phases: the first phase is an improv-
ing phase starting from a given initial solution until a local optimum is reached.
In our implementation, we consider as possible alternative choices the first-
improvement algorithms using the six different operators, or our six candidate
VND-2op or VND-3op algorithms for each of the three objective functions we
consider. The second phase is an intermediate phase that starts from the solution
obtained by the improving step, but uses a second objective function to select a
best move without degrading the value of the local optimum. We use the sum of
completion times as the second objective function and the CT operator as the
neighborhood structure. These two phases are repeated until no improvement is
found in the first and second objective functions.

The perturbation step in the original algorithm by Mati et al. consists of a
number of steps at each of which a random neighbor in the CT neighborhood
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s0 := GenerateInitialSolution
s∗ := LocalSearch(s0)
while not stopping criteria met do

s′ := Perturbation (s∗)
s∗′ := LocalSearch(s′)
s∗ := AcceptanceCriterion (s∗, s∗′)

end while

Fig. 3. Algorithmic scheme of the ILS

is accepted. The number of steps in Mati et al. is chosen uniformly at random
in t ∈ [tmin, tmin + Δ]. Here, we consider also the possibility of using a fixed
number of steps in the perturbation. As the acceptance criterion, Mati et al.
have accepted every new local optimum as the new incumbent solution; this
acceptance criterion we call accept always. Here, we also consider an acceptance
criterion that accepts a worse solution with a probability given by the Metropolis
condition [11], exp(f(s∗) − f(s∗′))/T where f(s∗) and f(s∗′) are the objective
value of the current and the new solution, respectively. We consider the temper-
ature T fixed in this algorithm (Fig. 3).

We consider three variants of ILS denoted by ILS1, ILS2 and ILS3. ILS1 con-
siders only single neighborhood operators in the improving phase, ILS2 considers
only VND-2op and ILS3 considers only VND-3op in the improving step. We fine-
tuned the parameters for each variant ILS1, ILS2 and ILS3 on each of the JSSP
variants, that is, JSSP-WT, JSSP-WC and JSSP-WU. The range of possible
values for T was [0.01, 10000], for t it was tmin ∈ [0, 10] and Δ ∈ [1, 10] (if per-
turbation steps are variable) and t ∈ [2, 10] (if perturbation steps are of fixed size)
and for the acceptance criterion it was [accept always, accept with Probability].

As for VND-3op, we used irace in its default setting for the automatic tuning
[7]. For each ILS, we performed one run of the automatic tuner and allocated a
limit of 1000 experiments for each irace run. Each experiment involving the exe-
cution of one algorithm configuration uses a time limit of 60 s. Table 10 describes
the parameter settings of ILS variants that we obtained and that we used to
compare the behaviour of each algorithm on the different objectives.

For the experimental analysis of the ILS variants, we did 5 runs of each
ILS with a time limit of 60 s per run on the Singer and Pinedo instances and
for the comparison of the algorithms we choose the median of the 5 results we
obtained per algorithm and problem. Using the median is preferable over the
averages, as the median is a more stable statistic than the mean, especially in
case results can be rather variable. We then made the analysis based on the
median gaps to the best-known solutions. Table 11 summarizes the average of
these median gaps of the ILS variants for each objective function. The number
in parenthesis indicates the number of optimal or best-known solutions reached.
Best results of ILS are clearly better than just restarting the LS from random
initial solutions for 60 s per run and the best results with this latter approach
are the percentage deviation of 92.11% and 9.51% away from the optimum with
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Table 10. Parameter settings found by automatic tuning for different ILS algorithms
on different JSSP variants.

ILS Neighborhood perturbFixed Acceptance tmin t Δ T

ILS1-WT CET False always 7 - 9 -

ILS2-WT VND2 True with prob - 9 - 479.69

ILS3-WT VND6 False always 8 - 10 -

ILS1-WC CT False always 2 - 9 -

ILS2-WC VND6 True always - 8 - -

ILS3-WC VND4 True with prob - 9 - 5393.17

ILS1-WU CET+2MT False always 6 - 3 -

ILS2-WU VND4 False with prob 4 - 2 426.02

ILS3-WU VND2 False always 9 - 5 -

VND-2op for JSSP-WT and JSSP-WC respectively. With VND-3op, the best
gaps are 96.46% and 9.61% for JSSP-WT and JSSP-WC respectively.

Table 11. Comparison between different ILS algorithms using a single (ILS1) neigh-
borhood operator, a VND with two operators (ILS2) or a VND with three operators
(VND3) for the three variants of the job-shop scheduling problem we consider. Given
is the average gap of the algorithms measured across our benchmark set of 22 instance;
for each instance, we measured the median gap to the optimal or best-known solutions.

Objective function ILS1 ILS2 ILS3 P-values

ILS1-ILS2 ILS1-ILS3 ILS2-ILS3
∑

i wiTi 14.16(2) 12.66(5) 20.1(4) 0.3202 0.04198 0.014523
∑

i wiCi 1.44(3) 1.69(2) 2.02(2) 0.3956 0.11172 1
∑

i wiUi 10.41(10) 16.56(8) 33.92(2) 0.1308 0.000573 0.0009168

We assess the statistical significance of the differences using the Wilcoxon
paired test at a significance level α = 0.05. We compared the results obtained by
ILS1, ILS2 and ILS3 on the three JSSP variants. Multiple comparisons are car-
ried out between ILS1-ILS2, ILS1-ILS3 and ILS2-ILS3, using Holm’s correction.
The results are given in Table 11.

JSSP-WT : The difference between ILS1-WT and ILS2-WT are not statistically
significant, while the differences of ILS1-WT and ILS2-WT w.r.t. ILS3-WT are
statistically significant. Overall, taking the average performance, ILS2 is the best
performing algorithm with a gap 12.66 to the optimal solutions.

JSSP-WC : The results obtained by the test show that there is no statistically
significant differences between the variants. Anyway, ILS1-WC obtains the lowest
averages, followed rather closely by ILS2-WC.
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JSSP-WU : There is no statistically significant difference between ILS1-WU and
ILS2-WU, but the differences between both algorithms and ILS3-WU are sta-
tistically significant.

Overall, the ILS algorithms improve strongly w.r.t. a repeated application of
local search operators, as can be observed when comparing the gaps in Table 11
to any of the other experiments. In general, there is no clear trend whether ILS1
or ILS2 is preferable and possibly further tests on larger instances would be
necessary to differentiate more clearly between them. However, the experimental
results also clearly indicate that the ILS3 variants are inferior to ILS1 or ILS2,
which probably is due to the fact that the slight improvement in solution quality
reached by concatenating the search according to three operators does not pay
off the additional computation time it requires.

5 Conclusions

In this paper, we have studied six neighborhood operators for three job-shop
scheduling problems that differ in the objective functions to be minimized. The
neighborhoods have been studied within iterative first- and best-improvement
algorithms, and within variable neighborhood descent algorithms. The experi-
mental results showed first-improvement local search is preferable over the best-
improvement one due to shorter computation times and often better quality
solutions. Among variable neighborhood descent algorithms we considered ones
where either two or three neighborhoods are integrated. Generally, the critical
transpose neighborhood was found to be important for all three job-shop schedul-
ing problems considered, even though the best VNDs had different shapes, thus,
depended on the specific problem. Once either the single neighborhood iterative
improvement or the two- and three-neighborhood VNDs are integrated into an
iterated local search algorithm, the VND with three neighborhoods was generally
found to be not cost effective and the faster local searches to be preferable.

We intend to extend this study in a number of directions. First, we may
implement even more neighborhood structures in addition to those studied here.
We have done so with CT+2MT, which seemed particularly promising given the
performance of CT and CET+2MT, and obtained actually improved solution
quality when compared to CT. However, we do not necessarily expect the addi-
tion of further neighborhoods to change the other conclusions taken here. We
may also improve the iterated local search algorithm by considering also other
operators than the critical transpose one for generating the solution perturba-
tions. Interesting is probably to extend the work considering more variants of the
job-shop scheduling problem that do not only differ in the objectives but also in
other features such as sequence-dependent setup times, constraints on inventory
and buffer sizes, or more general job routing possibilities. In fact, providing a
generalized job-shop environment in the style of what done by Vidal et al. for
vehicle routing [16], should provide interesting insights and results, as well as
increasing the practical value of the research.
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Abstract. Real-world problems are often composed of multiple inter-
dependent components. In this case, benchmark problems that do not
represent that interdependence are not a good choice to assess algorithm
performance. In recent literature, a benchmark problem called Travelling
Thief Problem (TTP) was proposed to better represent real-world multi-
component problems. TTP is a combination of two well-known prob-
lems: 0-1 Knapsack Problem (KP) and the Travelling Salesman Problem
(TSP). This paper presents a genetic algorithm-based optimization app-
roach called Multi-Component Genetic Algorithm (MCGA) for solving
TTP. It aims to solve the overall problem instead of each sub-component
separately. Starting from a solution for the TSP component, obtained by
the Chained Lin-Kernighan heuristic, the MCGA applies the evolution-
ary process (evaluation, selection, crossover, and mutation) iteratively
using different basic operators for KP and TSP components. The MCGA
was tested on some representative instances of TTP available in the liter-
ature. The comparisons show that MCGA obtains competitive solutions
in 20 of the 24 TTP instances with 195 and 783 cities.

Keywords: Genetic Algorithm · Multi-component problem · Travelling
Thief Problem

1 Introduction

Classic problems in computer science have been proposed and have recently been
studied to define strategies to obtain a good solution for real-world problems.
c© Springer International Publishing AG 2017
B. Hu and M. López-Ibáñez (Eds.): EvoCOP 2017, LNCS 10197, pp. 18–29, 2017.
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Many of these problems belong to the NP-hard class, which means that they
are combinatorial problems to which we do not have algorithms that can find
the best solution in a polynomial time nowadays. Therefore, it is not possible to
obtain the best solution in large instances due to the necessary time to process
each possible solution. For this reason, heuristics have been developed to obtain
a satisfactory solution in an acceptable time.

According to Bonyadi et al. (2013), real-world problems often have interde-
pendent components and these should not be solved separately. This correla-
tion should be considered for the achievement of better solutions to the overall
problem.

In order to cover the complexity of a real-world problem, a new problem
called Travelling Thief Problem (TTP) was proposed (Bonyadi et al. 2013). It
is a combination of two well-known problems: the 0-1 Knapsack Problem (KP)
and the Travelling Salesman Problem (TSP).

Some strategies have been proposed to solve TTP. Faulkner et al. (2015)
presents algorithms that focus on manipulating the KP component and obtaining
the TSP component from the Chained Lin-Kernighan algorithm (CLK) (Apple-
gate et al. 2003). Bonyadi et al. (2014) use a co-evolutionary approach called
CoSolver where different modules are responsible for each component of the
TTP, which in turn communicates with others and combines solutions to obtain
an overall solution to the problem. In this way, the CoSolver attempts to solve
the TTP by manipulating both components at the same time, instead of obtain-
ing a solution for one component using the solution of other component. Mei et
al. (2014) seek large-scale TTP instances proposing complexity reduction strate-
gies for TTP with fitness approximation schemes and applying these techniques
in a Memetic Algorithm, which outperforms the Random Local Search and Evo-
lutionary Algorithm proposed by Polyakovskiy et al. (2014). Wagner (2016) pro-
poses a swarm intelligence approach based ant colony that builds efficient routes
for TTP instead of TSP, and combines it with a packing heuristic. This strat-
egy outperforms state-of-the-art heuristics on instances with up to 250 cities.
Finally, an Evolutionary Algorithm that tackles both sub-problems (KP and
TSP) at the same time is presented by Lourenço et al. (2016). The computa-
tional experiments in this last study used six instances with a number of cities
ranging from 51 to 100.

This paper proposes an algorithm based on Genetic Algorithm (GA) concept
called Multi-component Genetic Algorithm (MCGA) to solve small and medium
instances of TTP. MCGA has four basic steps in each iteration: evaluation of
the solution (individual) to know how good this solution is; selection of solu-
tions based on their performance (fitness); crossover the solutions to create new
solutions (children) based on the features (chromosome) of existing solutions
(parents); disturbance of the solutions by applying some mutation operator that
changes their features (change some alleles of the genes of their chromosome).
After some iterations (generations) the algorithm tends to achieve good solutions
to the problem.



20 D.K.S. Vieira et al.

The article is organized as follows. Section 2 describes the TTP and its specifi-
cations. In Sect. 3, the Multi-component Genetic Algorithm (MCGA) is defined.
Section 4 explains the methodology. Finally, we present the conclusion in Sect. 5,
as well as the possibilities for further research.

2 Travelling Thief Problem

According to Polyakovskiy et al. (2014), TTP is defined as having a set of cities
N = {1, . . . , n} where the distance dij between each pair of cities i and j is
known, with i, j ∈ N . Every city i, except the first, has a set of items Mi =
{1, . . . , mi}. Each item k in a city i is described by its value (profit) pik and
weight wik. The candidate solution must visit each city only once and return to
the starting city.

Additionally, items can be collected in cities while the sum of the weight of
the collected items does not exceed the knapsack maximum capacity W . A rent
rate R must be paid by each time unit that is used to finish the tour. υmax

and υmin describes the maximum and minimum speed allowed along the way,
respectively.

yik ∈ {0, 1} is a binary variable equals to 1 if the item k is collected in the
city i. Wi specifies the total weight of the collected items when the city i is left.
Hence, the objective function for a tour Π = (x1, . . . , xn), xi ∈ N and a picking
plan P = (y21, . . . , ynmi

) is defined as:

Z(Π,P ) =
n∑

i=2

mi∑

k=1

pikyik − R

(
dxnx1

υmax − νWxn

+
n−1∑

i=1

dxixi+1

υmax − νWxi

)
(1)

where ν = υmax−υmin

W . The aim is to maximize Z(Π,P ). The equation is sum-
marized in penalize the profit gains from collected items with a value that rep-
resents the total travel time multiplied by the renting rate R.

Figure 1 shows an example of TTP where the number of items for each city
is equal to the test instances provided by Polyakovskiy et al. (2014). This case
has 2 items to each city (except the first city, that does not have items) and 3
cities in total. Each item Iij(pij , wij) is described as being the item j of the city

Fig. 1. TTP example.
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i that has a value pij and a weight wij . Let us assume the knapsack capacity
W = 10, the renting rate R = 1, υmax = 1 and υmin = 0.1. A feasible solution
for this problem is P = (0, 1, 0, 1) and Π = (1, 2, 3), which describes that the
items I22, I32 which are in the cities 2 and 3, respectively, will be collected,
making a tour starting from the city 1 to the city 2, and then to the city 3, and
finally returning to the city 1. This solution results in Z(Π,P ) ≈ −28.053.

Note that, in this example, if only the TSP component of the problem is
considered, all the possible solutions have the same cost, since all connections
between the cities will be used anyway. However, considering the overall problem,
it can be seen that the order of the tour affects the solution cost, due to the
variation of the time that an item is kept in the knapsack. In other words, a
heavy item picked at the start of the tour affects the travelling speed for a
longer time, compared to the same item picked at the end of the tour, which
slows the solution and increases the cost.

3 Multi-component Genetic Algorithm

The proposed MCGA1 has a different encoding type for each component of the
TTP. The TSP component is encoded by enumerating the city indices in order,
starting from the city 1 and ending the tour at the same city. The KP component
is encoded using a binary array with the size of existing items. The items are
ordered according to the city to which they belong. If the problem has 5 items
per city, the first five genes make reference to the items of the city two (since
the first city, by definition, does not have items). Figure 2 shows a graphical
representation of the chromosomes that compose the individual.

Fig. 2. Graphical representation of the MCGA individual encoding.

1 The source code can be found at https://github.com/DanielKneipp/Genetic
AlgorithmTravelingThiefProblem.

https://github.com/DanielKneipp/GeneticAlgorithmTravelingThiefProblem
https://github.com/DanielKneipp/GeneticAlgorithmTravelingThiefProblem
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The initial population is obtained using the Chained Lin-kernighan
(Applegate et al. 2003) (CLK) for the TSP component and all items unpacked
(KP component). After generating the initial population, an iterative process
starts with the selection of the individuals who will pass through an evolution-
ary process, based on their fitness. In this step, it was used the tournament
method, in which, given a tournament size k, k individuals are selected to be
compared with each other and the best individual is selected to the next step.
This procedure is repeated until the size of the selected population reaches the
size of the original population. Algorithm1 shows a k-tournament where s∗ indi-
viduals are selected from population H.

Algorithm 1. Tournament (H, s∗, k)
1: H subset ← {}
2: for i := 0 to s∗ − 1 do
3: H subset ← k random individuals from H
4: add to H∗ the best individual of H subset
5: end for
6: return H∗

The crossover step creates new individuals (children) based on the chromo-
somes of the existing individuals (parents). Due to the multi-component charac-
teristic of the TTP, a different crossover method was used on each component
of the problem. For the KP component, a crossover operator called N-point was
used. This operator combines the picking plan of two parents in two children
in a way that one child receives the alleles of one parent until a certain point
is reached. Then, it receives the alleles from the other parent. In the crossover,
while the child c1 receives the alleles from a parent pi, the child c2 receives the
alleles from a parent pj , where ∀ i, j ∈ {1, 2, . . . , s} : i �= j, and s is the number
of parents. The Algorithm2 shows the N-point crossover operator.

For the TSP component, a crossover operator called Order-based is used to
combine the tours of two parents without generating invalid tours (Davis 1985).
It uses a random-generated binary mask. When the value in a position of the
mask is equal to 1, the gene that is in that position of the children 1 and 2 are
filled with the genes of the parents 1 and 2, respectively. The remaining genes in
parent 1 (with the mask value equal to 0) are sorted in the same order as they
appear in parent 2 and the alleles of those sorted genes are used to fill in the
child 1 genes which are still empty. The same happens to child 2, although in
this case, the genes of the parent 2 are sorted according to parent 1 order. This
operator is detailed in Algorithm 3.

After the application of the crossover operators, the population size doubles
due to the creation of two children for each two parents. Hence, a selection
procedure is applied to decrease the population back to its original value. This
second selection step also uses the Tournament method, as shown in Algorithm 1,
using the number of individuals before the crossover step as the population size.
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Algorithm 2. N-point crossover (Pp1 , Pp2)
1: s ← size of the chromosome.
2: Points← n different loci (positions) in the chromosome sorted in increasing order
3: j ← 0
4: for i := 0 to s − 1 do
5: if j < n, i = Points[j] then
6: j ← j + 1
7: end if
8: if j is an even number then
9: Pc1 [i] ← Pp1 [i]

10: Pc2 [i] ← Pp2 [i]
11: else
12: Pc2 [i] ← Pp1 [i]
13: Pc1 [i] ← Pp2 [i]
14: end if
15: end for
16: return Pc1 , Pc2

Algorithm 3. Order-based crossover (Πp1 , Πp2)
1: s ← size of the chromosome.
2: Mask ← random array of bits with size s
3: for i := 0 to s − 1 do
4: if Mask[i] = 1 then
5: Πc1 [i]← Πp1 [i]
6: Πc2 [i]← Πp2 [i]
7: end if
8: end for
9: L1 ← list of genes in Πp1 which are in a position i that the Mask[i]= 0

10: L2 ← list of genes in Πp2 which are in a position i that the Mask[i]= 0
11: Sort L1 so that the genes appear in the same order as in Πp2

12: Sort L2 so that the genes appear in the same order as in Πp1

13: Fill in the still empty genes of Πc1 with the L1

14: Fill in the still empty genes of Πc2 with the L2

15: return Πc1 , Πc2

Similarly to the crossover step, the mutation step has a different operator for
each component of the problem. To mutate the KP component, a simple Bit-flip
operator was used. Each item i has a probability p of being removed in case of
i already be selected, or added to the knapsack, otherwise.

2-OPT was used to mutate the TSP component (Watson et al. 1998). This
mutation operator swaps a pair of edges in the tour. A way to do that is given two
vertexes v1 and v2 (they cannot be the first or the last vertex, which reference the
same city), it made a copy of the tour until v1, then the sub-tour [v1, v2] is copied
in reverse order. Next, the remainder of the tour is copied. It can be seen in the
Algorithm 4, assuming that the index range of the chromosome starts from 0.
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Algorithm 4. 2-OPT mutation (Πp)
1: s ← size of the chromosome.
2: v1 ← random integer number ∈ [1, s − 3]
3: v2 ← random integer number ∈ [v1 + 1, s − 2]
4: for i := 0 to v1 − 1 do
5: Πc[i]← Πp[i]
6: end for
7: for i := v1 to v2 do
8: Πc[i]← Πp[v2 − (i − v1)]
9: end for

10: for i := v2 + 1 to s − 1 do
11: Πc[i]← Πp[i]
12: end for
13: return Πc

In the TSP, the order of the tour does not affect the solution cost, since the
distance from a city c1 to another city c2 is equal to that from c2 to c1, for
example. However, in TTP, this change affects the time that an item will be
carried, and consequently, the cost. Therefore, the 2-OPT operator can dramati-
cally change the individual. For this reason, the mutation operators are used with
parsimony. The 2-OPT has a 17.5% chance of being chosen, Bit-flip has 65% and
both operators have 17.5%. Note that the probability of 82.5% (65% + 17.5%)
of Bit-flip being used do not necessarily mean that several items are going to be
removed or added because there is the configuration parameter p of the Bit-flip.
For example: with p = 0.2%, an item i has a 0.002 × 0.825 = 0.00165 = 0.165%
chance of being added or removed.

We use elitism to maintain a set of the best individuals (also called elites) in
each generation to the next generation. In the mutation step, the best individuals
are not included in the procedure. In the crossover step, before the procedure
starts, a set of the best individuals is ensured to be part of H∗. Note that these
best individuals are included in the tournament.

The Eq. 1 is used to evaluate the individuals. If an individual is invalid (the
sum of the weight of picked items exceeds the knapsack capacity), a correc-
tion procedure is applied and removes the worst items of the individual until it
becomes valid. The worst items are those with the lowest values of pi

wi
, where pi

is the value of the item i and wi its weight.
The MCGA combines all these operators as shown in the Algorithm 5, where

K and Q stores the MCGA configuration and the stop conditions, respectively.
Inside K, it is specified the population size s; two different tournament sizes
ts, tc, for the selection step and the tournament after the crossover, respectively;
three different sizes of elite set es, ec, em, for the selection step, tournament
procedure after the crossover and the mutation step, respectively; a number
of points nc for the N-point crossover operator; the probability p for Bit-flip
mutation operator.
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Algorithm 5. Multi-component Genetic Algorithm (K, Q)
1: O ← GenerateInitialPopulation(K.s)
2: EvaluateIndividuals(O)
3: while ¬Q do
4: O ← Select(O, K.s, K.ts, K.es)
5: Θ ← Crossover(O, K.nc)
6: EvaluateIndividuals(Θ)
7: O ← {O, Θ}
8: O ← Select(O, K.s, K.tc, K.ec)
9: O ← Mutate(O, K.p, K.em)

10: EvaluateIndividuals(O)
11: end while
12: return BestIndividual(O)

4 Methodology and Results

A subset of 9720 TTP benchmark instances, proposed by Polyakovskiy et al.
(2014), was used in the experiments. These 9720 instances have the number of
cities ranging from 51 to 85,900 (81 different sizes); the number of items per city
F ∈ {1, 3, 5, 10} (called item factor); ten capacity categories (varying knapsack
capacity); three KP types: uncorrelated (the values of the items are not correlated
with their weights), uncorrelated with similar weights (same as the uncorrelated,
but the items have similar weights) and bounded strongly correlated (items with
values strongly correlated with their weights and likely presence of multiple items
with the same characteristics).

According to Faulkner et al. the 72 instances selected by them are a repre-
sentative subset to cover small, medium, and large size instances with different
characteristics of the original set of 9720 instances. In this paper, we selected a
subset including 36 instances of those 72 selected by Faulkner et al. (2015). This
subset consists of 3 different numbers of cities n between 195 and 3038, two item
factors F ∈ 3, 10, all three types of knapsacks t and two capacity categories C
being equal to 3 or 7.

Different configurations for the MCGA were defined (based on a simple
empirical study) due to the variety of problem sizes, namely:

C1: 200 individuals, Tournament size of both selection procedures equal to 2,
number of elites of both selection steps and mutation step equal to 12, num-
ber of points for the N-point crossover operator equal to 3, and probability
p for the Bit-flip mutation operator equal to 0.2%. The stop condition is
10 min of runtime. The CLK heuristic has no runtime limit;

C2: 80 individuals, Tournament size of both selection procedures equal to 2,
number of elites of both selection steps and mutation step equal to 6, number
of points for the N-point crossover operator equal to 3, and probability p for
the Bit-flip mutation operator equal to 0.2%. The stop conditions are 50 min
of runtime. The CLK heuristic has runtime limit tCLK = 0.6×tMCGA

s , where
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Table 1. MCGA performance compared to the S5 heuristic and MIP approach on a
subset (36 instances) of the 72 representative instances used by Faulkner et al. (2015).

n m t C MCGA S5 MIP

195 582 bsc 3 84328.5 (±2169.3) 86516.9 86550.9

7 121166 (±5597.43) 110107 110555

unc 3 61666.25 (±1629.41) 56510.6 56518

7 76813 (±1180.9) 70583.8 70728

usw 3 31049.1 (±721.32) 28024.7 28061.5

7 53808 (±1110.14) 48023 48332

1940 bsc 3 229924 (±2217.35) 227063 227965

7 385503.5 (±3464.83) 359614 359527

unc 3 174049.5 (±999.1) 157297 157532

7 250635 (±996.26) 227502 227637

usw 3 115036 (±830.88) 102568 103417

7 193773 (±1814.72) 168931 169168

783 2346 bsc 3 288460 (±7089.17) 263725 263691

7 478978 (±11832.2) 435157 433814

unc 3 207616 (±3640.77) 189949 189671

7 287819 (±4739.09) 263367 263258

usw 3 140840.5 (±2420.11) 130409 130901

7 233716 (±3593.83) 213893 213943

7820 bsc 3 942002 (±7588.29) 940002 940141

7 1501090 (±16182.4) 1425821 1424650

unc 3 581237 (±5916.8) 637793 637487

7 905915 (±9955.25) 910032 909343

usw 3 399076 (±9569.79) 434180 435368

7 707502 (±15864.72) 698730 699101

3038 9111 bsc 3 798247 (±19108.8) 1217786 1214427

7 1312630 (±35161.7) 1864413 1858773

unc 3 37385.3 (±24576.2) 782652 780574

7 362986 (±31487.3) 1093259 1090977

usw 3 93402.2 (±16183.7) 568509 567102

7 298075 (±25109.7) 873670 869420

30370 bsc 3 1042960 (±81288.8) 4023124 4006061

7 1784080 (±201566) 5895031 5859413

unc 3 −1576520 (±44662.3) 2595328 2589287

7 −897125 (±117563) 3603613 3600092

usw 3 −729530 (±40322.8) 1800448 1801927

7 −679838 (±94382.3) 2863437 2856140
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tMCGA is the total runtime (50 min in this case) and s is the population
size (80 in this case).

Note that the MCGA runtime includes the generation of the initial popula-
tion procedure. Therefore, the time spent by the CLK is taken into account.

In the computational experiments we compare MCGA with two heuristics
proposed by Faulkner et al. (2015): (1) a local search algorithm called S5, which
runs CLK and then an iterative greedy heuristic (called PackIterative), until the
time is up; and (2) a mixed integer programming (MIP) based approach. The
computer used has two Intel Xeon E5-2630 v3 totaling 32 cores (only one was
used for each run), 128 GB of RAM and Ubuntu 14.04 LTS OS.

The results presented in Table 1, using C1 configuration in MCGA, represent
the mean of 30 independent runs (with standard deviation, in case of MCGA).
It can be seen that MCGA outperforms the other algorithms in 83.33% (20 of
the 24) instances derived from the TSP problem component rat with 195 and
783 cities. On the other hand, for the problem with 3038 cities, it has clearly
underperformed and demonstrated that the MCGA performance is visibly linked
with the TSP component characteristics, which can be the distance pattern or
the problem size or maybe both. The overall result shows that MCGA obtained
better averages in 55.56% (20 of the 36) of the presented instances; S5 outper-
forms the other algorithms in 36.11% (13 of the 36, mainly due to its results
in the instances with 3038 cities) and the MIP based approach was the best in
8.33% (3 of the 36) of the benchmark problems.

The algorithm evolution was analyzed for further investigation of the MCGA
behavior on instances with 3038 cities. We discovered that, for many instances
such as pcb3038 n30370 uncorr 07 (3038 cities, 10 items per city, uncorrelated
type and capacity category 7), the performance was limited by time restriction.
Figure 3 shows that MCGA convergence was not attained. Probably, a better
solution can be found with more time available. In face of this, a configura-
tion with more time available (C2) was used to analyze the MCGA behavior
while solving the instance (pcb3038 n30370 uncorr 07). We limited the CLK

Fig. 3. MCGA with C1 configuration in the instance pcb3038 n30370 uncorr 07.
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heuristic runtime (set to 37.5 s to generate each individual) in order to guarantee
considerable runtime to MCGA.

Figure 4 shows that MGCA achieves significantly higher fitness value if more
time is available. However, this value still remains below the S5 and MIP results.
Therefore, the amount of time is not the only MCGA feature that requires
improvement.

Fig. 4. MCGA with C2 configuration in the instance pcb3038 n30370 uncorr 07.

5 Conclusion and Future Work

In this paper, a Genetic Algorithm approach called Multi-component Genetic
Algorithm (MCGA) was proposed in an attempt to solve a new multi-component
combinatorial problem called Travelling Thief Problem (TTP). It applies basic
mutation and crossover operators for each component of the problem. The inter-
dependence observed in a multi-component problem proves challenging, since
the optimal solution for a component does not imply in a good solution for the
overall problem.

The experiments showed that MCGA can obtain a competitive solution in 20
of the 24 TTP representative instances with 195 and 783 cities when compared to
other algorithms in the literature. Further investigation is required to improve its
performance on larger instances. The initial ideas are the using of new strategies
to evaluate the individuals, and different operators of mutation and crossover
specifically developed for TTP that consider the interaction between the com-
ponents. Moreover, we intended assess how the MCGA parameters influences
the quality of the results.
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Abstract. Feature selection aims at choosing a small number of rele-
vant features in a data set to achieve similar or even better classification
accuracy than using all features. This paper presents the first study on
Large Neighborhood Search (LNS) algorithm for the feature selection
problem. We propose a novel hybrid Wrapper and Filter feature selection
method using LNS algorithm (WFLNS). In LNS, an initial solution is
gradually improved by alternately destroying and repairing the solution.
We introduce the idea of using filter ranking method in the process of
destroying and repairing to accelerate the search in identifying the core
feature subsets. Particularly, WFLNS either adds or removes features
from a candidate solution based on the correlation based feature ranking
method. The proposed algorithm has been tested on twelve benchmark
data sets and the results have been compared with ten most recent wrap-
per methods where WFLNS outperforms other methods in several the
data sets.

Keywords: Feature selection · Large Neighborhood Search ·
Classification

1 Introduction

One of the aims of the feature selection is to remove irrelevant and redundant
features from a set of original features to improve the classification performance.
Generally, recent interest in feature selection has been increased due to chal-
lenges which are caused by sheer volume of data that is expected to have a rapid
growth over next years. Such data volume would not only increase the demand
of computational resources but also effect on the quality of several data mining
tasks such as classification. Moreover, learning from large data sets would be a
more complex task when it includes irrelevant, redundant and noisy features.
Feature selection techniques address such challenges by decreasing the dimen-
sionality, reducing the amount of data needed for the learning process, shortening
the running time, and improving the performance of the learnt classifiers [1].

Throughout the literature, feature selection approaches are mainly cate-
gorized into three main groups: filter, wrapper and hybrid approaches. Filter
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approaches select and evaluate subsets of features based on the general charac-
teristics of the training data without involving a learning model while wrapper
approaches find subset of features by considering a learning model. Wrapper
methods have better quality subsets than filter methods, however they impose a
high computational cost as a result of constructing a learning model when evalu-
ating every single subset while filter methods are more computationally efficient.
Hybrid approaches aim at benefiting from advantages of both filter and wrapper
methods, where filter method can search through the feature space efficiently
while the wrapper method provides good accuracy by providing higher quality
subset of features for a classifier.

Wrapper methods guide the search through the search space of feature sub-
set by a learning algorithm where a search algorithm is wrapped around the
classification model. To this end a common open question that all wrapper tech-
niques try to deal with is to develop an efficient search algorithm for finding an
optimal feature subset. An exhaustive search algorithm may be employed, as a
possible option to find the optimal solution, however it is often impractical for
most data sets. Alternatively, metaheuristic methods have been developed with
varying degrees of success (see the next section) to find near-optimal solutions
in a reasonable amount of time.

This paper proposes a novel hybrid Wrapper and Filter algorithm designed
based on LNS (WFLNS) to solve the feature selection problem. In this study
we aim at developing a LNS with improved capabilities of destroy, repair and
acceptance methods that has leading-edge performance over the most recent
metaheuristics algorithms for feature selection. Our idea is based on hybridizing
a filter ranking method as a heuristic in the process of destroying and repairing
of the LNS to transform a current solution into a different solution by con-
stantly adding or removing features based on the correlation based feature rank-
ing method [2]. Moreover, we proposes a new acceptance method in WFLNS by
incorporating the Simulated Annealing acceptance probability. It is worth men-
tioning that to the best of our knowledge no systematic studies have been car-
ried out to investigate the capability of LNS algorithms for the feature selection
problem so far. The performance of the proposed algorithm is compared with ten
state of the art metaheuristic algorithms which all were employed for solving the
feature selection problem in [3]. Moreover, we used the same high dimensional
and real-valued benchmark data sets as [3], which were originally collected from
UCI repository [4]. We were able to conclude that our WFLNS outperforms
other algorithms in terms of classification accuracy, particularly for large size
data set. The rest of the paper is organized: Sect. 2 reviews the prior studies in
metaheuristic algorithms for feature selection problem. Section 3 proposes Large
Neighborhood Search for the feature selection problem and experimental results
and discussions are presented in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Literature Review

Feature selection problem is the problem of choosing the best subset of features
out of the whole feature set. Searching for the best subset in the feature space
requires checking all possible combinations of features in the search space. To
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this end, feature selection problem could be considered as a NP-hard problem [5].
Metaheuristic algorithms are introduces into feature selection as an appropriate
methods as they have been demonstrated to be superior methodologies in many
NP hard problems. As the core concept of WFLNS is close to the concepts of
both wrapper and hybrid approaches, here we concentrated on the literature that
has focused on wrapper and hybrid feature selection by employing metaheuristic
algorithms. Different feature selection algorithms have been developed based on
different sort of optimization techniques such as metaheuristic algorithms. We
explored and categorized the existing metaheuristic-based feature selection algo-
rithms into three groups: trajectory-based feature selection, population-based
feature selection and hybrid feature selection. A trajectory-based algorithm typ-
ically uses one solution at a time, which will gradually improve the current solu-
tion by constantly changing the current solution as the iterations continue. The
trajectory-based algorithms developed for feature selection problem include Tabu
Search (TS) [6,7], Simulated Annealing (SA) [8] and Harmony Search (HS) [9].
In [10], a hybrid approach based on TS and probabilistic neural networks is
proposed for the feature selection problem. In contrast with other TS based
approached for the feature selection problem, this approach employed long-term
memory to avoid the necessity of tuning the memory length and decrease the
risk of trapping into local optimal solutions. A TS was employed in [11] to select
effective emotion states from the physiological signals based on K-nearest neigh-
bor classifier. In [12], a SA-SVM approach is developed for tuning the parameter
values of SVM and finding the best subset of features in a way that maximize the
classification accuracy of SVM. Another SA-based algorithm is proposed in [13],
where feature selection applied on marketing data to build large scale regression
model. In the proposed approach, SA was compared with stepwise regression [14]
(as a typical example of an iterative improvement algorithm) and the results have
shown the superiority of SA in providing a better predictive model by escaping
the local optimum that stepwise regression is fall into. In [15], hybrid combina-
tion of SA and GA proposed to combine the capability of SA and GA to avoid
being trapped in a local minimum and benefit from the high rate of convergence
of the crossover operator of genetic algorithms in the search process. In [16] HS
is employed for feature selection in email classification task, where HS was incor-
porated with the fuzzy support vector machine and Naive Bayesian classifiers.
In [17], the authors propose a hybrid feature selection algorithm based on the
filter and HS algorithm for gene selection in micro-array data sets.

Population-based approaches rely on a set of candidate solutions rather than
on one current solution. There exist two main population based algorithms,
which are developed for feature selection problem, evolutionary algorithms and
swarm intelligence algorithms. Former involves Genetic Algorithms (GA) [18],
Memetic Algorithms (MA) [19] and Artificial Immune Algorithms [20] while later
referring to Particle Swarm Optimization (PSO) [21], Ant Colony Optimization
(ACO) [22], and Artificial Bee Colony (ABC) [23] optimization. In [24] a GA-
base feature selection was proposed in which a feature subset is represented by
a binary string of length of the total number of features, called a chromosome.
A population of such chromosomes is randomly initialized and maintained, and
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those with higher classification accuracy are propagated into the later genera-
tions. In [25], a new hybrid algorithm of GA and PSO was developed for classifi-
cation of hyper spectral data set based on SVM classifier. [26] developed a feature
selection algorithm based on MA for multi-label classification problem which
prevent premature convergence by employing a local search to refine the fea-
ture subsets found through a GA search. A hybrid filter-wrapper method based
on memetic framework was proposed in [27], which employes the filter-ranking
method at each iteration of the MA to rank the features and reduce the neigh-
borhood size, then local search operators are applied. Clonal Search Algorithm
(CSA) is inspired from Artificial Immune Algorithm, which was developed for
the feature selection problem by Shojaei and Moradi in [28] where the proposed
approach enables both feature selection and parameter tuning of the SVM classi-
fier. Among swarm intelligence metaheuristic algorithms, the ACO-based feature
selection approach proposed in [29] that each ant has a binary vector where 0 and
1 represents deselected and selected features respectively. [30] presents a variation
of ACO for the feature selection problem, which is called enriched ACO. It aims
at considering the previously traversed edges in the earlier executions to adjust
the pheromone values appropriately and prevent premature convergence of the
ACO. [31] proposed a rough set-based binary PSO algorithm to perform feature
selection. In the algorithm, each particle represents a potential solution, and
these are evaluated using the rough set dependency degree. An ABC algorithm
was proposed in [32] to solve multi-objective feature selection problem where the
number of features should be minimized while the classification accuracy should
be maximized. The results where evaluated based on mutual information, fuzzy
mutual information and the proposed fuzzy mutual information.

In order to improve the searching ability of proposed feature selection algo-
rithms, hybrid algorithms were proposed. The most effective forms of the com-
bination is to use both filter and wrapper approach at the same time. Generally,
hybrid approaches involve two main steps. At the first step a filter method applies
to reduce the number of features and consequently the searching space. The sec-
ond step is a wrapper method that explores the subsets, which were built on the
first step. In [33] a combination of information gain as a filter method and GA
as a wrapper method was proposed. The K-nearest neighbor (KNN) classifier
with leave-one-out cross-validation (LOOCV) employed as an evaluator of the
proposed algorithm. Another hybrid approach is developed for developing short
term forecasting in [34], which first uses partial mutual information based filter
method to remove most irrelevant features, and subsequently applies a wrapper
method through firefly algorithm to further reduce the redundant features with-
out degrading the forecasting accuracy. Another hybrid approach was developed
in [35] for feature selection in DNA micro-arrays data set. The proposed algo-
rithm employed both univariate and multivariate filter methods along with the
GA as a wrapper method where the reported results show that a multivariate
filter outperforms a univariate filter in filter-wrapper hybrid. [36] presents the
application of rough set method on the outcome of Principal Components Analy-
sis (PCA) for the feature selection problem on neural network classifiers for a face
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image data set. Greedy Randomized Adaptive Search Procedure (GRASP) is a
multi-start two-phase algorithm, construction and local search phase. A feasible
solution is built in the construction phase, and then its neighborhood is explored
by the local search. [37] proposes a GRASP-based algorithm for the feature
selection problem, where the proposed algorithm uses some random part of the
features subset at each iteration, and then selects features based on cooperation
between all the previously found non-dominated solutions. [38] is investigated
binary classification high dimension data sets while employing GRASP algorithm
for feature selection to reduce the computation time. In [39] a feature selection
approach is proposed based on a linear programming model with integer vari-
ables on biological application. To deal with such approach the authors presents a
metaheuristic algorithm based on GRASP procedure which is extended with the
adoption of short memory and a local search strategy. The reported results show
that the method performs well on a very large number of binary or categorical
features. In [3] authors carried out a comprehensive review on the most recent
metaheuristic algorithms for the feature selection problem. The performance of
developed algorithms were examined and compared with each other based on
twelve benchmark data set from UCI repository. We considered this paper as
a base line for evaluating our proposed method, and compare our experiments
with their reviewed algorithms with the same setting and data sets.

3 WFLNS: A Wrapper Filter Feature Selection Based
on LNS

LNS algorithm [40] is a metaheuristic search algorithm, which aims at finding a
near-optimal solution by iteratively transforming a current solution to an alter-
native solution in its neighborhood. The notion of the neighborhood in LNS
algorithm refers to a set of similar candidate solutions, which is achieved by
applying destroy and repair methods over the current solution [41]. Using large
neighborhoods makes it possible to find better candidate solutions at each itera-
tion of the algorithm and hence explore more promising part of the search space.
LNS-based algorithms have been applied on many optimization problems, includ-
ing the traveling salesman problem space [42], timetabling problems [43,44] and
capacitated vehicle routing problem [44] because of their capabilities to explore
a wide samples of the search space and escape from local optima by means of
destroy and repair techniques along with an appropriate acceptance criterion. To
the best of our knowledge no systematic studies have been carried out to inves-
tigate the capability of LNS-based algorithms for the feature selection problem.
Here we present WFLNS, a hybrid Wrapper and Filter feature selection algo-
rithm based on the LNS framework. The novelty of the WFLNS includes embed-
ding new problem-specific destroy, repair and acceptance methods in the LNS
which let the algorithm search the feature space more efficiently with improved
intensification and diversification. In the following, the algorithmic flow of the
WFLNS is explained. Moreover, the Pseudo-code of the WFLNS is presented at
Algorithm 1, where defined functions and variables are as follows: The functions
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des(), rep() and acc() define destroy, repair and acceptance methods respec-
tively. The variable xb is the best observed solution during the search, x is the
current solution, xd is the outcome of the des() function which would be served
as the input to the rep() function, and xt is the temporary solution.

input : an initial solution x;
xb=x;
while Stop criterion is not met do

xd = des(x) : Select K percentage of the lowest ranked selected features
(ones) to remove from x ;

xt = rep(xd): Select R percentage of the highest ranked features from the
removed features and insert them to xt ;

if acc( xt , xb ) then
xb = xt;

end

end
Output : xb;

Algorithm 1. Procedure of WFLNS

3.1 Encoding Representation and Initialization

A candidate solution in WFLNS is encoded as a binary string with D digits,
where D is the total number of features and we aim at choosing a string with
d digits out of it, where d is the subset size. Each binary digit represents a
feature values 1 and 0, in which 1 indicates a selected feature and 0 an unselected
feature. As an example, string 010100 means that the second and fourth features
are selected. When prior knowledge about the optimal number of features is
available, we may limit d to no more than the predefined value; otherwise, d
is equal to D. To make our results comparable with [3], we considered d equal
to D in all the experiments. We initialized the initial solution at random and
tried to minimize the randomness effects by repeating the experiments for five
independent runs. The maximum number of iterations in [3], as our baseline
for comparison, is set to the very large value, 5000, to allow all of the studied
algorithms to fully converge. In our study, the number of iterations is set to 500
as in most of our experiments the solution was not improved after around 350
iterations.

3.2 Destroy and Repair Methods

The notion of neighborhood in LNS is defined by employed strategies for destruc-
ting and rebuilding the current solution to transform it to another solution. Thus
both destroy and repair methods have significant impact on the quality of the
final solution. Typically, the employed strategies for destroying different parts
of the solution are applied randomly and the neighborhood of a solution is then
defined as the set of solutions that can be reached by the repair method. The
main drawback is caused by destructing the large part of the solution which
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leads to a neighborhood containing a large amount of candidate solutions that
need to be explored. In other words, for each destruction choice there are many
possible repairing solutions. In WFLNS, we incorporate a CFS filter method [45]
for both destroy and repair methods. CFS is a filter method in which features
are ranked based on their correlation with each other as well as the classifier.
The main hypothesis behind CFS is that a good feature subsets contain features
highly correlated with the classification, yet uncorrelated to each other. Thus,
irrelevant features would be ignored as they typically show low correlation with
the classifier. Suppose a given current solution x, we define K as a degree of
destruction, which would remove K percentage of the solution (K is selected
randomly and it is between 0 and 100). In order to destruct the suitable part
of the solution, we employed CFS to rank features and remove lowest rank K
percentage of selected features which were set to one. Afterwards, we rebuild the
destructed part of the solution based on R, where R is the size of the neighbor-
hood (R is selected randomly and it is between 1 and K). In other words, in
the destroy process the lowest rank features (K percentage) would be removed
and in the repair process the highest ranked features (R percentage) from the
destroyed set would be considered as selected features. Given a current solution
x, we define the functionality of destroy and repair methods by des() and rep()
respectively. As mentioned before, function des() selects K percentage of the
lowest ranked selected features (ones) from x, using the CFS ranking selection
and move it to xd. Function rep() selects R percentage of the highest ranked
features from destroyed set, using the CFS ranking selection and inserts them.

3.3 Objective Function

The objective function is defined by the classification accuracy, i.e.

ObjF (x) = Accuracy(Sx) (1)

where Sx denotes the corresponding selected feature subset encoded in the cur-
rent solution x, and the feature selection criterion function Accuracy(Sx) evalu-
ates the significance for the given feature subset Sx. As we considered paper [3] as
the baseline for this work, so to make our results comparable with their results,
we needed to use the same classifiers as our objective functions: a tree based
classification (C4.5) [46] and the probabilistic Bayesian classifier [47] with naive
independence assumptions.

3.4 Acceptance Method

We propose a new acceptance method for WFLNS, which inspired from accep-
tance probably of Simulated Annealing algorithm. In our proposed method xt
is always accepted as xb if ObjF(xt)>ObjF(xb), and accepted with probability
e−(ObjF (xb)−ObjF (xt))/T if ObjF (xb) > ObjF (xt). Here we set the initial tem-
perature to T = 1. By choosing this temperature non improving solutions would
be allowed to be accepted. Within the search progress, T decreases and towards
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the end of the search only a few or non improving solutions would be accepted.
It is worth noting that based on the original LNS in [40], the acceptance method
evaluates solutions of the neighborhood and then allows the solution with the
highest objective function value to be considered as a current solution if and
only if it was improved. The particularity of the proposed acceptance method
against its original counterpart is that it allows WFLNS move to a new solution,
which might make the objective function worse in the hope of not trapping in to
local optimal solutions.

4 Experimental Results and Discussion

We considered the paper [3] as a baseline for conducting and comparing our
experiments because to the best of our knowledge this paper has been the most
recent comparison of existing wrapper methods. We used the same classifiers,
Naive Bayesian (NB) and C4.5, with the same setting to measure the classifica-
tion accuracy. Then, we employed the same twelve real value data sets (Table 1)
with [3], which were originally chosen from the UCI repository [4]. Data sets are
both high and low dimension to present reasonable challenges to the proposed
algorithm. Finally, we compared the performance of the WFLNS with all state
of the art employed metaheuristic algorithms in [3], such as Swarm Intelligence
algorithms, Evolutionary algorithms and Local Search algorithms. Table 1 illus-
trates the accuracy on all data sets for both employed classifiers with no feature
selection. For the sake of performance analysis, we categorized these data sets
into three main categories: small size data sets (number of features below 20),
medium size data sets (number of features between 20 and 100) and large size
data sets (number of features more than 100). The small sized data sets include

Table 1. Data set information

Data set Feature Instance Class C4.5 (%) NB (%)

Heart 14 270 2 77.56 84.00

Cleveland 14 297 5 51.89 55.36

Ionosphere 35 230 2 86.22 83.57

Water 39 390 3 81.08 85.40

Waveform 41 699 2 75.49 79.99

Sonar 60 208 2 73.59 67.85

Ozone 73 2, 534 2 92.70 67.66

Libras 91 360 15 68.24 63.635

Arrhythmia 280 452 16 65.97 61.40

Handwritten 257 1, 593 10 75.74 86.21

Secom 591 1, 567 2 89.56 30.04

Mutifeat 650 2000 10 94.54 95.30
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Cleveland and Hearth. The next six data sets include Ionosphere, Water, Wave-
form, Ozone, Sonar and Libras are categorized as medium sized. The last four
data sets Libras, Arrhythmia, Handwritten, Secom and multifeat are considered
as large size data sets. The obtained results have been discussed in terms of clas-
sification accuracy, destruction degree and acceptance criteria. For each data
set, the final accuracy was obtained by averaging out the accuracy of WFLNS
over five independent runs with an identical initial solution. Also, the number
of iterations and initial temperature (T ) were set to 500 and 1 respectively.

4.1 Classification Accuracy

As Table 2 shows, for both classifiers the proposed method achieved the high-
est accuracy in comparison with other algorithms in most data sets. WFLNS
achieved the highest accuracy for seven and eight out of twelve data sets for
C4.5 and NB respectively. More specifically, in case of C4.5 classifier: for small
size data set WFLNS achieved the highest accuracy among all other algorithms.
For medium size data set (Ionosphere, Water, Waveform, Sonar and Ozone), the
best subset was found by WFLNS for both Ionosphere and Sonar with 89.9 and
76.2 respectively while for Water data set GA achieved the highest accuracy
with 83.4 and for Waveform data set CSA and SA achieved the same highest
result with 77.6. In case of large data set, WFLNS reached the best classification
accuracy for Arrhythmia data set with 68.1. For Secom and Multifeat data set,
ABC and SA gain the highest accuracy with 93.4 and 95.1 respectively.

Table 2. C4.5 (left) and NB (right) classification accuracies

Data set ABC ACO CSA FF GA HS MA PSO SA TS WFLNS

Heart 81.7 83.0 81.2 84.1 81.7 83.0 82.2 83.0 80.6 85.0 80.6 85.0 80.6 85.0 80.7 85.0 82.1 82.3 81.7 82.9 83.2 85.5
Cleveland 55.8 56.3 55.3 56.5 55.8 56.3 55.8 56.6 56.4 56.9 56.4 56.9 55.0 55.7 56.4 56.9 55.0 55.7 56.3 57.0 57.8 55.3
Ionosphere 82.2 86.6 87.6 86.3 87.8 86.8 88.4 86.9 88.4 88.9 88.3 88.9 88.3 86.9 88.0 86.4 87.4 87.0 87.3 87.0 89.9 88.3
Water 81.9 84.9 82.7 85.8 82.8 85.9 83.4 85.9 83.4 85.9 83.3 85.9 83.3 85.9 82.1 85.2 83.0 85.6 82.9 85.6 81.4 85.9
Waveform 76.9 79.8 77.4 80.5 77.6 80.7 76.8 79.5 75.5 80.2 77.5 80.2 77.5 80.2 76.9 79.7 77.6 86.9 77.5 80.5 76.6 82.0
Sonar 72.3 66.6 73.2 66.3 73.0 66.6 73.4 65.9 73.1 66.6 73.2 66.6 73.3 66.5 72.8 66.3 72.3 66.6 74.1 66.9 76.2 67.3
Ozone 93.4 75.8 93.4 77.2 93.1 74.8 93.3 76.1 93.3 73.9 93.2 73.9 93.4 73.7 93.3 73.5 93.4 78.4 93.1 74.0 95.1 79.2
Libras 65.6 60.7 62.1 57.3 67.0 61.6 65.5 61.0 67.6 62.1 67.3 61.6 68.2 61.8 66.8 61.4 65.9 61.4 66.9 61.3 68.3 63.0
Arrhythmia 63.0 63.2 66.8 67.0 67.1 68.5 66.8 67.0 66.8 66.8 66.9 68.9 66.9 67.4 63.5 63.3 67.4 69.0 67.2 69.0 68.1 70.2
Handwritten 75.0 83.7 70.2 72.9 75.9 84.7 74.3 82.0 75.5 85.2 75.9 85.3 75.4 85.5 75.3 85.3 76.0 83.8 78.1 84.9 77.1 86.1
Secom 93.4 88.7 92.5 82.6 92.5 84.2 92.7 75.1 90.7 84.1 92.1 71.2 91.2 88.7 92.7 74.2 92.5 84.7 92.4 83.7 89.5 86.7
Mutifeat 94.3 95.7 93.4 95.2 94.9 97.1 92.8 95.7 94.6 96.3 94.9 96.8 94.6 95.8 94.7 95.9 95.1 97.2 94.9 97.2 92.8 95.8

In case of NB classifier, WFLNS achieved the highest accuracy for Heart
data set by 85.5 while for Cleveland data set, TS achieved the highest accuracy
with 57.0. For all medium size data sets, the proposed algorithm outperforms
other algorithms by achieving 85.9, 82.0, 67.3, 79.2 and 63 for Ionosphere, Water,
Waveform, Sonar, Ozone and Libras data sets respectively. For large size data
sets, apart from Secom and Multifeat data sets, WFLNS gain the highest accu-
racy for Arrhythmia and Handwritten with 70.2 and 86.1 classification accuracy.
Moreover, Table 3 shows the number of selected features along with the selected
features by WFLNS for medium size data sets, where d(C4.5) and d(NB) rep-
resent the number of selected features by C4.5 and NB classifiers respectively.
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Table 3. Selected features by WFLNS

Data Set d(C4.5) d(NB) Selected Features by C4.5 Selected Features by NB

Waveform 13 17 {2,4,6,7,10,11,13,15,17,18,
19,20,21}

{1,2,3,4,5,6,7,8,10,11,
12,13,14,18,19,20,21}

Sonar 32 51
{1,2,3,4,6,7,8,9,14,17,18,

19,21,22,23,24,26,28,29,34,37,38,
40,41,42,45,46,47,49,52,55,58}

{1,3,4,5,6,7,8,9,10,11,13,14,15,16,
17,18,19,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,
40,41,42,43,45,48,50,51,53,54,55,

56,57,58,59,60}

Ozone 43 40

{1,4,5,6,7,8,9,12,16,17,
18,19,21,22,23,24,25,27,28,30,
32,33,37,38,39,40,41,44,45,46,
47,48,52,54,55,56,57,58,61,64,

68,72,73}

{1,2,5,7,9,10,11,12,13,15,
17,18,19,20,22,23,30,31,32,37,
38,40,41,42,45,48,49,52,55,56,
57,58,60,62,65,66,67,70,71,72}

Libras 48 71

{1,3,4,7,8,15,16,17,20,23,
24,25,26,29,32,33,34,35,37,39,
40,41,46,47,48,50,55,56,57,59,
60,61,63,64,65,67,70,71,73,76,

77,80,83,84,85,86,88,90}

{1,2,3,4,5,6,7,8,9,11,
12,13,14,15,17,18,19,20,21,22,
28,29,30,32,33,35,36,37,38,39,
40,41,42,43,45,46,47,48,49,50,
51,52,53,54,55,57,59,60,61,63,
65,66,67,68,69,71,72,73,74,75,
79,81,82,83,84,85,86,87,88,89,

90}

4.2 Effect of Destruction Degree Parameter

Choosing an appropriate degree of destruction(K), for destroy method has an
impact on the quality of the search process and consequently on the quality of
classification accuracy. We chose C4.5 classifier along with Ionosphere, Sonar
and Libras data sets as a representative of small size, medium size and large size
data set respectively to investigate the effect of destruction degree parameter on
the quality of the classification accuracy.

As illustrates in Fig. 1, the best classification accuracy were achieved by 0.5,
0.6 and 0.6 destruction degree in Ionosphere, Sonar and Libras data sets respec-
tively. So, we can conclude that selecting either small or too large destruction
degree lead to undesirable effects because if the small percentage of the solution
is destructed then the effect of a large neighborhood search would be lost in
WFLNS as it explores the smaller part of the search space and subsequently it
failed to achieve the highest classification accuracy. On the other hand, if the
large percentage of the solution is selected to be destructed then WFLNS turns
in to random search.

4.3 Effect of Acceptance Criteria

The acceptance criterion has an important role in both diversification and inten-
sification of the search process of WFLNS. Our proposed acceptance method for
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Fig. 1. Effect of destruction degree on C4.5 classifier

WFLNS, inspired from the acceptance probability in Simulated Annealing algo-
rithm, in which even non-improving temporary solutions would have the chance
to be considered as an accepted solution in a hope of finding better solution in
following iterations. Based on the acceptance method in LNS algorithm, only the
best improving temporary solution would be considered as an accepted solution
(best solution) for each iteration.

Table 4. Effect of acceptance criteria

Data set IS-C4.5 SA-C4.5 IS-NB SA-NB

Heart 83.2 83.2 85.5 85.5

Ionosphere 88.8 89.9 89.2 88.3

Sonar 74.1 76.2 66.5 67.3

Libras 66.2 68.3 62.2 63.0

Arrhythmia 67.3 68.1 68.6 70.2

To evaluate the efficiency of the proposed acceptance method, we compare
the results of both methods with one another based on both classification accu-
racy and on different data sets size such as: Heart, Ionosphere, Sonar, Libras
and Arrhythmia data sets. Two acceptance methods in Table 4 refer to as IS
(Improvement strategy) and SA, which represent the LNS and WFLNS accep-
tance method respectively. Our experiments show that for C4.5 classifier, the pro-
posed acceptance method achieved better results than IS, apart from the Heart
data set which both methods achieved the same result. For NB classifier, the
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proposed method proved its superiority over IS with one exception in Ionosphere
data set that achieved 89.2 by IS.

5 Conclusion

In this paper, we presented the first study on applying LNS on the problem
of feature selection by proposing a new hybrid algorithm called WFLNS. The
core idea of WFLNS is based on designing a problem-specific destroy, repair and
acceptance methods for the LNS algorithm to deal with the problem of feature
selection. We incorporated the idea of filter ranking method into the destroy and
repair methods, in which the algorithm was guided into the most promising part
of the search space by adding and removing proper features iteratively. Further-
more, we introduced a new acceptance method for our WFLNS, which is inspired
from the Simulated Annealing acceptance probability. The particularity of the
proposed acceptance method is to let both improving and non-improving solu-
tions be considered as the best found solution. The performance of the proposed
algorithm is evaluated based on C4.5 and NB classifiers and twelve real value
data sets used to test the algorithms based on the paper [3], which were origi-
nally chosen from the UCI repository. Experimental results show the proposed
algorithm outperforms other metaheuristic search algorithms in most data sets.
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Abstract. Personnel rosters are typically constructed for a medium-
term period under the assumption of a deterministic operating environ-
ment. However, organisations usually operate in a stochastic environment
and are confronted with unexpected events in the short term. These unex-
pected events affect the workability of the personnel roster and need to be
resolved efficiently and effectively. To facilitate this short-term recovery,
it is important to consider robustness by adopting proactive schedul-
ing strategies during the roster construction. In this paper, we discuss
a proactive strategy that maximises the employee substitutability value
in a personnel shift scheduling context. We propose a problem-specific
population-based approach with local and evolutionary search heuristics
to solve the resulting non-linear personnel shift scheduling problem and
obtain a medium-term personnel shift roster with a maximised employee
substitutability value. Detailed computational experiments are presented
to validate the design of our heuristic procedure and the selection of the
heuristic operators.

Keywords: Personnel shift scheduling · Employee substitutability ·
Memetic algorithm

1 Introduction

The personnel management and planning process is widely studied in the opera-
tional research literature [1–4]. This process generally consists of three hierarchi-
cal phases where the higher phases constrain the lower phases in terms of decision
freedom. We distinguish the strategic staffing phase, the tactical scheduling phase
and the operational allocation phase [1,5]. In the staffing phase, the personnel
mix and budget required to meet the service demand in the long term is deter-
mined. In this phase, the personnel characteristics, including the competencies
and degree of employment, are determined. During the tactical scheduling phase,
a personnel roster is constructed for a medium-term period based on predictions
and/or assumptions about the service demand and employee availability. How-
ever, the actual service demand and employee availability may be different in
c© Springer International Publishing AG 2017
B. Hu and M. López-Ibáñez (Eds.): EvoCOP 2017, LNCS 10197, pp. 44–59, 2017.
DOI: 10.1007/978-3-319-55453-2 4
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the short-term operational allocation phase [4], which may require unexpected
adjustments to restore the workability of the original roster.

A proactive approach builds in a certain degree of robustness in the original
roster constructed during the tactical scheduling phase to protect and facili-
tate its workability in the operational allocation phase. This built-in robustness
improves the absorption and/or adjustment capability of the original roster to
achieve stability and/or flexibility. A stable roster has a high absorption capa-
bility and therefore requires a small number of changes when operational disrup-
tions arise [6]. A flexible roster has a high adjustment capability such that an
appropriate number of possibilities for schedule changes are available to recover
from unexpected events [7].

In general, substitutability provides an indication of robustness in crew and
aircraft scheduling [6]. Indeed, a crew and/or aircraft substitution enables the
recovery of operational disruptions [7–11]. In this respect, Shebalov and Klabjan
[12] proactively maximise the number of move-up crews, i.e. crews that can be
substituted to overcome operational disruptions. Ionescu and Kliewer [7] also
proactively improve the flexibility of a roster by introducing substitution possi-
bilities in the scheduling phase. In contrast to Shebalov and Klabjan [12], the
authors prioritise the utility of substitutions rather than the number of substi-
tutions.

In this paper, we investigate the personnel shift scheduling problem, which
entails the assignment of employees to cover the staffing requirements for specific
skills and shifts for a medium-term period. We focus on proactively improving the
short-term adjustment capability of the tactical personnel shift roster by max-
imising the employee substitutability. In this respect, we consider a non-linear
optimisation problem that is solved with a problem-specific memetic algorithm,
which comprises a population-based approach with local and evolutionary search
heuristics, and provides a personnel shift roster for a medium-term period with
a maximised value of personnel substitution possibilities.

The remainder of this paper is organised as follows. In Sect. 2, we define the
tactical scheduling phase and describe different types of employee substitution
possibilities. We formulate the personnel shift scheduling problem to maximise
the value of these substitution possibilities, i.e. the employee substitutability
value. In Sect. 3, we define and explain the building blocks of our algorithm to
obtain a medium-term personnel shift roster. The test design, test instances and
computational experiments are discussed in Sect. 4. We provide conclusions and
directions for future research in Sect. 5.

2 Problem Definition and Formulation

In this paper, we study a personnel shift scheduling problem with common per-
sonnel and shift characteristics [1,4]. This problem encompasses the assignment
of employees, who possess one or multiple categorical skills, to shifts during the
tactical scheduling phase. Categorical skills cannot be hierarchically ranked and
each employee is either perfectly capable to work shifts requiring an individual
skill or not at all [13].
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We extend this problem to consider employee substitutability. More specif-
ically, we formulate a bi-criteria objective function to simultaneously minimise
the costs and maximise the value of substitution possibilities. A substitution
actually arises when an employee can be reassigned to take over the working
assignment of another employee on the same day. In this respect, we distinguish
three substitution types, i.e.

– A between-skill substitution comprises the possible reassignment of a working
employee to another skill during another or the same shift on the same day.

– A within-skill substitution indicates the potential to reassign an employee from
one shift to another shift within the same skill category.

– A day-off-to-work substitution is the potential conversion of a day off assign-
ment to a working assignment.

This definition of employee substitutability leads to a non-linear problem, which
we linearise in the following mathematical model, i.e.

Notation
Sets

G set of skills (index m)
N set of employees (index i)
D set of days (index d)
S set of shifts (index j)
T

′
dj set of shifts that cannot be assigned the day before day d and shift

assignment j (index s)
T

′′
dj set of shifts that cannot be assigned the day after day d and shift

assignment j (index s)

Parameters

M a large number
bim 1 if employee i possesses skill m, 0 otherwise
cw
imdj wage cost of assigning an employee i to skill m and shift j on day d

cwu
mdj cost of understaffing shift j on day d for skill m

pidj preference penalty cost if an employee i receives a shift assignment j on
day d

γimdj the benefit value of a substitution possibility to employee i with a shift
assignment j for skill m on day d

Rw
mdj staffing requirements on day d for shift j and skill m

ηw,min
i minimum number of assignments for employee i

ηw,max
i maximum number of assignments for employee i

Variables

xw
imdj 1 if employee i receives a shift assignment j for skill m on day d, 0

otherwise
xv

id 1 if employee i receives a day off on day d, 0 otherwise
xwu

mdj the number of employees short on day d for shift j and skill m
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fidj 1 if a minimum rest violation would arise if employee i is reassigned to
work on day d during shift j, 0 otherwise

χimdj the number of substitution possibilities to employee i with a shift
assignment j for skill m on day d

Mathematical Formulation

min
∑

i∈N

∑

m∈G

∑

d∈D

∑

j∈S

(cw
imdj + pidj)xw

imdj +
∑

m∈G

∑

d∈D

∑

j∈S

cwu
mdjx

wu
mdj (1a)

−
∑

i∈N

∑

m∈G

∑

d∈D

∑

j∈S

γimdjχimdj (1b)

In this study, we minimise the personnel assignment costs, i.e. the wage and
preference penalty cost, and the cost of understaffing (Eq. (1a)). Simultaneously,
we maximise the value of substitution possibilities (Eq. (1b)).

∑

i∈N

bimxw
imdj + xwu

mdj ≥ Rw
mdj ∀m ∈ G,∀d ∈ D,∀j ∈ S (2)

∑

m∈G

∑

j∈S

xw
imdj + xv

id = 1 ∀i ∈ N,∀d ∈ D (3)

∑

m∈G

xw
imdj +

∑

m∈G

∑

s∈T
′′
dj

xw
im(d+1)s ≤ 1 ∀i ∈ N,∀d ∈ D,∀j ∈ S (4)

∑

m∈G

∑

d∈D

∑

j∈S

xw
imdj ≤ ηw,max

i ∀i ∈ N (5)

∑

m∈G

∑

d∈D

∑

j∈S

xw
imdj ≥ ηw,min

i ∀i ∈ N (6)

The number of employees required to satisfy the personnel demand for every
skill category, day and shift is defined in Eq. (2), which is relaxed by allowing
understaffing.

The time-related constraints require an employee to either receive a shift
assignment or a day off (Eq. (3)), and a minimum rest period between consecu-
tive shift assignments (Eq. (4)). The other time-related constraints include the
maximum (Eq. (5)) and minimum (Eq. (6)) number of assignments for every
employee.

χimdj ≤ MRw
mdjx

w
imdj ∀i ∈ N,∀m ∈ G,∀d ∈ D,∀j ∈ S (7)

A substitution possibility to an employee, shift and skill category on a day
can only exist if that employee has an assignment during that day, for this shift
and in that skill category. Moreover, a substitution possibility is only valuable
if employees are required, i.e. Rw

mdj > 0 (Eq. (7)).
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χimdj ≤
∑

i1∈N\{i}

( ∑

m1∈G\{m}

∑

j1∈S

bi1mxw
i1m1dj1 +

∑

j1∈S\{j}
xw

i1mdj1 + bi1mxv
i1d

)

(8a)

−
∑

i1∈N\{i}
bi1mfi1dj ∀i ∈ N,∀m ∈ G,∀d ∈ D,∀j ∈ S (8b)

Mfidj ≥
∑

m∈G

( ∑

s∈T
′′
dj

xw
im(d+1)s +

∑

s∈T
′
dj

xw
im(d−1)s) ∀i ∈ N,∀d ∈ D,∀j ∈ S

(8c)

In Eq. (8), we count the number of substitution possibilities to an employee
i that works a shift j in skill category m on day d. The between-skill substitu-
tions, within-skill substitutions and day-off-to-work substitutions are defined in
Eq. (8a). Note that we define a correction variable fidj to exclude substitution
possibilities that would violate the minimum rest period (Eq. (8b)). This variable
is defined in Eq. (8c).

xw
imdj ∈ {0, 1} ∀i ∈ N,∀m ∈ G,∀d ∈ D,∀j ∈ S

xv
id ∈ {0, 1} ∀i ∈ N,∀d ∈ D

xwu
mdj ≥ 0 and integer ∀m ∈ G,∀d ∈ D,∀j ∈ S

fidj ∈ {0, 1} ∀i ∈ N,∀d ∈ D,∀j ∈ S
χimdj ≥ 0 and integer ∀i ∈ N,∀m ∈ G,∀d ∈ D,∀j ∈ S

(9)

Constraints (9) embody the integrality conditions.

3 A Memetic Algorithm to Maximise the Employee
Substitutability

We propose a memetic algorithm to obtain personnel shift rosters for a medium-
term period that have a maximised employee substitutability value, i.e. we solve
model (1)–(9). Figure 1 illustrates the building blocks and flowchart of this
algorithm.

Local search 
(infeasible) RepairInitialisation of the population

Evolutionary cycle

Roster 
selection

Mutation and 
repair 

Schedule 
improvement

Population
update

Stop criterion 
met?

Crossover 
operators

No Yes

Fig. 1. Algorithm to obtain medium-term personnel shift rosters

First, we initialise the optimisation procedure by constructing initial person-
nel shift rosters for a simplified model (Sect. 3.1). Second, we improve the per-
sonnel shift rosters in the population by applying local search heuristics in order
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to increase the employee substitutability value in a cost-efficient way (Sect. 3.2).
The local search heuristics include the selection of an employee-based and/or
day-based guiding order and a neighbourhood structure. Note that we allow
infeasibilities in terms of Eqs. (4)–(6), which we repair in a third step (Sect. 3.3).
Fourth, we apply an evolutionary cycle in a repetitive manner in order to improve
the overall objective function value (Sect. 3.4). We repeat this evolutionary cycle
until a stop criterion is reached, i.e. the number of iterations without improve-
ment. Thus, whenever a number of cycles is executed without an improvement
in the objective function value of the best found solution (Eq. (1)), the algorithm
is terminated.

3.1 Population Initialisation

In the initialisation phase, we construct a population of initial personnel shift
rosters using the commercial optimisation software Gurobi [14]. The population
consists of npop initial personnel shift rosters and we relax the maximisation of
employee substitutability by omitting the objective (Eq. (1b)) and correspond-
ing constraints (Eqs. (7) and (8)) during the construction. In this phase, we
construct personnel shift rosters that minimise the costs (Eq. (1a)) and satisfy
the staffing requirements (Eq. (2)), all time-related constraints (Eqs. (3)–(6)) and
the integrality conditions (Eq. (9)).

We consider different population sizes and construct a diverse set of personnel
shift rosters by randomising the personnel assignment costs, i.e. the wage and
preference penalty cost.

3.2 Local Search (LS)

We select an initial personnel shift roster from the population and employ local
search heuristics to improve the objective function value (Eq. (1)). These heuris-
tics include the determination of a single search guiding order to manage the
search process and the selection of a single neighbourhood structure to char-
acterise the neighbourhood move. We reiterate this process for every personnel
shift roster in the population.

Neighbourhood Search Guiding Order. The guiding order determines the
search process, i.e. the sequence in which parts of the search area are revised
during the local search [15–17]. This sequence is typically based on the objective
function improvement potential [18]. In this paper, we calculate this potential for
each cell in the personnel shift roster. Hence, we reconsider every daily assign-
ment for each employee and evaluate whether a change in this assignment can
improve the objective function value (Eq. (1)). In this respect, the objective
function improvement potential can be utilised in two problem-specific guiding
orders, i.e. the employee-based and day-based guiding orders.
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Employee-based Guiding Orders (EGO). The employee-based guiding orders
determine the order in which the employee schedules are revisited. Since skills
can have a significant impact on the number of substitution possibilities, we
divide employees into groups based on the number of skills they possess. Note
that we do not make a distinction based on the type of skills because we consider
categorical skills. The skill groups can be ordered according to two types, i.e.

– The skill-based group order either orders these groups according to a decreas-
ing or an increasing number of skills. These orders are denoted as EGO1-1
and EGO1-2, respectively.

– The random group order determines the sequence of the employee groups
randomly (EGO1-3 ).

The employees within these groups can also be ordered, i.e.

– A first order arranges employees based on their objective function improve-
ment potential (Eq. (1)). We define the decreasing employee potential order
(EGO2-1 ) and the increasing employee potential order (EGO2-2 ).

– The random employee order (EGO2-3 ) randomly determines the sequence of
the employees within each group.

Day-based Guiding Orders (DGO). This order determines the sequence in which
the days in the planning horizon are revisited. We distinguish three types, i.e.

– The objective function improvement potential defines a decreasing day poten-
tial order (DGO1 ) and an increasing day potential order (DGO2 ).

– The days can also be searched in a random day order (DGO3 ).

Note that these guiding orders can be applied separately or combined. There-
fore, we establish a horizontal, vertical or no guiding priority to reveal if priority
is given to the employee-based guiding order, the day-based guiding order or
a combination of both. As such, the guiding priority and orders determine the
next search area in the personnel shift roster (Fig. 2).

Day 1 Day 2 Day 3

Shift 1 Shift 2 Shift 3 Shift 1 Shift 2 Shift 3 Shift 1 Shift 2 Shift 3

E1

E2

E3

E4

E5

employee/day cell

Employee guiding order

The order in which the 
employee schedules are 

revisited

Day guiding order

The order in which the day 
rosters are revisited

Guiding priority
The priority given to one of the 

guiding orders to revisit the 
selected roster area first 
(Horizontal - Vertical - No 

priority)

Fig. 2. Guiding priority and order
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Neighbourhood Structure. The neighbourhood structure determines the
characteristics of a neighbourhood move [15,16,19–22]. In this study, we pro-
pose a problem-specific cell-by-cell search that focuses on a single employee and
day, i.e. one cell of the personnel shift roster. We distinguish three different types
of search mechanisms based on the guiding priority (cf. Fig. 2), i.e.

– The horizontal cell-by-cell search (N1) investigates the complete schedule of
an employee on a day-by-day basis before the schedule of another employee is
explored, i.e. the guiding priority is horizontal. This mechanism first selects
an employee schedule according to the chosen employee-based guiding order,
after which the day-based guiding order determines the sequence in which the
daily assignments are reconsidered.

– The vertical cell-by-cell search (N2) considers a complete day roster on an
employee-by-employee basis and then moves to another day roster, i.e. the
guiding priority is vertical. A day roster is selected according to the chosen
day-based guiding order after which the individual employee assignments are
reconsidered based on the employee-based guiding order.

– Combined cell-by-cell search (N3) visits cells in a consecutive order based
on a combination of the employee-based and day-based guiding orders as no
guiding priority is imposed. This means that the consecutively visited cells
are not necessarily located next to each other.

Note that we investigated other neighbourhood structures such as a horizon-
tal schedule and vertical roster search, which reoptimise a complete employee
schedule and day roster, respectively. However, these structures did not provide
significant benefits in the objective function value (Eq. (1)) and required more
CPU-time.

3.3 Repair (R)

In order to ensure the satisfaction of the time-related constraints (Eqs. (4)–(6)),
we apply a destroy and repair neighbourhood [20]. First, we check the mini-
mum rest constraint (Eq. 4) and the maximum number of working assignments
(Eq. (5)), and delete all assignments that violate these constraints. Second, we
ensure that every employee receives their minimum imposed number of working
assignments (Eq. (6)) in a greedy manner. Therefore, we maximise the improve-
ment of changing a day off assignment to a working assignment in terms of
the objective function value (Eq. (1)). Finally, we add assignments to employee
schedules until it is no longer feasible or it is no longer possible to improve the
objective function value (Eq. (1)).

After the repair of the time-related constraints, there may be some residual
understaffing. This is resolved by applying the shift chain neighbourhood [23]
to shift overstaffed assignments to shifts with understaffing. Again, we use the
objective function value (Eq. (1)) to optimise the value of substitution possibili-
ties and the cost.
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3.4 Evolutionary Cycle

In this section, we discuss the building blocks of the evolutionary cycle (cf.
Fig. 1). First, we randomly select two personnel shift rosters by defining their
selection probabilities based on the objective function value (Eq. (1)). As such,
personnel shift rosters with a high value corresponding to substitution possibili-
ties and a low cost have an increased selection probability. Second, these selected
personnel shift rosters are combined to generate new personnel shift rosters based
on problem-specific crossover operators (CO). Third, we apply mutation (M) on
the newly generated personnel shift rosters to diversify the search with a given
probability (rmut). Our mutation procedure entails an exchange of the complete
day rosters of two random days. Given the application of crossover and mutation,
we may need to repair the feasibility of the time-related constraints (Eqs. (4)–
(6)) using a repair function (cf. Sect. 3.3). Fourth, we perform a schedule-based
improvement function (SBI) to improve the personnel assignment costs, and
more specifically the preference penalty cost. Finally, we update the population
based on the principle of elitism, i.e. the personnel shift roster with the worst
objective function value is replaced with the newly improved personnel shift
roster if its objective function value is better.

In the remainder of this section, we discuss the crossover operators (CO) and
schedule-based improvement (SBI) in more detail.

Crossover (CO). Maenhout and Vanhoucke [24] give an overview of crossover
operators applied for different personnel shift scheduling problems. We focus
on the employee-based and day-based crossover operators to generate a new
personnel shift roster.

We distinguish three employee-based crossover operators, i.e. randomly
selected crossover (ECO1), one-point crossover (ECO2) and crossover with tour-
nament selection (ECO3). The crossover with tournament selection (ECO3)
starts from the personnel shift roster with the highest value of substitution
possibilities (Eq. (1b)) and copies the employee schedules for the multi-skilled
employees to the new personnel shift roster. Hereafter, the single-skilled employ-
ees receive their corresponding schedule from the first or second original person-
nel shift roster depending on the value of substitution possibilities.

Similarly, we consider three day-based crossover operators, i.e. randomly
selected crossover (DCO1), one-point crossover (DCO2) and crossover with tour-
nament selection (DCO3). The latter provides a personnel shift roster that is
the best combination of days in terms of employee substitutability. For each day,
the two original personnel shift rosters are compared based on the value of sub-
stitution possibilities. The day roster with the highest value becomes part of the
newly generated personnel shift roster. Note that the application of day-based
crossover operators may result in infeasible personnel shift rosters, which need
to be repaired (cf. Sect. 3.3).

Schedule-Based Improvement (SBI). We aim to reduce the preference
penalty cost for all employees by exchanging their respective schedules based
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on the logic of the schedule-based local search proposed by Maenhout and Van-
houcke [22]. To avoid infeasibilities, this exchange of schedules is limited to
employees that possess exactly the same skill(s). First, we determine the pref-
erence penalty cost of all employee schedules for each individual employee. Sec-
ond, employees are assigned their cheapest schedule in terms of their preference
penalty cost in a random order.

4 Computational Experiments

In this section, we provide insight into our methodology to improve the value of
employee substitutability. In Sect. 4.1, we describe our test design and discuss
the parameter settings of the problem instances. In Sect. 4.2, we gain insight
into the impact of different optimisation strategies in the proposed heuristic
framework and we evaluate the performance of the suggested algorithm. All
tests were carried out on an Intel Core processor 2.5 GHz and 4 GB RAM.

4.1 Test Design

In this section, we provide detailed information on the test instances and the
parameter settings. All test instances have a planning horizon of 7 days.

Personnel Characteristics. We generate test instances with 10, 20 and 40
employees and the employees have a maximum of 2 skills. In total, we distinguish
11 skill possession settings according to the triplet (m1% - m2% - m3%), which
indicates the percentage of employees that uniquely possesses skill 1 (m1%), skill
2 (m2%) or both skills (m3%). This triplet varies between (50%, 50%, 0%) and
(0%, 0%, 100%) with intervals of 5% for m1 and m2, and an interval of 10%
for m3.

Note that these percentages can lead to fractional values. In this case, we
round the number of employees for skill 1 down (N1 = �N × m1%�) and round
the number of employees for skill 2 up (N2 = �N × m2%	). The remainder of
employees possess both skills, i.e. N3 = N − N1 − N2.

Shift Characteristics. The problem instances are characterised by three dif-
ferent 8-hour shifts with specific start and end times. We make a distinction
between an easy test set and a hard test set based upon the definition of these
start and end times. The easy test set assumes that the start and end times
of the shifts are identical, and hence, the three shifts embody in fact different
tasks that are carried out simultaneously on one particular day. The hard test
set assumes non-overlapping shifts that start at 6 a.m., 2 p.m. and 10 p.m.

Staffing Requirements. The staffing requirements are generated based on
three indicators proposed by Vanhoucke and Maenhout [25], that determine the
demand profile as follows, i.e.
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– The Total Coverage Constrainedness (TCC) provides an indication of the total
staffing requirements over the planning horizon. As the TCC-value increases,
the total staffing requirements rise. We generate demand profiles with a TCC-
value of 0.30, 0.40 and 0.50 and distribute these staffing requirements evenly
over the two skill categories.

– The Day Coverage Distribution (DCD) and the Shift Coverage Distribution
(SCD) reflect the variability of the staffing requirements over the days of
the planning horizon and over the shifts for a single day, respectively. As
these values augment, the variability over the days and shifts increases. We
investigate test instances with a value of 0.00, 0.25 and 0.50 for both indicators.

We generate 10 instances that are combined with 27 (3×3×3) (TCC, DCD,
SCD)-combinations and 11 skill possession settings for 10, 20 and 40 employees,
which implies that the computational experiments are based on 8910 (= 10 ×
27 × 11 × 3) instances.

Time-Related Constraints. All personnel members need to work a single
shift per day or receive a day off (Eq. (3)) and need a minimum rest period of 11
hours between two consecutive working shifts (Eq. (4)). Moreover, each employee
can work a maximum (ηw,max

i ) of 5 shifts (Eq. (5)) and should work a minimum
(ηw,min

i ) of 4 shifts (Eq. (6)).
The small number of constraints provides extra assignment flexibility and

improves the fit between the available employees and the staffing requirements.
This is important to get an unbiased idea about the number and value of sub-
stitution possibilities.

Objective Function. The objective function weights include for each employee
a wage cost (cw

imdj) of 10 and a preference penalty cost (pidj) randomly generated
in the range of 1 to 5. The cost of understaffing (cwu

mdj) is fixed at 20 and each
substitution possibility has a benefit value of 1 (γimdj). Note that this benefit
value can be easily adapted to consider the level of uncertainty of capacity for
employee i and the level of uncertainty of demand during shift j on day d for
skill m.

4.2 Validation of the Proposed Procedure

In this section, we validate the individual building blocks and the complete
heuristic procedure of the proposed memetic algorithm based on the following
parameters, i.e.

OFδ the solution value of objective δ
%Devδ,λ the percentage deviation in objective δ for the algorithmic solution

compared to solution λ
withδ = 1.1, the total personnel assignment and understaffing

cost (cf. Eq. (1a))
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δ = 1.2, the total value of substitution possibilities (cf. Eq. (1b))
δ = 1, the total objective function value (cf. Eq. (1))

withλ = Init, the initial personnel shift roster with minimum
personnel assignment and understaffing cost
λ = BestMA, the best found solution using the complete
algorithm
λ = IP , the best found solution using commercial optimisation
software

CPU(s) the required time to obtain the final personnel shift roster in seconds
#cycles the number of executed evolutionary cycles

These parameters are utilised to determine the contribution of the different
building blocks of the memetic algorithm (cf. Sect. 3). In order to determine
the contribution of the complete memetic algorithm, we benchmark our per-
formance against a non-dedicated IP optimisation algorithm. Unless otherwise
stated, we discuss the average results for the hard test instances over 10, 20 and
40 employees for every (TCC, DCD, SCD)-combination and all skill possession
settings.

Note that computational experiments have shown that the best results are
obtained for the proposed procedure with a stop criterion of 250 iterations with-
out improvement in the objective function value.

Contribution of the Building Blocks of the Memetic Algorithm. Table 1
shows the contribution of the best performing strategy of each individual building
block through a gradual assembly of our memetic algorithm. We incrementally
add each building block until the complete algorithm is composed. In the table,
we start from ‘(1) Initial roster’, which represents the personnel shift roster
with the minimum personnel assignment and understaffing cost (Eq. (1a)). The
next columns show the results for the gradual introduction of the other building
blocks, which also consider the maximisation of the employee substitutability
value (Eq. (1b)). We successively add the following building blocks, i.e. multiple
personnel shift rosters in a population (‘(2) population’), local search and repair
(‘(3) LS+R’) and an evolutionary cycle (4), which consists of a crossover operator
(‘(4.1) CO’), mutation and repair (‘(4.2) M+R’) and schedule-based improve-
ment heuristics (‘(4.3) SBI’). This last column displays the results corresponding
to the personnel shift roster obtained by the complete algorithm.

The initial roster embodies a personnel shift roster that is optimal in terms
of costs with a total cost of 1,065.97 and an employee substitutability value of
1,067.54 (Init). The construction of multiple personnel shift rosters results in
a population for which the best personnel shift roster improves the employee
substitutability with 2.78% at a cost increase of 0.68%. This population con-
sists of 20 (npop) different personnel shift rosters obtained by marginally ran-
domising the personnel assignment costs, i.e. cw

imdj and pidj . In this respect, we
subtract a random number ranging between 0 and 5 from the original assign-
ment costs (cf. Sect. 4.1). This marginal randomisation outperforms a complete
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Table 1. Computational contribution of the individual building blocks of the memetic
algorithm

(4) Evolutionary cycle

(1) Initial roster (1)+

(2) Population

(1)–(2)+

(3) LS+R

(1)–(3)+

(4.1) CO

(1)–(4.1)+

(4.2) M+R

(1)-(4.2)+

(4.3) SBI

OF1.1 1,065.97 1,073.19 1,130.32 1,139.68 1,136.24 1,121.94

%Dev1.1,Init 0.00% +0.68% +6.04% +6.91% +6.59% +5.25%

OF1.2 1,067.54 1,097.23 1,247.08 1,298.01 1,297.41 1,303.52

%Dev1.2,Init 0.00% +2.78% +16.82% +21.59% +21.53% +22.10%

OF1 −1.57 −24.04 −116.76 −158.33 −161.17 −181.58

CPU(s) 0.05 1.07 1.63 1.91 2.29 3.98

#cycles 0.00 0.00 0.00 427.19 447.05 702.42

randomisation strategy, which results in personnel shift rosters that are too
expensive considering the small gain in employee substitutability value.

The introduction of the local search heuristics and repair function further
ameliorates the value of substitution possibilities (16.82%) at the expense of
a cost rise with 6.04%. A detailed analysis of the guiding orders and priori-
ties and the neighbourhood structures reveals that the most significant con-
tributors to this improvement, comprise a decreasing skill-based group order
(EGO1-1) and a random day order (DGO3). This means that it is best to
prioritise the schedules of multi-skilled employees given that these employees
inherently offer more flexibility and therefore employee substitutability. This
can lead to local optima but is avoided through the application of the random
day order.

The expansion of the algorithm with an evolutionary cycle to diversify the
search further improves the total objective function value. The combination of
two personnel shift rosters by means of a crossover operator (CO) leads to an
increase in the value of substitution possibilities (21.59%) and the costs (6.91%).
Nevertheless, it is important to apply the appropriate type of crossover operators.
The day-based crossover operators significantly outperform the employee-based
crossover operators. Hence, it is very important to preserve the day rosters to
facilitate the transfer of cost-efficient substitution possibilities from the two origi-
nal personnel shift rosters to the newly generated personnel shift roster. However,
it is interesting to note that not all substitution possibilities can be transferred
to the new personnel shift roster with a day-based crossover. This is due to the
fact that this new personnel shift roster is a combination of the day rosters of two
personnel shift rosters, which changes the variable fidj in Eq. (8c) and thus the
number of substitution possibilities (cf. Eqs. (8a) and (8b)). This explains the
poor performance of the crossover with tournament selection (DCO3). In this
respect, the best results were obtained with randomly selected crossover (DCO1)
to diversify the search space.
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The introduction of additional randomness through mutation and repair
(M+R) does not provide significant benefits for varying mutation probabilities
(rmut).

The schedule-based improvement (SBI) method simply swaps assignments
between personnel members and is able to reduce the costs and in particular the
personnel preference penalty cost while also increasing the value of substitution
possibilities.

Overall, Table 1 shows that every step in the algorithm has a positive impact
on the objective function value while the CPU-time and the number of executed
evolutionary cycles rise. The execution of the complete algorithm (BestMA)
provides a personnel shift roster that exhibits a rise of 22.10% in the value
of substitution possibilities at a cost increase of 5.25% compared to the initial
personnel shift roster (Init).

Comparison with an Exact Optimisation Technique. We provide insight
in the comparison of our algorithm (MA) with the exact branch-and-bound
algorithm (IP ) in Fig. 3 for both the easy and hard test set. The solution quality
(OF1) is displayed on the Y-axis as a function of the CPU-time on the X-axis.
Note that the scale of the X-axis is biased to denote the behaviour of the proposed
heuristic algorithm and the IP exact approach in the early search phase more
accurately. Figure 3 shows the reference solutions Init, BestMA and IP . The
heuristic approach is able to find high-quality solutions very rapidly while the
exact optimisation approach only finds solutions of similar quality after 100 and
450 seconds for the easy and hard test set, respectively.
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Fig. 3. The solution quality as a function of CPU-time

5 Conclusions

In this paper, we consider a bi-objective personnel shift scheduling model that
not only minimises the costs but also maximises the employee substitutability to
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improve the robustness of a personnel shift roster. We incorporate three types
of substitution possibilities between personnel members, which gives rise to a
non-linear optimisation problem.

Due to the heavy computational burden, we propose a memetic algorithm
to solve the problem under study. This algorithm is initialised by constructing
a population of personnel shift rosters that does not consider the objective of
employee substitutability but only the costs. The other problem-specific oper-
ators in the algorithm, i.e. the local search and the evolutionary cycle, aim to
gradually increase employee substitutability in balance with the additional cost.

We validate the proposed algorithm with different heuristic optimisation
strategies and a non-dedicated exact algorithm. The computational experiments
show that individual personnel schedules should be improved in such an order
that the personnel members whose schedule may yield the highest potential
improvement are explored first. This implies that employees are grouped based
on their skills and that multi-skilled employees are considered first. Moreover,
sufficient attention should be dedicated to the day structure of a personnel shift
roster in order to preserve the substitutability between employees. Finally, we
can conclude that the algorithm is able to increase the value of substitution
possibilities at the expense of a small cost increase.

Future research should primarily focus on the validation of the robustness of
personnel shift rosters with maximised employee substitutability. In this respect,
specific strategies should be developed to consider the level of uncertainty of
capacity and demand in the definition of the benefit values of substitution
possibilities.
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Abstract. Both, Construct, Merge, Solve and Adapt (CMSA) and
Large Neighborhood Search (LNS), are hybrid algorithms that are based
on iteratively solving sub-instances of the original problem instances, if
possible, to optimality. This is done by reducing the search space of the
tackled problem instance in algorithm-specific ways which differ from
one technique to the other. In this paper we provide first experimen-
tal evidence for the intuition that, conditioned by the way in which the
search space is reduced, LNS should generally work better than CMSA
in the context of problems in which solutions are rather large, and the
opposite is the case for problems in which solutions are rather small. The
size of a solution is hereby measured by the number of components of
which the solution is composed, in comparison to the total number of
solution components. Experiments are conducted in the context of the
multi-dimensional knapsack problem.

1 Introduction

The development and the application of hybrid metaheuristics has enjoyed an
increasing popularity in recent years [1,2]. This is because these techniques often
allow to combine the strengths of different ways of solving optimization problems
in a single algorithm. Especially the combination of heuristic search with exact
techniques—a field of research often labelled as matheuristics [3]—has been quite
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fruitful. One of the most well known, and generally applicable, algorithms from
this field is called Large Neighborhood Search (LNS) [4], which is based on the
following general idea. Given a valid solution to the tackled problem instance,
first, destroy selected parts of it, resulting in a partial solution. Then apply some
other, possibly exact, technique to find the best valid solution on the basis of the
given partial solution, that is, the best valid solution that contains the given par-
tial solution. Thus, the destruction step defines a large neighborhood, from which
a best (or nearly best) solution is determined, not by naive enumeration but by
the application of a more effective alternative technique. Apart from LNS, the
related literature offers algorithms that make use of alternative ways of defining
large neighborhoods, such as the so-called Corridor Method [5], POPMUSIC [6],
and Local Branching [7].

One of the latest algorithmic developments in the line of LNS is labelled
Construct, Merge, Solve and Adapt (CMSA) [8]. Just like LNS, the main idea
of CMSA is to iteratively apply a suitable exact technique to reduced problem
instances, that is, sub-instances of the original problem instances. Note that the
terms reduced problem instance and sub-instance refer, in this context, to a sub-
set of the set of solutions to the tackled problem instance which is obtained
by a reduction of the search space. The idea of both algorithms—LNS and
CMSA—is to identify substantially reduced sub-instances of a given problem
instance such that the sub-instances contain high-quality solutions to the origi-
nal problem instance. This might allow the application, for example, of an exact
technique with reasonable computational effort to the sub-instance in order to
obtain a high-quality solution to the original problem instance. In other words,
both algorithms employ techniques for reducing the search space of the tackled
problem instances.

1.1 Our Contribution

Although both LNS and CMSA are based on the same general idea, the way in
which the search space is reduced differs from one to the other. Based on this
difference we had the intuition that LNS would (generally) work better than
CMSA for problems for which solutions are rather large, and the opposite would
be the case in the context of problems for which solutions are rather small.
The size of solutions is hereby measured by the number of solution components
(in comparison to the total number) of which they are composed. For example,
in the case of the travelling salesman problem, the complete set of solution
components is composed of the edges of the input graph. Moreover, solutions
consist of exactly n components, where n is the number of vertices of the input
graph. The above-mentioned intuition is based on the consideration that, for
ending up in some high-quality solution, LNS needs to find a path of over-lapping
solutions from the starting solution to the mentioned high-quality solution. The
smaller the solutions are, the more difficult it should be to find such a path. A
theoretical validation of our intuition seems, a priori, rather difficult to achieve.
Therefore, we decided to study empirical evidence that would support (or refute)
our intuition. For this purpose, we used the multi-dimensional knapsack problem
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(MDKP). As will be outlined later, for this problem it is possible to generate
both, problem instances for which solutions are small and problem instances for
which solutions are large. We implemented both LNS and CMSA for the MDKP
and performed an empirical study of the results of both algorithms for problem
instances over the whole range between small and large solutions. The outcome
of the presented study is empirical evidence for the validity of our intuition.

1.2 Outline of the Paper

The remainder of this paper is organized as follows. Section 2 provides a gen-
eral, problem-independent, description of both LNS and CMSA, whereas Sect. 3
describes the application of both algorithms to the MDKP. The empirical study
in the context of the MDKP is presented in Sect. 4, and the conclusions and an
outline of future work is given in Sect. 5.

2 General Description of the Algorithms

In the following we provide a general description of both LNS and CMSA in the
context of problems for which the exact technique used to solve sub-instances
is a general-purpose integer linear programming (ILP) solver. For the following
discussion we assume that a problem instance I is characterized by a complete
set C of solution components. In the case of the well-known travelling salesman
problem, for example, C consists of all edges of the input graph. Moreover,
solutions are represented as subsets of C. Finally, any sub-instance in the context
of CMSA—denoted by C ′—is also a subset of C. Solutions to C ′ may only be
formed by solution components from C ′.

2.1 Large Neighborhood Search

The pseudo-code of a general ILP-based LNS is provided in Algorithm1. First,
in line 2 of Algorithm 1, an initial incumbent solution Scur is generated in func-
tion GenerateInitialSolution(I). Solution Scur is then partially destroyed at each
iteration, depending on the destruction rate Dr. The way in which the incum-
bent solution is destroyed (randomly versus heuristically) is a relevant design
decision. The resulting partial solution Spartial is fed to the ILP solver; see func-
tion ApplyILPSolver(Spartial, tmax) in line 7 of Algorithm 1. Apart from Spartial,
this function receives a time limit tmax as input. Note that the complete solver is
forced to include Spartial in any considered solution. This means that the corre-
sponding sub-instance comprises all solutions that contain Spartial. As a result,
the complete solver provides the best valid solution found within the available
computation time tmax. This solution, denoted by S′

opt, may or may not be the
optimal solution to the tackled sub-instance. This depends on the given com-
putation time limit tmax for each application of the complete solver. Finally, in
the LNS version used in this paper, the better solution between S′

opt and Scur

is carried over to the next iteration. This seems, at first sight, restrictive. In
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Algorithm 1. Large Neighborhood Search (LNS)
1: input: problem instance I, values for parameters Dl, Du, Dinc, and tmax

2: Scur := GenerateInitialSolution(I)
3: Sbsf := Scur

4: Dr := Dl

5: while CPU time limit not reached do
6: Spartial := DestroyPartially(Scur, Dr)
7: S′

opt := ApplyILPSolver(Spartial, tmax)
8: if S′

opt is better than Sbsf then Sbsf := S′
opt

9: if S′
opt is better than Scur then

10: Scur := S′
opt

11: Dr := Dl

12: else
13: Dr := Dr + Dinc

14: if Dr > Du then Dr := Dl

15: end if
16: end while
17: return Sbsf

particular, other—more probabilistic—ways of selecting between S′
opt and Scur

would be possible. However, in turn the algorithm is equipped with a variable
destruction rate Dr, which may vary between a lower bound Dl and an upper
bound Du. Hereby, Dl and Du are parameters of the algorithm. A proper set-
ting of these parameters enables the algorithm to escape from local minima.
Note that the adaptation of Dr is managed in the style of variable neighborhood
search algorithms [9]. In particular, if S′

opt is better than Scur, the value of Dr

is set back to the lower bound Dl. Otherwise, the value of Dr is incremented by
Dinc, which is also a parameter of the algorithm. If the value of Dr—after this
update—exceeds the upper bound Du, it is set back to the lower bound Dl.

2.2 Construct, Merge, Solve and Adapt

The pseudo-code of an ILP-based CMSA algorithm is provided in Algorithm2.
Each algorithm iteration consists of the following actions. First, the best-so-
far solution Sbsf is initialized to ∅, indicating that no such solution exists yet.
Moreover, the restricted problem instance C ′, which is—as mentioned before—a
subset of the complete set C of solutions components, is initialized to the empty
set. Then, at each iteration, the restricted problem instance C ′ is augmented
in the following way (see lines 5 to 11): na solutions are probabilistically gen-
erated in function ProbabilisticSolutionGeneration(C). The components found in
the constructed solutions are added to C ′. Hereby, the so-called age of each of
these solution components (age[c]) is set to zero. Once C ′ was augmented in
this way, a complete solver is applied in function ApplyILPSolver(C ′) to find a
possibly optimal solution S′

opt to the restricted problem instance C ′. If S′
opt is

better than the current best-so-far solution Sbsf , solution S′
opt is taken as the
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Algorithm 2. Construct, Merge, Solve and Adapt (CMSA)
1: input: problem instance I, values for parameters na, agemax, and tmax

2: Sbsf := ∅; C′ := ∅
3: age[c] := 0 for all c ∈ C
4: while CPU time limit not reached do
5: for i := 1, . . . , na do
6: S := ProbabilisticSolutionGeneration(C)
7: for all c ∈ S and c /∈ C′ do
8: age[c] := 0
9: C′ := C′ ∪ {c}

10: end for
11: end for
12: S′

opt := ApplyILPSolver(C′, tmax)
13: if S′

opt is better than Sbsf then Sbsf := S′
opt

14: Adapt(C′, S′
opt,agemax)

15: end while
16: return sbsf

new best-so-far solution. Next, sub-instance C ′ is adapted on the basis of solu-
tion S′

opt in conjunction with the age values of the solution components; see
function Adapt(C ′, S′

opt, agemax) in line 14. This is done as follows. First, the
age of each solution component in C ′ \S′

opt is incremented while the age of each
solution component in S′

opt ⊆ C ′ is re-initialized to zero. Subsequently, those
solution components from C ′ with an age value greater than agemax—which is
a parameter of the algorithm—are removed from C ′. This causes that solution
components that never appear in solutions derived by the complete solver do
not slow down the solver in subsequent iterations. On the other side, compo-
nents which appear in the solutions returned by the complete solver should be
maintained in C ′.

2.3 Search Space Reduction in LNS and CMSA

The way in which the search space of the tackled problem instance is reduced by
LNS, respectively CMSA, can be summarized as follows. LNS keeps an incum-
bent solution which, at each iteration, is partially destroyed. This results in a
partial solution. The reduced search space consists of all solutions to the original
problem instance that contain this partial solution. This is graphically illustrated
in Fig. 1a. CMSA, on the other side, reduces the search space as follows: at each
iteration, solutions to the original problem instance are constructed in a proba-
bilistic way, using a greedy function as bias. The solution components found in
these solutions are joined, forming a subset C ′ of the complete set of solution
components. The set of solutions to the original problem instance that can be
generated on the basis of the components in C ′ form the reduced search space
in CMSA. This is graphically presented in Fig. 1b.
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Fig. 1. The way in which the search space is reduced in LNS, respectively CMSA. The
term search space refers to the set of all valid solutions to the tackled problem instance.
The grey-colored sub-spaces indicate the search spaces of the tackled sub-instances.

3 Application to the MDKP

For the aim of finding empirical evidence for the intuition phrased in the intro-
duction of this work, we make use of the so-called multi-dimensional knapsack
problem (MDKP), a well studied NP -hard combinatorial optimization problem
and a popular test case for new algorithmic proposals (see, for example, [10–
12]). The reason for choosing the MDKP is that it is parametrizable, as we will
outline in more detail below.

The MDKP is defined as follows. Given is a set C = {1, . . . , n} of n items, and
a set K = {1, . . . , m} of m different resources. Each resource k ∈ K is available
in a certain quantity (capacity) ck > 0, and each item i ∈ C requires from each
resource k ∈ K a given amount ri,k ≥ 0 (resource consumption). Moreover, each
item i ∈ C has associated a profit pi > 0. Note that, in the context of the MDKP,
the set C of items corresponds to the complete set of solution components.

A feasible solution to the MDKP is a selection (subsets) of items S ⊆ C such
that for each resource k the total consumption over all selected items

∑
i∈S ri,k

does not exceed the resource’s capacity ck. The objective is to find a feasible
item selection S of maximum total profit

∑
i∈S pi. The MDKP can be stated in

terms of an ILP as follows:

maximize
∑

i∈C

pi · xi (1)

s.t.
∑

i∈C

ri,k · xi ≤ ck ∀k ∈ K (2)

xi ∈ {0, 1} ∀i ∈ C (3)

Hereby, inequalities (2) limit the total consumption for each resource and are
called knapsack constraints.
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For the following discussion keep in mind that when referring to valid solu-
tions, we mean solutions that are valid and, at the same time, non-extensible. A
valid solution S is called non-extensible, if no i ∈ C\S can be added to S without
destroying its property of being a valid solution. The reasons for choosing this
problem for our study is, as mentioned above, that it is highly parametrizable.
With this we refer to the fact that problem instances in which the capacities of
the resources are rather high are characterized by rather large valid solutions
containing many items. The opposite is the case when resource capacities are
low. This means that the MDKP permits to generate problem instances over the
whole range of sizes of valid solutions.

3.1 Solving the Sub-instances to Optimality

For solving a sub-instance determined by a partial solution Spartial in the context
of LNS to optimality, the following constraints must be added to the ILP model
for the MDKP that was outlined above:

xi = 1 ∀i ∈ Spartial (4)

Similarly, for solving a sub-instance C ′ in the context of CMSA to optimality we
simply have to apply the ILP model using set C ′ instead of the complete set C.

3.2 Constructing Solutions for the MDKP

Apart from solving the sub-instances to optimality, we require a way for gener-
ating the initial solution in the case of LNS and for generating solutions at each
iteration of CMSA in a probabilistic way. For both purposes we used the greedy
heuristic outlined in the following. Henceforth it is assumed that the items in C
are ordered w.r.t. the following utility values in a non-increasing way:

ui ← pi∑
k∈K ri,k/ck

∀ i ∈ C. (5)

That is, the items in C are ordered such that u1 ≥ u2 ≥ . . . ≥ un. This means
that an item i ∈ C has position/index i due to its utility value. The utility
values are used as a static greedy weighting function in the heuristic described
in Algorithm 3. This heuristic simply adds items in the order determined by the
utility values to an initially empty partial solution S until no further item fits
w.r.t. the remaining resource capacities.

The probabilistic way of constructing a solution employed in CMSA (function
ProbabilisticSolutionGeneration(C) in line 6 of Algorithm2) also adds one item
at a time until no further item can be added without violating the constraints.
At each solution construction step, let S denote the current partial solution and
let l denote (the index of) the last item added to S. Remember that item l
has index l. In case S = ∅, let l = −1. In order to choose the next item to be
added to S, the first up to lsize items starting from item l + 1 that fit w.r.t. all
resources are collected in a set L. Hereby, L is commonly called the candidate
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Algorithm 3. Greedy Heuristic for the MDKP
1: input: a MDKP instance I
2: S ← ∅
3: for i ← 1, . . . , n do

4: if
(∑

j∈S rj,k
)

+ ri,k ≤ ck, ∀k = 1, . . . ,m then

5: S ← S ∪ {i}
6: end if
7: end for
8: return S

list and lsize, which is an important parameter, is called the candidate list size.
In order to choose an item from L, a number ν ∈ [0, 1) is chosen uniformly at
random. In case ν ≤ drate, the item i∗ ← min {i ∈ L} is chosen and added to S.
Otherwise—that is, in case ν > drate—an item i∗ from L is chosen uniformly at
random. Just like lsize, the determinism rate drate is an input parameter of the
algorithm for which a well-working value must be found.

3.3 Partial Destruction of Solutions in LNS

The last algorithmic aspect that must be specified is the way in which solutions
in LNS are partially destroyed. Two variants were considered. In both variants,
given the incumbent solution S, max{3, 	Dr · |S|
} items are chosen at random
and are then deleted from S. However, while this choice is made uniformly at
random in the first variant, the greedy function outlined above is used in the
second variant in an inverse-proportional way in order to bias the random choice
of items to be deleted. However, as we were not able to detect any benefit
from the biased random choice, we decided to use the first variant for the final
experimental evaluation.

4 Empirical Study

Both, LNS and CMSA, were coded in ANSI C++ using GCC 4.7.3 for compi-
lation. The experimental evaluation was performed on a cluster of computers
with “Intel R© Xeon R© CPU 5670” CPUs of 12 nuclei of 2933 MHz and (in total)
32 Gigabytes of RAM. Moreover, all ILPs in LNS and CMSA were solved with
IBM ILOG CPLEX V12.1 (single-threaded mode).

In the following we describe the set of benchmark instances generated to
test the two algorithms. Then, we describe the tuning experiments in order to
determine a proper setting for the parameters of LNS and CMSA. Finally, the
experimental results are presented.

4.1 Problem Instances

The following set of benchmark instances was created using the methodol-
ogy described in [10,13]. In particular, we generated benchmark instances of
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n ∈ {100, 500, 1000, 5000, 10000} items and m ∈ {10, 30, 50} resources. The so-
called tightness of problem instances refers hereby to the size of the capacities.
In the way of generating instances that we used—first described in [10,13]—
the tightness of an instance can be specified by means of a parameter α which
may take values between zero and one. The lower the value of α, the tighter is
the resulting problem instance and the smaller are the solutions to the respec-
tive problem instance. In order to generate instances over the whole range of
tightness values we chose α ∈ {0.1, 0.2, . . . , 0.8, 0.9}. More specifically, for our
experiments we generated 30 random instances for each combination of values
of the three above-mentioned parameters (n, m and α). For all instances, the
resource requirements ri,j were chosen uniformly at random from {1, . . . , 1000}.
In total, the generated benchmark set consist of 4050 problem instances.

4.2 Tuning

We made use of the automatic configuration tool irace [14] for both algorithms.
irace was applied for each combination of n (number of items) and α (the tight-
ness value). More specifically, for each combination of n and α we generated
three random instances for each m ∈ {10, 30, 50}, that is, in total nine tuning
instances were generated for each application of irace. The budget of irace was
set to 1000. Moreover, the following computation time limits were chosen for
both LNS and CMSA: 60 CPU seconds for instances with n = 100, 120 CPU
seconds for those with n = 500, 210 CPU seconds for those with n = 1000, 360
CPU seconds for those with n = 5000, and 600 CPU seconds for those with
n = 10000.

Parameters of CMSA. The important parameters of CMSA that are consid-
ered for tuning are the following ones: (1) the number of solution constructions
per iteration (na), (2) the maximum allowed age (agemax) of solution compo-
nents, (3) the determinism rate (drate), (4) the candidate list size (lsize), and (5)
the maximum time in seconds allowed for CPLEX per application to each sub-
instance (tmax). The following parameter value ranges were chosen concerning
the five parameters of CMSA.

– na ∈ {10, 30, 50}
– agemax ∈ {1, 5, 10, inf}, where inf means that no solution component is ever

removed from the sub-instance.
– drate ∈ {0.0, 0.3, 0.5, 0.7, 0.9}, where a value of 0.0 means that the selection

of the next solution component to be added to the partial solution under
construction is always done randomly from the candidate list, while a value
of 0.9 means that solution constructions are nearly deterministic.

– lsize ∈ {3, 5, 10}
– tmax ∈ {1.0, 2.0, 4.0, 8.0} (in CPU seconds) for all instances with n ∈

{100, 500}, and tmax ∈ {2.0, 4.0, 8.0, 16.0, 32.0} for all larger instances.
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Parameters of LNS. The parameters of LNS considered for tuning are the follow-
ing ones: (1) the lower and upper bounds—that is, Dl and Du—of the destruction
rate, (2) the increment of the destruction rate (Dinc), and (3) the maximum time
tmax (in seconds) allowed for CPLEX per application to a sub-instance. The fol-
lowing parameter value ranges were chosen concerning the five parameters of
CMSA.

– (Dl,Du) ∈ {(0.1, 0.1), (0.2, 0.2), (0.3, 0.3), (0.4, 0.4), (0.5, 0.5), (0.6, 0.6), (0.7,
0.7), (0.8, 0.8), (0.9, 0.9), (0.1, 0.3), (0.1, 0.5), (0.3, 0.5), (0.3, 0.7), (0.3, 0.9),
(0.1, 0.9)}. Note that when Dl = Du, the destruction rate Dr is fixed.

– Dinc ∈ {0.01, 0.02, . . . , 0.08, 0.09}
– The value range for tmax was chosen in the same way as for CMSA (see above).

The results of the tuning processes are shown in the three sub-tables of Fig. 4 in
AppendixA.

4.3 Results

Both LNS and CMSA were applied to all problem instances exactly once, with
the computation time limits as outlined at the beginning of Sect. 4.2. The results
are shown graphically by means of boxplots in Fig. 2. Note that there is one
graphic per combination of n (the number of items) and m (the number of
resources). The x-axis of each graphic ranges from the 30 instances of tightness
value α = 0.1 to the 30 instances of tightness value α = 0.9, that is, from left to
right we move from instances with small solutions—that is, solutions containing
few components—to instances with large solutions—that is, solutions containing
many components. The boxes in these boxplots show the improvement of CMSA
over LNS (in percent). This means that when data points have a positive sign
(that is, greater than zero), CMSA has obtained a better result than LNS, and
vice versa. In order to improve the readability of these figures, the area of data
points with positive signs has a shaded background.

The following main observation can be made: In accordance with our intuition
that CMSA should have advantages over LNS in the context of problems with
small solutions, it can be observed that CMSA generally has advantages over
LNS when the tightness values of instances are rather small. This becomes more
and more clear with growing instance size (n) and with a decreasing number of
resources (m). In turn, LNS generally has advantages over CMSA for instances
with a high tightness value, that is, for instances with large solutions.

In order to shed some further light on the differences between CMSA and
LNS, we also measured the percentage of items—that is, solution components—
that appeared in at least one of the solutions visited by the algorithm within
the allowed computation time. This information is provided in the graphics of
Fig. 3 by means of barplots. Again, we present one graphic per combination of
n and m. The following observations can be made:
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Fig. 2. Improvement of CMSA over LNS (in percent). Each box shows the differ-
ences for the corresponding 30 instances. Note that negative values indicate that LNS
obtained a better result than CMSA, and vice versa.
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Fig. 3. Percentage of the items—that is, solution components—that were used in at
least one visited solution. Each bar shows the average over the respective 30 problem
instances.
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– First of all, the percentage of used items is always much higher for CMSA than
for LNS. This means that, with the optimized parameter setting as determined
by irace, CMSA is much more explorative than LNS. This, apparently, pays off
in the context of problems with small solutions. On the downside, this seems
rather not beneficial when problems are characterized by large solutions.

– Additionally, it can be observed that the difference in the percentage of the
usage of items between CMSA and LNS decreases with growing instances
size (n). This can be explained by the fact that the absolute size of the sub-
instances that are generated by CMSA naturally grows with growing problem
size, and—as the efficiency of CPLEX for solving these sub-instances decreases
with growing sub-instance size—the parameter values as determined by irace
are such that the relative size of the sub-instances is smaller for large problem
instances, which essentially means that the algorithm is less explorative.

5 Conclusions and Future Work

In this work we have given first empirical evidence that supports our initial
intuition that LNS should generally work better than CMSA for problems in
which solutions contain rather many solution components, and vice versa. This
has been shown by means of experimental results in the context of the multi-
dimensional knapsack problem. In the near future we intent to confirm this
empirical evidence by the application to additional optimization problems.

Finally, we would like to clarify the following aspect. Our intuition obviously
only holds for problems for which, a priori, neither LNS nor CMSA have advan-
tages over the other one. In fact, it is not very difficult to find problems for which
CMSA generally has advantages over LNS, no matter if solutions are small or
large. Consider, for example, problems for which the number of variables and/or
constraints in the respective ILP model are so large that the problem cannot be
solved simply because of memory restrictions. This is the case in ILP models
in which the number of variables and/or constraints are super-linear concerning
the input parameters of the problem. Due to its specific way of reducing the
search space, CMSA tackles sub-instances that correspond to reduced ILP mod-
els. This is not the case of LNS. Even though parts of the solution are fixed, the
complete original ILP model must be built in order to solve the corresponding
sub-instance. Therefore, CMSA can be applied in these cases, while LNS cannot
be applied. An example of such a problem is the repetition-free longest common
subsequence problem [15]. Contrarily, it is neither difficult to think about prob-
lems for which LNS generally has advantages over CMSA. Consider, for example,
a problem where the main difficulty is not the size of ILP model but rather the
computational complexity. Moreover, let us assume that when fixing a part of
the solution, the sub-instance becomes rather easy to be solved, which is—for
example—the case in problems with strong symmetries. In such a case LNS will
most probably have advantages over CMSA. An example of such a problem is
the most strings with few bad columns problem [16].
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A Appendix: Tuning results

See Fig. 4.

α n = 100 n = 500 n = 1000
na agemax drate lsize tmax na agemax drate lsize tmax na agemax drate lsize tmax

0.1 30 1 0.3 5 1.0 50 1 0.3 3 4.0 10 1 0.9 10 2.0
0.2 30 1 0.5 3 2.0 50 10 0.9 5 1.0 50 1 0.5 5 8.0
0.3 30 10 0.7 5 8.0 30 1 0 3 4.0 30 1 0.5 3 4.0
0.4 30 10 0.7 5 8.0 10 10 0.9 5 2.0 50 1 0.7 3 8.0
0.5 50 1 0.7 5 2.0 10 1 0.5 3 4.0 10 1 0.5 3 8.0
0.6 30 5 0.7 3 8.0 30 1 0.9 5 2.0 10 5 0.9 5 4.0
0.7 10 5 0.7 3 4.0 30 5 0.9 3 4.0 30 5 0.7 3 8.0
0.8 50 1 0.9 3 4.0 30 1 0.9 3 8.0 30 5 0.9 3 4.0
0.9 10 1 0.3 3 8.0 10 1 0.5 10 2.0 10 1 0.3 10 2.0

(a) Tuning CMSA for instances with n ∈ {100, 500, 1000}.

α n = 5000 n = 10000
na agemax drate lsize tmax na agemax drate lsize tmax

0.1 10 1 0.5 3 4.0 30 1 0.7 5 8.0
0.2 10 1 0.9 5 8.0 50 1 0.9 5 8.0
0.3 10 1 0.9 5 8.0 50 5 0.9 5 16.0
0.4 10 1 0.5 10 4.0 10 inf 0.5 3 16.0
0.5 10 1 0 10 8.0 50 10 0.9 5 32.0
0.6 50 inf 0.9 3 16.0 50 inf 0.9 3 32.0
0.7 30 1 0.9 3 16.0 10 1 0.7 10 32.0
0.8 10 5 0.9 3 32.0 30 inf 0.9 3 32.0
0.9 10 1 0 10 16.0 10 10 0.9 3 32.0

(b) Tuning CMSA for instances with n ∈
{5000, 10000}.

α n = 100 n = 500 n = 1000 n = 5000 n = 10000

Dl Du Dinc tmax Dl Du Dinc tmax Dl Du Dinc tmax Dl Du Dinc tmax Dl Du Dinc tmax

0.1 0.8 0.8 0.08 4.0 0.9 0.9 0.05 1.0 0.8 0.8 0.06 4.0 0.8 0.8 0.04 8.0 0.9 0.9 0.08 8.0
0.2 0.9 0.9 0.06 4.0 0.9 0.9 0.03 1.0 0.9 0.9 0.06 2.0 0.9 0.9 0.03 16.0 0.9 0.9 0.06 32.0
0.3 0.9 0.9 0.03 1.0 0.8 0.8 0.06 4.0 0.9 0.9 0.07 8.0 0.7 0.7 0.01 16.0 0.8 0.8 0.06 8.0
0.4 0.9 0.9 0.03 4.0 0.7 0.7 0.03 1.0 0.8 0.8 0.01 2.0 0.9 0.9 0.08 8.0 0.9 0.9 0.02 8.0
0.5 0.9 0.9 0.01 2.0 0.6 0.6 0.05 1.0 0.8 0.8 0.08 2.0 0.7 0.7 0.05 4.0 0.9 0.9 0.01 32.0
0.6 0.9 0.9 0.01 2.0 0.7 0.7 0.06 1.0 0.8 0.8 0.03 4.0 0.9 0.9 0.02 4.0 0.8 0.8 0.03 32.0
0.7 0.9 0.9 0.05 2.0 0.6 0.6 0.05 1.0 0.9 0.9 0.02 2.0 0.9 0.9 0.06 8.0 0.9 0.9 0.08 16.0
0.8 0.8 0.8 0.08 4.0 0.9 0.9 0.02 2.0 0.8 0.8 0.07 4.0 0.8 0.8 0.03 8.0 0.9 0.9 0.01 16.0
0.9 0.1 0.9 0.09 1.0 0.8 0.8 0.05 1.0 0.9 0.9 0.03 2.0 0.8 0.8 0.05 8.0 0.8 0.8 0.02 16.0

(c) Tuning LNS.

Fig. 4. Tuning results.
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Abstract. Two major search paradigms have been proposed for SAT
solving: Systematic Search (SS) and Stochastic Local Search (SLS). In
SAT competitions, while SLS solvers are effective on uniform random
instances, SS solvers dominate SLS solvers on application instances with
internal structures. One important structural property is decomposabil-
ity. SS solvers have long been exploited the decomposability of appli-
cation instances with success. We conjecture that SLS solvers can be
improved by exploiting decomposability of application instances, and
propose the first step toward exploiting decomposability with SLS solvers
using pseudo backbones. We then propose two SAT-specific optimiza-
tions that lead to better decomposition than on general pseudo Boolean
optimization problems. Our empirical study suggests that pseudo back-
bones can vastly simplify SAT instances, which further results in decom-
posing the instances into thousands of connected components. This
decomposition serves as a key stepping stone for applying the powerful
recombination operator, partition crossover, to the SAT domain. More-
over, we establish a priori analysis for identifying problem instances with
potential decomposability using visualization of MAXSAT instances and
treewidth.

Keywords: Satisfiability · Decomposition · Partition crossover ·
Visualization · Treewidth · Pseudo backbone

1 Introduction

SAT is the first problem proven NP-Complete [1]. Besides its theoretical impor-
tance, SAT also finds many practical applications such as bounded model check-
ing [2] and hardware verification [3]. Erdős Discrepancy Conjecture, a longstand-
ing open problem proposed by the famous mathematician Paul Erdős in 1930s,
has recently been attacked successfully using a SAT solver [4].

The two major search paradigms for SAT solving are Systematic Search (SS)
such as MiniSat [5], and Stochastic Local Search (SLS) such as the ones in the
UBCSAT collection [6]. The top SLS solvers in recent SAT competitions [7]
can reliably solve uniform random instances with 1 million variables and several
million of clauses. The same state-of-art SLS solvers have poor performance on
c© Springer International Publishing AG 2017
B. Hu and M. López-Ibáñez (Eds.): EvoCOP 2017, LNCS 10197, pp. 75–90, 2017.
DOI: 10.1007/978-3-319-55453-2 6
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hard combinatorial and industrial SAT instances. In this work, we classify both
hard combinatorial instances and industrial instances as Application Instances.

Application SAT instances often have internal structures, which can be a
result of the loosely coupled components originated from the source problem
domain [8], and/or the procedure involved in translating a problem from the
original domain into a MAXSAT instance [9]. One important structural prop-
erty, decomposability, studies how well the variable interaction of an application
instance can be decomposed. The decomposability of an instance has been exten-
sively studied and exploited by SS solvers with success [10–13]. On the contrary,
SLS solvers direct the variables to flip only using the objective function, and
are completely oblivious to the decomposability of application SAT instances.
A Variable Interaction Graph (VIG) is a useful way to capture information
about variable interaction in a MAXSAT instance. A simple version of the vari-
able interaction graph is a graph denoted by G. The set of vertices, denoted
by V , are the variables of a MAXSAT instance. If two variables, xi and xj

appear together in a clause, there is an edge ei,j in the VIG. We conjecture that
SLS solvers can be improved by exploiting the decomposability of application
instances.

The evolutionary computation community has recently discovered that the
decomposability of many combinatorial optimization problems can be exploited
using a powerful recombination operator, partition crossover [14–16]. Partition
Crossover fixes pseudo backbone variables (i.e., variable assignments shared
among local optima) to decompose the Variable Interaction Graph (VIG) into q
connected components, and then recombines partial solutions to different compo-
nents in such a way that the best offspring of among all possible 2q offsprings can
be found efficiently. Partition crossover has been shown to be useful in the Trav-
eling Salesperson Problem [17,18] and NK-Landscapes [19], but we are not aware
of any work that apply this idea to SAT. The success of partition crossover relies
heavily on the decomposition of problem instances. That is, partition crossover
can not be applied if a problem instance can not be decomposed. We will study
how to decompose application SAT instances, and evaluate the quality of decom-
position. This paper will serve as a critical stepping stone for applying partition
crossover to exploit the decomposability of application SAT instances. Specif-
ically, the outcome of decomposing VIGs of application instances with pseudo
backbones will determine the applicability of partition crossover in SAT.

Decomposing SAT instances with SS solvers is straightforward, since an SS
solver assigns one decision variable at a time, and the assigned variables and
implied variables through unit propagation [5] can be used to simplify the VIGs,
which naturally leads to decomposition. In contrast, SLS solvers search in the
space of full tentative assignments to all variables. However, how to “fix” vari-
ables so that a VIG can be decomposed in the context of SLS solvers is non-
trivial. In this paper, we propose a first step toward exploiting decomposability
with SLS solvers. Inspired by Zhang’s success in guiding SLS solvers with pseudo
backbone extracted from good local optima [20] and by the definition that back-
bone variables are fixed variable assignments across all global optima [21], we
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propose to decompose VIGs with pseudo backbone sampled by SLS solvers. We
further propose two SAT specific optimizations that lead to better decomposi-
tion than on general pseudo Boolean optimization problems. Moreover, we estab-
lish a priori analysis, involving visualization of SAT instances and computation
of treewidth, for identifying problem instances with potential decomposability,
allowing SAT solving strategies to be chosen accordingly in advance.

2 Preliminaries

Variable interaction is a key structure property influencing the difficulty of SAT
instances. We will say that two variables interact if they co-occur in some clause.
In fact, given a SAT instance that only involves binary clauses (with just pairwise
interactions), its satisfiability can be determined in polynomial time [22]. A VIG
is typically used to model variable interactions.

Treewidth [23] is an important metric for decomposability of a graph. It
has been shown that SAT can be solved in time exponential in treewidth using
dynamic programming [24]. Treewidth by definition measures the “tree-likeness”
of a graph G and is defined over a Tree Decomposition of G. A Tree Decompo-
sition is a mapping from G to a tree T that satisfies:

1. Every vertex of G is in some tree node;
2. any pair of adjacent vertices in G should be in the same tree node;
3. the set of tree nodes containing a vertex v in G forms a connected subtree.

The width of a tree decomposition is the maximum size of tree node minus
one. The treewidth (denoted as tw) of G is the minimal width over all its possible
tree decomposition. Figure 1 illustrates an optimal tree decomposition of a graph.
It becomes clear that treewidth can measure the decomposability of a graph,
since assigning all variables in any tree node guarantees to decompose the graph,
i.e., deleting any tree node disconnects a tree. The exact treewidth is NP-Hard to
compute [25]. Fortunately, polynomial-time heuristics for approximate treewidth
computation [26] are available. The Minimum Degree heuristic is used in our
experiments.

Fig. 1. A graph with eight vertices (left subfigure), and an optimal tree decomposition
of it onto a tree with six nodes (right subfigure). tw = 3 − 1 = 2.
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3 Overview

Our goal in this paper is to demonstrate the feasibility of decomposing VIGs
with pseudo backbones. We conjecture that good local optima sampled by an
SLS solver will share some common variable assignments, i.e., pseudo backbones
are non-empty. Moreover, the pseudo backbone can be used to simplify VIGs of
application instances by removing assigned pseudo backbone variables as well
as the clauses satisfied by assigned pseudo backbone variables, and possibly
decompose the VIGs.

We will start by taking the following three steps. First, we identify a selected
set of application instances that demonstrate potential decomposability by exam-
ining their treewidths in Sect. 4. Our initial pool of application instances include
all 299 satisfiable instances from both hard combinatorial track and indus-
trial track in SAT Competition 20141, where the hard combinatorial track con-
tains 150 satisfiable instances and the industrial track contains 149 satisfiable
instances2. Second, we run one of the best performing SLS solvers on appli-
cation instances [27], AdaptG2WSAT [28], on the selected instances to collect
good local optima (or highly competitive solutions), and then we extract shared
variable assignments from the local optima to construct pseudo backbones in
Sect. 5. Finally, in Sect. 6 we first propose two SAT-specific optimizations that
lead to better decomposition than on general pseudo Boolean optimization prob-
lems, and then evaluate how well the pseudo backbones decompose the VIGs,
by comparing the original VIGs with the simplified VIGs along two aspects: the
quantitative aspect as measured by the number of connected components in the
remaining VIG, and the intuitive aspect via the visualization of the remaining
VIG.

4 Identifying Application Instances with Potential
Decomposability

Recall that treewidth quantifies the size of the most densely connected and least-
decomposable subgraph (i.e., size of the largest tree node), and can be used as
a metric of the inherent decomposability of a graph [29]. Assigning all vari-
ables in any tree node guarantees to decompose the graph. A small treewidth
suggests that assigning a small set of corresponding variables according to the
tree decomposition will make it easier to decompose the graph. We preprocessed
the application instances using SATElite [30], and found that preprocessing can
reduce and almost never increase the treewidths of application instances. Pre-
processing leads to a set of 258 valid preprocessed application instances. The

1 http://www.satcompetition.org/2014/.
2 The original benchmark set in the industrial track contains 150 satisfiable

instances, but openstacks-sequencedstrips-nonadl-nonnegated-os-sequencedstrips-
p30 3.085-SAT.cnf and openstacks-p30 3.085-SAT.cnf are identical, despite their dif-
ferent names.

http://www.satcompetition.org/2014/
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other application instances are excluded, because they are either solved by the
preprocessor or are too large for treewidth computation.

We notice that there is a high variation in the size of preprocessed instances.
The number of variables for the 258 preprocessed application instances varies
vastly from 55 to 1,471,468 with an average of 47,724 and a standard deviation
of 174,429. To accommodate the variation, we use normalized treewidth, i.e.,
treewidth to number of variables ratio (denoted as tw.n), as a metric between
zero and one for evaluating inherent decomposability. We therefore intend to
select application instances that are known to have small tw.n (i.e., highly decom-
posable) as the first step toward demonstrating the feasibility of decomposing
VIGs with pseudo backbones. If pseudo backbones can not decompose VIGs
with small tw.n, it would be even less likely to decompose VIGs with larger tw.n
with pseudo backbones. This leads to the first research question.

Question 1. Are there many application instances with high decomposability?

Recall that the application instances in our study originate from the hard combi-
natorial track and the industrial track of the SAT Competition 2014, which has
been run for more than a decade. These application instances are representatives
of a wide variety of real world SAT applications, and are challenging for the cur-
rent SAT solvers. To study the overall distribution of tw.n in the preprocessed
application instances, we plot the histogram in Fig. 2. The histogram indicates
that the highest frequency of tw.n is within the range from 0.00 to 0.01. The first
bar has a frequency of 28. This means that there are 28 preprocessed application
instances that are guaranteed to be decomposed when assigning all variables in
a tree node that contains at most 1% variables. We also observe that tw.n for
199 out of the 258 application instances are less than 0.4. This is encouraging,
because many real world application instances from a wide variety of domains
are indeed highly decomposable.

We decide to select the 27 preprocessed application instances with tw.n <
0.01 as the testbed for exploring the feasibility of decomposition with pseudo
backbones. Note that one instance with tw.n < 0.01, prime2209-98, is excluded,
because it is already separated into over a hundred independent densely con-
nected components and can be solved optimally by SLS solvers. We list the
details on the selected instances under “After Preprocessing” of Table 1. Despite
the small normalized treewidths, the treewidth in these instances are still much
too large to solve using dynamic programming.

We merge data generated across different experiments in one big table. We
will focus on the 27 instances from now on in this paper. Merging results across
different experiments performed on the same set of instances allows us to syn-
thesize findings and to discover connections among the outcomes of experiments
with different emphases. The columns are ordered by the sequence in which the
experiments are conducted, and the columns belonging to different experiments
are separated using double vertical lines to improve readability.

From Instance column of Table 1, we note that the 27 selected instances
come from only 5 problem domains: aaai-ipc (planning), AProVE (termina-
tion analysis of JAVA program), atco (Air Traffic Controller shift scheduling
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Fig. 2. Normalized Treewidths of 258 preprocessed application instances. Each bar
counts the frequency of the normalized treewidths being within an interval of size 0.01.

Fig. 3. Three graphs with tw = 1, but with different degrees of decomposability.

problem), LABS (Low Autocorrelation Binary Sequence), and SAT-instance
(autocorrelation in combinatorial design). The instance with smallest tw.n is
LABS n088 goal008, in which there are 182,015 variables, and yet its treewidth
is only 203.

Normalized treewidth as a descriptive measure for decomposability of a graph
can be limited for two reasons. First, treewidth captures the size of largest tree
node in the tree decomposition, while missing the information on the sizes of the
rest of tree nodes. Second, the topology of the tree decomposition can also play
a role in determining the decomposability of a graph. Consider the three graphs
with tw = 1 in Fig. 3, all three of them are essentially trees. However, they have
very different topologies as well different degrees of decomposability. Removing
the central node decomposes them into 2, 3, and 10 connected components,
respectively. This concern lead to Question 2.

Question 2. What exactly is the variable interaction topologies of application
instances that result in the small normalized treewidths?
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To illustrate how the variable interaction topologies of the 27 selected instances
lead to the small tw.n, we generate their VIGs using a force-directed graph lay-
out algorithm3. Sinz [31] suggests VIGs of SAT instances to be laid out using
force-directed graph drawing algorithm by Fruchterman and Reingold [32] that
is known to reflect graph clustering and symmetry. Fruchterman and Reingold’s
graph layout algorithm runs in polynomial time, O(V +E), the sum of the num-
ber of vertices and edges in the VIG. Among the 27 selected instances, the VIGs
of instances from the same class are visually similar. Therefore, one representa-
tive VIG is picked from each of 5 problem domains. The 5 representative VIGs
are presented in Fig. 4, in which a red circle represents a variable and a black line
between two red circles represents the two relative variables co-occur in some
clause.

The presented VIGs illustrate the decomposability of the variable interaction
topologies of the selected application instances. atco enc3 opt1 13 48 consists of
several linear topologies that loosely interleaves. LABS n088 goal008 exhibits a
densely connected “core” at its center, and the connections become progressively
sparser as being away from the core. SAT instance N=49 appears axisymmet-
ric with two cores on each side and the connections between the two cores are
sparser. aaai10-ipc5 forms several layers of “clusters” with looser connections
between clusters. The aforementioned 4 VIGs exhibits high visual decompos-
ability. Lastly, AProVE09-06 seems uniformly and densely connected at its large
core. It might be difficult to exploit its decomposability, despite its small nor-
malized treewidth suggests otherwise.

Through the visual analysis on the VIGs, we find that (normalized)
treewidth, while reveals the potential decomposability of an instance, does not
always tell the full story. Visualization of VIGs can help to gain more intuitive
insights. We will further learn how well can a VIG be decomposed in practice
with pseudo backbone in Sect. 6.

5 Computing Pseudo Backbone from Good Local Optima

In contrast to the backbone that is extracted from all global optima, pseudo
backbones are approximated from local optima with low evaluations (aka “Good
Local Optima”) [20]. We employ AdaptG2WSAT [28] from the UBCSAT imple-
mentation [6] to find good local optima, because both our preliminary experi-
ments and a previous study by Kroc et al. [27] indicate that AdaptG2WSAT
is one of the best performing SLS solvers on application instances. We run
AdaptG2WSAT for up to 1000 s, record the best local optima found during the
run, and repeat the run for ten times with different random seeds for each of the
27 preprocessed application instances. As a result, 10 good local optima are col-
lected for each instance. The goodness of approximating the true backbone with
pseudo backbones depends on the quality of local optima used to generate them.

3 We use the Python package graph-tool (https://graph-tool.skewed.de/). Graph-tool
is known for its efficiency on large graphs, due to its C++ core implementation.

https://graph-tool.skewed.de/
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Fig. 4. Variable interaction graphs of 5 representative preprocessed application
instances.
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It is also critical to realize the limit of the current SLS solvers on applications.
These concerns leads to Question 3.

Question 3. On application instances with small normalized treewidths, how
good are the best local optima found by AdaptG2WSAT within 1000 s?

Table 1 (under Evaluation) presents statistics on the quality of the best local
optima collected in each of the 10 runs. Except for the 5 atco instances,
AdaptG2WSAT is able to find local optima with at most hundreds of unsat-
isfied clauses, on instances with up to about 3 million clauses. Although these
are somewhat good local optima, we also find considerable room for improv-
ing upon AdaptG2WSAT on application instances that exhibit high potential
decomposability.

Notice that we employ the pseudo backbone concept differently from Zhang’s
approach [20]. In Zhang’s work [20], all local optima are used to compute an
empirical probability distribution, pseudo backbone frequency, which estimates
the likelihood of a variable assigned to true in the real backbone. In our case, we
instead prefer to maximize the pseudo backbone size for the purpose of decom-
position, i.e., the number of fixed variables across local optima. We expect that
the more distinct local optima taken into account, the less variables are assigned
consistently. We present an analysis of the sizes of pseudo backbones generated
using pairs of local optima (under Between Pairs of LocOpt) as well as the size
of the (less-)pseudo backbone constructed by taking the intersection of all 10
local optima (under ALL.LO) in Table 1.

We observe that, considering the pairs of local optima instead of the 10 local
optima all together indeed yields larger pseudo backbone. We also notice that
the variation in the pseudo backbone sizes across all 10×(10−1)

2 = 45 pairs of
local optima is small, as indicated by the small standard deviations and the
small difference between min and max. Meanwhile, the difference between mean
and ALL.LO is much more pronounced. On the atco instances, average pseudo
backbone size is more than 100× larger than that of all 10 local optima (as indi-
cated by ALL.LO). For the purpose of fixing as many pseudo backbone variables
as possible to increase the chance of decomposing a given VIG, we choose the
pseudo backbones generated from the pairs of local optima for simplifying and
decomposing VIGs.

Normalizing the maximum pseudo backbone size constructed from pairs of
local optima (max under Between Pairs of LocOpt) by the total numbers of vari-
ables (n under After Preprocessing), we find that the maximum pseudo back-
bones fix 70.3% of total variables on average, with a standard deviation of 16.4%.
On aaai10-ipc5 and LABS instances, maximum pseudo backbones consistently
fix as many as around 90% of variables. Combining the large pseudo backbone
constructed from pairs of local optima and the low treewidths that are inher-
ent to the selected application instances, the idea of decomposing VIGs with
Pseudo backbones appears very promising. In Sect. 6, we will evaluate the prac-
tical decomposability of VIGs with pseudo backbones.
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6 Improving Decomposition on SAT Instances

Selecting the pair of local optima that leads to the largest pseudo backbone does
not necessarily decompose a given VIG. Two additional confounding factors
also come into play. First, the distribution of pseudo backbone variables over
the VIG is critical. The pseudo backbone variables might scatter over many
tree nodes in the tree decomposition, which impairs the decomposition. Taking
Fig. 1 for an example, assigning variables B and C decomposes the graph into
two independent components, whereas assigning variables C and G does not.
Second, assigning some variables can lead to considerable propagations, which
can further simplify the VIG and facilitate the decomposition. In this section, we
first introduce two SAT-specific optimizations that lead to better decomposition
than on general pseudo Boolean optimization problems, and then conduct an
empirical study to evaluate the practical decomposability of VIGs with pseudo
backbones we collected in the previous section.

In general pseudo Boolean optimization, fixing the assignment to a variable
triggers the removal of that variable and all edges incident to it [15]. Due to the
nature of MAXSAT problems, we introduce two optimizations that promote the
decomposition of VIGs.

First, we remove clauses satisfied by the assigned variables. Assigning a
pseudo backbone variable v can possibly satisfy a clause C, which leads to direct
removal of the entire clause C from the formula. Note that each clause forms a
clique in the VIG, since every pair of variables in a clause interacts. Suppose C

contains k variables and v only appears in C, assigning v removes up to k×(k−1)
2

edges (i.e., the number of edges in a clique of size k) from the VIG. Now con-
sider a similar pseudo Boolean optimization problem, in which a variable v only
appears in a subfunction C that contains k variables. Assigning v in the general
pseudo Boolean optimization problem, however, only removes v from C, which
leads to the deletion of only the k − 1 edges incident to v.

Second, we apply unit propagation after assigning pseudo backbone vari-
ables. Unit propagation can also imply the assignments of extra variables besides
the pseudo backbone variables. The implied variables again can satisfy some
clauses, simplifying and possibly decomposing the VIG even more. In this sense,
unit propagation reinforces the first optimization. Given the same VIGs, SAT
instances clearly have better theoretical potential of being decomposed than
general pseudo Boolean optimization instances.

6.1 Empirical Results

Recall that every pair of 10 local optima generates a pseudo backbone. On each
application instance, 10 local optima result in 10×(10−1)

2 = 45 pairs, which are
further used to generate 45 pseudo backbones. We then use the pseudo back-
bones to simplify each of the application instances, which leads to 45 simpli-
fied instances for every application instance. For each application instance, the
statistics (min, median and max) on the number of connected components of
the instance simplified using 45 different pseudo backbones are presented under
#Components in Table 1.
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We present the median instead of the mean, because we notice a large vari-
ance in the number of connected components on many instances. Considering
LABS n052 goal004, the maximum number of components is 548× the minimum
number of components. In fact, we argue that the high variance on the number
of connected components is an empirical indicator for partition crossover to be
more powerful on SAT than on other pseudo Boolean optimization problems like
NK-landscapes.

The maximum of number of connected components across all 27 non-empty
simplified instances varies from 21 to 2084. This means there is always an oppor-
tunity for applying partition crossover. In some case, one application of partition
crossover can return the best offspring among 22084 ones. As for the typical case
scenarios, the median number of connected components varies from 0 to 1373,
with an average of 249.

We notice that some instances are drastically simplified. The minimum and
median number of components for two acto instances are zero, meaning that the
two simplified instances are completely empty. Note that pseudo backbones on
average only consists of roughly 50% of the variables (648166/1293612 = 0.501
for atco enc3 opt2 05 21 and 535064/1067657 = 0.501 for atco enc3 opt1 13 48).
Therefore, the other half of the variables are all implied by unit propagation. This
suggests that maximizing pseudo backbone size does not always translate into
the maximum number of connected components. There is a trade-off between
simplifying a graph so that it can be decomposed, and avoiding over-simplifying
a graph that leads to fewer or none connected components left. Fortunately,
the maximum number of connected components for atco enc3 opt2 05 21 and
atco enc3 opt1 13 48 is 37 and 21, meaning that there are still chances for par-
tition crossover to be useful.

In Fig. 5, we present the decomposed VIGs that yields the median number
of connected components. There are several interesting patterns. First, three
instances, atco enc3 opt1 13 48, LABS n088 goal008 and SAT instance N=49,
are decomposed into mostly linearly connected components. Second, even though
the pseudo backbone for aaai10-ipc5 contains 88% of the variables, the instance
still has a large connected component that contains the majority of the remaining
variables. Notice that there are several weak links in the largest components that
could have been removed using the pseudo backbone, leading to more connected
components. This indicates that using the pseudo backbone can miss some “low-
hanging fruits” for further decomposing a VIG. Third, recall that the VIG of
AProVE09-06 before simplification (see Fig. 4) appears difficult to decompose.
Indeed, although the simplified VIG shows that AProVE09-06 is decomposed
into many connected components, some of the connected components are non-
trivially large and complex, indicating its limited potential of being decomposed
further. Visualization can indeed complement treewidth in identifying instances
with potential decomposability.
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Fig. 5. Decomposed variable interaction graphs of representative application instances
that yields the median number of connected components.
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7 Conclusion and Future Work

We propose to decompose the VIGs of application SAT instances using the
pseudo backbone, taking the first step toward exploiting decomposability with
SLS solvers. Through empirical study, we find that pseudo backbones can vastly
simplify the Variable Interaction Graphs (VIGs) of application instances, which
further results in decomposing the VIGs into thousands of connected compo-
nents. In pursuit of the primary goal, decomposing VIGs in the context of SLS
solvers, we also find that (1) many real world application instances from a wide
variety of domains are highly decomposable; (2) neither treewidth nor visualiza-
tion is fully sufficient to determine the decomposability of VIG.

This work serves as a stepping stone for applying partition crossover to SAT.
In fact, given the promising theoretical principles and the encouraging empirical
results, we argue that SAT is even more suitable for applying partition crossover
than general pseudo Boolean optimization problems. Our ultimate goal is to
narrow the gap in performance between SLS solvers and SS solvers on appli-
cation SAT instances. Navigating through local optima is known to dominate
the running time of SLS solvers [33]. Many local optima are visited during the
course of SAT solving with SLS solvers. Abandoning the valuable information
carried in local optima seems unwise. Now that we have shown that application
instances can be decomposed using pseudo backbones constructed from local
optima, applying partition crossover to leverage the numerous local optima while
exploiting decomposability of application SAT instances is our future work.

We have focused our study on application SAT instances with small nor-
malized treewidth due to their high potential decomposability. The SAT-specific
optimizations we introduced can drastically simplify application SAT instances
after assigning pseudo backbone variables. The power of the optimizations we
introduced will become even more pronounced and useful on instances that are
harder to decompose (i.e., with higher normalized treewidths). In addition, we
can simply turn off the optimizations on instances that are already easy to
decompose to avoid oversimplification. Treewidth and visualization enables us
to gauge the decomposability of a given instance in advance, and select solving
strategies accordingly.

Lastly, our methodology for identifying instances with potential decompos-
ability can be also applied to other pseudo Boolean optimization problem, to
help determine the applicability of partition crossover and select appropriate
solving strategies in advance.
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Abstract. For many companies it is important to protect their physical
and intellectual property in an efficient and economically viable man-
ner. Thus, specialized security companies are delegated to guard private
and public property. These companies have to control a typically large
number of buildings, which is usually done by teams of security guards
patrolling different sets of buildings. Each building has to be visited
several times within given time windows and tours to patrol these build-
ings are planned over a certain number of periods (days). This problem
is regarded as the Districting and Routing Problem for Security Con-
trol. Investigations have shown that small time window violations do
not really matter much in practice but can drastically improve solu-
tion quality. When softening time windows of the original problem, a
new subproblem arises where the minimum time window penalty for
a given set of districts has to be found for each considered candidate
route: What are optimal times for the individual visits of objects that
minimize the overall penalty for time window violations? We call this
Optimal Arrival Time Problem. In this paper, we investigate this sub-
problem in particular and first give an exact solution approach based on
linear programming. As this method is quite time-consuming we further
propose a heuristic approach based on greedy methods in combination
with dynamic programming. The whole mechanism is embedded in a
large neighborhood search (LNS) to seek for solutions having minimum
time window violations. Results show that using the proposed heuristic
method for determining almost optimal starting times is much faster,
allowing substantially more LNS iterations yielding in the end better
overall solutions.
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1 Introduction

Theft and vandalism are a big and growing problem for many private and public
companies. Thus, companies need to surveil their property, although permanent
surveillance typically is not possible due to limited financial resources. Security
companies, which are specialized experts, are therefore frequently engaged with
observing the properties of these companies.

To minimize financial expenditures, objects are irregularly visited multiple
times per day by security guards instead of dedicating a single security guard
to a single object. Security guards have the duty of observing a particular set of
objects. The number and times when these objects have to be visited may differ
in each considered period. The problem of planning the districting and individual
routes for performing the visits has been introduced by Prischink et al. [8] and
is called Districting and Routing Problem for Security Control (DRPSC).

The previously proposed approach considers time windows in a strict sense.
In practice, however, small time window violations typically do not matter much,
and a larger flexibility in respect to them often allows substantially better solu-
tions. In this paper, we consider the Districting and Routing Problem for Security
Control with Soft Time Windows (DRPSC-STW). Soft time windows may be
violated to some degree, and their violation is considered in the objective func-
tion by penalty terms. In this context, the subproblem of determining optimal
visiting times for a given candidate tour so that the total time window penalty is
minimized arises. We call this problem Optimal Arrival Time Problem (OATP).

To classify the DRPSC-STW in context of the vehicle routing literature, one
can see it as a periodic vehicle routing problem with soft time windows with
additional constraints concerning separation time and maximum tour duration,
where objects may have to be visited multiple times in each period. Separation-
time constraints are a minimum time difference between two consecutive visits
of the same object in a tour. Moreover, each tour for every district and period
must not exceed a given maximum tour duration.

In this work, we primarily focus on the OATP and how it can be effectively
solved. To this end we propose an approach based on linear programming (LP)
and a faster heuristic approach using greedy techniques and dynamic program-
ming. These mechanisms are embedded in a large neighborhood search (LNS) [6].

The paper is structured as follows. Related work is given in Sect. 2 and the
formal problem definition is stated in Sect. 3. Subsequently, we describe the
OATP in Sect. 4 where we also introduce the LP approach. Then, in Sect. 5, the
efficient hybrid heuristic for solving the OATP is introduced and in Sect. 6 the
LNS metaheuristic for approaching the DRPSC-STW is proposed. Experiments
are performed in Sect. 7 and, finally, a conclusion as well as an outlook for future
work is given in Sect. 8.

2 Related Work

Prischink et al. [8] introduce the DRPSC and propose two construction heuristics
as well as a sophisticated district elimination algorithm for the districting part



Efficient Consideration of Soft Time Windows in a LNS for the DRPSC 93

of the problem. In the district elimination algorithm they iteratively eliminate
a district, put the objects of these districts in a so called ejection pool and then
try to insert the objects of this ejection pool again into the set of available
districts. We adopt this idea/mechanism for developing a destroy and recreate
neighborhood inside our LNS. We, thus, remove the objects of two, uniformly at
random selected, districts and put them into a so called ejection pool but do not
delete the districts from which we removed the objects. Then, we execute a single
run/step of the proposed district elimination algorithm which tries to reassign
the objects in the ejection pool to the available districts, and let the algorithm
terminate if the ejection pool is empty at the end of this single iteration.

As the focus of our current work lies on the extension to soft time windows, we
also put our attention here on previous work dealing with them. Although much
more work is done on problem types with hard time windows, there already exists
a significant number of works which introduce efficient methods to effectively
handle soft time window constraints.

Ibaraki et al. [4] proposed a dynamic programming (DP) based approach
to determine optimal starting times in conjunction with soft time windows
which is applicable to a wider range of routing and scheduling applications.
The total penalty incurred by time window violations is minimized. Compared
to our approach they consider more general piecewise-linear penalty functions.
Unfortunately, their approach is not directly applicable in our context as we
have to additionally consider minimum separation times between visits of the
same objects (i.e., objects can only be visited again if a minimum separation
time between two consecutive visits is considered) and a maximum tour length.
However, we will show later how this efficient DP method can nevertheless be
utilized to some degree in our case.

Hashimoto et al. [3] extended the work of Ibaraki et al. to also consider flexible
traveling times, which are also penalized if violated. They show, however, that
the problem becomes NP-hard in case.

Taillard et al. [9] solve the vehicle routing problem with soft time windows by
using tabu search. They do not consider any penalties for arriving too early but
introduce a “lateness penalty” into the objective function. This penalty value is
weighted by a given factor and the problem can be transformed into the vehicle
routing problem with hard time windows by setting the weight factor to ∞.

Another work which shows the efficiency of applying DP for solving problems
with soft time windows is by Ioachim et al. [5]. They solve the shortest path
problem with time windows and linear node costs, where the linear node costs
correspond to the modeling of soft time windows.

Fagerholt [2] published an approach for ship scheduling with soft time win-
dows. He argues that by considering soft time windows, solution quality can be
drastically improved and in practice small time window violations do not really
matter. As in our work, a maximum allowed time window violation is used and
earlier and later service is penalized. The approach can handle also non-convex
penalty functions whereas in the literature most often only convex penalty func-
tions are considered. The proposed solution approach uses a discretized time
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network in which nodes are duplicated according to possible start/arrival times.
On the obtained shortest path network problem DP is applied for obtaining
optimal arrival times.

To summarize related work, DP can frequently be an effective tool to deter-
mine optimal arrival/service times when considering soft time windows. Certain
specificities of problems like maximal total tour duration and other constraints,
however, frequently become an obstacle and prohibit the direct application of
an efficient DP as the subproblem of determining optimal arrival times becomes
NP hard. Nevertheless, DP may still be an important ingredient to deal with
such situations in practice.

3 Problem Definition

In the DRPSC-STW we are given a set of objects I = {1, . . . , n} and a depot
0, which is the start and end of each route. Travel times among the objects and
the depot are given by ttraveli,i′ > 0 for i, i′ ∈ I ∪ {0}. We assume the triangle
inequality to hold among these travel times. For every object i ∈ I we are given
a (small) number of visits Si = {i1, . . . , i|Si|}, and we are given a set of periods
P = {1, . . . , p}. As not all visits have to take place in every period, subsets
Wi,j ⊂ S contain the visits of object i requested in period j for all i ∈ I, j ∈ P .
The depot is visited two times, namely at the start of the tour and at the end
of the tour. To ease modeling we define 00 to be the departure from the depot
at the beginning and 01 to be the arrival at the depot at the end.

Each visit ik ∈ Si, i ∈ I is associated with a visit time tvisitik
and a particular

time window Tik
= [T e

ik
, T l

ik
] in which the whole visit should preferably take

place, already including its visit time. Visits ik ∈ Si of an object i ∈ I have to
be visited in the given order, i.e., visit k has to be performed before visit k′ iff
k < k′.

Time windows of the visits are now softened such that an earlier start or later
finishing of the service at an object is allowed. The maximum allowed earliness
and lateness are, however, restricted by Δ, yielding the hard time windows T h

ik
=

[T he
ik

, T hl
ik

] = [T e
ik

−Δ, T l
ik

+Δ], which must not be violated in any feasible solution.
An additional important requirement in the context of our security applica-

tion is that any two successive visits ik, ik+1 ∈ Wi,j of the same object i ∈ I
must be separated by a minimum separation time tsep. Obviously, visiting an
object twice without a significant time inbetween would not make much sense.
The maximum duration of any tour is given by tmax.

Solutions to the DRPSC-STW are given by a tuple (D, τ, a) where D =
{D1, . . . , Dm} is the partitioning of objects into districts, τ = (τr,j)r=1,...,m, j∈P

are the routes for each district and period, and a denotes the respective arrival
times. Each tour τr,j = (τr,j,0, . . . , τr,j,lr,j+1) with lr,j =

∑
i∈Dr

|Wi,j | starts
and ends at the depot, i.e., τr,j,0 = 00 and τr,j,lr,j+1 = 01, ∀r = 1, . . . , m, j ∈
P , and performs each visit in the respective ordering of the sequence. Each
visit of a tour τr,j,u has to be associated with a specific arrival time ar,j,u and
thus, a = (ar,j,u)r=1,...,m, j=1,...,p, u=1,...lr,j+1. An object always is immediately
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serviced after arrival but waiting is possible before leaving the object. A tour
is feasible, if all visit, travel, and separation times are considered, each visit is
performed at least within its hard time window and the total tour duration does
not exceed tmax.

While in our previous work [7] the primary objective was to minimize the
number of districts (m), we consider this number now as pre-specified. For exam-
ple, it can be obtained in a first optimization round by our previous method based
on the hard time windows only. Now, in the DRPSC-STW, our objective is to
minimize the total penalty incurred by all time window violations, which is

min
m∑

r=1

∑

j∈P

lr,j∑

u=1

ωr,j,u (1)

with

ωr,j,u =

⎧
⎪⎨

⎪⎩

T e
ik

− ar,j,u if ar,j,u < T e
ik

ar,j,u + tvisitik
− T l

ik
if ar,j,u + tvisitik

> T l
ik

0 otherwise
(2)

4 Optimal Arrival Time Problem

When approaching the DRPSC-STW with an LNS in Sect. 6, we will have to
solve for each tour in each period of each candidate solution the following sub-
problem: Given a candidate tour τr,j = (τr,j,0, . . . , τr,j,lr,j+1) for some district
r = 1, . . . , m and period j = 1, . . . , p, what are feasible arrival times ar,j,u for
the visits u = 1, . . . , lr,j + 1 minimizing

∑lr,j

u=1 ωr,j,u? Remember that the solu-
tion must obey the minimum separation time tsep between any two successive
visits of the same object and the maximum tour duration tmax. We call this
subproblem Optimal Arrival Time Problem (OATP).

As we consider in the OATP always only one specific tour τr,j , i.e., r and
j are known and constant, we omit these indices in the following for simplicity
wherever this is unambiguous. In particular, we write τ for the current tour, l
for the tour’s length, τh for the h-th visit, ah for the respective arrival time, and
ωh for the respective time window penalty. Moreover, we introduce some further
notations and definitions used in the next sections. Let us more generally define
the time window penalty function ρh(t) for visit τh = ik when arriving at time
t as the following piecewise linear function, see also Fig. 1:

ρh(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∞ if t < T e
ik

− Δ
T e

ik
− t if T e

ik
− Δ ≤ t < T e

ik

t + tvisitik
− T l

ik
if T l

ik
< t + tvisitik

≤ T l
ik

+ Δ
∞ if t > T l

ik
+ Δ

0 otherwise.

Let V = {ik | i ∈ Dr, ik ∈ Wi,j} be the set of all object visits in the current
tour. We define the auxiliary function κ : V �→ Dr mapping visit ik ∈ V to its
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T e − Δ T e
T l T l + Δ

t

ρ
h
(t

)

∞

Fig. 1. The time window penalty function ρh(t).

corresponding object i ∈ Dr, and function σ(h) which finds the nearest successor
index h′ of the visit τh′ with h < h′ ≤ l and κ(τh) = κ(τh′) if such a successive
visit of the same object exists; otherwise σ(h) returns −1. Correspondingly,
function σ−1(h) returns the nearest predecessor index h′ of the visit τh′ with
1 ≤ h′ < h and κ(τh) = κ(τh′) if such a predecessor exists and −1 otherwise.
For convenience, we also define ζh = tvisitτr,j,h

+ ttravelκ(τr,j,h),κ(τr,j,h+1)
as the sum of

the visiting time of the hth visit and the travel time from the hth visit to the
(h + 1)st visit.

4.1 Lower and Upper Bounds for Arrival Times

We compute lower and upper bounds for each visit’s arrival time by determining
routes in which we perform each visit as early as possible and as late as possible.
For determining the earliest arrival time at the first visit we have to consider
the maximum of the travel time from the depot to the first visit and the earliest
possible time of the first visit’s hard time window. The earliest possible arrival
time for all other visits h = 1, . . . , l can be computed recursively by considering
the dependency on the previous visit h − 1, i.e., the visit time and travel time
to the current visit h, the beginning of the hard time window T e

τh
− Δ of the

current visit h, and the separation time from a possibly existing previous visit
of the same object σ−1(h) in the tour. This yields:

aearliest
h =

⎧
⎪⎪⎨

⎪⎪⎩

−∞ if h < 0
T e
00 if h = 0

max
{

aearliest
h−1 + tvisitτh−1

+ ttravelτh−1,τh
, T e

τh
− Δ, aearliest

σ−1(h) + tsep
}

if h > 0

When scheduling a latest tour the last visit of the tour has to be scheduled
before arriving at the depot where also the travel time to the depot has to be
considered, but on the other hand we have to also consider the end of the hard
time window T l

τl
+ Δ of the last visit. For all other visits we can compute their
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latest possible arrival time by considering the next visit’s arrival time, the travel
time to the next visit, and the visit time at the current visit, the end of the
hard time window of the current visit, i.e., T l

τl
+ Δ, and the separation time by

considering a possibly existing successive visit σ(h) of the same object where
κ(τh) = κ(τh′) with h < h′:

alatest
h =

⎧
⎪⎪⎨

⎪⎪⎩

∞ if h < 0
T l
01 if h = l + 1

min
{

alatest
h+1 − tvisitτh

− ttravelτh,τh+1
, T l

τh
+ Δ, alatest

σ(h) − tsep
}

if 0 ≤ h ≤ l

If for some h, aearliest
h > alatest

h , we immediately terminate as this OATP instance,
i.e., underlying route, cannot have a feasible solution.

4.2 Linear Programming Model

The OATP is not an NP-hard optimization problem. We can solve it exactly by
means of linear programming (LP) as we show in the following.

Variables aik
represent the arrival time of the k-th visit of object i, variables

peik
are used to compute the penalty when starting the service of visit ik too

early, and variables plik
are used for the penalty when finishing the service of

visit ik too late. The LP is defined as follows:

min
∑

ik∈V

peik
+ plik

(3)

s.t. ttravel0,κ(aτ1 )
+ aτl

+ tvisitτl
+ ttravelκ(τl),0

− aτ1+ ≤ tmax (4)

aτ1 ≥ ttravel0,aτ1
+ T e

00 (5)

aτl
+ tvisitτal

+ ttravelκ(τl),0
≤ T l

01 (6)

aτi
≥ aτi−1 + tvisitaτi−1

+ ttravelκ(τi−1),κ(τi)
∀τi ∈ τ, i = 2, . . . , l (7)

aik
≥ aik′ + tvisitik′ + tsep ∀ik, ik′ ∈ V, k > k′ (8)

T e
ik

− Δ ≤ aik
≤ T l

ik
+ Δ − tvisitik

∀ik ∈ V (9)
peik

≥ T e
ik

− aik
∀ik ∈ V (10)

plik
≥ aik

+ tvisitik
− T l

ik
∀ik ∈ V (11)

aik
, peik

, plik
≥ 0 ∀ik ∈ V (12)

Objective function (3) minimizes the total penalty incurred by too late or too
early arrival times of visits. Inequality (4) ensures that the makespan of the tour
does not exceed the maximum allowed duration tmax. Otherwise, the given visit
order would be infeasible. Inequality (5) models the travel time from the depot
to the first visit of the given order, i.e., the first visit can only be started after
traveling from the depot to this visit. Inequality (6) specifies that the tour has
to end latest at the end of the time window of the second visit of the depot.
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Algorithm 1. Hybrid Heuristic for OATP
1: Input: Tour τ
2: if not Feasible(τ) then
3: return ∞
4: end if
5: if GreedyHeuristic(τ) = 0 then
6: return 0
7: end if
8: return DPBasedHeuristic(τ)

Inequalities (7) ensure that all travel times between consecutive object visits
and visit times are respected. Inequalities (8) guarantee the minimum separation
time between two consecutive visits of the same object. Inequalities (9) ensure
consideration of the hard time windows. The penalty values are computed by
inequalities (10) and (11). If a visit is scheduled too early, then T e

ik
− aik

> 0
and an early penalty is incurred. Obviously, if the earliness penalty peik

> 0,
then aik

+ tvisitik
− T l

ik
< 0 and thus, plik

= 0. This holds vice versa if the lateness
penalty plik

> 0. If a visit is scheduled within its time window [T e
ik

, T l
ik

], then
peik

= plik
= 0 as T e

ik
−aik

≤ 0 and aik
+ tvisitik

−T l
ik

≤ 0 and peik
, plik

≥ 0, ∀ik ∈ V
according to Eq. (12).

5 Hybrid Heuristic for the OATP

While the above LP model can be solved in polynomial time, doing this many
thousands of times within a metaheuristic for the DRPSC-STW for evaluating
any new tour in any period of any district in any candidate solution is still a
substantial bottleneck. We therefore consider a typically much faster heuristic
approach in the following, which, as our experiments will show, still yields almost
optimal solutions. We call this approach Hybrid Heuristic (HH) for the OATP
as it is, in fact, a sequential combination of different individual components.

The overall approach is shown in Algorithm1, and the individual compo-
nents are described in detail in the subsequent sections. First, we show how to
efficiently check the feasibility of a given instance (line 2), then, we apply a fast
greedy heuristic which tries to solve the problem without penalties (line 5) using
an earliest possible start time strategy. Finally, we apply an efficient DP-based
heuristic to obtain a solution for the OATP.

5.1 Feasibility Check

The feasibility of a given tour, i.e., existence of feasible arrival times, can be
efficiently checked by calculating the minimum tour duration and comparing it
to tmax. The minimum tour duration can be determined by fixing the arrival
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time at the depot to aearliest
l+1 and calculating the latest arrival times recursively

backwards:

ams
h =

⎧
⎪⎪⎨

⎪⎪⎩

∞ if h < 0
aearliest

h if h = l + 1

min
{

ams
h+1 − tvisitτh

− ttravelτh,τh+1
, T l

τh
+ Δ, ams

σ(h) − tsep
}

if 0 ≤ h ≤ l

The tour is feasible iff ams
l+1 − ams

0 ≤ tmax holds.

5.2 Greedy Heuristic

A fast heuristic for solving the OATP is a greedy strategy that starts each visit
as early as possible without violating any soft time window. If this heuristic
is successful, no penalty occurs and the obtained solution is optimal. We can
formulate this approach as follows:

agreedy
h =

⎧
⎪⎪⎨

⎪⎪⎩

−∞ if h < 0

max
{

T e
00 + ttravel0,κ(τ1)

, T e
τh

}
if h = 1

max
{

agreedy
h−1 + tvisitτh−1

+ ttravelτh−1,τh
, T e

τh
, agreedy

σ−1(h) + tsep
}

if h > 1

If for some h, agreedy
h > alatest

h , then the greedy heuristic cannot solve this problem
instance and terminates.

5.3 Efficiently Solving a Relaxation by Dynamic Programming

The greedy strategy is fast, works reasonably well, and frequently yields an opti-
mal solution for easy instances. When the constraints become tighter, however,
it often fails. Therefore, we finally use a second, more sophisticated heuristic
based on the following considerations.

The required minimum separation times for visits of same objects make the
OATP, in contrast to other problems aiming at finding arrival times introducing
a minimum penalty, e.g. [4], inaccessible for an efficient exact DP approach. One
would need to somehow consider also all objects’ last visits when storing and
reusing subproblem solutions in the DP recursion.

However, in a heuristic approach we can exploit an efficient DP for the relaxed
variant of the OATP in which we remove the separation time constraints. We
denote this relaxed OATP by OATPrel. As will be shown in Sect. 5.4, we will
modify our instance data before applying this DP in order to obtain a heuristic
solution that is feasible for our original OATP.

To solve OATPrel we apply DP inspired by Ibaraki et al. [4]. In contrast to
this former work, however, we consider a maximum tour duration.

Let gh(t, t0) be the minimum sum of the penalty values for visits τ0, . . . , τh

under the condition that all of them are started no later than at time t and the
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depot is left earliest at time t0 with t− t0 ≤ tmax. Here we assume that T e
00 ≤ t0.

Then, gh(t, t0) can be expressed recursively by:

g0(t, t0) =

{
∞ if t < t0

0 otherwise

gh(t, t0) = min
aearliest

h ≤t′≤min{t,t0+tmax}
gh−1(t′ − ζh−1, t0) + ρh(t′) if h > 0

Here, we assume the minimum of an empty set or interval to be ∞. The overall
minimum time penalty of the tour τ is then minaearliest

0 ≤t0≤alatest
0

gl+1(T l
01 , t0).

Thus, solving OATPrel corresponds to finding a departure time t0 from the
depot which minimizes function f rel = gl+1(T l

01 , t0).
Let t0 be the value for which f rel = gh(T l

01 , t0) yields a minimum penalty.
Optimal arrival times for the visits and the arrival time back at the depot can
now be expressed by:

arel
l+1 = arg min

T e
00

≤t≤T l
01

gl+1(t, t0)

arel
h = arg min

T e
00

≤t≤arel
h+1−ζh

gh(t, t0) if 0 ≤ h ≤ l
(13)

Now, let us consider the task of efficiently computing gh(t, t0) in more detail.
Recall that our time window penalty function ρh(t) is piecewise linear for all
visits τ1, . . . , τl and they have all the same shape as shown in Fig. 1. Therefore,
gh(t, t0) is also piecewise linear. We store these piecewise linear functions of each
recursion step of the DP algorithm in linked lists, whose components represent
the intervals and the associated linear functions.

An upper bound for the total number of pieces in the penalty functions for all
the visits τ0, . . . , τl+1 is 5l+2 = O(l). The computation of gh−1(t−ζh−1, t0)+ρh(t)
and gh(t, t0) from gh−1(t, t0) and ρh(t) can be achieved in O(h) time, since the
total number of pieces in gh−1(t, t0) and ρh(t) is O(h). In order to calculate the
function gl+1(T l

01 , t0) for a given tour, we compute gh(t, t0) for all 1 ≤ h ≤ l +1.
This can be done in O(l2) time.

Now that we know how to efficiently calculate the minimum time window
penalty value for a given departure time from the depot t0, we draw our attention
to the problem of finding a best departure time such that the overall penalty
value for a given tour is minimized. Formally, we want to minimize function
g′(t0) = gl+1(T l

01 , t0) on interval t0 ∈ [aearliest
0 , alatest

0 ]. Enumerating all possible
t0 values is obviously not a reasonable way to tackle this problem. Fortunately,
there is a useful property of function g′(t0) which enables us to search more
efficiently for its minimum.

Proposition 1. Earliest optimal arrival times can only be delayed further when
the depot departure time increases. More formally, let a0

h for h = 0, . . . , l + 1
be earliest optimal arrival times calculated by g′(t0) for some t0 and a1

h for
h = 0, . . . , l + 1 be the earliest optimal arrival times calculated by g′(t′0) for
some t′0. Then t0 ≤ t′0 =⇒ a0

h ≤ a1
h for h = 0, . . . , l + 1.
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a0
h−1 a1

h−1 a1
h a0

h

t

ρ
h
(t
)

(a) Case 1

a0
h−1 a1

h−1 a1
h a0

h

t

ρ
h
(t
)

(b) Case 2

Fig. 2. Visualization of the two case distinctions used in the proof of Proposition 1.

Proof. We show this with a proof by contradiction. Without loss of generality,
suppose there is a visit h with a0

h−1 ≤ a1
h−1 and a1

h < a0
h. Let us consider two

relevant cases in detail. Other cases can be refuted using similar arguments.

Case 1: Assume a1
h is scheduled earlier than a0

h and a1
h < T e

τh
, see Fig. 2a. a1

h

could only have been scheduled earlier than a0
h falling below T e

τh
thresh-

old if and only if one of its subsequent visits τh+1, . . . , τl+1 was forced
to start earlier. This can only happen if the arrival time constraint,
where we have to be back at the depot, is more tightened. But this
clearly cannot be the case here, since t0 + tmax ≤ t′0 + tmax. In other
words, delaying the departure time at the depot also delays the arrival
time constraint, when we have to be back at the depot.

Case 2: Assume a1
h is scheduled earlier than a0

h and a0
h > T l

τh
−tvisitτh

, see Fig. 2b.
Since a0

h − a0
h−1 > a1

h − a1
h−1, it is easy to see that a0

h can be moved
further to the left without introducing more penalty. Therefore, a0

h

cannot be the optimal start time for the visit h, since the T l
h constraint

violation caused by a0
h can be reduced further. �


Proposition 2. ∀t′0, t
′′
0 | g′(t′0) < g′(t′′0), t′0 < t′′0 =⇒ ∀t0 ≥ t′′0 : g′(t′′0) < g′(t0).

Proof. Let aearliest′
h for h = 0, . . . , l+1 be the earliest possible arrival times when

fixing t′0 as the departure time from the depot and aearliest′′
h for h = 0, . . . , l + 1

the earliest possible arrival times when fixing t′′0 as the departure time from the
depot. Furthermore, we define a′′

h for h = 0, . . . , l+1 to be earliest optimal arrival
times calculated by g′(t′′0).

We have shown that the earliest optimal arrival times can only be delayed
further when postponing the departure time from the depot. Thus, the only way
the overall penalty value can be increased is when pushing t0 to the future causes
more T l threshold violations than what you can save by reducing T e threshold
violations.

More formally, if we have g′(t′0) < g′(t′′0) with t′0 < t′′0 , then there must exist
aearliest′′

k > T l
τk

− tvisitτk
with aearliest′

k < aearliest′′
k and aearliest′′

k = a′′
k for some
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Algorithm 2. Calculation of f rel

Input: aearliest
0 , alatest

0

1: init: a ← aearliest
0 , b ← alatest

0 , v1 ← f rel ← g′(a)
2: if v1 = 0 or v1 = ∞ or �g′(t) > 0 then
3: return v1
4: end if
5: while b − a > ε do
6: t ← a + b−a

2

7: v2 ← g′(t)
8: if v2 < f rel then
9: f rel ← v2

10: end if
11: if f rel = 0 or v1 = v2 then
12: break
13: end if
14: if v2 = ∞ or �g′(t) ≤ 0 then
15: a ← t
16: else
17: b ← t
18: end if
19: v1 ← v2
20: end while
21: return f rel

k ∈ {0, . . . , l + 1}. In other words, if the overall penalty value increases, then
there are visits whose earliest possible arrival times are pushed furhter to the
future exceeding T l thresholds by t′′0 and their optimal arrival times are equal
to earliest possible arrival times.

It is easy to see that once the earliest possible start time aearliest
h starts

to increase, it continues to increase strictly monotonically with an increasing
departure time from the depot. Therefore, the overall penalties will increase
strictly monotonically from t′′0 on with an increasing departure time from the
depot until the solution becomes infeasible. �


These properties show that g′(t0) is in general a “U-shaped” function when
disregarding all infeasible solutions yielding ∞, and we can use a bisection
method to search efficiently for a minimum. The calculation of f rel in this way
is shown in Algorithm 2.

At each iteration step the middle point t of current search interval is sampled
and we calculate an approximate subgradient �g′(t) of g′ at t by �g′(t) =
g′(t + δ) − g′(t) where δ is a small constant value. If the subgradient �g′(t) > 0,
we know that t is in the strictly monotonically rising piece of g′ and we continue
our search in the left half. Otherwise the search continues in the right half. The
bisection method proceeds until the search interval becomes smaller than some
predetermined value ε.
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5.4 DP-Based Heuristic for OATP

Obviously, OATPrel corresponds to the original OATP if there are no objects that
are visited multiple times or

∑σ(h)−1
i=h ζi ≥ tsep for h = 1, . . . , l with σ(h) �= −1.

The main idea of our second heuristic is to increase the ζi values as necessary
so that

∑σ(h)−1
i=h ζi ≥ tsep holds for all h = 1, . . . , l with σ(h) �= −1. Then, when

applying the DP, its solution will obviously fulfill the separation-time constraint.
Let visits τk and τk′ with k < k′ and

∑k′−1
i=k ζi < tsep be two visits which

take place at the same object. Then, one or more ζi ∈ {ζk, . . . , ζk′−1} must be
extended so that

∑l−1
i=k ζi = tsep. In order to decide which ζi we want to extend,

we first calculate waiting times for all visits with earliest possible arrival times.
The waiting time at the visit τh is the amount of time we are forced to wait

at the visit τh−1 before we can travel to visit τh. Recall that we are forced to wait
at visit τh−1 if ah−1 + ζh−1 < T e

τh
. Thus, the waiting times with earliest possible

arrival times can be expressed as wearliest
h = max

{
0, aearliest

h − aearliest
h−1 − ζh−1

}
,

h = 1, . . . , l. Using these waiting times as guidance, we extend the ζi value at the
visit τi with the maximum waiting time wearliest

i = max
{
wearliest

k , . . . , wearliest
l−1

}

where ties are broken randomly. The rationale behind this idea is that large
wearliest

h values often indicate the visits in an optimal solution, where extra wait-
ing time actually is introduced to satisfy the separation-time constraints.

Utilizing waiting times computed by earliest possible arrival times works well
for the majority of instances but for some instances the ζh values are altered unfa-
vorably so that the instances become infeasible. To counteract this problem, we
propose alternative waiting times which are calculated using arrival times with
minimum tour duration: wms

h = max
{
0, ams

h − ams
h−1 − ζh−1

}
, ∀h = 1, . . . , l. Vis-

its with waiting times larger than 0 indicate visits in the tour with minimum
tour duration for which additional waiting time had to be introduced in order to
satisfy separation-time constraints. Using wms

h waiting times we can effectively
complement situations where the approach utilizing wearliest

h values yields infea-
sible or low-quality solutions. Therefore, we solve the DP-based heuristic twice,
using both wearliest

h and wms
h and take the best solution.

Even if the solution of this DP-based heuristic does not guarantee optimal-
ity in general, it works well in practice, producing near optimal solutions in
significantly shorter computation times than the exact LP approach.

6 Large Neighborhood Search for the DRPSC-STW

Our overall approach for solving the DRPSC-STW follows the classical large
neighborhood search metaheuristic [6] with an embedded variable neighborhood
descent (VND) for local improvement.

We define our destroy and repair methods as follows. In order to destroy a
current solution candidate, we select two out of m districts uniformly at random
and remove all objects from these districts. The removed objects are copied to a
so called ejection pool. Then, we apply the repair phase of the district elimination
algorithm proposed by Prischink et al. [8]. The algorithm continues until all
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objects in the ejection pool are reassigned to the available districts. Using this
destroy and repair methods, we guarantee that the solution stays feasible with
the same number of districts. At each LNS iteration a VND is applied to locally
improve the incumbent solution.

6.1 Variable Neighborhood Descent

We use three common neighborhood structures from the literature and search in
a best improvement fashion. We apply these neighborhoods in the given order
since we could not identify any significant advantages using different orderings.
Infeasible solutions are discarded.

2-opt: Classical 2-opt neighborhood where all edge exchanges are considered.
swap: Exchanges all pairs of distinct visits within a route.

or-opt: Moves sequences of one to three consecutive visits at another place in
the route.

The proposed VND is performed separately for each route of every district. Our
local improvement component could also be very well parallelized since different
routes can be optimized independently of each other, however this is not in the
scope of this work. Since routes having no penalties are already optimal, they
are excluded from local improvement.

7 Computational Results

For the computational results, we used the instances which have been created
by Prischink et al. [8]. In a first optimization round, we solve the districting part
of the DRPSC-STW by means of the district elimination algorithm proposed by
Prischink et al., based on the hard time windows only, generating input1 for the
subsequent time window penalty minimization round with the LNS algorithm.
As global parameters we have chosen tmax to be 12 h and the maximum allowed
penalty Δ = 60 min, which represent typical values used in practical settings.
Furthermore, we set HH (Algorithm 1) specific parameters δ = 1 and ε = 30,
which have been determined empirically. For our test instances, they give good
balance between computational speed and accuracy. Every instance was given a
maximum allowed time limit of 900 s for the execution of the LNS and we have
performed 20 runs for every instance. All tests have been executed as single
threads on an Intel Xeon E5540 2.53 GHz Quad Core processor. The algorithms
have been written in C++ and have been compiled with gcc-4.8 and for solving
the LP we used Gurobi 7.0.

In Table 1 the results of the LNS-LP and LNS-HH can be found. In the
instance column, we specify the instance parameters. Sequentially, the name of
the used TSPlib instance (refer to Prischink et al. [8] for a more detailed descrip-
tion), the number of runs performed, the number of objects |I|, the total number

1 https://www.ac.tuwien.ac.at/files/resources/instances/drpsc/evoc17.tgz.

https://www.ac.tuwien.ac.at/files/resources/instances/drpsc/evoc17.tgz
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of visits |V |, the percentage of large time windows (α), the percentage of mid-
sized time windows (β) and the maximum number of allowed visits per object
v is given. For the LNS-LP and LNS-HH the number of times the correspond-
ing approach yields the best result, the average objective value over all runs of
the instance, the average runtime, and the average number of objective function
evaluations are given. Results show clearly that LNS-HH yields better objective
values than LNS-LP since it is able to perform much more iterations within the
given time limit due to fast objective function evaluations. It is also obvious that
by increasing the instance size, the advantage of the efficient HH evaluation func-
tion is getting more pronounced. Moreover, a Wilcoxon signed-rank test shows
that all observed differences on the overall number of best solutions among the
LNS-LP and the LNS-HH are statistically significant with an error level of less
than 1%.

We can conclude that LNS-HH is superior compared to LNS-LP due to sig-
nificant performance advantage in the evaluation function, even though the HH-
based evaluation function is only a heuristic method which in general does not
yield proven optimal solutions although it can be observed that the optimality
gap of HH is in most cases neglectably small.

8 Conclusions and Future Work

In this work we analyze the DRPSC-STW where the already introduced DRPSC
is extended by soft time windows. This problem is of high practical relevance
as it is possible to significantly improve solution quality by introducing only a
negelectable penalty.

As metaheuristic we propose an LNS for approaching the DRPSC-STW.
A critical bottleneck of our LNS is the evaluation of solution candidates where
one has to find the minimum penalty given a particular visit order. We show
that this evaluation function can be efficiently implemented by an LP-based
approach, and furthermore we developed a sophisticated hybrid heuristic which
was able to drastically outperform the LP-based variant.

We have formulated an efficient method to determine optimal arrival times of
a given visit order which can be embedded inside a metaheuristic framework to
solve the penalty minimization part of the DRPSC-STW. On the one hand this
is not only relevant for the DRPSC-STW, as soft time windows play in general
an important role in many practical scenarios.

Future research goals include the extension of the current LNS by incorpo-
rating adaptiveness into the destroy and repair moves. Furthermore, the authors
want to note that it is also possible to extend the VND local search into a VNS by
including a shaking neighborhood like randomized k-swap neighborhood, c.f. [1].
This way, one can combine micro- and macro-diversifications during the search.
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Abstract. The firefighter problem is a graph-based optimization prob-
lem in which the goal is to effectively prevent the spread of a threat
in a graph using a limited supply of resources. Recently, metaheuristic
approaches to this problem have been proposed, including ant colony
optimization and evolutionary algorithms.

In this paper Estimation of Distribution Algorithms (EDAs) are used
to solve the FFP. A new EDA is proposed in this paper, based on a
model that represents the relationship between the state of the graph and
positions that become defended during the simulation of the fire spread-
ing. Another method that is tested in this paper, named EH-PBIL, uses
an edge histogram matrix model with the learning mechanism used in
the Population-based Incremental Learning (PBIL) algorithm with some
modifications introduced in order to make it work better with the FFP.
Apart from these two EDAs the paper presents results obtained using
two versions of the Mallows model, which is a probabilistic model often
used for permutation-based problems. For comparison, results obtained
on the same test instances using an Ant Colony Optimization (ACO)
algorithm, an Evolutionary Algorithm (EA) and a Variable Neighbour-
hood Search (VNS) are presented.

The state-position model proposed in this paper works best for graphs
with 1000 vertices and more, outperforming the comparison methods. For
smaller graphs (with less than 1000 vertices) the VNS works best.

Keywords: Estimation of distribution algorithms · Graph-based
optimization · Firefighter problem

1 Introduction

The Firefighter Problem (FFP) originally formulated by Hartnell in 1995 [10] is
a combinatorial optimization problem in which spreading of fire is modelled on
a graph and the goal is to protect nodes of the graph from burning. Despite the
name of the problem, the same formalism can also be used to describe spreading
of other threats, such as floods, diseases in humans as well as in livestock, viruses
in a computer network and so on.
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There are three main areas of study concerning the Firefighter Problem. The
first area is the theoretical study of the properties of the problem. In the survey
[7] many aspects of the FFP are discussed, for example the complexity of the
problem, algorithms and special cases, such as the FFP on infinite and finite
grids. Other works study the FFP on specific graph topologies, such as grids [6],
trees [5], digraphs [13], etc.

Another area of study is the application of classical optimization algorithms.
For example, methods such as the linear integer programming have been used for
solving the single-objective version of the FFP [6]. Some authors combined linear
integer programming methods with simple heuristics, such as “save vertices with
highest degrees first” [9].

An area that has just recently emerged concerns attempts to employ meta-
heuristic methods. This line of work originated with a work by Blum et al.
[2] presented at the EvoCOP conference in 2014. This first attempt was made
using the Ant Colony Optimization (ACO) approach and concerned the single-
objective FFP. Later the same year another paper has been published [17] in
which the multiobjective version of the FFP (MOFFP) has been formulated.
The next paper concerning the MOFFP employed a multipopulation evolution-
ary algorithm with migration [18]. The multipopulation algorithm has later been
used in the non-deterministic case [20], combining simulations with evolution-
ary optimization in an approach known as simheuristics which was proposed
in a recent survey [12] as a proper approach to nondeterministic optimization.
In another paper the Variable Neighborhood Search (VNS) method has been
applied to the single-objective version of the FFP [11].

The papers published so far have been based on such metaheuristic
approaches as the Ant Colony Optimization (ACO) and Evolutionary Algo-
rithms (EAs). To the best of the knowledge of the author of this paper no
attempts to use EDAs for this problem have previously been made. This paper
starts investigation in this direction by proposing a new State-Position (S-P)
model for the use in the FFP as well as by studying other models.

The rest of this paper is structured as follows. In Sect. 2 the firefighter prob-
lem is defined. In Sect. 3 the EDA approach is described and probabilistic models
tested in this paper are presented. Section 4 describes the experimental setup and
presents the results. Section 5 concludes the paper.

2 Problem Definition

The Firefighter Problem is defined on an undirected graph G = 〈V,E〉 with
Nv vertices. Each vertex of this graph can be in one of the states from the set
L = {′B′, ′D′, ′U′} with the interpretation ′B′ = burning, ′D′ = defended and
′U′ = untouched. Formally, we will use a function l : V → L to assign labels to
the vertices of the graph G.

Spreading of fire is simulated in discrete time steps t = 0, 1, . . . . At t = 0,
the graph is in the initial state S0. Most commonly, in the initial state vertices
from a non-empty set ∅ �= S ⊂ V are burning (‘B’) and the remaining ones are
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untouched (‘U’) (no vertices are initially defended). In each time instant t > 0
we are allowed to assign firefighters to a predefined number Nf of still untouched
(‘U’) nodes of the graph G. These nodes become defended (‘D’) and are immune
to fire for the rest of the simulation. Next, fire spreads along the edges of the
graph G from the nodes labelled ‘B’ to all the adjacent nodes labelled ‘U’. The
simulation stops, when fire can no longer spread. It can happen either when
all nodes adjacent to fire are defended (‘D’) or when all undefended nodes are
burning (‘B’).

Solutions to the firefighter problem can be represented as permutations of the
numbers 1, . . . , Nv. During the simulation, in each time step, the first Nf yet
untouched nodes (‘U’) are taken from the permutation π and become defended
(‘D’). In every time step exactly Nf nodes become defended, except for the final
time step in which the number of the untouched nodes may be less than Nf .

The evaluation of a solution (permutation) π is performed by simulating the
spread of fire from the initial state until the fire can no longer spread. During
the simulation nodes of the graph G become protected in the order determined
by the permutation π. In the classical version of the FFP the evaluation of the
solution π is equal to the number of nodes not touched by fire (those, that are
in one of the states ‘D’ or ‘U’) when the simulation stops. In the paper [17] the
multiobjective version of the FFP was proposed in which there are m values
ci(v), i = 1, . . . ,m assigned to each node v in the graph. In the context of fire
containment multiple criteria could represent, for example, the financial value
c1(v) and the cultural importance c2(v) of the items stored at the node v. Multi-
objective evaluation can also be useful when preventing the spread of epidemics
in livestock. In such scenario we would probably be interested in protecting dif-
ferent species to a certain degree. In this paper a single-objective version of the
FFP is studied, in order to start the work on probabilistic models for the FFP,
which are naturally less complex in the single-objective case. However, to retain
similarity to the multiobjective case, costs are assigned to nodes and solutions
are evaluated using these costs. To stick to the formalism used for the multi-
objective case, these costs will be denoted as c1(v), even though there are no
ci(v) with i > 1 in this paper. Evaluating a solution π requires simulating how
fire spreads when firefighter assignment is done according to π. The evaluation
of the solution can then be calculated as the sum of the costs assigned to those
nodes that are not burnt at the end of the simulation:

e(π) =
∑

v∈V :l(v) �=′B′
c1(v) (1)

where:
c1(v) - the cost assigned to the node v.

3 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) work in a way that bears a certain
resemblance to Evolutionary Algorithms (EAs). The algorithm operates in a loop
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Algorithm 1. A general structure of an EDA algorithm used in this paper.

IN: Npop - The size of the population
Nsample - The size of a sample used for probabilistic model update

P := InitPopulation(Npop)
M := InitModel()
B := ∅
while not StoppingCondition() do

// Evaluation
Evaluate(P)

// Caching of the best specimen
B := GetBestSpecimens(P, 1)

// Update of the probabilistic model
Psample := GetBestSpecimens(P , Nsample)
M := UpdateModel(Psample, M)

// New population
P := CreateNewSpecimens(M , Npop − 1)
P := P ∪ B

in which a population of specimens is used to represent and evaluate solutions
of a given optimization problem (see Algorithm 1). The main difference between
EDAs and evolutionary algorithms is that in the EAs genetic operators are used
to produce the next generation of specimens, while in EDAs a probabilistic model
is built from the population and specimens for the new generation are drawn
from this model. In the algorithm used in this paper the mechanism of elitism is
used, that is, the best specimen is always preserved and is transferred from the
previous generation to the next one.

A general structure of EDAs used in this paper is presented in Algorithm1.
This algorithm uses the following procedures:

InitPopulation - Initializes a new population by creating Npop specimens, each
with a genotype initialized as a random permutation of Nv elements.
InitModel - Initializes the probabilistic model. The initialization procedure
depends on the chosen problem and the EDA algorithm.
StoppingCondition - Checks if the stopping condition has been satisfied. In
this paper the total running time Tmax is used as a stopping criterion.
Evaluate - Evaluates specimens in a given population. The evaluation is per-
formed by simulating the spread of fire and, after fire no longer spreads, cal-
culating the overall value of the nodes in the graph that are not consumed by
fire.
GetBestSpecimens - Returns a given number of specimens with the highest
evaluation values from a given population. This procedure is used for storing the
best specimen used by the elitism mechanism and for getting a sample from the
population used for updating the probabilistic model.
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UpdateModel - Updates the probabilistic model based on the current popula-
tion. The exact procedure depends on the chosen model and the representation
of solutions.
CreateNewSpecimens - Generates a required number of specimens using the
information contained in the probabilistic model.

For an EDA algorithm three elements are necessary: a probabilistic model,
a method of updating this model based on a sample of specimens and a procedure
for generating new solutions based on the probabilistic model. All probabilistic
models used in this paper are defined on a space Πn of permutations of a fixed
length n (with n = Nv).

The first two, the Mallows model and the generalized Mallows model describe
exponential probability distributions on the space of permutations. Even though
they were proposed in 1957 [15] and 1986 [8] respectively, they are nowadays
actively researched in various applications such as recommender systems [14,16].
Recently, both models have been proposed for the usage in EDAs [3,4]. Because
of space limitations, the details of the Mallows models are not given in this paper.
A discussion of the learning and sampling processes can be found for example
in [3].

Third method studied in this paper (EH-PBIL) uses an edge histogram
matrix model used, among others, in the Edge Histogram-Based Sampling Algo-
rithm (EHBSA) [21] and the learning rule known from the PBIL algorithm [1] to
update a probability matrix, which in turn is used for generating new solutions.
A similar method was used in the paper [19] for the Travelling Salesman Prob-
lem (TSP), but the model update procedure used in this paper was modified to
fit the specifics of the FFP.

Fourth model, named State-Position model and introduced in this paper, is
dedicated for the FFP and models the relation between the state of the graph
and positions at which firefighters should be placed.

3.1 The EH-PBIL Method

This method uses an edge histogram model used for example in the Edge
Histogram-Based Sampling Algorithm (EHBSA) [21] - a matrix P[Nv×Nv] in
which each element pij represents a probability that the number j will appear in
good solutions right after the number i. However, the model update mechanism
is different from that used in the paper [21]. Also, an additional component is
added to the model which is a weight vector Ws of length Nv containing weights
that are used to calculate the chance of each number i ∈ {1, . . . , Nv} being used
as the first element in the permutation. This element is added because, contrary
to the TSP, in the FFP it is very important which element is the first in the
solution.
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Learning the Edge Histogram Matrix Model
Learning of this model follows the model update rule known from the PBIL

algorithm [1]. From the sample Psample used for updating the EDA models the
worst solution (permutation) π(−) and the best one π(+) are selected according to
the evaluation function (1). From these solutions two probability matrices P

(−)

and P
(+) are built. In P

(+) all the elements are set to 0 except those elements
p
(+)
ij for which j immediately follows i in the permutation π(+). The matrix P

(−)

is built in the same way from π(−).
The matrices P

(+) and P
(−) are used to update P by applying the model

update mechanism from PBIL for each element pij in P separately, except for
the elements on the diagonal which are always set to 0. This process uses two
learning rate parameters: the positive learning rate η+ and the negative learning
rate η−. Their sum is denoted η = η+ + η−. According to the PBIL algorithm,
if p

(−)
ij = p

(+)
ij the element pij of P is set to:

pij = pij · (1 − η+) + p
(+)
ij · η+, (2)

and if p
(−)
ij �= p

(+)
ij the element pij is set to:

pij = pij · (1 − η) + p
(+)
ij · η. (3)

Finally, each element pij (except the elements on the diagonal) is mutated
with probability Pmut by setting:

pij = pij · (1 − μ) + α ∗ μ, (4)

where:
α - a 0 or 1 value drawn randomly with equal probabilities P (0) = P (1) = 1

2 ,
μ - a mutation-shift parameter controlling the intensity of mutation.

The weight vector Ws is modified by taking the first element k in a geno-
type of each specimen and increasing Ws[k] by the evaluation of the specimen
from which k was taken. Thus, weights for those numbers that are used as first
elements in good solutions are increased.

Sampling of the Matrix Model
A new permutation π is generated from the model as follows. The first ele-

ment in the permutation may be selected in two different ways. The first is to
draw a number uniformly from the set 1, . . . , Nv. This initialization method was
used in the paper [19] for the TSP, because in the TSP the solution does not
depend on which element in the tour is considered the first. In the FFP it does
matter, however, which node is defended as the first one. Therefore, when the
model is updated, a weight vector Ws is constructed which contains weights
corresponding to how often a given number was used at the first position in
the permutation. The first element π[1] is then randomly drawn from the set
{1, . . . , Nv} with probabilities proportional to the elements of Ws. Because the
second method of initialization cannot select as the first element any of the nodes
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that did not appear at the first position already, it turned out that it is the most
effective to combine both methods of initialization. Consequently, the uniform
initialization is performed with a probability Punif and the weight-vector-based
initialization with a probability 1 − Punif .

When generating the element π[i], i = 2, . . . , Nv a sum p is calculated:

p =
∑

j /∈{π[1],...,π[i−1]}
pπ[i−1]j . (5)

If p > 0 then a number j /∈ {π[1], . . . , π[i − 1]} is randomly selected with
probability pπ[i−1]j

p . If p = 0, a number from j /∈ {π[1], . . . , π[i − 1]} is randomly
selected with uniform probability.

3.2 The State-Position Model

The State-Position (S-P) model proposed in this paper represents the relation-
ship between the graph state S, the position (number of the vertex) at which the
firefighter was assigned v, and the mean evaluation e which was finally achieved
after using this particular assignment in the graph state S. Graph states are
represented as vectors of states of the vertices in the graph, so each graph state
is an element of the space LNv . The model M is thus represented by a list of
ordered triples:

M = [〈S1, v1, e1〉, 〈S2, v2, e2〉, . . . 〈Sn, vn, en〉] (6)

where Si ∈ LNv , vi ∈ V and ei ∈ R for i = 1, . . . , n.

Because the same position can be defended in the same graph state, but in
various solutions (attaining each the same or a different final evaluation), triples
with the same elements S and v (but different e values) or multiple copies of the
same triple may be constructed when analyzing solutions found in the sample
Psample. To reduce the size of the model, the evaluations obtained for the same
state Si and vertex vi are averaged and only the mean ei is stored.

Additionally, for each node v in the graph the model stores a weight Q[v]
calculated as the sum of the reciprocals of the positions (counting from 1) of
node v in the solutions used to build the model. These weights are used for
selecting nodes to defend if no selection can be done based on the M model.

Learning of the State-Position Model
The model M is built using solutions in the sample Psample (see Algorithm 1).

From each permutation π in the sample, several triples are generated by simu-
lating the spreading of fire from the initial graph state. Each time a node v is
protected, a pair containing the current graph state S and the node v is stored.
After the simulation finishes, the final state is evaluated and triples are formed
from the stored 〈S, v〉 pairs and the evaluation e. This procedure is presented in
Algorithm 2. Note, that the symbol ⊕ used in this algorithm is an operator for
adding an item to a list.



Estimation of Distribution Algorithms for the Firefighter Problem 115

Algorithm 2. Learning of the State-Position model

IN: Psample - A sample from the population
S0 - The initial state of the graph
Nf - The number of firefighters assigned in one time step

OUT: M - The State-Position model built from the sample
Q - The vector of weights assigned to the graph nodes

when the model is built

M := ∅
for π ∈ Psample do

// Fire spreading simulation stores graph states and the defended nodes
R := ∅
S := S0

while CanSpread(S) do
V := SelectPositions(S, π, Nf )
for v ∈ V do

S[v] := ’D’
R := R ∪ {〈S, v〉}

S := SpreadFire(S)

// Evaluation of the final graph state
e := EvaluateState(S)

// Addition of the evaluated state-position pairs to the model
for 〈S, v〉 ∈ R do

M := M ⊕ 〈S, v, e〉

// Calculation of the weights of individual nodes
for i := 1, . . . , Nv do

Q[π[i]] := Q[π[i]] + 1
i

M := CalculateMeanEvals(M)

Algorithm 2 uses the following procedures:

CanSpread - Returns a logical value indicating if in the graph state S the fire
can still spread, that is, if there are untouched nodes adjacent to burning ones.
SelectPositions - Returns a set of Nf numbers that correspond to untouched
nodes in the state S and are placed nearest the beginning of the permutation π
(i.e. the first Nf nodes in the state ‘U’ appearing in π).
SpreadFire - Performs one step of the fire spreading by changing to ‘B’ the
state of all untouched (‘U’) nodes adjacent to the burning (‘B’) ones.
EvaluateState - Evaluates the final state S by calculating the sum of values
assigned to those vertices that are not burning (‘B’) in the state S.
CalculateMeanEvals - Aggregates the evaluations stored for state-position
pairs by calculating, for each unique pair 〈S′, v′〉, an average evaluation from all
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triples 〈S, v, e〉 in which S′ = S and v′ = v. After the aggregation the model M
contains triples with unique values of S and v (no duplicate pairs 〈S, v〉 exist).

After the learning of the model is completed the set M contains ordered
triples 〈S, v, e〉. In each such triple a state of the graph S is combined with the
position (node number) v which got protected and the average evaluation e that
was finally achieved. Using this scheme, assignments that are good at a given
graph state are rewarded by high final evaluations.

Sampling of the State-Position Model
Sampling of the State-Position model is performed by generating new spec-

imens one by one using the information stored in the model. Each specimen is
generated by performing the simulation of the fire spreading starting from the
initial graph state S0 and selecting positions to defend using the model M . The
procedure of generating one specimen is presented in Algorithm 3.

Initially, nodes are added in a simulation loop in which the current state of
the graph is compared to the states stored in the model M . The distance between
graph states is measured using the Hamming distance H(S, S′) (which is, simply,
the number of vertices u ∈ 1, . . . , Nv for which S[u] �= S′[u]). For each triple
〈S′, v′, e′〉 stored in the model M such that v′ = v the weight w[v] of the node
v is increased proportionally to the evaluation e′ and inversely proportionally
to a function f() of the Hamming distance between the current state S and the
state stored in the model S′. The function f() is used to determine how the
weight of the position should change with the distance between graph states. In
this paper the following functions were tested:

Linear - f(x) = 1 + x. Makes the weight of the position decrease inversely with
the distance between graph states. The 1 is added to avoid errors when the states
S and S′ are equal and H(S, S’) = 0.
Square - f(x) = 1 + x ∗ x. A function whose inverse decreases faster than that
of the linear one.
Sqrt - f(x) = 1+

√
x. A function whose inverse decreases more slowly than that

of the linear one.
Exponential - f(x) = 3x. A function producing a very narrow, exponentially
vanishing peak around the given graph state S. The basis of 3 was selected
because there are three possible states of each node of the graph, so the value
of 3x represents the number of the graph states with all the possible values at
the x positions at which S differs from S′. The exponential function produces
a value of f(x) = 1 for x = 0 as the other functions, so in each case the weight
assigned to the current graph state is 1.

When there is at least one node v with a positive weight w[v] the selection
of the node to defend is performed using a roulette wheel selection procedure
with probabilities proportional to the weights in w. Otherwise, the selection is
performed using weights stored in Q which are inversely proportional to the
positions at which the nodes appeared in the population (only untouched nodes
are considered). Thus, selection using weights from Q gives higher priorities to
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Algorithm 3. Sampling of the State-Position model

IN: S0 - The initial state of the graph
Nf - The number of firefighters assigned in one time step
M - The State-Position model built from the sample
Q - The vector of weights assigned to the graph nodes

when the model is built

OUT: π - A new solution generated from the model

// Simulate spreading of fire
π := ∅
S := S0

while CanSpread(S) do
w := [0, 0, . . . , 0]
W := [0, 0, . . . , 0]
for v := 1, . . . , Nv do

if S[v] = ’U’ then
for 〈S′, v′, e′〉 ∈ M , s.t. v′ = v do

w[v] := w[v] + e′ 1
f(H(S,S′))

W [v] := Q[v]

for i := 1, . . . , Nf do
if
∑

w > 0 then
v := RouletteWheelSelection(w)

else
v := RouletteWheelSelection(W )

w[v] := 0
W [v] := 0
π := π ⊕ v
S[v] := ’D’

S := SpreadFire(S)

// Nodes not used in the simulation are added using Q weights
W := [0, 0, . . . , 0]
for v := 1, . . . , Nv do

if v /∈ π then
W [v] := Q[v]

while
∑

W > 0 do
v := RouletteWheelSelection(W )
W [v] := 0
π := π ⊕ v

return π

nodes that tend to appear towards the beginning of the solutions. Of course,
only some nodes are defended during the simulation. The remaining ones are
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added to the solution π using the roulette wheel selection with probabilities
proportional to weights in Q. This time nodes are used regardless of the state
‘B’ or ‘U’ in which they were during the simulation, except for the nodes in state
‘D’ which are already in the solution π. This last step is used in order to retain
some information concerning the precedence of the nodes in the population, even
if those nodes are not used for defense.

In addition to CanSpread() and SpreadFire() procedures used in
Algorithm 2, Algorithm 3 uses the RouletteWheelSelection() procedure that
performs the roulette wheel selection procedure using weights in the given vec-
tor w. An index of each of the elements in the vector can be returned with the
probability proportional to the weight at that index. For example if the weight
vector is w = [12, 4, 1, 3] the probability of returning 1 is 0.6, for 2 it is 0.2, for
3 it is 0.05 and for 4 it is 0.15.

4 Experiments and Results

In the experiments the EDA approach was tested with four different probabilis-
tic models (Simple Mallows, Generalized Mallows, EH-PBIL and State-Position
model). In the case of the EH-PBIL model, the parameters were set follow-
ing the original paper on the PBIL algorithm [1] to: η+ = 0.1 (learning rate),
η− = 0.075 (negative learning rate), Pmut = 0.02 (mutation probability) and
μ = 0.05 (mutation shift parameter). The values of Punif = 0.0, 0.2, 0.4, 0.6,
0.8 and 1.0 were tested in order to determine the influence of this parameter
introduced in this paper on the working of the algorithm. The State-Position
model was used with the four functions mentioned before (Exponential, Linear,
Sqrt and Square).

For comparison, tests were performed with the Ant Colony Optimization
(ACO) algorithm proposed in [2] and the VNS method proposed in [11]. An
Evolutionary Algorithm (EA) was also tested with three crossover operators
that performed best in the previous paper [17], that is the CX, OBX and PBX.
For the mutation operator the insertion mutation was used because it worked
best in the aforementioned paper. Crossover and mutation probabilities were set
to Pcross = 0.9 and Pmut = 0.05. The population size was set to Npop = 100 for
all the methods. The sample size for the EDAs was set to 20% of the population
size, so Nsample = 20. The EDAs and EAs employed the elitism mechanism in
which one, the best, solution was always promoted to the next generation.

For testing Erdős-Renyi graphs, represented using adjacency matrices, with
Nv = 500, 750, 1000, 1250, 1500, 1750, 2000, 2250, 2500 and 5000 vertices
were used. The probability with which an edge was added between any two
different vertices (independently of the others) was Pedge = 3

Nv
. This value was

selected during preliminary experiments in such a way that the obtained problem
instances were not too easy (the entire graph easily protected) nor too difficult
(all the nodes except the defended ones always lost). The other parameters of the
problem instances were Ns = 1 starting point and Nf = 2 firefighters allowed
per a time step. In order to ensure that the generated instances were difficult
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enough, only such graphs were used in which the number of edges adjacent to
the starting points exceeded the number Nf of firefighters allowed per a time
step. This requirement was formulated to eliminate a trivial solution which is to
use the Nf firefighters to cut off the starting points from the rest of the graph
during the first time step. While such a solution is a very good one (most of
the graph is saved in such case) it is also trivial to apply and therefore is not
really indicative of the actual problem solving capacity of the tested algorithms.
Costs drawn uniformly from the range [0, 100] were assigned to the nodes of the
graphs. A set of 50 different graphs was prepared as described above for each
graph size Nv and each method was tested on the same 50 graphs.

Comparison of the algorithms was done on the basis of the median calculated
over these 50 runs from the evaluations of the best solution found by each of the
algorithms. Median values were used because statistical testing could then be
performed using the Wilcoxon test without ensuring normality of the distribu-
tions. The results were compared at Tmax = 300, 600, 900 and 7200 s for Nv =
500, 750, 1000; Nv = 1250, 1500, 1750; Nv = 2000, 2250, 2500; and Nv = 5000
respectively (see Tables 1 and 2). In the tables the best value for each test prob-
lem size Nv is marked in bold.

Table 1. Median value of the saved nodes obtained in the experiments.

Nv 500 750 1000 1250 1500

Tmax 300 s 600 s

ACO 1.369 · 103 1.332 · 103 1.320 · 103 3.331 · 103 3.837 · 103
CX 1.834 · 103 1.831 · 103 1.909 · 103 4.023 · 103 4.614 · 103

EA OBX 2.039 · 103 2.035 · 103 2.027 · 103 3.993 · 103 4.504 · 103
PBX 2.013 · 103 2.057 · 103 2.013 · 103 3.971 · 103 4.474 · 103

Mal- Generalized 1.421 · 103 1.337 · 103 1.388 · 103 3.757 · 103 4.305 · 103
lows Simple 1.523 · 103 1.525 · 103 1.495 · 103 3.790 · 103 4.398 · 103

0.0 1.470 · 103 1.442 · 103 1.465 · 103 3.697 · 103 4.249 · 103
0.2 1.450 · 103 1.482 · 103 1.502 · 103 3.743 · 103 4.276 · 103

EH- 0.4 1.454 · 103 1.471 · 103 1.450 · 103 3.780 · 103 4.314 · 103
PBIL 0.6 1.386 · 103 1.420 · 103 1.413 · 103 3.703 · 103 4.261 · 103

0.8 1.364 · 103 1.350 · 103 1.361 · 103 3.634 · 103 4.174 · 103
1.0 1.296 · 103 1.343 · 103 1.344 · 103 3.646 · 103 4.138 · 103
Exponential 1.821 · 103 1.875 · 103 1.951 · 103 4.229 · 103 4.831 · 103

State- Linear 1.942 · 103 2.057 · 103 2.195 · 103 4.464 · 103 5.025 · 103
Position Sqrt. 1.694 · 103 1.812 · 103 1.955 · 103 4.173 · 103 4.715 · 103

Square 2.076 · 103 2.178 · 103 2.372 · 103 4.643 · 103 5.216 · 103

VNS 2.832 · 103 2.678 · 103 2.351 · 103 4.521 · 103 5.121 · 103
FWER 2.09 · 10−8 5.53 · 10−7 8.43 · 10−1 1.04 · 10−2 5.20 · 10−4
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Table 2. Median value of the saved nodes obtained in the experiments.

Nv 1750 2000 2250 2500 5000

Tmax 600 s 900 s 7200 s

ACO 4.314 · 103 1.425 · 103 5.207 · 103 5.828 · 103 1.525 · 103
CX 4.874 · 103 2.148 · 103 5.811 · 103 6.338 · 103 2.454 · 103

EA OBX 4.796 · 103 2.170 · 103 5.863 · 103 6.339 · 103 2.476 · 103
PBX 4.808 · 103 2.139 · 103 5.777 · 103 6.348 · 103 2.408 · 103

Mal- Generalized 4.674 · 103 1.606 · 103 5.494 · 103 6.205 · 103 1.746 · 103
lows Simple 4.736 · 103 1.620 · 103 5.631 · 103 6.257 · 103 1.803 · 103

0.0 4.678 · 103 1.546 · 103 5.626 · 103 6.238 · 103 1.749 · 103
0.2 4.709 · 103 1.652 · 103 5.617 · 103 6.238 · 103 1.781 · 103

EH- 0.4 4.712 · 103 1.610 · 103 5.505 · 103 6.239 · 103 1.768 · 103
PBIL 0.6 4.732 · 103 1.566 · 103 5.479 · 103 6.218 · 103 1.712 · 103

0.8 4.649 · 103 1.499 · 103 5.471 · 103 6.189 · 103 1.673 · 103
1.0 4.685 · 103 1.493 · 103 5.490 · 103 6.152 · 103 1.627 · 103
Exponential 5.287 · 103 2.240 · 103 6.081 · 103 6.858 · 103 2.476 · 103

State- Linear 5.527 · 103 2.534 · 103 6.445 · 103 7.059 · 103 2.982 · 103
Position Sqrt. 5.200 · 103 2.224 · 103 6.161 · 103 6.703 · 103 2.640 · 103

Square 5.713 · 103 2.756 · 103 6.591 · 103 7.252 · 103 3.209 · 103

VNS 5.253 · 103 2.019 · 103 6.092 · 103 6.514 · 103 1.647 · 103
FWER 2.63 · 10−7 1.04 · 10−2 1.36 · 10−8 1.55 · 10−8 2.131 · 10−7

The comparison with respect to the running time of the algorithms was cho-
sen because of a large variety of methods used for comparison (the same approach
was used in the paper on VNS [11]). Two other commonly used comparison cri-
teria, the number of generations and the number of solution evaluations, are not
well-suited for the comparisons made in this paper. Comparison by the number
of generations overlooks the fact that certain methods may perform additional,
costly computations in each generation, which is not uncommon in the EDAs.
Comparison by the number of solution evaluations suffers from the same prob-
lem and also may not be reliable in the case of different solution representations
(e.g. those used by the EA/EDA and the VNS).

From the results presented in the tables it can be seen, that for smaller
graphs the VNS is very effective, but for larger graphs the State-Position EDA
performs best. The tables contain also the value of the Family-Wise Error Rate
for the hypothesis that the median values produced by the best performing
method for a given Nv are statistically different than those produced by the
other methods. This FWER value was calculated as 1−∏

i(1− vi), where vi are
p-values obtained in pairwise comparisons between the best performing method
and each of the other methods. The calculated value is the upper bound for
the probability that at least one of the comparison methods attains the same
median values as the best-performing one. For graph sizes of Nv = 1250 and
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more the calculated FWER values are at most 1.04 · 10−2. This shows that the
difference between the State-Position EDA with the Square function and the
other methods is statistically significant. For Nv = 1000 the State-Position EDA
still produced the best result, but because of the small difference from the results
produced by the VNS the FWER is high, so the statistical significance cannot
be confirmed. For Nv = 500 and 750 the State-Position EDA was outperformed
by the VNS, with the difference statistically significant in both cases.

The results produced by the algorithms for Nv = 2500 with respect to the
running time are shown in Fig. 1. Note, that in case when multiple variants or
parametrizations of one method were tested, only one variant is presented in the
figure, the one that produced the best result at Tmax = 900 s. The algorithms
presented in the figure are the ACO, the EA using the OBX crossover, the
Simple Mallows, the EH-PBIL with Punif = 0.4, the State-Position EDA with
the Square function and the VNS.
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Fig. 1. Results produced by the algorithms for Nv = 2500 with respect to the running
time. Note, that in case when multiple variants or parametrizations of one method
were tested, only one variant is presented in the figure, the one that produced the best
result at Tmax = 900 s.

5 Conclusion

In this paper EDA algorithms using several probabilistic models were tested
for the Firefighter Problem (FFP). A new model was proposed which repre-
sents the relationship between the state of the graph and the positions which
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are defended by firefighters. The proposed State-Position model outperformed
the other EDAs, in particular the Mallows model which is commonly used for
permutation-based problems and therefore was used in this paper as one of the
comparison models. Compared to all the tested methods, the State-Position EDA
produced the best results for graphs with Nv = 1000 and more. For Nv = 500
and 750 the VNS method shown the best performance.

The results presented in this paper form an interesting starting point for
further research. First, the State-Position model builds a representation that is
easily interpretable in the domain of the problem. This may constitute a basis
for knowledge extraction, for example in the form of rules guiding the placement
of firefighters in various graph states. Another possible extension is to apply
EDAs to the multiobjective FFP either by developing multiobjective models, or
by using the Sim-EDA approach proposed in [19].
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EvoCOP 2016. LNCS, vol. 9595, pp. 235–250. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-30698-8 16

20. Michalak, K., Knowles, J.D.: Simheuristics for the multiobjective nondeterministic
firefighter problem in a time-constrained setting. In: Squillero, G., Burelli, P. (eds.)
EvoApplications 2016. LNCS, vol. 9598, pp. 248–265. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-31153-1 17

21. Tsutsui, S.: Probabilistic model-building genetic algorithms in permutation rep-
resentation domain using edge histogram. In: Guervós, J.J.M., Adamidis, P.,
Beyer, H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.) PPSN 2002.
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Abstract. The pickup and delivery problem with time windows
(PDPTW) is an NP-hard discrete optimization problem of serving trans-
portation requests using a fleet of homogeneous trucks. Its main objective
is to minimize the number of vehicles, and the secondary objective is to
minimize the distance traveled during the service. In this paper, we pro-
pose the longest common subsequence based selective route exchange
crossover (LCS-SREX), and apply this operator in the memetic algo-
rithm (MA) for the PDPTW. Also, we suggest the new solution represen-
tation which helps handle the crossover efficiently. Extensive experimen-
tal study performed on the benchmark set showed that using LCS-SREX
leads to very high-quality feasible solutions. The analysis is backed with
the statistical tests to verify the importance of the elaborated results.
Finally, we report one new world’s best routing schedule found using a
parallel version of the MA exploiting LCS-SREX.

Keywords: Memetic algorithm · LCS · Crossover · PDPTW

1 Introduction

Solving rich vehicle routing problems (VRPs) is a vital research topic due to their
practical applications which include delivery of food, beverages and parcels, bus
routing, delivery of cash to ATM terminals, waste collection, and many others.
There exist numerous variants of rich VRPs reflecting a wide range of real-life
scheduling scenarios [1]—they often combine multiple realistic constraints which
are imposed on the desired solutions (a solution is feasible if all of the constraints
are satisfied). Although exact algorithms retrieve an optimal routing schedule,
they are still very difficult to exploit in practice, because of their unacceptable
execution times for massively-large problems. Therefore, approximate algorithms
became the main stream of the research activities—they deliver high-quality (not
necessarily optimal) schedules in significantly shorter time.

The pickup and delivery problem with time windows (PDPTW) is the NP-
hard problem of serving a number of transportation requests using a fleet of
trucks. Each request is a pair of the pickup and delivery operations which must
be performed in the appropriate order (the precedence constraint). Each travel
c© Springer International Publishing AG 2017
B. Hu and M. López-Ibáñez (Eds.): EvoCOP 2017, LNCS 10197, pp. 124–140, 2017.
DOI: 10.1007/978-3-319-55453-2 9
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point should be visited within its time window (the time window constraint),
the size of vehicles cannot be exceeded (the capacity constraint), and all trucks
should start and finish the service in a single depot. The PDPTW is a hierarchical
objective discrete problem—the main objective is to minimize the number of
vehicles, whereas the secondary one is to optimize the total travel distance.

The exact algorithms for the PDPTW are most often applied to small-scale
instances due to their execution times. Hence, a plethora of approximate methods
have been exploited for this task—they include various heuristic and metaheuris-
tic techniques (both sequential and parallel). Memetic algorithms (MAs)—the
hybrids of evolutionary techniques (utilized to explore the solution space) and
refinement procedures (used for the exploitation of solutions already found) have
been proven very efficient in solving the PDPTW [2], as well as other VRPs [1].

In this paper, we propose a new crossover operator for the PDPTW—the
longest common subsequence based selective route exchange crossover (LCS-
SREX). The original SREX operator was proposed in [2], and it was shown very
efficient in solving the PDPTW. In SREX, the routes which are to be affected
during the crossover are selected based on the number of common travel points in
the parent schedules (however, these solutions are very often not similar in terms
of the longest common partial routes). This approach could easily lead to large
numbers of unserved transportation requests after applying SREX, which had to
be re-inserted into the partial offspring solutions. Here, we tackle this issue—in
LCS-SREX, the selection of routes is based on the analysis of the longest com-
mon subroutes of the parents to minimize the number of unserved customers
after the crossover. Also, we suggest the new solution representation to han-
dle the crossover efficiently. Our extensive experimental study performed on the
400-customer Li and Lim’s benchmark set of problem instances of various char-
acteristics showed that applying LCS-SREX leads to retrieving very high-quality
solutions. We investigated how the number of children generated for each pair of
parents during the recombination affects the optimization process. The analysis
is coupled with statistical tests to verify the importance of the retrieved results.
Finally, we report one new world’s best solution to the benchmark instance elab-
orated using a parallel version of our algorithm.

This paper is structured as follows. In Sect. 2, the PDPTW is formulated.
Section 3 presents the state-of-the-art algorithms for the PDPTW. In Sect. 4, we
present the MA and discuss in detail the LCS-SREX operator. The extensive
experimental study is reported and analyzed in Sect. 5. Section 6 concludes the
paper and serves as the outlook to the future work.

2 Problem Formulation

The PDPTW is defined on a directed graph G = (V,E), with a set V of C + 1
vertices (vi, i ∈ {1, . . . , C}). These vertices represent the customers, v0 is the
depot, whereas the set of edges E = {(vi, vi+1)|vi, vi+1 ∈ V, vi �= vi+1} are the
travel connections. The travel costs ci,j , i, j ∈ {0, 1, . . . , C}, i �= j, are equal to
the distance between the corresponding travel points (in the Euclidean metric).
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Each request hi, i ∈ {1, 2, . . . , N}, where N = C/2, is a coupled pair of pickup
(P ) and delivery (D) customers—ph and dh, respectively, where P ∩D = ∅, and
P ∪ D = V \ {v0}. For each hi, the amount of delivered (qd(hi)) and picked
up (qp(hi)) goods is defined, and qd(hi) = −qp(hi). Each customer vi defines its
demand (being either delivery or pickup), service time si (serving the depot does
not take time, hence s0 = 0), and time window [ei, li] within which its service
must be started (however, it can be finished after the corresponding time slot
has been closed). The fleet of available trucks is homogeneous (let K denote its
size)—the capacity of each vehicle is Q. Each route r in the solution σ (being a
set of routes), starts and finishes at the depot v0.

A solution σ (K routes) is feasible if (i) Q is not exceeded for any vehicle (the
capacity constraint is fulfilled), (ii) the service of every request starts within its
time window (time window constraint), (iii) every customer is served in exactly
one route, (iv) every vehicle leaves and returns to v0 within its time windows,
and (v) each pickup is performed before the corresponding delivery (precedence
constraint). The primary objective of the PDPTW is to minimize the number of
vehicles (K). Afterwards, the total travel distance is optimized. Let σA and σB

be two solutions. σA is then of a higher quality compared with σB if (K(σA) <
K(σB)) or (K(σA) = K(σB) and T (σA) < T (σB)), where T is the total distance.

3 Related Literature

State-of-the-art techniques for tackling the PDPTW [3] (and numerous other
rich VRP variants [4]) are divided into exact and approximate approaches. The
former algorithms deliver the optimal solutions, whereas the latter obtain high-
quality feasible solutions in acceptable time. The exact algorithms were devised
for relatively small problem instances (up to 30 requests [5]) due to their enor-
mous computation time. Although they are being actively developed, this exe-
cution time becomes their important bottleneck and it is still difficult to apply
them in practice for solving massively large real-life scenarios.

The exact techniques encompass, among others, column generation meth-
ods, branch-and-cut, branch-and-price solvers, and dynamic-programming-based
techniques [6–8]. The set-partitioning-like integer formulation of the problem was
presented by Baldacci et al. [9]—two dual ascent heuristics were coupled with
the cut-and-column generation for finding the dual solution of the linear pro-
gramming relaxation of this formulation.

The heuristic algorithms usually tackle the PDPTW in two steps (due to
the hierarchical objective of the PDPTW [2])—the fleet size is minimized in
the first stage, and the total distance is optimized afterwards. This approach
allows for designing and implementing efficient techniques for both stages inde-
pendently. Approximate algorithms to minimize the number of trucks include
construction and improvement heuristics. The construction (often referred to as
the insertion-based methods) heuristics create solutions from scratch by insert-
ing requests iteratively into the partial solution, according to certain criteria,
e.g., the maximum cost savings, the minimum additional travel distance, or the
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cost of reducing the time window slacks [10,11]. These insertions should not vio-
late the solution feasibility. If any of the constraints is violated, then the solution
is usually backtracked to the last feasible state, and the further attempts of re-
inserting the unserved customers are undertaken.

Improvement heuristics modify a low-quality solution by executing refine-
ment procedures in search for better neighboring solutions. The metaheuristics
usually embed construction and improvement heuristics. Temporarily infeasi-
ble solutions, along with deterioration of the solutions quality during the opti-
mization process are very often allowed in these algorithms [12]. Heuristic algo-
rithms for the PDPTW comprise tabu [5] and neighborhood searches [13], guided
ejection searches (GESes), enhanced in our very recent work [14], evolution-
ary algorithms [15,16], hybrid techniques (e.g., combining simulated anneal-
ing [17]), and many more [2,18]. A very interesting formulation of a variant
of the PDPTW with simultaneous pickup and delivery operations, along with
a new mat-heuristics to tackle this problem have been reported recently [3].
Parallel algorithms were explored for solving rich VRPs [19], including the
PDPTW [20,21]. Thorough surveys on approximate approaches for the PDPTW
were presented by Parragh et al. [12], and recently by Cherkesly et al. [22].

4 Memetic Algorithm for the PDPTW

In this section, we present in detail the MA for minimizing the distance traveled
during the service in the PDPTW. We put a special emphasis on discussing
the longest common subsequence based crossover operator which is the main
contribution of this paper. Also, we discuss the new representation of solutions
which involves assigning a hash function to each arc connecting the neighboring
travel points. This representation is pivotal and helps handle the selection of
routes for crossover efficiently using dynamic programming.

4.1 Algorithm Outline

In the MA (Algorithm 1), the number of routes is minimized in the first stage
(lines 1–5), and the total travel distance is optimized afterwards (lines 7–27). In
this work, we utilize the enhanced guided ejection search (GES) to minimize the
number of trucks (line 1), and to generate the initial population of solutions—
each individual contains K(σ1) routes (line 2). In GES, each request is served
in a separate route at first, and the attempts to decrease the number of routes
are undertaken. A random route is removed, and the requests are put into the
ejection pool (containing unserved requests). Then, these requests are re-inserted
to the partial solution (either feasibly or infeasibly, with additional local moves to
restore the feasibility). The optimization is terminated if the maximum execution
time has been exceeded. More details on GES can be found in [14].

This algorithm can be easily replaced by another (perhaps more efficient)
technique without affecting the MA. The time limit for minimizing the number
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of trucks is τRM , whereas the limit for generating the initial population of indi-
viduals is denoted as τPopGen. If the number of solutions is less than the desired
population size Npop (because of the time limit), the remaining solutions are
constructed by copying and perturbing the already-found individuals. Even if
all required solutions are found, all of them are perturbed at the end of this ini-
tial stage (lines 3–5) to diversify the population. This perturb operation involves
executing local search moves (pair-relocate and pair-exchange), which do not
violate the constraints (but can potentially decrease the solution quality).

Algorithm 1. Memetic algorithm for minimizing distance in the PDPTW.
1: σ1 ← ROUTE-MINIMIZATION();
2: Generate the population of Npop solutions {σ1, σ2, . . . , σNpop};
3: for each solution σi in population do
4: σi ← PERTURB(σi);
5: end for
6: done ← false;
7: while not done do
8: Determine Npop random pairs (σp

A, σp
B); � Selection

9: for all pairs (σp
A, σp

B) do
10: if σp

A = σp
B then

11: σp
A ← PERTURB(σp

A);
12: end if
13: σc

best ← σp
A;

14: Generate Nch children {σc
1, σ

c
2, . . . , σ

c
Nch

} for (σp
A, σp

B);
15: for i ← 1 to Nch do
16: σc

i ← LOCAL-SEARCH(σc
i );

17: if T (σc
i ) < T (σc

best) then
18: σc

best ← σc
i ;

19: end if
20: end for
21: σp

A ← σc
best; � Replace σp

A with the best child in the next generation
22: end for
23: if (termination condition is met) then
24: done ← true;
25: end if
26: end while
27: return best solution σbest in the entire population;

The population of feasible solutions undergoes the memetic evolution to min-
imize the total travel distance (lines 7–26). Each iteration starts with determin-
ing Npop random pairs of parents σp

A and σp
B for crossover (line 8). Then, Nch

children are retrieved for each pair of parents (note that if the structures of
the individuals selected as parents appear the same, then one solution is per-
turbed, line 11). The parent σp

A becomes the best initial child σc
best (line 13). The

Nch offspring solutions are constructed (line 14). Each child σc
i is enhanced by
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applying a number of feasible local search moves, and the best offspring solution
σc
best—with the minimum T—is selected (line 18)—for details, see Sect. 4.2.

The local search is visualized in Algorithm 2—it involves executing local
moves in search of higher-quality neighboring solutions (i.e., with the lower T ’s).
It is worth noting that we propose to exploit not only the pair-relocation moves
(as shown in [2]), but also the pair-exchange moves, which are much harder
to implement efficiently in the case of the PDPTW. The pair-exchange moves
are significantly more time-consuming, and they are performed only if the pair-
relocation neighborhood was found to be empty (hence, the pair-relocation moves
are analyzed at first). The pair-relocation move involves ejecting the pickup and
the corresponding delivery customer from one route, and inserting them feasibly
in all possible ways into other routes. On the other hand, the pair-exchange
move encompasses ejecting the pickup and delivery customers from two different
routes and re-inserting them in all possible ways into other routes.

Algorithm 2. Improving a solution with local search moves.
1: function LocalSearch(σ)
2: σb ← σ;
3: improvement ← true;
4: while improvement = true do
5: Find σ′ through feasible local search moves on σb;
6: if T (σ′) < T (σb) then
7: σb ← σ′;
8: else
9: improvement ← false;

10: end if
11: end while
12: return σb;
13: end function

In order to create the pair-relocation and pair-exchange neighborhoods effi-
ciently, we exploit several pruning strategies to identify “branches” of the search
tree, where any other insertion/removal of customers would lead to the feasible
and better solutions in terms of the lower travel distance (as shown for the VRP
with time windows, VRPTW, in the our previous works [1]). These strategies
are applied together with the forward/backward penalty slacks for analyzing the
capacity and time window violations [2]. These techniques allow for verifying if
the solution will remain in the feasible state in O(1) time.

After applying local search moves to all children, the best offspring replaces
σp
A (Algorithm 1, line 21), and survives to the next generation. The MA may

be terminated if: (i) the maximum execution time has been exceeded, (ii) the
routing schedule of desired quality has been retrieved, (iii) the maximum number
of generations have been processed, or (iv) the best individual in the population
could not be further improved for a given number of consecutive generations.
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4.2 Longest Common Subsequence Based SREX

The selective route exchange crossover (SREX) was successfully used for gener-
ating child solutions from two parent PDPTW schedules σp

A and σp
B [2]. In this

work, we enhance the entire procedure of constructing offspring solutions (our
new operator is referred to as the longest common subsequence based SREX,
LCS-SREX)—it is presented in Algorithm 3. The main idea behind SREX is to
create children by replacing some of the routes from the first parent σp

A with
other routes selected from the second parent σp

B.

Algorithm 3. Generating child solutions using LCS-SREX.
1: function GenerateChildSolution(σp

A, σp
B)

2: for i ← 1 to Ntotal do
3: {SAi , SBi} ← random initial subsets of routes from σp

A and σp
B ;

4: {XAi , XBi} ← {SAi , SBi} represented as arc sequences;
5: LCSi ← LCS(XAi , XBi); � Longest common subsequence
6: improvement ← true;
7: while improvement = true do
8: {S′

Ai
, S′

Bi
} ← MakeNeighborhood(SAi , SBi);

9: {X ′
Ai

, X ′
Bi

} ← {S′
Ai

, S′
Bi

} represented as arc sequences;
10: LCS′

i ← LCS(X ′
Ai

, X ′
Bi

);
11: if LCS′

i >LCSi then
12: {SAi , SBi} ← {S′

Ai
, S′

Bi
};

13: LCSi ← LCS′
i;

14: else
15: improvement ← false;
16: end if
17: end while
18: end for
19: Sort Ntotal items in the descending order by LCSi;
20: Eliminate {SAi , SBi} duplicates;
21: Select Ncross best subsets {SAi , SBi};
22: for i ← 1 to Ncross do
23: σ′

o ← σp
A;

24: σ′′
o ← σp

A;
25: Remove routes SAi from σ′

o;
26: Eject from σ′

o nodes ∈ σp
B and /∈ σp

A;
27: Insert routes SBi to σ′

o;
28: Remove routes SAi from σ′′

o ;
29: Insert to σ′′

o the routes SBi having nodes which were ejected from σ′
o

30: Insert unserved requests to both σ′
o and σ′′

o feasibly;
31: σoi ← better from σ′

o and σ′′
o ;

32: end for
33: return best child solution from {σo1 , σo2 , . . ., σoNcross

};
34: end function
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In order to explain the rest of the algorithm, the following notations are
defined. The set of routes in σp

A and σp
B are defined as RA and RB . SA(⊆

RA) and SB(⊆ RB) are the set of replaced routes in the parent σp
A (during

the recombination), and the set of inserted routes taken from σp
B , respectively.

In this paper, we propose: (i) the route representation being the sequence of
arcs instead of the sequence of customer nodes, and (ii) the new process for
selecting subsets of routes for LCS-SREX, which considers the longest common
subsequence (LCS) values of arcs. For this reason, we introduce the additional
notations of XA and XB—the route arc sequences generated from SA and SB,
respectively. LCS(XA,XB) is the LCS value of arcs from XA and XB .

First, Ntotal pairs of SA and SB subsets are constructed (lines 2–18). The ran-
dom subsets of routes from σp

A and σp
B are selected as the initial pair {SAi

, SBi
}—

both SAi
and SBi

must encompass the same number of routes. In the next step,
the pair of arc sequences {XAi

, XBi
} is built from SAi

and SBi
. The arc sequence

represents the subsequent arcs in the given route including arcs to and from the
depot. As an example, consider the route rt = 〈0, 3, 6, 2, 4, 0〉, which is converted
to the following arc sequence: Xt = {{0, 3}, {3, 6}, {6, 2}, {2, 4}, {4, 0}}. Each arc
{a, b} is assigned the unique hash value using the following hash function h [23]:

h(a, b) =
{

a2 + a + b, a ≥ b
a + b2, a < b

, (1)

where a and b correspond to the start and to the finish customer identifiers
of the arc {a, b}. Finally, LCS(XAi

,XBi
) for two arc sequences is calculated.

We employ the dynamic programming algorithm to find the LCS for the arc
sequences represented as the arrays of hash values (in O(xl · yl) time, where
xl and yl are the lengths of two sequences). Thus, we take advantage of the
fact that the LCS values for the subproblems are memorized and reused when
needed. Importantly, we exploit the new solution representations—the arrays of
hashes representing arcs in two subsets (e.g., X[0 . . . xl − 1] for the first subset,
and Y [0 . . . yl−1] for the second one), and the array L for storing the LCS values
elaborated for the subproblems. Therefore, we have:

L[i][j] =

⎧⎨
⎩

0, i = 0 or j = 0
L[i − 1][j − 1] + 1, i > 0, j > 0,X[i] = Y [j]
max(L[i − 1][j],L[i][j − 1]), i > 0, j > 0,X[i] �= Y [j]

, (2)

and the final LCS value is stored in L[xl − 1][yl − 1]. Once the initial LCSi is
calculated, the subsequent attempts of finding the neighboring subsets having
larger LCS values are carried out (lines 7–17). The attempts are terminated if
this value cannot be further improved (line 15). The neighbor subsets of routes
{S′

Ai
, S′

Bi
} are constructed by adding a random route to both SAi

and SBi
. Then,

the pair of arc sequences {X ′
Ai

, X ′
Bi

} is elaborated from the subsets S′
Ai

and
S′
Bi

(line 9). Finally, LCS′
i for X ′

Ai
and X ′

Bi
are calculated, and if the resulting

LCS value is larger than current one (line 11), the subsets of routes {SAi
, SBi

},
along with the LCSi value are updated (lines 12–13).
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In the next stage, all Ntotal subsets of routes are sorted in the descending
order according to their LCS values (line 19). Subsequently, the possible dupli-
cates of {SAi

, SBi
} are removed (line 20), and the Ncross best subsets of routes

are selected for further processing (line 21). The proposed selection of {SAi
, SBi

}
based on the analysis of the LCS values proved to be crucial for the effective gen-
eration of offspring solutions. In SREX [2], the subsets SA and SB were selected
for crossover if they had the lowest number of customer nodes existing in SA,
and not existing in SB . This approach favored solutions having common cus-
tomer nodes, but usually not similar in terms of common partial routes. It could
easily lead to large numbers of unserved requests which had to be re-inserted
back into the partial child solution. This issue is tackled in LCS-SREX, in which
the probability of having numerous unserved requests is reduced.

The child solutions are retrieved for all Ncross best subsets of routes {SAi
,

SBi
} (lines 22–32). Each iteration starts with assigning the parent solution σp

A to
the first (σ′

o) and second (σ′′
o ) offspring schedules (lines 23–24). Then, the routes

identified by SAi
are removed from σ′

o. The customer nodes existing in σp
B and

not belonging to σp
A are ejected from σ′

o. Next, the routes identified by SBi
are

appended to σ′
o. The routes SAi

are removed from the second offspring σ′′
o in

the first step. The routes SBi
that contain customer nodes ejected from σ′

o are
inserted into σ′′

o . Eventually, multiple attempts to insert all unserved requests
to both σ′

o and σ′′
o are performed. If the attempts are successful, then the best

offspring is selected and assigned to σoi (line 31).
Once all Ncross child solutions are found, the best offspring (with the shortest

travel distance) is selected from {σo1 , σo2 , . . ., σoNcross
} (line 33).

5 Experimental Results

The MA for minimizing the travel distance in the PDPTW was implemented in
the C++ programming language, and run on an Intel Xeon 3.2 GHz computer
(16 GB RAM). Its maximum execution time was τM = 2 min. To verify how
applying the new crossover, along with the number of children generated for
each pair of selected parents affect the final scores, we analyzed six MA variants
summarized in Table 1. Each variant was executed 5 times for each instance
(hence, each variant was run 300 times), and the best, average, and worst (with
the minimum, average, and the maximum final T values) results were logged.

Table 1. Investigated variants of the MA.

Setting ↓ (a) (b) (c) (d) (e) (f)

Crossover SREX LCS-SREX SREX LCS-SREX SREX LCS-SREX

Ncross 1 1 20 20 40 40
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We focus on 400-customer Li and Lim’s tests1. Six test classes (C1, C2, R1,
R2, RC1 and RC2) reflect various real-life scheduling factors: C1 and C2 encom-
pass clustered customers, in R1 and R2 the customers are randomly scattered
around the map, whereas RC1 and RC2 instances contain a mix of random and
clustered customers. The classes C1, R1 and RC1 have smaller capacities and
shorter time windows compared with the second-class instances (the smaller K
should be necessary to serve customers in the second-class tests). Tests have
unique names: lα β γ, where α is the class, β relates to the number of customers
(β = 4 for 400 customers), and γ is the identifier (γ = 1, 2, . . . , 10).

As mentioned in Sect. 4, the number of trucks (K) is minimized at first, and
the population of feasible solutions (which evolves in time in order to decrease
the total travel distance) encompasses routing schedules of the same fleet size.
Here, we employed the enhanced guided ejection search [14] to optimize K, and
to generate the initial populations of size Npop = 10 (the population size is
relatively small in order to decrease the processing time of a single generation).
The numbers of routes retrieved for each 400-customer problem instance have
been gathered in the supplementary material2. This stage (i.e., minimizing K
and creating the initial populations) was extremely fast and took less than 60 s
for all instances (τRM + τPopGen < 60 s).

5.1 Analysis and Discussion

The results retrieved using all algorithm variants are summarized in Table 2—the
T values are averaged for all problem instances. We present the minimum (best),
average, and maximum (worst) T ’s. In order to investigate the results elabo-
rated using the MA with and without our new LCS-SREX crossover applied,
we compare the algorithms in the pairwise manner: the (a) variant is compared
with the (b) variant (the better result is boldfaced), (c) with (d), and (e) with
(f). Additionally, the background of the cells containing the best T ’s across all
investigated algorithms (for each Li and Lim’s class) is grayed. The results show
that applying the LCS-SREX operator allows for retrieving the feasible solutions
with smaller final T ’s for most cases. Although there exist instances for which
the baseline SREX crossover operator performed better (see e.g., RC1 for the
(c) vs. (d) variants), it is the MA with LCS-SREX utilized which outperforms
other variants on average for all numbers of generated children. It is interest-
ing to note that we have applied LCS-SREX in the initial implementation of a
parallel MA for minimizing distance in the PDPTW—it allowed for retrieving a
new world’s best solution to the lR1 4 2 benchmark test (the parallel MA was
run on 32 processors, and τM = 120 min.). The details of this solution are avail-
able in the supplementary material (T was decreased to 9968.19 compared with
T = 9985.28 in the previous world’s best schedule for 31 routes). Since the work
on the parallel MA for the PDPTW is very preliminary (we incorporated it into
our parallel VRPTW framework [19]), we do not focus on that in this paper.
1 See: http://www.sintef.no/projectweb/top/pdptw/li--lim-benchmark/.
2 The supplementary material is available at: http://sun.aei.polsl.pl/∼jnalepa/

EvoCOP2017/evocop2017 supplement.zip.

http://www.sintef.no/projectweb/top/pdptw/li--lim-benchmark/
http://sun.aei.polsl.pl/~jnalepa/EvoCOP2017/evocop2017_supplement.zip
http://sun.aei.polsl.pl/~jnalepa/EvoCOP2017/evocop2017_supplement.zip
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Table 2. The travel distances averaged across all problem instances retrieved using all
investigated algorithm variants. The best T ’s are boldfaced (in the pairwise comparison
of the algorithms), and the background of the best T across all variants are grayed.

(a) (b) (c) (d) (e) (f)

Min. 10112.81 9952.98 7538.87 7534.25 7420.58 7413.93
C1 Avg. 10426.51 10389.97 7622.76 7591.94 7473.37 7466.80

Max. 10811.26 10791.47 7721.85 7658.64 7541.44 7532.60

Min. 4243.42 4238.47 4559.34 4172.00 4204.02 4203.80
C2 Avg. 4331.13 4324.95 5193.29 4204.64 4236.60 4236.14

Max. 4421.84 4420.69 5259.15 4249.43 4294.00 4279.88

Min. 10085.33 10045.53 8587.91 8502.07 8500.29 8513.16
R1 Avg. 10366.73 10453.14 8704.50 8446.74 8597.51 8583.70

Max. 10616.15 10474.84 8849.27 8547.80 8730.22 8668.75

Min. 6844.40 6820.61 7079.56 6932.99 7282.74 7294.35
R2 Avg. 6944.84 6914.41 7139.39 7081.19 7484.71 7473.26

Max. 7122.64 7027.84 7371.67 7248.36 7699.88 7697.50

Min. 8978.88 8858.41 7545.67 7801.82 7754.69 7762.18
RC1 Avg. 9094.38 9056.19 7369.95 7844.18 7783.62 7781.49

Max. 9255.68 9253.75 7434.46 7895.33 7817.35 7816.46

Min. 5709.53 5693.31 5746.73 5632.73 5685.17 5659.26
RC2 Avg. 5794.75 5700.04 5717.20 5710.12 5760.31 5758.15

Max. 5909.28 5903.58 5831.43 5822.50 5861.51 5861.42

Min. 7662.40 7601.55 6843.01 6762.64 6807.92 6807.78
Avg. Avg. 7826.39 7806.45 6957.85 6813.13 6889.35 6883.26

Max. 8022.81 7978.70 7077.97 6903.67 6990.73 6976.10

The number of children created during the reproduction process significantly
affects the final scores. Intuitively, the larger Ncross should lead to the higher-
quality solutions faster (each pair of the selected parents is intensively exploited
in search of well-fitted child schedules). On the other hand, crossing over sim-
ilar parents (i.e., routing schedules of a similar structure) multiple times may
be unnecessary since the offspring solutions will most likely be of very similar
quality. The experimental results indicate that the MA with Ncross = 20 (which
is Ncross = 2 · Npop) gave the best T values—see the (d) variant in Table 2.
Hence, too small number of children (Ncross = 1) was insufficient to exploit
the population, whereas too large value (Ncross = 40) appeared not necessary
(retrieving more offsprings could not drastically improve the final score). Albeit
this initial investigation suggests that the number of children should be roughly
twice as large as the population size, it requires further investigation (also, the
initial efforts show that the adaptive change of Ncross may be very beneficial, as
presented for another challenging variant of the VRP [1]).

The impact of the Ncross is also highlighted in Fig. 1 (we used the full
algorithm variant descriptions instead of abbreviations for clarity). Here, we
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Fig. 1. Average best travel distance averaged across the independent runs obtained
using the investigated algorithm variants for all Li and Lim’s classes.

average the T values (of the best individual) across all problem instances (for
all classes and for all investigated variants) retrieved during the evolution. The
initial populations are of similar quality in all cases, and the decrease in the
total travel distance obtained using the MA with Ncross = 20 and Ncross = 40
is much larger compared with Ncross = 1. Interestingly, for the R2 class, gener-
ating a single offspring solution is enough to converge to high-quality schedules
very fast. It means that creating more children is not necessary in the case of
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problems containing randomly scattered customers that are to be served using
vehicles of relatively large capacities. It is worth mentioning that the MA with
Ncross > 1 converges quickly to the solutions whose quality is not later improved
significantly (see e.g., C2 and RC2—most algorithm variants elaborated high-
quality routing schedules in approx. 45 s). Hence, the MA could have been safely
terminated once these solutions were obtained, in order to minimize its execution
time—it is a very important issue in the case of real-time applications.

In Table 3, we gather the average convergence time of the investigated MAs
(i.e., the time after which the best solution in the population could not be
enhanced at all). These values indicate that the best feasible schedule was being
improved continuously until the time limit was reached (thus, if the time limit
was enlarged, then the quality of the final solutions would most likely increase
slightly). However, as rendered in Fig. 1, the changes are not very significant.

In order to verify if (i) applying the LCS-SREX crossover operator, and
(ii) generating various numbers of children notably influence the final sched-
ules, we performed the two-tailed Wilcoxon tests for all pairs of the investigated
algorithm variants. We verify the null hypothesis saying that “applying different
MA variants leads to obtaining the final routing schedules of the same quality
on average”. The results are gathered in Table 4 (the differences that are statis-
tically important are boldfaced). In most cases, the null hypothesis can be safely
rejected (at p < 0.05). However, using SREX for Ncross = 20 and Ncross = 40
gave very similar results—hence, increasing the number of offspring solutions for
this MA variant does not help boost the quality of final solutions.

Table 3. The convergence time of the investigated algorithm variants (in seconds).

(a) (b) (c) (d) (e) (f)

Minimum 105.25 104.99 104.58 103.73 105.75 104.89

Average 113.33 113.10 113.22 112.27 113.09 112.87

Maximum 118.75 118.93 118.96 118.46 120.00 118.59

Table 4. The level of statistical significance obtained using the two-tailed Wilcoxon
tests. The differences which are statistically important (at p < 0.05) are boldfaced.

(b) (c) (d) (e) (f)

(a) 0.0008 <0.0001 <0.0001 <0.0001 <0.0001

(b) — <0.0001 <0.0001 <0.0001 <0.0001

(c) — <0.0001 0.3222 0.0097

(d) — 0.0091 0.0083

(e) — <0.0001
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Comparing different algorithm variants for a number of different datasets
is a challenging and difficult task (e.g., the Algorithm A can outperform the
Algorithm B for the first dataset, and can be significantly worse for another
dataset). Therefore, we executed the non-parametric Friedman test [24] (which
has been exploited in numerous works from the field of machine learning where
the comparison of the multiple algorithms over multiple datasets is an important
concern [25,26]), in order to rank the investigated MA variants, and to check if
these rank differences are statistically important for all datasets (i.e., C1, C2, R1,
and so forth). The results of this test are gathered in Table 5 (for the minimum,
average, and maximum total travel distance T )—the best (lowest) ranking is
boldfaced. Also, we highlight the methods which are significantly different for
each MA variant (at p < 0.05). The results confirm that the MA with the new
LCS-SREX crossover and Ncross = 20 allows for retrieving the best routing
schedules across all classes of problems. As for the pairwise comparison (with
and without our new crossover operator), applying LCS-SREX is beneficial and
leads to the higher-quality solutions in the majority of cases (only for Ncross = 40
and the minimum T , the rankings of the memetic methods with and without
LCS-SREX appear the same). Therefore, the new LCS-SREX operator should
become the default operator choice in the MA for tackling the PDPTW.

Table 5. The results of the Friedman test (at p < 0.05) for the minimum, average, and
maximum distance T . The best ranking is boldfaced (the lower ranking, the better).

(a) (b) (c) (d) (e) (f)

Minimum T

Ranking 5.14 4.14 4.14 2.14 2.71 2.71

Different from d, e, f d d a, b, c a

Average T

Ranking 5.14 3.86 3.43 2.14 3.71 2.71

Different from c, d, f d a a, b, e d a

Maximum T

Ranking 5.29 4.29 3.29 2.00 3.57 2.57

Different from c, d, e, f d, f a a, b, e a, d a, b

6 Conclusions and Future Work

In this paper, we proposed a new crossover operator (LCS-SREX) for the
PDPTW. It extends the original SREX in order to minimize the number of
unserved customers which must be re-inserted into the partial child solution after
the recombination process. In LCS-SREX, the longest common subroutes of the
parent solutions are analyzed to select the appropriate routes for the crossover
operation. The suggested solution representation allows for finding the LCS val-
ues of the parents quickly using dynamic programming. The experimental study
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performed on the widely-used Li and Lim’s benchmark set (we focused on the
400-customer tests) showed that the proposed algorithmic solutions significantly
affect the final solutions, and allow for retrieving higher-quality schedules com-
pared with SREX (the two-tailed Wilcoxon tests showed that the differences
are statistically important). We investigated the impact of the number of chil-
dren generated for each pair of parents in the MA (exploiting both SREX and
LCS-SREX). Also, we executed the non-parametric Friedman statistical tests to
verify the rankings of the investigated algorithms across all classes of benchmark
problems. This investigation showed that the MA with the LCS-SREX crossover
applied outperforms the baseline SREX-based technique. Finally, we report one
new world’s best solution (for the lR1 4 2 test) retrieved using a parallel version
of the MA with the LCS-SREX crossover operator applied.

Our ongoing research encompasses the work on the adaptive schemes to
dynamically select the appropriate number of child solutions generated for each
pair of parents, and comparing the MA with LCS-SREX with other state-of-the-
art techniques. Also, we work on a parallel framework for solving the PDPTW
(and other challenging optimization problems), which will initially involve the
LCS-SREX-based MA for the total distance minimization. Finally, we aim at
verifying the impact of other MA parameters on the quality of final solutions
(including the population size and the mutation rate). We plan to apply the
proposed algorithmic solutions to tackle large-scale real-life dynamic scheduling
scenarios (in which the dynamic changes may happen, e.g., the road network
could be updated due to the traffic congestion).
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Abstract. The design of spacecraft trajectories for missions visiting
multiple celestial bodies is here framed as a multi-objective bilevel opti-
mization problem. A comparative study is performed to assess the perfor-
mance of different Beam Search algorithms at tackling the combinatorial
problem of finding the ideal sequence of bodies. Special focus is placed on
the development of a new hybridization between Beam Search and the
Population-based Ant Colony Optimization algorithm. An experimental
evaluation shows all algorithms achieving exceptional performance on a
hard benchmark problem. It is found that a properly tuned deterministic
Beam Search always outperforms the remaining variants. Beam P-ACO,
however, demonstrates lower parameter sensitivity, while offering supe-
rior worst-case performance. Being an anytime algorithm, it is then found
to be the preferable choice for certain practical applications.

Keywords: Beam Search · Ant Colony Optimization · P-ACO · Bilevel
optimization · Multi-objective optimization · Spacecraft trajectories

1 Introduction

The design of multi-rendezvous spacecraft trajectories poses a considerable chal-
lenge to aerospace engineers. This is due, in part, to the combinatorial nature of
the problem that emerges with the increase in number of bodies to visit along
a mission (e.g., planets, moons, asteroids). The complexity of the task stems
from an interplay of multiple factors under optimization, including: the deci-
sion of which of the bodies of interest to visit, the order in which they are to
be visited, and the design of the actual trajectory arcs to take the spacecraft
between them. Maximization of such a mission’s scientific return may demand
for as many bodies to be visited as possible, in the shortest possible amount
of time, while consuming the lowest possible amount of propellant mass. The
underlying optimization problem can be seen as a variant of the well known
Traveling Salesman Problem (TSP), with nodes corresponding to the celestial
bodies under consideration, and edge weights a function of the costs (time and
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mass) to propel the spacecraft between them. These costs vary as bodies move in
space along their trajectories, but also as a function of the spacecraft’s state: a
lighter spacecraft that has already shed some of its mass is simpler to maneuver.

As evidence into the complexity, and relevance, of the above described prob-
lems, consider the following: since 2005, the aerospace engineering community
has periodically organized GTOC, the Global Trajectory Optimization Compe-
tition [1]. In it, different groups have taken turns at creating “nearly-impossible”
problems of interplanetary trajectory design to pose to the community. Of the
8 competitions organized to date, 4 were multiple-asteroid rendezvous problems
of the kind considered here, and 3 others were multiple fly-by problems posing
similar combinatorial optimization challenges.

In [19], a multi-objective Beam Search algorithm is described, and applied to
a low-thrust model of the GTOC7 problem. In this research, we propose a series
of extensions to it. First, we provide an improved orbital phasing indicator, and
a procedure to create from it a probability distribution over candidate bodies to
extend missions with. Second, we hybridize the Beam Search procedure with the
well known Ant Colony Optimization algorithm [7]. We conclude by evaluating
the resulting algorithms on a Lambert model of the GTOC5 problem [11]. Two
main research questions are investigated in this paper:

1. Can the randomization of Beam Search, via probabilistic branching choices,
improve performance?

2. Does the pheromone-based positive reinforcement of sequences lead to
improved performance?

This paper is organized as follows: in Sect. 2 we list related work in the com-
binatorial optimization of spacecraft trajectories. Section 3 describes the Beam
Search algorithm, and the proposed randomized variants. In Sect. 4 we describe
the GTOC5 problem used in our experiments, and in Sect. 5 the interfacing
between it and the search algorithms. Section 6 reports on an experimental eval-
uation, and Sect. 7 discusses its results. Conclusions are drawn in Sect. 8.

2 Related Work

Beam Search [2,28] has emerged as the de facto standard approach to tackle the
combinatorial optimization sub-problems present in most GTOC competitions.
Though at times called by other names, it is common to find the general archi-
tecture of a tree search that has its computational cost bounded via the selection
of a limited number of nodes to branch at each depth-level (non-selected nodes
at that depth being immediately discarded). We can find examples of such algo-
rithms in the winning solutions to GTOC4 [10], GTOC5 [24], and in the second
ranked solution to GTOC7 [19], which the present research builds on. The Lazy
Race Tree Search described in [20], which at the time presented the best known
solution to the GTOC6 problem, can also be seen as a Beam Search variant. In
it, the “beam” is composed of all nodes, possibly originating from different tree
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depths, that fall within a given mission time window. The most promising nodes
in that sliding window are branched, and the remaining ones discarded.

Evolutionary Algorithms have been explored as an alternative to solve com-
binatorial problems in mission analysis. In the GTOC5 problem considered here,
for instance, [9,21] used Genetic Algorithms with “hidden genes”, to evolve chro-
mosomes encoding asteroid sequences. These approaches were however outper-
formed in the GTOC5 competition by tree-based approaches. In [18] an evo-
lutionary approach is described for designing debris removal missions. In this
highly dynamic trajectory problem, the Inver-over Genetic Algorithm was found
to provide competitive solutions to those constructed by different approaches.

Ant Colony Optimization (ACO) [7] was used by some teams in the GTOC
competitions over the years. However, to our knowledge, no scientific publication
has been produced to date with the details of such deployment. The most suc-
cessful use of ACO in a GTOC competition was possibly that by the NASA/JPL
team, winners of GTOC7. According to the GTOC portal [1], a “very competitive
solution was found by JPL using an Ant Colony Optimization approach. Even-
tually a different solution turned out to be better and was thus submitted”1.
Other applications of ACO algorithms to optimize the sequences of bodies to
visit along a spacecraft’s trajectory can be found in [4,5,26]. In them, the test
problems over which algorithms are evaluated have few bodies to select from
(≈10), and the found sequences visit ≈5 bodies. In contrast, sequences of up to
17 asteroids are assembled here, from a database of 7075 available asteroids.

A hybridization of Beam Search and ACO was previously presented in [3]. A
different hybridization is introduced here, “Beam P-ACO”, that differs mainly
in the ACO variant under use, and in being a multi-objective algorithm.

3 Beam Search

Beam Search [2,28] is a tree search algorithm where computational cost is
bounded by employing heuristics that allow for non-promising solutions under
construction to be discarded. It can be executed as a variant of depth-first or
breadth-first search. When operating as a variant of breadth-first search, as is
done here, Beam Search traverses the tree one depth-level at a time. From all the
solutions generated at one level, only a limited subset (the so called “beam”) will
be selected for carrying over to the next level. An evaluation of solutions’ qual-
ity determines whether they are included in the beam, or instead permanently
discarded from the search. The size of the beam is designated as the “beam
width”, and is here represented as bw. The extension of partial solutions in the
beam can be performed towards all possible successor nodes, or instead towards
only a limited number, enabling further control over the search’s computational
cost. A “branching factor” parameter, here represented as bf , indicates that each
solution in the beam will be extended only towards bf successor nodes, chosen
as a function of how good the solutions they lead to are estimated to be.
1 The NASA/JPL team’s GTOC7 submission report and workshop slides, containing

details of their ACO deployment, can be found in the GTOC portal [1].
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In summary, at one level of the tree, each of the beam’s bw solutions will
be expanded towards bf new nodes, resulting in bw ∗ bf new partial solutions.
These are then evaluated, and the bw best of those will become the beam that is
carried over to the next tree level. The search process is therefore driven by two
heuristics: (1) hs, which evaluates partial solutions (a path down from the tree’s
root node), and (2) he, which evaluates candidate successor nodes for extend-
ing solutions with. The more accurately these heuristics point to the complete
optimal solution, the more successful the search will be. Beam Search being an
“incomplete” search algorithm however, the identification of the globally optimal
solution is not guaranteed [28].

3.1 Multi-objective Heuristics

The first extension we introduce to the conventional Beam Search framework
is the addition of multi-objective heuristics. That is, either hs, or he (or both)
will evaluate partial solutions or candidate extensions, respectively, according to
multiple objectives. In such a scenario, it is then necessary to employ techniques
that will allow for the ranking of alternatives, or probabilistic selection among
them, that take into account the multiple evaluations.

In our current implementation, hs evaluates partial solutions according to
multiple objectives, while the evaluation of candidate extensions by he remains
single-objective. Beam Search must then be able to select at each tree level the
best bw solutions from among the newly generated extensions. To that end,
we employ a Pareto dominance approach. Specifically, we apply non-dominated
sorting [6] to the pool of extensions, and include in the beam as many of the best
Pareto fronts as needed to reach the beam size bw. That process will most likely
lead to a final Pareto front whose full inclusion in the beam would exceed bw. A
tie-breaker criterion must then be defined to determine which of those (equally
good) solutions to keep, and which to discard (see Sect. 5.3).

3.2 Probabilistic Branching

In the “Stochastic Beam” algorithm, the beam’s construction remains determin-
istic, but the branching stage will now be subjected to probabilistic decisions.
Given a solution in the beam, with a probability q0 it will be extended towards
the bf nodes with best he evaluation. With a probability of 1 − q0, the choice
of bf nodes will instead be a biased sampling without replacement, proportional
to he. Note that through a parameter setting of q0 = 1 the algorithm reverts to
the previously described (deterministic) Beam Search.

Beam Search will always converge to the same solution, given the same root
node. Stochastic Beam however, can be executed multiple times, and possibly
converge to different solutions in each run. These solutions may outperform those
found by Beam Search, by including links to nodes that Beam Search incorrectly
prunes, due to ranking above the bf threshold. Non-determinism therefore pro-
vides a degree of robustness against imperfections in the he heuristic.
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3.3 Hybridization with Ant Colony Optimization

A hybridization of Beam Search with Ant Colony Optimization brings two mains
changes to the algorithmic framework: (1) multiple tree searches are now per-
formed, in consecutive runs designated as “generations”, and (2) positive feed-
back takes place, in the form of “pheromones” that change the he heuristic
evaluation of candidate successor nodes, therefore biasing the dynamics of tree
searches in subsequent generations.

Of the many ACO variants in existence, we chose to hybridize with the
Population-based Ant Colony Optimization algorithm (P-ACO), introduced in
[12–15]. A detailed analysis in [23] found it to be “competitive to the state-of-
the-art ACO algorithms with the advantage of finding good solution quality in
a shorter computation time”. Also, a recent thorough benchmarking of a high
number of approaches to solve the Traveling Salesman Problem found P-ACO
to be the best of the tested global optimization algorithms, as well as the best
overall algorithm when seeded and hybridized with local search [27].

In “Beam P-ACO”, a partial solution at node i, with available successors S
evaluates the quality of extending towards node j by

h
′
e(i, j) =

τ(i, j)αhe(i, j)β

∑
s∈S τ(i, s)αhe(i, s)β

where τ is the pheromone concentration along an edge, and he (known as η
in the common ACO notation) is the problem-specific heuristic. The weighting
factors α and β determine the relative contributions of pheromone and heuristic
values to the branching decision. As in the previously described Stochastic Beam
algorithm, with a probability q0 the solution is extended towards the bf nodes
with best h

′
e evaluation, while with a probability of 1− q0, that choice is instead

a biased sampling without replacement proportional to h
′
e. A setting of α = 0

would result in all pheromone information being ignored, and Beam P-ACO
would then revert to the Stochastic Beam algorithm.

The pheromone concentration τ along an edge takes in P-ACO discrete values
in a given range [τinit, τmax]. We define these parameters as τinit = 1/(n − 1)
and τmax = 1, where n is the total number of nodes. This implements the
convention from [14] of having the row/column sum of initial pheromone values
be 1 (assuming a problem where revisits are disallowed, and the diagonal of
the pheromone matrix is therefore 0). Given the pheromone range, and k, the
maximum size of a population of top solutions, we can define τΔ = (τmax −
τinit)/k as the pheromone increment deposited in an edge by a solution in the
population that follows it along its path. If l solutions in the population include
the edge (i, j), its pheromone concentration will then be τ(i, j) = τinit + lτΔ.

3.4 Pareto Elitism

To complete the definition of Beam P-ACO, a population update model must
be defined, a model that handles multi-objective evaluations produced by the hs
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heuristic. We propose here a variation of the method defined in [15, Sect. 3.1]. An
archive will collect the set of non-dominated solutions found so far. At the end
of each tree search, the best found solutions are merged into it. After updating
the archive, the population that defines the pheromone matrix is reset.

In standard P-ACO [13], the population is implemented as a FIFO-queue
(each generation’s best solution enters the population, possibly displacing the
oldest solution it contains so as not to exceed the population size k). We propose
here instead to have one FIFO-queue per each of the problem’s n nodes, each with
a size limit of k. When resetting the population, all FIFO-queues are emptied.
Then, solutions in the archive are shuffled, and one by one, they are added to
the population (of edges). Each edge (i, j) in those solutions will result in j
being added to the ith FIFO-queue. The ith FIFO-queue then directly maps to
the ith row of the pheromone matrix, and its contents define which nodes do
pheromones most bias a solution at node i to branch towards.

If solutions visit all n nodes, as is the case in many problems (e.g., TSP),
this process will result in only the last k solutions of the shuffled archive adding
pheromones to the population. A random unbiased sampling of k archive solu-
tions would then be sufficient. However, in problems where solutions include
only some of the nodes (such as here in the GTOC5 problem, where n = 7075,
but a solution will visit <20 nodes), only small amounts of pheromone would be
deposited, and plenty of information in the archive would be ignored. By follow-
ing in such problems the process described above, the pheromone matrix may
now receive contributions from more than k solutions, while still only receiving
≤k contributions at the level of each individual node. This way, in the limit, all
solutions in the archive may end up depositing pheromones.

4 The GTOC5 Trajectory Design Problem

The trajectory design problem posed in the 5th edition of the Global Trajec-
tory Optimization Competition (GTOC5) is used as benchmark in the cur-
rent research. The full problem specification can be found in [11]. The problem
dataset, along with additional information related to this edition of the compe-
tition, can be found in the GTOC portal [1]. Our current work makes use of the
problem model developed by the competition’s 4th ranked team [21].

In the GTOC5 problem, a spacecraft leaves the Earth at some point along an
11-year time-window, to embark on a 15 year (max.) mission of asteroid explo-
ration. The spacecraft starts with a mass of 4000 kg, of which 3500 are reserved
for propellant mass, and the scientific equipment used at asteroids. A total of
7075 asteroids are available as possible targets to visit along the mission. The
exploration of a single asteroid is carried out in two stages. First, the spacecraft
must rendezvous (match position and velocity) with the asteroid, and leave there
a 40 kg scientific payload. Later in the mission, the spacecraft performs a fly-by
of the asteroid, and sends a 1 kg “penetrator” towards it. Upon impact, this pen-
etrator would release a cloud of debris, that would be investigated by the payload
left there. Partial scores are given for the rendezvous and fly-by maneuvers. An
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asteroid on which both are performed contributes 1 point to the full score. In
the problem models developed by most teams, including the one used here, the
problem is simplified by having an asteroid’s fly-by maneuver performed imme-
diately after its rendezvous: the spacecraft departs the asteroid, moves some
distance away, and then accelerates back towards it. Under this simplification, a
trajectory that manages to complete all pairs of maneuvers on a given sequence
of m asteroids will score m points.

GTOC5 was won by a team from NASA/JPL with a score 18 trajectory [24].
In contrast, the model being used here, with the initial trajectory conditions
listed in Sect. 6.1, has only ever allowed the discovery of trajectories with at most
a score 16. Nevertheless, for the goal of evaluating the performance of algorithms
that solve the combinatorial part of the problem (finding the asteroid sequence
that enables the greatest possible score), the used model is perfectly suitable.

5 Bilevel Optimization of GTOC5 Trajectories

The design of GTOC5 trajectories is here tackled as a multi-objective bilevel
optimization problem [25]. At an upper level, optimization seeks to identify a
good subset of asteroids, and the order in which they are to be visited. At a lower
level, each chosen pair of asteroids triggers an optimization of the trajectory leg
that takes the spacecraft between them. This section details how the different
Beam Search variants are employed for solving the upper-level combinatorial
problem, and how the lower-level process optimizes transfer legs.

5.1 Orbital Phasing Indicators as Heuristic Estimators

The problem of assembling an efficient heuristic able to help select possible aster-
oid targets is crucial and very difficult at the same time. The ground truth (i.e.
the optimal ΔV cost obtained optimizing the transfer leg) is far too expensive
to be be computed for all possible asteroid targets and for all states encoun-
tered along the search. A solution to this problem was recently proposed via the
development of so-called orbital phasing indicators [19]. These essentially allow
to introduce for each epoch ts a metric over the set of all possible asteroids, a met-
ric that can, in turn, be used to detect asteroid neighborhoods efficiently. It was
shown in [19] how the orbital indicator, defined as do(A1,A2,ΔT ) = |xt − xs|,
where x =

[
1

ΔT r(ts) + v(ts), 1
ΔT r(ts)

]
and r(ts) and v(ts) correspond to the

asteroid ephemeris, positively correlates to some extent to the ground truth (i.e.
the asteroids that are actually easy to reach via an orbital transfer). It essen-
tially considers a snapshot at ts of the asteroid population and, using a zero order
approximation for the dynamics, predicts what asteroids are the closest in terms
of transfer ΔV . As such, it is bound to neglect the known state of the asteroid
population at the arrival time tt, which seems as a loss of available informa-
tion. A simple modification to the orbital indicator, though, allows to account
for the final asteroid geometry and thus to improve the overall correlation to
the ground truth. In essence, one can consider the orbital indicator backward in



148 L.F. Simões et al.

time, starting from the arrival asteroid, to get a new indicator (note that aster-
oid velocities will have to have their sign inverted). The average between the
two, i.e. the orbital indicator and the backward orbital indicator, is what we use
here and call improved orbital indicator, defined as do′(A1,A2,ΔT ) = |xt −xs|,
where

x =
[

1
ΔT

r(ts) + v(ts),
1

ΔT
r(ts),

1
ΔT

r(tt + ΔT ) − v(tt + ΔT ),
1

ΔT
r(tt + ΔT )

]

For every node i being branched during the search, to which corresponds
a trajectory presently at asteroid Ai, we compute do′(Ai,Aj ,ΔT ) for all of
the problem’s n nodes, assuming a reference transfer time of ΔT = 125 days.
From it we build a probability distribution over successor nodes as he(i, j) =
(1 − p(i, j)/n)γ , where p(i, j) is the rank in {0, . . . , n − 1} of do′(Ai,Aj ,ΔT )
among all estimated costs. This results in a selection probability that decays
exponentially with increasing rank, at a rate tuned through γ. A setting of γ = 50
is used in this problem. There is then a ≈30% chance of branching towards an
asteroid ranked among the 50 best, and ≈84% among the 250 best. Finally, the
problem disallows revisits to asteroids. So, for any node i, he(i, j) = 0 if j was
already visited at any previous point.

5.2 Optimization of Transfer Legs

During the tree search, branching a partial solution into a given node triggers
an optimization process. Its end result will be the definition of the transfer leg
that allows the spacecraft to rendezvous with the corresponding asteroid. Adding
the new leg extends the mission’s trajectory, which can then be reevaluated by
the hs heuristic. In the approach followed here, only the trajectory’s rendezvous
legs need to be optimized. The cost estimates for self-fly-by legs are instead
approximated by a linear acceleration model [21, Sect. 3].

Each transfer will have a duration in a set time window of [60, 500] days. A
grid of 50 evenly spaced values defines the candidate transfer times, ΔT (≈9
days separation between grid points). For each ΔT , we employ PyKEP’s [16]2

multiple revolution Lambert solver [17,19] to design a trajectory arc having
that exact duration. If multiple revolution solutions exist for a given ΔT , the
one with lowest ΔV is chosen. Two constraints are imposed: (1) ΔT should
exceed the parabolic time of flight given by Barker’s equation3, and (2) the
leg’s maximum acceleration should be <90% of the maximum supported by the
spacecraft. These constraints lead many transfers to have no feasible solution,
for any ΔT (the targeted asteroid is simply unreachable). From all ΔT points
in the grid that do have a feasible solution, the one with lowest ΔV is chosen
to define the new rendezvous leg. In this approach, the optimization of one leg
then equates to finding the solutions to at most 50 Lambert’s problems. Note
2 http://esa.github.io/pykep/.
3 Legs failing this check are immediately discarded, saving computation time that

would otherwise be spent generating Lambert arcs with excessive ΔV .

http://esa.github.io/pykep/


Multi-rendezvous Spacecraft Trajectory Optimization with Beam P-ACO 149

that this final ΔV cost is the ground-truth to the do′ indicator described in the
previous section, from which he is defined. Note also that we take here a greedy
choice of ΔT , imposing in that way a transfer leg upon the combinatorial search
problem that might in the long term be sub-optimal with respect to its own
goals.

5.3 Trajectory Evaluation, Ranking, and Selection

Trajectories are evaluated by hs with respect to three criteria: (1) the mission’s
score, (2) the total mass required for propellant, and scientific equipment left at
asteroids, and (3) the total time of flight. The ideal mission will have the greatest
possible score, while requiring the lowest possible amounts of mass and time.

As mentioned in Sect. 3.1, a Pareto dominance approach [6] is used for han-
dling the multiple objectives. However, in this problem mass and time evalua-
tions are only fairly comparable among trajectories that share the same score. As
such, ranking a set of trajectories involves (1) binning trajectories according to
their score, and (2) applying non-dominated sorting [6] over the mass and time
costs of trajectories within each bin. Identifying the top trajectories in a given
set takes place by iterating through bins in descending order of score, gradually
extracting their Pareto fronts. If only a subset of a Pareto front’s trajectories is
required, those with lowest mass cost are favored.

In a tree search, this process is applied at each depth-level to construct the
beam with the best bw of the newly extended solutions. Before that, however,
hs is used for pruning nodes corresponding to missions that require >3500 kg,
or >15 years. Should that result in an empty pool of extended solutions, or the
pool otherwise be empty because no feasible transfer legs were found, the tree
search has then reached its final level and is terminated. The beam of solutions
carried over from the previous tree level will then be its final output. In Beam
P-ACO, this signals the end of a generation. The contents of that final beam
are then merged with the archive of non-dominated solutions found so far. By
applying the previously described ranking process, the archive will always be a
Pareto front of trajectories that all share the maximum score reached to date.
Beam P-ACO will at this point refresh pheromones. Note that the combinatorial
problem is asymmetric: an edge (i, j) present in a good solution is not predictive
of an edge (j, i) being likely to lead to good solutions. As such, an (i, j) edge in
an archived solution only results in pheromones along the (i, j) direction.

6 Experimental Evaluation

An experimental evaluation was carried out to assess the performance of the
different Beam Search variants, using the GTOC5 problem as a test case. Per-
formance is here evaluated in terms of multiple criteria. Primarily, we care about
search algorithms that enable the consistent discovery of asteroid sequences hav-
ing the greatest possible length (score). Among equally scored missions, we care
for the best possible coverage of the Pareto front of mass and time costs required
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to achieve such score. Finally, these considerations must be traded-off against
the computational cost to obtain such solutions.

6.1 Setup

We adopt as measure of computational cost the number of trajectory legs opti-
mized throughout the search. This is in practice the main performance bottle-
neck, especially if instead of a Lambert model one were to use a low-thrust one.
A threshold of 100000 optimized legs was used as stopping criterion.

The performance of deterministic Beam Search was evaluated over a dense
grid of settings for the beam width (bw) and branching factor (bf) parameters.
In total, 118 different setups were evaluated, all having upfront an estimated
cost of ≤100000 optimized legs required in order to complete execution at tree
depth 16, where missions reach and fully score the 16th asteroid (see Fig. 1).
Being a deterministic algorithm, only a single run was executed per setup.

Stochastic Beam and Beam P-ACO were evaluated under the 5 different con-
figurations of bf and bw highlighted in red in Fig. 1. Being stochastic algorithms,
100 independent runs were performed per setup. Deterministic branching deci-
sions were taken with a probability of q0 = 0.5 (q0 = 1 in Beam Search). In Beam
P-ACO, pheromone and heuristic values contributed equally to the h

′
e heuristic:

α = β = 1.0 (in the other Beam Search variants, implicitly α = 0.0). Pheromone
concentrations were limited to at most k = 3 contributions to each node.
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Fig. 1. Beam Search results from the parameter sweep over beam width (bw) and
branching factor (bf) configurations (118 setups in total, with costs below the threshold
of 100000 optimized trajectory legs). Darker is better. Highlighted in red: configurations
used in the Stochastic Beam and Beam P-ACO experiments. (Color figure online)

All tree searches reported here had the same root node. Its initial conditions
were originally obtained during the GTOC5 competition through a time-optimal
low-thrust optimization of the launch leg, as described in [21, Sect. 2] and exem-
plified in [16, Sect. 6.1]. After applying the linear model to define the self-fly-by
leg, the initial state is then a trajectory that has already scored 1 point at aster-
oid 2001 GP2 (id: 1712), and is ready to depart from it at epoch 59325.360 MJD,
having already expended 253.518 kg and 198.155 days from the total budgets.
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Fig. 2. Quantity of top solutions: cumulative number of distinct trajectories of score
16 or 17 found over time. Note the change of scale in the vertical axis.
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Fig. 3. Quality of top solutions: growth of the dominated area of objective space over
time (hypervolume of the Pareto front of score 16 trajectories found so far).

3380 3400 3420 3440 3460 3480 3500
Mass used (kg)

12.5

13.0

13.5

14.0

14.5

15.0

T
im

e
of

fli
gh

t
(y

ea
rs

)

Beam Search (bw = 20, bf = 275),
setup with max. hypervolume (120.63)

Stochastic Beam (bw = 20, bf = 125):
run with max. hypervolume (107.12)

run with median hypervolume (39.69)

run with min. hypervolume (0.00)
0.00

0.25

0.50

0.75

1.00

Em
pi

ric
al

A
tt

ai
nm

en
t

Fu
nc

tio
n

(E
A
F)

(a) Stochastic Beam

3380 3400 3420 3440 3460 3480 3500
Mass used (kg)

12.5

13.0

13.5

14.0

14.5

15.0

T
im

e
of

fli
gh

t
(y

ea
rs

)

Beam Search (bw = 20, bf = 275),
setup with max. hypervolume (120.63)

Beam P-ACO (bw = 20, bf = 125):
run with max. hypervolume (120.27)

run with median hypervolume (52.75)

run with min. hypervolume (0.00)
0.00

0.25

0.50

0.75

1.00

Em
pi

ric
al

A
tt

ai
nm

en
t

Fu
nc

tio
n

(E
A
F)

(b) Beam P-ACO

3380 3400 3420 3440 3460 3480 3500
Mass used (kg)

12.5

13.0

13.5

14.0

14.5

15.0

T
im

e
of

fli
gh

t
(y

ea
rs

)

Differences in favour of:
Beam P-ACO (bw = 20, bf = 125)
Stochastic Beam (bw = 20, bf = 125)

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

D
iff

er
en

ce
in

EA
F

va
lu

es

(c) Performance difference

Fig. 4. Empirical Attainment Functions: probabilities of objective space vectors being
dominated (or matched) in an algorithm’s run. The darker a region is, the likelier it is
that in a run a solution will be found that dominates it. Considers the Pareto fronts
of score 16 trajectories found up to the 100000 optimized legs threshold.

6.2 Results

The results obtained in the experimental evaluation are shown in Figs. 1, 2, 3
and 4. Analyses into the quality of solutions found in a run consider their hs

evaluations, in particular, the extent to which they minimize mass and time
costs. Though missions of score 17 were found in these experiments, they were
only rarely found, and furthermore only a single distinct mission was ever found
with that score. Therefore, analyses into the quality of solutions found consider
exclusively the score 16 missions found in runs. Specifically, we evaluate the
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Pareto fronts of score 16 missions found, and measure their coverage of the
objective space using the hypervolume indicator [29] – a measure of the total
area of objective space dominated by points in the Pareto front. A reference point
of 3500 kg and 15 years is used in all hypervolume calculations, corresponding
to the limits set forth in the problem specification. Runs that do not find any
score 16 mission, and therefore have an empty Pareto front, have a hypervolume
of 0.0.

Parameter Sweep of Beam Search Configurations: The results from these
experiments are shown in Fig. 1. Figure 1(a) shows the highest score reached
among the missions designed in each run. Figure 1(b) shows the hypervolume of
the Pareto front of mass and time costs in score 16 missions found in each run.
Figure 1(c) shows the prevalence of unfeasible solutions in the continuous search
spaces of asteroid transfers. In the setups that reached score 17, for instance, on
average only ≈23% of the attempted asteroid transfers had a feasible solution.

Quantity of Top Solutions: Figure 2 shows the results from the evaluation of
the quantity of score 16 or 17 solutions found by each algorithm over time. Only
distinct trajectories count here to a run’s totals – two trajectories are equal if
their asteroid sequence is exactly the same. The three plots shown correspond,
from left to right, to the results from Beam Search, Stochastic Beam, and Beam
P-ACO. Figure 2(a) shows one curve for each of Beam Search’s 118 evaluated
setups. The algorithm being deterministic, each curve depicts also one single
run. Overlaid in this plot is the Pareto front of cost-benefit trade-offs attainable
through different parameter settings: it shows the minimum number of trajec-
tory legs that need to be optimized to obtain different amounts of top scoring
trajectories. This Pareto front is replicated in the other two plots to allow a per-
formance comparison between the deterministic and randomized Beam Search
variants. The “hooks” shape seen, especially in Fig. 2(a), results from the way
Beam Search operates: most of its execution time is spent gradually descend-
ing through the tree, level by level. Eventually, the search reaches depth 15, at
which point each branching event possibly leads to a score 16 solution being
found. Hence, the sudden explosion in the total count. The plots for Stochastic
Beam and Beam P-ACO also display this effect, but in them values are averaged
over 100 runs, and consecutive tree searches (generations) are chained together.

Quality of Top Solutions: Figures 3 and 4 show the results from the eval-
uation of the quality of score 16 solutions found by each algorithm over time.
Figure 3 is structured in the same way as Fig. 2, so the description made above
for it also applies here. Figure 3 shows how the total dominated area of objective
space (hypervolume) grows over time, as new score 16 trajectories are found
and enter the Pareto front. Figure 4 takes a closer look at the setup bw = 20,
bf = 125, over which both randomized Beam Search algorithms are seen in Fig. 3
reaching median performance (out of the five evaluated setups). The plots shown
are Empirical Attainment Functions (EAFs) [8], which depict the likelihood of
objective space vectors being dominated (or matched) in an algorithm’s run. It
aggregates into one visualization the final Pareto fronts of score 16 trajectories
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found across all 100 runs. In Fig. 4(a–b), the boundaries of the shaded areas
show the 0.25, 0.5 and 0.75 “attainment surfaces”. In other words, the areas
having at least 25, 50 or 75% chance of being attained (dominated or matched)
by points in a run’s final Pareto front. Figure 4(c) takes the difference between
the EAFs for Beam P-ACO and Stochastic Beam, and shows how they compare
in terms of likelihood to attain different areas of objective space, making clear
the extent to which Beam P-ACO outperforms Stochastic Beam. The Pareto
front with greatest hypervolume found by deterministic Beam Search is shown
for reference.

7 Analysis and Discussion

Conceptually, we showed in this research a formal equivalence between four
combinatorial optimization algorithms: Beam Search, Stochastic Beam, Beam
P-ACO, and P-ACO. We demonstrated how they can all be implemented in the
same algorithm, and made accessible through minor parameter changes.

A surprising result, that validates the introduced phasing indicator, as well
as the baseline multi-objective Beam Search algorithm employed here, was the
discovery of a score 17 mission (17 asteroids visited, and fully investigated).
Searches over this model of the GTOC5 problem, using these same initial con-
ditions, had previously only reached a maximum score of 16 [21]. Furthermore,
those searches, employing a Branch & Prune tree search algorithm, took days
to complete during the GTOC5 competition. The Beam Search variants under
consideration could all find that single score 17 mission in runs lasting 10 to
20 min. Pure P-ACO is the exception here, having never surpassed a score 15
in our experiments (with a bf = 1, the high chance of an asteroid transfer’s
optimization problem not having a feasible solution greatly limits performance).

The first research question in Sect. 1 called for a demonstration of examples
where randomized Beam Search variants would outperform the deterministic
approach. If we evaluate in terms of mean performance, then, as we can see from
Figs. 2 and 3, the current experimental evaluation could not find any such cases.
At all computational cost thresholds we can find deterministic setups outper-
forming both of the randomized Beam Search variants, both in the quantity of
score 16 solutions found, and in their quality. The deterministic algorithm was
tuned to a considerably greater extent than the randomized ones (118 setups,
against only 5), so it is possible that we are presenting a skewed view of each
algorithm’s capabilities. Alternatively, it may be that the specific problem we
consider here is so resource-constrained, that the construction of long asteroid
sequences actually demands for greedy branching decisions to be taken at every
single step. In such a case, the search will not benefit from the greater tolerance
for local sub-optimality present in the randomized Beam Search variants.

The second research question in Sect. 1 considers how the addition of feed-
back (pheromones) in Beam P-ACO changes performance, by comparison with
Stochastic Beam, where search proceeds along multiple independent generations
with no feedback between them. Figures 2, 3 and 4 show a clear positive effect
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of feedback on performance, both in the quantity and quality of top solutions
found. This effect is seen to be larger the smaller the branching factor is. In other
words, the greater the branching factor, the likelier it is for good solutions to be
identified in a single generation, and thus the lower the benefit from feedback.

An identical comparison between randomized Beam Search variants, with and
without pheromone updates, can be found in [3, Sect. 6.2] (for a different hybrid
algorithm, and different problems). There, pheromones are also found to improve
performance, though in small amounts. The current research goes beyond the
analysis in [3] by uncovering the inverse relationship between branching factor
and benefit from pheromones, and in demonstrating the superior performance of
deterministic Beam Search over the randomized variants, given proper tuning.

Overall, an apt description of the behaviours displayed by the randomized
algorithms is that they approximate the performance of deterministic Beam
Search setups that use larger beam widths and branching factors – probabilistic
branching effectively picks a subset of the successor nodes that deterministic
Beam Search with larger branching factors would follow. The eventual success
or failure of a run will then depend on how well those decisions align with those
a better informed algorithm would take. This can be seen on display in Fig. 4.
There, we see that in the extreme a randomized Beam Search run can closely
approximate the Pareto front of score 16 trajectories found by an “optimally”
tuned deterministic Beam Search (with a bf = 125, less than half of the bf = 275
needed in the deterministic setting). However, it can also fail to find a single score
16 trajectory: 7 of the 100 runs in Fig. 4(a), and 4 in Fig. 4(b) could only reach
a score 15, thus ending in this analysis with a min. hypervolume of 0.0. Overall,
the median hypervolume of 52.75 reached by Beam P-ACO in Fig. 4(b) is higher
than that reached in ≈60% of the 118 deterministic Beam Search setups, and
also higher than that reached in 50% of the 32 deterministic setups that had
equal or larger beam width and branching factors.

In a real setting, in the preliminary design phase, missions would be con-
structed not from a single set of initial conditions, as done here, but from a
great number of them, possibly numbering in the thousands. Being anytime algo-
rithms, the randomized Beam Search variants investigated here can be employed
in a racing approach [22], with multiple tree searches being executed in parallel.
Computational effort would then be dynamically allocated across searches, as
a function of the growing statistical evidence as to which searches lead to bet-
ter missions. In such a setting, the randomized Beam search variants would be
preferable choices, over the deterministic algorithm.

8 Conclusion

We considered here a hard real-world problem of spacecraft trajectory design,
featuring an interplay of combinatorial and (constrained) continuous optimiza-
tion sub-problems, dealing at different levels with uncertain and multi-objective
quality functions. In this challenging domain, we investigated a number of exten-
sions to Beam Search, the traditionally used approach to solve such problems.
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We provided an improved orbital phasing indicator, and its transformation into a
probability distribution over candidate bodies to extend missions with. We then
hybridized the search process with the well known Ant Colony Optimization
algorithm, and investigated the behaviours of the resulting randomized Beam
Search variants. We found them to have lower sensitivity to the beam width
and branching factor parameter settings, while offering in each generation a
partially-informed approximation to the behaviours of deterministic setups run-
ning at higher computational costs.
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Tecnologia) Fellowship SFRH/BD/84381/2012.

References

1. Global trajectory optimization competition portal. http://sophia.estec.esa.int/
gtoc portal/

2. Bisiani, R.: Beam search. In: Shapiro, S.C. (ed.) Encyclopedia of Artificial Intelli-
gence, vol. 1, pp. 56–58. Wiley, Hoboken (1987)

3. Blum, C.: Beam-ACO-hybridizing ant colony optimization with beam search: an
application to open shop scheduling. Comput. Oper. Res. 32(6), 1565–1591 (2005)

4. Ceriotti, M., Vasile, M.: Automated multigravity assist trajectory planning with a
modified ant colony algorithm. J. Aerosp. Comput. Inf. Commun. 7(9), 261–293
(2010)

5. Ceriotti, M., Vasile, M.: MGA trajectory planning with an ACO-inspired algo-
rithm. Acta Astronaut. 67(9–10), 1202–1217 (2010)

6. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley,
Chichester (2001)
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Abstract. This paper is about strategic decisions required for running
an urban station-based electric car-sharing system. In such a system,
users can rent and return publicly available electric cars from charging
stations. We approach the problem of deciding on the location and size
of these stations and on the total number of cars in such a system using
a bi-level model. The first level of the model identifies the number of
rental stations, the number of slots at each station, and the total number
of cars to be acquired. Then, such a generated solution is evaluated by
computing which trips can be accepted by the system using a path-based
heuristic on a time-expanded location network. This path-based heuristic
iteratively finds paths for the cars through this network. We compare
three different pathfinder methods, which are all based on the concept of
tree search using a greedy criterion. The algorithm is evaluated on a set
of benchmark instances which are based on real-world data from Vienna,
Austria using a demand model derived from taxi data of about 3500 taxis
operating in Vienna. Computational tests show that for smaller instances
the algorithm is able to find near optimal solutions and that it scales well
for larger instances.

Keywords: Location problem · Car-sharing · Electric cars · Variable
neighborhood search

1 Introduction

Urban transportation as a major consumer of energy and a contributor to air
pollution raises challenges to local governments and companies that must be
solved in the near future. One of those challenges is to reduce the usage of
conventional cars in urban areas. It can already be observed that the market
for alternatives to combustion engine powered vehicles, especially (full) battery
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electric cars, is steadily growing. Moreover, car-sharing systems as an alterna-
tive or an addition to public transport is getting increasingly popular and in
many larger cities such systems are already installed and in use. As the main
drawbacks of electric cars—high acquisition costs, limited battery range, and
high infrastructure costs—is mitigated when used in an urban shared environ-
ment, electric car-sharing systems have attracted increased attention over the
last years. Such car-sharing systems provide a fleet of vehicles in a defined area
of operation in which users can rent and return cars. Specifically for electric cars,
however, charging stations have to be installed to recharge the battery of the
vehicles. We assume a one-way station-based system in which the users can rent
and return the cars only at these stations in contrast to free-floating systems
where the customers can return the cars in any free parking space within the
operational area. Therefore, we consider stationary electric car-sharing systems
where the decision is where to place these stations and how many charging slots
to install. This is crucial for the functionality and success of the whole system.
In Fig. 1 an illustration of such a system is given using, as an example, the inner
districts of Vienna, Austria. A good location for a station naturally depends on
the customer demand of the nearby area and therefore we use a demand model
to evaluate station locations. The demand model is given by a forecast of a set
of trip requests in which each request has an individual estimated profit. The
evaluation method maximizes the total profit of the acceptable requests.

Fig. 1. Illustration of station locations (green rectangles) with their area of attraction
and chosen number of installed charging slots in the inner city of Vienna, Austria. Red
circles show possible station locations which are not chosen. (Color figure online)
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This work considers the problem of deciding the charging locations, their
size, and the total number of cars in the system as combinatorial optimization
problem that is heuristically solved using a two-stage solution algorithm. In
the first stage, the decision variables are fixed using a variable neighborhood
search (VNS) [13]. Each generated solution candidate is evaluated in the second
stage using an iterated procedure based on a greedy criterion using a demand
forecast. Specifically, a greedy, a PILOT, and a beam search algorithm is used
to iteratively find paths for the used cars through the system. The presented
algorithm is evaluated on a set of benchmark instances based on real-world data
of Vienna, Austria. First, the problem is formally defined in Sect. 2. Then, related
work is described in Sect. 3 followed by the description of the algorithm in Sect. 4.
Computational results are presented in Sect. 5 and finally, conclusions are drawn
and possible future research directions are given in Sect. 6.

2 Problem Definition

The charging station location problem (CSLP) is defined on a road network
G = (V,A) given by a set of vertices V and a set of directed arcs A representing
road segments. Each arc a = (i, j) ∈ A, i, j ∈ V has a length lij and an asso-
ciated weight representing the travel time δij needed to travel from vertex i to
j. Possible charging stations S ⊆ V are given by a subset of the vertices and
each potential station i ∈ S has an associated opening cost Fi ≥ 0, a capacity
Ci ∈ N, and a cost per slot Qi ≥ 0. The maximum number of cars is given by
H, and each car has the same acquisition cost Fc, battery capacity Bmax, and
charging rate per time unit ρ.

Furthermore, a set of requested trips K is given, which corresponds to a
demand forecast within the time horizon T = {0, . . . , Tmax} and is the basis of
the solution evaluation. Each request k ∈ K has a starting sk ∈ T and ending
time ek ∈ T with ek > sk, an origin ok ∈ V , and a destination dk ∈ V . Further,
a duration δk, an estimated battery consumption bk, and a profit pk is given
for each request k ∈ K. It is assumed that the customers are willing to walk
to a nearby station if the walking time does not exceed a pre-defined maximum
duration βw. Based on this maximum walking time we have a set of potential
starting N(ok) and ending stations N(dk) for each request k ∈ K. If there are no
potential stations within the walking range, i.e., N(ok) = ∅ or N(dk) = ∅ then
the request is unrealizable and therefore not considered. Figure 2 illustrates the
CSLP on a small road network.

The goal of the CSLP is to find the set of stations to open S′ ⊆ S, the number
of slots to use for each open station, and the total number of cars H ′ ≤ H in the
system with a limited budget W such that the total profit of all accepted trips is
maximized. To compute the obtained profit each car c = 0, . . . , H ′ − 1 must be
assigned a set of feasible trips K ′

c ⊆ K where each trip k ∈ K ′
c, ∀c = 0, . . . , H ′−1

can only be assigned to at most one car c. Each car c = 0, . . . , H ′ − 1 must be
able to perform its assigned trips K ′

c by ensuring capacity feasibility, battery
feasibility, and connectivity of the car route:
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Fig. 2. Example of a problem instance and a specific solution in a small graph. The
road network is illustrated by the big circles as crossings, the rectangles as possible
station locations, and the streets between them. The starting points of the trip requests
are shown as small circles and the respective ending points as red diamond-shaped
rectangles. The filled rectangles correspond to the chosen locations to which the nearby
starting and ending points of the acceptable requests are assigned. The arrows between
the stations indicate the travel paths of the cars which are routed through the network.
The number of cars traveling along these routes is shown by the number above these
arcs. In the upper right and lower left corner some requests are shown which are
unfulfillable because there is no station in the vicinity of their starting points.

– Capacity feasibility is given when at each time-step t ∈ T there are no more
cars in station s ∈ S than the available number of slots.

– Battery feasibility is given if the battery capacity of the car is sufficient
for performing the requested trip taking potential preceding battery charg-
ing into account. More formally, the solution is battery feasible if between
two consecutive trips k1, k2 ∈ K starting/ending at station i of a car
min{(sk2 − ek1)ρ + Bk1

, Bmax} ≥ bk2 is valid, where Bk1
is the remaining

battery capacity of the car after performing trip k1.
– Connectivity is given when the ending station of a trip k is equal to the starting

station of the next trip.

Then, the total profit of a solution S is the total sum over the profits of all
accepted trips: p(S) =

∑H′−1
c=0

∑
k∈K′

c
pk. We are aware that in practice it might

be unrealistic to plan the accepted trips in such a way, but this academic problem
formulation allows us to obtain an upper bound for the total profit based on a
given demand forecast.

3 Related Work

The charging station location problem in the presented form is a relatively new
research topic and was introduced by Brandtstätter et al. [5]. In their work
the authors defined the problem, proved its NP-hardness and described some
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polynomially solvable cases. Furthermore, they modeled the CSLP as integer
linear program in several ways and compared the efficiency of their models on
a set of artificially created and real-world instances. The best formulations are
able to solve real-world instances with up to 480 trips, 50 cars, and 153 possible
station locations to proven optimality. In another work Brandstätter et al. [4]
considered stochastic aspects of the demand and presented two-stage stochastic
models and a heuristic for solving the stochastic CSLP.

The literature of optimization problems arising in (electric) car-sharing sys-
tems is, however, broader and a recent literature survey can be found in [3].
A similar problem concerning the location of charging stations for electric car-
sharing systems was described by Boyacı et al. [2]. Additionally, they also con-
sidered operational decisions regarding relocation of cars from stations in low
to stations in high demand areas to balance the system as a whole. The topic
of relocating cars is also considered by Weikl and Bogenberger [16] who inves-
tigated different relocation strategies for free floating conventional car-sharing
systems. Related problems in the domain of exact methods and heuristics for
optimization problems arising in electric car-sharing systems are described, e.g.,
by Hess et al. [12], Ge et al. [11], Cavadas et al. [6], and Frade et al. [9]. Another
related problem of placing charging stations for electric taxis in urban areas was
approached by Asamer et al. [1]. The authors propose a decision support system
which identifies promising regions in which charging stations should be placed
instead of actual locations.

4 Algorithm Description

We approach this problem using a two-stage solution algorithm. In the first (or
upper) level it is fixed which stations are opened, how many slots are built at
each open station, and how many cars are purchased. Then, in the second (or
lower) level we compute which requests can be accepted by the system using the
solution of the upper level problem. As both the upper level and the lower level
problem are computationally demanding, we solve both of them heuristically.
Therefore, a variable neighborhood search (VNS) [13] is used for the upper level
and three different procedures based on a greedy criterion are used for solving
the second stage. In the next sections we will describe the algorithms in detail.

4.1 Variable Neighborhood Search for the Upper Level Problem

A solution to the upper level problem is represented by an integer vector z of
size |S| and each element zi, ∀i = 0, . . . , |S| − 1 can take values 0, . . . , Ci. In our
approach we determine the total number of cars of a solution candidate implicitly
by first fixing the stations and number of slots and then using as many cars as
possible with the remaining budget bounded by H.

The first step of the algorithm is to create an initial solution which is then
passed on to a subsequent variable neighborhood search. The initial solution
generation is a greedy construction heuristic based on following greedy criterion:
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Each potential station is assigned an attractiveness value which determines the
order of the stations which are considered to be opened. This attractiveness value
is the number of requests which can start or end at this station and thereby
represents a heuristic guidance which stations are useful for the given set of
requests. Then, the construction algorithm iterates over the set of stations in
descending order with regard to their attractiveness values, opens station i if the
remaining budget is sufficient, and chooses the number of slots out of the budget
feasible values of {1, . . . , Ci} uniformly at random. The algorithm ensures that
there is enough remaining budget to purchase at least one car and terminates if
no station can be opened anymore.

This starting solution is then passed to a general variable neighborhood
search, which was introduced by Mladenović and Hansen [13]. The underlying
variable neighborhood descent (VND) uses four different neighborhood struc-
tures (NBs) which are searched in the following order (sorted by their estimated
complexity in ascending order) in a best improvement fashion:

– Close station: In this neighborhood structure a randomly chosen station out
of the currently open ones is closed. As a consequence, this move primarily
increases the number of purchased cars and can therefore improve the objective
value. Here, we do not only accept improving moves but also accept moves
which do not change the objective value. The idea behind this strategy is
to have as much budget available for the next neighborhood structures as
possible.

– Open station: A move in this neighborhood structure opens a previously closed
station with as many slots as possible.

– Change slots: An already open station i is chosen, the number of slots zi is
set to all feasible values out of {1, . . . , Ci} and the best result is taken.

– Swap slots: For each pair of stations i, j ∈ S for which zi �= zj the values
of zi and zj are swapped. Resulting infeasibilities are repaired by iteratively
reducing the number of slots of station i or j (chosen uniformly at random)
by one until the solution is feasible again.

The VNS uses four shaking neighborhood structures which are based on
the NBs described above. The first two shaking NBs are based on the swap slots
neighborhood structure and performs two and four swaps, respectively. The third
and fourth NBs perform two and four moves in the close station neighborhood
structure.

4.2 Path-Based Heuristic

After fixing the solution (z,H ′) of the upper level problem, in the lower level
problem we now have to compute the trips that are accepted by the system
so that the total profit is maximized. Therefore, we use a variant of the path-
based heuristic (PBH) introduced by Brandstätter et al. [5]. The PBH finds
iteratively paths for each car through space and time in an adaptable time-
expanded location network (TELN). The TELN is a time-discretized directed
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acyclic multigraph basically consisting of one node for each station and time
unit and arcs between each two consecutive time slots. In the following we will
formally define the TELN GT = (N,A′):

First, the set of open stations is defined as S′ = {i ∈ S | zi > 0}. Then, for
each station i ∈ S′ and each time unit t ∈ T a node it is introduced forming
the set of nodes N . Additionally an artificial source rs and target node rt are
created. The set of arcs A′ is divided into three disjoint subsets of arcs AI , AW ,
AT and each arc a has an associated profit pa and a battery consumption ba.

– The set of initialization arcs AI = {(rs, i0) | i ∈ S′} ∪ {(itmax , r
t) | i ∈ S′} are

the arcs leaving the artificial source node to each station node of the first time
slot and entering the artificial target node from each station node of the last
time slot tmax. All initialization arcs have a profit and battery consumption
of zero.

– Waiting arcs AW are added between two time slots of any station, i.e., in
the simplest case AW = {(it, it′) | i ∈ S′, t ∈ T \ tmax, t

′ = t + 1}. This set,
however, can be reduced as we will see later. These arcs also have a profit of
zero but a negative battery consumption of −φi which corresponds to battery
charging.

– Finally, the set of trip arcs AT corresponds to the requested trips and contains
arcs for each trip that can be accepted (denoted by K ′ ⊆ K) with the given
set of stations S′. For each such trip k ∈ K ′ an arc is introduced for all
possible starting and ending station combinations, i.e., AT =

⋃
k∈K′ AT

k , with
AT

k = {(isk , jek) | i ∈ N(ok), j ∈ N(dk)}, ∀k ∈ K ′. Each trip arc a has battery
consumption bk and profit pk, where k ∈ K ′ is the corresponding request.

An illustrative example of a TELN with four stations is shown in Fig. 3. In this
figure the solid lines are initialization or waiting arcs and the dashed lines are
trip arcs corresponding to a request.

In this example we see a reduced version of the graph which omits many of
the unnecessary waiting arcs. Let N i ⊆ N = {ni

0, . . . , n
i
|Ni|} be the set of all

starting/ending nodes of all trips at station i ∈ S′ sorted in ascending order of
their starting/ending time. Then, the set of actual introduced waiting arcs is the
following: AW = {(i0, ni

0)} ∪ {(ni
|Ni|, itmax)} ∪ {(ni

t, n
i
t+1) | t = 0, . . . , |Ni| − 1}.

rs rt

t = 0 t = tmax

Fig. 3. Example of a time-expanded location network with four open stations.
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After building the graph GT, as Algorithm 1 shows, the PBH consists of
iteratively finding paths from rs to rt in the TELN and updating the graph
based on the found path. The resulting objective value of the upper level solution
is then the total profit of all found paths where the profit of a path is defined
as the total profit of all requests fulfilled by this path. The path finding step
corresponds to solving a resource constrained shortest path problem with the
battery as resource and the negative profits as the arc weights to minimize. Note
that here we do not have to consider the station capacities as it is assured by the
update procedure of the graph, which is described later, that they can never be
violated. As this problem is NP-hard [10], we use several heuristics for solving
it. All of these heuristics construct iteratively a path starting from rs using a
greedy criterion based on the concept of a potential profit p′ of a node. For each
node it ∈ N a potential profit p′(it) is calculated by computing shortest paths
from it to the target node rt relaxing the battery constraints. In the PBH this is
done by computing shortest paths from rt to all other nodes in the arc-reversed
graph. Then, each time a path P is found through the TELN, the graph is
updated for the next iteration. Therefore, for each served request k ∈ K ′ on
P , all corresponding trip arcs AT

k are deleted from GT which ensures that one
request can only be fulfilled by at most one car. Furthermore, we have to ensure
capacity feasibility of the paths and therefore we introduce global variables uit,
∀i ∈ S′, t ∈ T which are initially set to zero. These variables store the current
number of cars at each station in each time step over all iterations. For each
used arc a = (it, jt′) ∈ P , i, j ∈ S′, we increase ujt′ by one and check if the fixed
number of slots of j is reached. If ujt′ = zj , then all incoming arcs of node jt′

are deleted from GT which ensures that in later iterations this node cannot be
reached anymore. Finally, also the potential profits of the nodes have to updated
and the shortest path values are recomputed.

Algorithm 1. Path-based Heuristic
Input : Upper level solution (z,H ′)
Output: Approximated profit
build time-expanded location graph GT

for i = 0, . . . , H ′ do
find feasible path from rs to rt in GT

update graph GT

if termination criterion is satisfied then
break;

return total profit of all paths

The PBH terminates if one of these conditions is satisfied:

– H ′ paths are found.
– The potential profit of rs is zero or rt is unreachable.
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– The path finding algorithm could not find a path from rs to rt. This can
happen if it gets stuck at a node with either no outgoing arc or with only
outgoing arcs with a battery consumption greater than the remaining capacity.

– The profit of the found path is zero. Although this condition is not needed for
the PBH to be valid it is introduced for improving its efficiency by reducing
the number of generated paths with zero profit.

In the following we will describe three heuristics we designed, implemented,
and evaluated for finding feasible paths. They are described in order of their
complexity and time consumption and a comparison of their performance is
given in Sect. 5.3.

Greedy Pathfinder. The greedy pathfinder always appends at the current
node it a battery-feasible arc a = (it, j′

t) for which pa + p(j′
t) is maximum and

ties are broken randomly.

PILOT Pathfinder. The PILOT pathfinder extends the greedy algorithm by
incorporating a look-ahead mechanism as described in [8]. Instead of always
extending the current partial solution with the arc a = (it, j′

t) for which pa +
p(j′

t) is maximum, for each possible extension a lower bound on the objective is
computed (using the greedy algorithm described above). Then, the extension is
performed which results in the highest value and ties are, again, broken randomly.

Beam Search Pathfinder. The beam search pathfinder is based on the beam
search algorithm [14]. Beam search uses a set of partial solutions of size kbw,
called the beam, and evaluates the kext most promising extensions to these. For
this problem we choose the extensions based on the greedy criterion as explained
before. In the end, all partial solutions of the beam are complete and the best
one among those is taken as the final solution.

5 Computational Results

The developed algorithm is tested on a set of benchmark instances based on
real-world data, which are described in Sect. 5.1. First, computational results
on a set of instances are shown, which previously also have been approached
by exact algorithms [5]. Then, in the second set of experiments, the developed
pathfinder methods are compared on a different set of instances with stricter
battery constraints to better highlight the differences of these methods.

5.1 Instance Description

The basis of all instances is the road network of Vienna, Austria obtained with
OpenStreetMap data1. We assume potential locations for stations at super-
markets, parking lots, and subway stations. The number of slots for each sta-
tion is chosen uniformly at random between 1 and 10. Station opening and
1 https://www.openstreetmap.org/.

https://www.openstreetmap.org/
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slot costs are chosen uniformly at random from Fi ∈ {9000, . . . , 64000} and
Qi ∈ {22000, . . . , 32000} Euro, respectively. We further assume fast charging
slots with a maximum charging rate per slot of 50 kW. The set of homogeneous
cars is based on the data of the Smart ED car with an acquisition cost of 20000
Euro, a battery capacity of 17.6 kWh, and a maximum charging rate of 17.6 kW.
The data for the requested trips is based on real Taxi data of one week in spring
provided by a Taxi provider of Vienna. For each trip we are given the start-
ing and ending point, and the duration and battery consumption is computed
using the routing framework by Prandtstetter et al. [15]. Furthermore, we are
given a starting and ending time, which is discretized in time intervals of 15 min,
resulting in 672 time periods. The profit is computed by assuming a rate of 0.3
Euro/minute which approximately corresponds to the rate of local car-sharing
systems. We assume that each trip can start and end at the three closest sta-
tions within a walking distance of 5 min. Therefore, the original road network G
is extended by introducing an arc a′ = (j, i) for each arc a = (i, j) ∈ A of the
original network and setting lji = lij . We assume a walking speed of 1.34 m/s
and compute a shortest path using Dijkstra’s algorithm [7] from the starting and
the ending point of each request to all stations using the walking time as arc
weight. The instance contains 693 potential station locations and 37965 trips.

The size of the whole instance is very large and especially the outer areas are
not economically relevant for practical applications. Therefore, we filtered the
instance and use only a subset of the trips and stations for the algorithm eval-
uation. Figure 4 shows four subsets of instances I1, . . . , I4 based on the political
districts of Vienna.

The first instance I1 uses only the potential stations and requests starting
and ending in one of the five red districts. For I2 the yellow district is added
and for I3 the yellow and the blue districts. Finally, the largest instance I4 uses

Fig. 4. The 23 districts of Vienna, Austria with the highlighted subset of districts
which are used as instances. (Color figure online)
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all ten colored districts. Table 1 shows the properties for each instance, where
rK is the average number of requests per hour, and bK is the average energy
consumption of the trips relative to the battery capacity of the Smart ED car in
percent.

Table 1. Additional instance data.

Instance |S| |K| rK bK

I1 105 108 0,68 3,10

I2 131 209 1,29 3,28

I3 198 719 4,31 3,37

I4 280 1347 8,04 3,27

Each such created instance is further split into specific instances by specify-
ing a maximum budget and a maximum number of cars. These instances are
preprocessed in two ways:

1. Stations in which no requests can start or end are not considered.
2. The times of the requested trips are shifted forward in time so that the first

fulfillable request starts at t = 0 and tmax is given by the ending time of the
last fulfillable request. Thereby, the size of T and hence the size of the TELN
decreases which results in a faster solution evaluation.

5.2 Comparison to Exact Algorithms

First, we compare the results of the developed algorithm with exact methods
based on integer linear programming (ILP) models developed by Brandstätter
et al. [5]. They proposed several models and three of them (C1, C2, F1)
turned out to perform best on the considered instances. Model C1 uses con-
nectivity cuts and continuous battery tracking, C2 uses connectivity cuts and
battery-infeasible path cuts, and model F1 is a multi-commodity flow formu-
lation with continuous battery tracking. Table 2 shows the results of our pro-
posed VNS with the greedy pathfinder compared to the results obtained from
the exact models. We used instances with different budget constraints out of
W ∈ {1000000, 2000000, 3000000, 4000000, 5000000} Euro and the number of
cars H is restricted by either 10, 25, or 50. Here we used only the district sub-
sets of I1 and I2 to be able to make comparisons. For instances I3 and I4 the
state-of-the-art exact approaches are not able to produce reasonable results in
reasonable time. Table 2 shows the average objective value over 30 independent
runs of the VNS (obj), their associated standard deviation (sd), and the best
objective value over these 30 runs (objb). Each run was performed on an Intel
Xeon E5-2643 processor and terminated after 3600 s. The best solution, however,
was usually found earlier (depending on the size of the instance) as the algorithm
converged to its final solution. For the models the table shows the lower bound
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Table 2. Comparison to exact integer linear programming approaches

Instance VNS C1 C2 F1

W H I obj sd objb objlb objub gap objlb objub gap objlb objub gap

1M 10 I1 13559,0 303, 7 13769 14045 14045,0 0, 0 14045 14046,3 0, 0 14045 14045,0 0, 0

2M 10 I1 19563,2 489, 6 20444 21899 21901,0 0, 0 21899 21899,0 0, 0 21899 21901,1 0, 0

3M 10 I1 21411,1 220, 2 21557 21956 21956,0 0, 0 21956 21956 0, 0 21956 21956,0 0, 0

4M 10 I1 21430,4 198, 1 21557 21956 21956,0 0, 0 21956 21956,0 0, 0 21956 21956,0 0, 0

5M 10 I1 21493,1 123, 1 21557 21956 21956,0 0, 0 21956 21956,0 0, 0 21956 21956,0 0, 0

1M 25 I1 13542,8 338, 5 13769 14045 14045,0 0, 0 14045 14046,2 0, 0 14045 14046,2 0, 0

2M 25 I1 23467,8 320, 2 24017 18302 25279,0 38, 1 25279 25281,2 0, 0 25279 25281,4 0, 0

3M 25 I1 28089,8 538, 9 29168 30845 30845,0 0, 0 30845 30845,0 0, 0 30845 30848,0 0, 0

4M 25 I1 29807,1 359, 4 30441 31215 31215,0 0, 0 31215 31215,0 0, 0 31215 31215,0 0, 0

5M 25 I1 30410,1 190, 7 30686 31215 31215,0 0, 0 31215 31215,0 0, 0 31215 31215,0 0, 0

1M 50 I1 13625,1 201, 0 13769 14045 14045,0 0, 0 14045 14045,0 0, 0 14045 14299,0 1, 8

2M 50 I1 23511,4 342, 7 24086 25147 25291,3 0, 6 25279 25279,0 0, 0 25186 25645,5 1, 8

3M 50 I1 28783,9 524, 6 29858 26057 31140,2 19, 5 26837 31135,5 16, 0 31131 31134,1 0, 0

4M 50 I1 31545,2 410, 6 32403 30948 33971,0 9, 8 33708 33952,8 0, 7 33877 34197,0 0, 9

5M 50 I1 33154,4 425, 9 33754 34093 34197,0 0, 3 34197 34197,0 0, 0 34197 34197,0 0, 0

1M 10 I2 23142,6 389, 6 23515 24403 24403,0 0, 0 24403 24403,0 0, 0 24403 24403,0 0, 0

2M 10 I2 32032,7 748, 9 33351 36916 37277,0 1, 0 36846 37277,0 1, 2 37277 37280,5 0, 0

3M 10 I2 37041,1 873, 7 38431 40822 40822,0 0, 0 40822 40822,0 0, 0 40822 40822,0 0, 0

4M 10 I2 38967,6 347, 9 39459 40822 40822,0 0, 0 40822 40822,0 0, 0 40822 40822,0 0, 0

5M 10 I2 38967,2 320, 1 39496 40822 40822,0 0, 0 40822 40822,0 0, 0 40822 40822,0 0, 0

1M 25 I2 23141,2 436, 7 23542 24403 24403,0 0, 0 24403 24403,0 0, 0 22675 27100,2 19, 5

2M 25 I2 37457,9 818, 4 38415 27340 40952,2 49, 8 24809 40957,0 65, 1 39667 43608,0 9, 9

3M 25 I2 46500,5 1003, 7 48301 36783 53172,5 44, 6 52506 53166,0 1, 3 52392 54470,6 4, 0

4M 25 I2 49988,0 1092, 5 51987 58219 58253,0 0, 1 58160 58253,0 0, 2 58155 58253,0 0, 2

5M 25 I2 53639,6 981, 8 55736 58253 58253,0 0, 0 58253 58253,0 0, 0 58253 58253,0 0, 0

1M 50 I2 22962,8 591, 7 23542 24403 24403,0 0, 0 22895 24430,1 6, 7 23180 27745,0 19, 7

2M 50 I2 37349,1 825, 6 38536 24852 40985,6 64, 9 24031 40987,0 70, 6 38940 43853,8 12, 6

3M 50 I2 47953,0 837, 4 49381 36783 53564,4 45, 6 36783 53502,5 45, 5 49906 55732,9 11, 7

4M 50 I2 54131,0 1266, 0 57060 47877 62012,2 29, 5 47877 62014,9 29, 5 61343 62958,9 2, 6

5M 50 I2 59358,4 1453, 9 61943 57238 66494,4 16, 2 57238 66494,4 16, 2 65783 66971,0 1, 8

(objlb), the upper bound (objub), and the optimality gap (gap). The models are
solved using CPLEX 12.6.3 with a time limit of 6 h.

The results in Table 2 show that the VNS is barely able to reach the results
(objlb) of the exact methods when the gap is below 20%. For the larger instances
i1 with H = 50, however, the VNS starts finding better results than model C1
and C2. The average gap of the VNS to the optimal value of the optimally solved
instances is about 6.1%. After an analysis of the results we observed that the
main reason for the worse performance on some instances lies in the inaccuracy
of the solution evaluation. Although the greedy pathfinder is often able to find
the optimal path through the TELN, the overall evaluation procedure is just an
approximation since the path of each car is evaluated separately in succession.
Therefore, even if the VNS would generate an optimal solution, the pathfinder
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heuristic would not be able to identify it as such because it might be assigned a
worse objective value from the procedure which calculates the accepted trips.

5.3 Pathfinder Results for Larger Instances

In the second set of experiments the impact of the used pathfinder (greedy (G),
PILOT (P), and beam search (B)) on the final results is investigated in more
detail. The instances, as described in Sect. 5.1 have a low trip density and average
energy consumption per trip. Preliminary results showed that for these instances
the greedy pathfinder always performed best because it is the fastest algorithm
and the PILOT and beam search method were never able to find better paths.
Therefore, we now assume an adapted demand forecast in which the system is
more utilized and the requested trips are longer. So, we change the instances in
the following way:

– The starting times of all requests of the instance are scaled in such a way that
they all start within an 8 h period.

– The battery consumption of each request is increased by a factor of 6.

By applying these adaptions the instance becomes, on the one hand, more
crowded so that more trips are requested in a short time period and, on the
other hand, it becomes more battery restricted. Therefore, the used pathfinder
is more crucial to the solution evaluation. The results of the different algorithms
are shown in Table 3 and, again, 30 runs per instance are performed with a
maximum run-time of 3600 s.

Table 3. Results of the different pathfinders for the altered instances aggregated by
used subset of districts i and number of available cars H.

Instance objg #best #G>sig #P>sig #B>sig

i H G P B G P B P B G B G P

I1 10 17800,5 18040,9 17965,7 1 3 1 1 1 4 4 3 0

25 23752,6 23933,8 23886,5 1 4 0 1 1 4 0 4 0

50 25332,2 25229,1 25102,8 3 2 0 3 3 2 3 0 0

I2 10 28529,0 28829,0 28684,0 0 5 0 0 1 1 2 0 0

25 39973,8 39680,7 39220,2 5 0 0 3 5 0 2 0 0

50 42788,8 42317,0 42019,2 5 0 0 4 5 0 1 0 0

I3 10 46528,5 47068,0 46257,9 1 4 0 0 2 2 4 0 0

25 71937,7 71052,8 69499,3 4 1 0 3 4 1 4 0 0

50 81131,1 78513,6 76170,1 4 1 0 4 4 1 4 0 0

I4 10 46648,1 46499,7 45775,3 3 2 0 1 3 1 3 0 0

25 71833,6 69268,5 66719,6 5 0 0 4 5 0 3 0 0

50 81547,6 77482,9 75111,6 5 0 0 4 5 0 3 0 0
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In this table the instances are grouped by the subset of districts I1, . . . , I3
and the maximum number of cars H ∈ {10, 25, 50} resulting in 5 instances with
different budget constraints per row. For each row the geometric mean (objg),
the number of instances for which the algorithm yields the best average objective
value over all 30 runs (#best), and the results of the statistical tests are given.
For testing the statistical differences between the algorithms we performed one-
sided Wilcoxon rank sum tests using an error level of 5%. The entries of the table
corresponds to the number of instances for which algorithm A yields statistically
significant better results than algorithm B, i.e., the entries in column P below
#G>sig are the number of instances the greedy pathfinder finds better results
than the PILOT pathfinder.

Table 3 shows that for the smallest instance I1 and for the instances with
H = 10 both the PILOT and the beam search pathfinder tend to yield better
results than the greedy pathfinder. As the instance size or the number of available
cars increases, however, the greedy pathfinder starts performing better than the
other two. Especially the beam search pathfinder is outperformed by the greedy
and PILOT pathfinder, as it could not find significantly better results than the
latter for any of our test instances. This behavior can be explained by the higher
run-time complexity for the PILOT and beam search pathfinder as the instance
size grows. When the greedy pathfinder is used, the algorithm can perform more
iterations overall and is therefore able to find better solutions.

6 Conclusions and Future Work

In this work a heuristic algorithm for finding and designing charging stations for
electric vehicles is presented. It is based on a bi-level model formulation in which
the first level decides on the station locations, number of slots per station, and
the total number of cars by using a variable neighborhood search. Then, for each
generated solution candidate of the first level, a path-based heuristic is used for
the evaluation, i.e., deciding which trips can be accepted by the system. For the
path-based heuristic three different path-finders are implemented and compared
to each other. The results show that for smaller instances and instances with a
smaller number of available cars that have a high trip density and many trips
with a high energy consumption, the PILOT pathfinder performs best in most
of these instances. On the other hand, if the instance size is larger, the trips
are shorter, or the trip density decreases, the greedy pathfinder outperforms
the other two. The beam search pathfinder is, however, not able to consistently
find any significantly better results than the greedy or the PILOT method. The
implemented algorithm was further compared with several exact methods based
on integer linear programming from the literature. The results show that for
those instances which are hard to solve by exact approaches and thus have high
optimality gaps, the VNS is able to yield better results. However, it was not able
to find solutions with the same quality for those instances that could be solved
to optimality. The main reason for this is that the solution evaluation using
the path-based heuristic is not exact and therefore the algorithm is not able to



Optimizing Charging Station Locations for Electric Car-Sharing Systems 171

find the optimal trips to be accepted. An exact evaluation might improve these
results but the algorithm would not scale well with the instance size anymore.

Although we considered many aspects of a real-world electric car-sharing sys-
tem, some operational decisions are neglected currently. As one-way car-sharing
systems tend to fall out of balance over time because of the not uniformly distrib-
uted demand in the operational area some kind of re-distribution of the vehicles
must be performed. These re-distributions can be user-based (e.g., by giving the
users incentives) or system-based. When using the latter, the re-distribution is
usually performed by dedicated relocators who move cars between stations. This
step is important for the operational decisions of such an electric car-sharing sys-
tem but can also be considered for the strategic decisions of the station planning.

The solution algorithm could potentially be improved by using a more
advanced initial solution generation method. The path-based heuristic used for
the solution evaluation can be extended to generate an initial solution by letting
the heuristic decide which station to open or to extend if it is budget-feasible.
For larger instances, however, the run-time requirements would increase because
the whole set of available stations has to be considered for the time-expanded
location network. Another possibility to improve the algorithm is to incorporate
feedback from the lower level into the upper level. Data generated by the solu-
tion of the lower level problem, e.g., which stations have a too high/low capacity,
could guide the search in the upper level into promising directions.

Another interesting direction for future work are free-floating systems in
which the users can rent and return the cars anywhere within the operational
area. When using electric cars in such a system, charging stations still have to be
planned and the re-distribution may become even more important. The impact
of using such a system on the trip acceptance rate, the user experience, and on
the strategic planning is promising and relevant for future research.
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Abstract. In order to increase the performance of an evolutionary algo-
rithm, additional auxiliary optimization objectives may be added. It is
hard to predict which auxiliary objectives will be the most efficient at
different stages of optimization. Thus, the problem of dynamic selection
between auxiliary objectives appears. This paper proposes a new method
for efficient selection of auxiliary objectives, which uses fitness landscape
information and problem meta-features. An offline learned meta-classifier
is used to dynamically predict the most efficient auxiliary objective dur-
ing the main optimization run performed by an evolutionary algorithm.
An empirical evaluation on two benchmark combinatorial optimization
problems (Traveling Salesman and Job Shop Scheduling problems) shows
that the proposed approach outperforms similar known methods of aux-
iliary objective selection.

Keywords: Evolutionary algorithms · Multi-objective optimization ·
Auxiliary objectives · Fitness landscape features

1 Introduction

Evolutionary algorithms (EAs) are generic meta-heuristic optimization algo-
rithms. An EA searches solution candidates based on the current state whilst pre-
viously reached historical states are not taken into account during the runtime.
The information derived from the fitness landscape and from the optimization
problem instance may be used to determine the state of an evolutionary algo-
rithm. In these terms, the optimization problem transforms into searching the
EA states which correspond to global optima on the fitness landscape. Auxiliary
objectives may be used instead of the target objective or along with the tar-
get objective. Auxiliary objectives serve to multi-objectivise a single objective
problem. In some cases this transformation may increase efficiency of an EA.

An auxiliary objective is efficient if its usage leads to decrease of the time
needed to find the optimum of the target objective. Different auxiliary objectives
have different efficiency on various stages of optimization. For example, at the
stagnation point of the EA the most aggressive auxiliary objective may move
the optimization process away from getting stuck in a local optimum. Inversely,
c© Springer International Publishing AG 2017
B. Hu and M. López-Ibáñez (Eds.): EvoCOP 2017, LNCS 10197, pp. 173–188, 2017.
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if the current algorithm state corresponds to the situation where solution candi-
dates are located near the global optimum, we would want to use less aggressive
auxiliary objectives.

At present time, researchers are looking for new ways of parameterizing fit-
ness landscape features and applying received techniques in the evolutionary
computation field [1,2]. Authors of paper [3] suggested a method to multi-
objectivise single objective problems by using an elementary landscape decom-
position of their objective function. However, to the best of our knowledge,
landscape features have never been used to guide dynamical selection of auxil-
iary objectives. The existing objective selection algorithms use random selection
based on the number of iterations [4] or reinforcement learning based on differ-
ences in target objective values [5].

One of the first approaches to transform a single-objective problem into a
multi-objective one was proposed by Knowles et al. in [6]. The authors sug-
gest decomposing the target objective into several components, which should be
independent. The decomposed objectives are optimized simultaneously. Another
method belongs to Jensen [4]. The idea is to use auxiliary objectives in com-
bination with the target objective. Furthermore, the auxiliary objectives used
in paper [4] are changed dynamically. The author concluded from the obtained
experimental results that using one auxiliary objective at a time is the best
approach, but he also underlined questions on when to change the auxiliary
objective and to which objective it should be changed. There also exists an
adaptive auxiliary objective selection method based on reinforcement learning
called EA+RL [5]. The main idea is to use the reinforcement learning to train
online (during the EA runtime) an agent, which tries to predict the most efficient
auxiliary objective on each evolutionary iteration. The aforementioned method
was improved by Petrova et al. in [7].

We tested the efficiency of the method that we propose in the present paper
on multiple instances of two benchmark problems: The Traveling Salesman Prob-
lem (TSP) and The Job Shop Scheduling Problem (JSSP). However, the pro-
posed method is not designed for solving any specific optimization problem, it is a
general approach for selection of the most efficient auxiliary objective during EA
runtime. Therefore, we compared the proposed method with other approaches of
objective selection. Additionally, to confirm the reliability of the obtained results
we checked the corresponding values for statistical distinguishability.

The rest of the paper is organized as follows. In Sect. 2 discusses the
main aspects of the proposed method of auxiliary objective selection. Section 3
presents experiment results of solving TSP. Section 4 presents the results for the
JSSP, and we conclude in Sect. 5.

2 The OLHP Method

We propose a new auxiliary objective selection strategy named The Offline
Learned Helper Picker (OLHP). The term Offline is used because the meta-
classifier for auxiliary objective selection is trained offline with machine learning
methods. The learning dataset is gathered from the training EA runs on train-
ing instances of an optimization problem. The learning dataset vector contains
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properties of the problem instance and feature values of the fitness landscape of
the current EA population. The term Helper is used as a synonym to “auxiliary
objective”. The OLHP consists of two main phases: the meta-classifier learning
and objective selection during the EA runtime. The implementation of OLHP,
along with experimental evaluation results, is available at Bitbucket repository1.

2.1 Learning the Meta-Classifier Phase

The meta-classifier is learned only once for each optimization problem T . Input
parameters of this phase are: 1. A set of training problem instances L ⊂ T , L
consists of any � ∈ T , where T is the set of all possible instances of a particular
optimization problem. 2. A set of rules for auxiliary objectives generation G =
{g(i)}, g(i) = hi : IN → H, where H is the set of all possible auxiliary objectives
for the considered optimization problem.

At the considered phase we construct the dataset of learning samples and
then build the meta-classifier. To do this we need to perform n runs of the EA
for each training problem instance. The value of the constant n may be manually
tuned to find better meta-classifier metrics.

The current EA state is described by two components: static meta-features
of the problem instance and features of the target objective landscape at the
current population, which are extracted dynamically during the runtime. From
each particular EA state stj we make k runs (k = |Hk| is the total number of
used auxiliary objectives, G(H) = Hk = {hi} is a set of generated auxiliary
objectives) in parallel for niter = Imax

k iterations, where Imax corresponds to the
maximum number of iterations in a training run of the EA. Thus, the maximum
number of considered EA states is j = k. Accordingly, there is a chance for
each auxiliary objective to be picked at each EA state. All parallel EA threads
optimize different auxiliary objective function hi simultaneously with the target
objective. After performing latter evaluations we can make an assumption on
which auxiliary objective hi would be the most efficient if using it from the EA
state stj for niter EA iterations.

We identify an efficiency of an auxiliary objective by comparing the values
of target objective for the best solution candidate in the beginning of each EA
thread and in the end of its work. If several threads showed an equal increase in
the target fitness value of the best solution, then the best auxiliary objective for
the EA state stj is selected from the first thread. Thereby, we have one learning
dataset vector which is comprised of the meta-features of the problem instance
and the fitness landscape features corresponding to the EA state stj . The target
value (or class value) of this vector is number i, which corresponds to the most
efficient auxiliary objective hi.

After performing the training evaluations from the EA state stj , we move
forward to a new state stj+1. As the state stj+1 we pick an EA state after using
the most efficient auxiliary objective hj . The steps described above are processed
until the maximum number of EA iterations Imax is reached. The final thing to

1 https://bitbucket.org/BASSIN/2017-olhp-tsp-jssp/src.

https://bitbucket.org/BASSIN/2017-olhp-tsp-jssp/src
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do is to train and save the meta-classifier for selection of auxiliary objectives.
Algorithm 1 presents the pseudocode of the meta-classifier learning phase.

Algorithm 1. Learning of the meta-classifier
1: procedure LearnSelector(Inststr, G) � Inststr is a set of training instances,

G - set of auxiliary objective gener-

ating rules
2: r ← the number of runs for each training instance

3: for all tr in Inststr do

4: metaFeatures ← extractMetaFeatures(tr)

5: Hk ← G(tr) � Generate auxiliary objectives for

train problem instance tr
6: i ← 0

7: while i < r do

8: Imax ← calculateMaxIterationNumber(tr)

9: niter ← Imax
|Hk| � Setting iterations number between

algorithm states
10: EA.initialize(tr) � Initialize evolutionary algorithm

with train instance tr
11: j ← 0

12: while j < Imax do

13: stj ← saveState(EA, metaFeatures)

14: for all h in Hk do � For each auxiliary objective

15: EA.run(niter, h) � Run EA with auxiliary objective h for

niter iterations
16: fitnessRaiseh ← calculateF itnessDiff(EA)

17: sth ← saveState(EA)

18: end for

19: hbest ← findBestHelper(∀fitnessRaiseh) � Identify the most

efficient auxiliary

objective
20: dataset.put(hbest, stj .getMetaFeatures(), stj .getLandscapeFeatures())

21: EA.setState(sthbest ) � Set EA state to the state after

using the best auxiliary objective
22: j ← j + niter

23: end while

24: i ← i + 1

25: end while

26: end for

27: classifier.train(dataset) � Learn the meta-classifier for objective selection

28: classifier.serialize() � Serialize trained model for future usages

29: end procedure

2.2 Objective Selection During the EA Runtime

This subsection describes the algorithm that dynamically selects and applies
auxiliary objectives during EA runtime. The input parameters for this OLHP
phase are: 1. An instance of the optimization problem we want to solve � ∈ T ,
where T is a space of all possible instances of a particular optimization problem;
2. A set of rules for generation of auxiliary objectives G = {g(i)}, g(i) = hi :
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IN → H, where H is the set of all possible auxiliary objective functions we are
working with. 3. A meta-classifier learned beforehand on problem instances from
T : predict(v) = k, g(k) = hbest, where v is the vector of fitness landscape features
of the current population and static meta-features of the problem instance.

The first step of this phase is initialization of all required structures and dese-
rialization of the meta-classifier for considered optimization problem. At the next
step, we start an evolutionary algorithm. Each niter = Imax

k (k = |Hk| = |G(H)|)
iteration period we predict the most efficient auxiliary objective basing on the
problem instance static features and fitness landscape features of the current EA
population. The predicted objective hbest is used by the EA simultaneously with
the target objective for the next niter iterations. Restriction on optimization by
only one additional objective is made for making it possible to learn and solve
many problem instances of various sizes for a reasonable computational time.
Algorithm 2 presents the detailed pseudocode for this OLHP phase.

Algorithm 2 Solving the problem instance
1: procedure SolveProblem(inst, G, cl) � inst is a problem instance to opti-

mize, cl – learned classifier
2: cl.deserialize()
3: metaFeatures ← extractMetaFeatures(inst)
4: Hk ← G(inst) � Generate auxiliary objectives for the

problem instance
5: Imax ← calculateMaxIterationNumber(inst)
6: niter ← Imax

|Hk| � Setting iterations number between algo-
rithm states

7: EA.initialize(inst) � Initialize EA with optimization problem
instance

8: j ← 0
9: while j < Imax do

10: if j mod niter = 0 then � Time for switching an auxiliary objective
11: stj ← getState(EA, metaFeatures, getLandscapeFeatures(EA))
12: hpredicted ← cl.predict(stj)
13: EA.setHelper(hpredicted)
14: end if
15: EA.runIteration() � Make one iteration of EA
16: j ← j + 1
17: end while
18: EA.saveBestSolution() � Save the optimization result
19: end procedure

2.3 Fitness Landscape Features

We use generic fitness landscape features of an EA population which are eligible
for almost any optimization problem. A population of size p may be represented
as a set of random variables P = {si}, i = 1..p. On each EA iteration we can
obtain values of random variables si. Hence, we can calculate statistical metrics
of set P .
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Since we are solving meta-classification task for any instance of optimization
problem T, we need to normalize the values of received landscape features. For
such a normalization, we propose to use the ratio of the target objective value on
current solution candidate to the best known solution candidate value: G(si)

G(sbest)
=

xi, where G(s) is the target objective function. The set of random variables
{xi} = Pnormalized is normalized for all instances of problem T . Thus, we suggest
to use the following statistical metrics calculated on the set Pnormalized as fitness
landscape features:

1. Med – the median value.
2. x̄ = 1

p

∑p
i=1 xi – the arithmetical mean.

3. Hmean = p∑p
i=1

1
xi

, xi > 0 – the harmonic mean.

4. Dev – the standard deviation.
5. Qmean =

√
1
p

∑p
i=1(xi − x̄)2 – the sample variance.

3 Applying OLHP to Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a classic NP-hard problem in com-
binatorial optimization. Each TSP instance may be described by a set of cities
{ci},∀i = 1 . . . N and a distance matrix M of size N ×N . Elements of M repre-
sent the distance between a pair of cities. For example, M(ci, cj) is the distance
between the cities ci and cj . The TSP asks the following question: “What is
the shortest possible route that visits each city once and returns to the origin
city?”. In other words, we need to find a Hamiltonian path with the lowest total
distance. For the path vector ρ = (ρ1, ρ2, . . . , ρN ) we can calculate the total
distance cost using (1):

D(ρ) =
N∑

i=1

M(cρ[i] , cρ[i⊕1]),

where i ⊕ 1 =

{
i + 1, if i < N

1, if i = N

(1)

In experimental evaluations, we use symmetric TSP problem instances. In the
symmetric TSP problem, the value of a path from one city to another is equal to
the value of the reverse path: M(ci, cj) = M(cj , ci). More detailed explanation
of the TSP may be found in [8].

3.1 TSP Meta-Features

We need to specify TSP meta-features which we would use as a part of machine
learning vector. Meta-features should contain information, which represents
the properties of a particular TSP instance. The following features meet this
requirement:
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1. Vnum – the number of cities.
2. Emin – the minimum distance between a pair of cities.
3. Emax – the maximum distance.
4. Eavg – the average distance.
5. Emed – the median distance.
6. DevE – the standard deviation of distances.
7. QE−avg – the number of distances shorter than Eavg.
8. SumminE

– the sum of Vnum minimal distances.

The latter TSP meta-features were successfully used by Kanda et al. in [9] to
classify Traveling Salesman Problems and in [10] to recommend meta-heuristics
for solving TSP.

3.2 TSP Auxiliary Objectives Generation

In the OLHP method, an auxiliary objective is required to have some prop-
erty, which depends only on the problem instance, but not on the individual or
the iteration number. Unfortunately, the existing approaches of auxiliary objec-
tive generation [4,6] do not provide us objectives with such kind of a property,
because in these approaches objectives are generated using randomly picked
cities.

To generate auxiliary objectives which depend only on the problem instance,
we propose a new method of auxiliary objective generation inspired by the k-
nearest neighbor classification algorithm [11].

In [4], the following auxiliary objective function was proposed:

h(ρ, s) =
|s|∑

i=1

(M(cρ[ρ−1[s[i]�1], cs[i]) + M(cs[i], c[ρ−1[s[i]]⊕1]), (2)

where s is the subset of the set of cities C = {1, 2, . . . , N}, ρ−1(x) is the position
of x in ρ, �1 is the reverse operator to ⊕ 1.

In our approach, we use Eq. (2) to generate auxiliary objectives. We generate
subsets of cities (the s parameter in (2)) by partitioning the set of cities C =
{ci}, i = 1 . . . N using the following algorithm:

1. Sort the set of all cities C by the following criteria:

Knn(C) → SC = {c1, c2, . . . , cN}, (3)

where Knn(C) is the sorting operator, SC – is the ordered set.
For each pair of elements from SC :

ci�knncj , (4)

where i, j = 1 . . . N and the relation �knn is true when the total distance
from city ci to k nearest neighbor cities is less or equal to the corresponding
total distance for the city cj .
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2. Divide the ordered set SC into subsets sj ⊂ SC , j = 1 . . . r of equal cardinality.
The number of elements in the last subset sr may be less than the number of
elements in the other subsets.

Note that si ∩ sj = ∅, ∀i, j = 1 . . . r, i �= j. This fact means that the gener-
ated auxiliary objectives h(ρ, sj) have disjoint properties on a problem instance.
This should make possible for each auxiliary objective to be the most efficient
objective at different stages of optimization process.

3.3 Experimental Evaluation on TSP

We compare the OLHP method with the following approaches of optimizing
the target objective with auxiliary objectives. First, we consider the method
proposed by Jensen [4], where the auxiliary objective is dynamically rese-
lected after a fixed number of EA iterations. In the second considered app-
roach [7], named Multi-Objective Evolutionary Algorithm + Reinforcement
Learning (MOEA+RL), RL agent learns to select auxiliary objectives during
the EA runtime and non-stationarity of the environment is taken into account.
The last considered approach is a modified combination of two known algorithms.
Two auxiliary objectives are composed in the manner described by Jähne et al.
in [12] and the first selected auxiliary objective is switched to another one at the
half of the EA runtime as suggested in [4].

The TSP instances for the experimental evaluation were taken from TSPLIB2

library. The crossover and mutation operators were identical to the correspond-
ing operators from the papers mentioned above. Also, the 2-opt local search
heuristic [13] was used.

The crossover probability was equal to 40%. The population size was Psize =
100. The limit of target objective evaluations for each EA run was calculated
in the manner proposed in [12]: evmax(N,m) =

√
N3 ∗ m, where N is the total

number of cities, m is a manually chosen parameter (in our experiments we used
m = 10). The number of EA runs for each training problem instance was n = 4.

The auxiliary objectives for the methods proposed by Jensen and Jähne were
generated using the rules, which are provided in the related papers. The results
for both the OLHP and MOEA+RL algorithms were obtained using the same
auxiliary objectives, namely the K-nn auxiliary objectives proposed in Sect. 3.2.
We used the following parameters to generate auxiliary objectives: k = 5, r = 5.

The comparison with MOEA+RL was intended to evaluate the efficiency of
the proposed objective selection scheme without the influence of the objective
generation approach, as the both OLHP and MOEA+RL algorithms are in equal
conditions in terms of the used auxiliary objectives. At the same time, in the
Jensen and Jähne/Jensen methods, the original auxiliary objectives from the
corresponding works were applied, so the comparison with these methods was
performed to evaluate the efficiency of the entire proposed approach for the TSP
optimization.

2 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95
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The Non-dominated Sorting Genetic Algorithm II (NSGA-II) [14] was used
as the base evolutionary algorithm in all experiments. The program code was
written in Java and Groovy languages. The following frameworks were used:
Watchmaker3 – for evolutionary computations, Weka4 – for the OLHP machine
learning operations.

Learning of Meta-Classifier. The Random Forest classifier was used for
building the OLHP auxiliary objective selector. The Random Forest parame-
ters had default5 values from the Weka framework.

To obtain train and test sets, TSP instances from the TSPLIB were divided
into subsets. We were guided by the idea that train and test instances should
have items with similar meta-properties. The train TSP instances are listed in
Appendix A.

To estimate how accurately our predictive model would perform in practice,
we cross-validated our classifier. For the same limitation on similarity of train and
test problem instances we were forced to use a special set of problems for cross-
validation. We made 10-fold cross-validation on instances listed in Appendix A.
The performance metric values of our classification model on TSP after the cross-
validation were: Estimated Error Rate = 0.16, Precision = 0.90, Recall = 0.96, F-
measure = 0.93. The latter values confirm that there exists a correlation between
the EA state features and selection of the most efficient auxiliary objective.

Results of Solving TSP. We used 44 TSP instances to perform experiments.
Further, the final solution results for each method of auxiliary objective selection
were obtained η = 40 times and averaged.

Table 1 shows mean and standard deviation of the best obtained value of the
target objective for the OLHP, MOEA+RL, Jensen and Jensen/Jähne methods.
Cells with the best values are marked with bold text. The last row of Table 1
shows the total number of instances, on which the particular method has out-
performed other approaches. Note that the sum of the values in the last row is
not equal to the number of total considered test instances. It is explained by the
situation when several methods showed the best mean target value. In this case,
we increment the corresponding counters for each such method. To summarize,
it can be concluded from Table 1 that the newly proposed OLHP method out-
performed the considered approaches of auxiliary objective selection on the set
of test TSP instances.

Statistical Testing. According to [15], we used the Wilcoxon signed-rank test
to detect significant differences in behavior of two algorithms. The pairwise sta-
tistical test was applied on the average results obtained on test instances for each
pair of the considered approaches. In order to perform multiple comparisons and

3 http://watchmaker.uncommons.org.
4 http://www.cs.waikato.ac.nz/ml/weka.
5 http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/RandomForest.html.

http://watchmaker.uncommons.org
http://www.cs.waikato.ac.nz/ml/weka
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/RandomForest.html
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Table 1. Mean and standard deviation of resulting fitness (TSP)

Problem Best OLHP MOEA+RL Jensen häJ/neJ
a280 2579 2597.9 ± 13.1 2599.4 ± 13.4 2597.2 ± 16.3 2597.2 ± 11.8
ali535 202339 204624.4 ± 1587.0 204382.0 ± 1482.5 205909.5 ± 1505.1 204853.0 ± 1463.7
att48 10628 10628.5 ± 2.2 10629.1 ± 4.9 10631.4 ± 6.5 10645.1 ± 17.7
bier127 118282 118337.3 ± 116.0 118436.2 ± 259.4 118320.6 ± 83.0 118358.1 ± 187.9
brg180 1950 1952.8 ± 4.5 1952.5 ± 4.3 1950.0 ± 0.0 1950.0 ± 0.0
ch150 6528 6548.0 ± 12.4 6550.8 ± 12.7 6544.4 ± 12.6 6547.6 ± 12.9
d1291 50801 51585.9 ± 210.2 51594.4 ± 240.7 51592.7 ± 191.1 51560.5 ± 270.5
d657 48912 49292.3 ± 151.9 49353.6 ± 141.5 49285.6 ± 127.6 49358.0 ± 131.0

dsj1000 18659688
18860887.9
±45886.0

18870762.9
±50593.3

18861694.6
±60582.9

18887428.3
±61706.0

eil76 538 544.4 ± 0.0 544.5 ± 0.5 544.7 ± 0.9 544.4 ± 0.1
fl417 11861 11927.0 ± 5.2 11926.8 ± 6.0 11942.1 ± 13.9 11939.7 ± 22.4
gr137 69853 69862.6 ± 28.5 69878.8 ± 57.9 69878.8 ± 44.4 69864.0 ± 29.3
gr229 134602 135130.0 ± 400.5 135087.3 ± 346.0 135048.9 ± 346.7 135051.8 ± 267.1
gr666 294358 297940.3 ± 1536.3 298189.9 ± 1454.3 297663.3 ± 1336.9 297826.6 ± 1426.5
gr96 55209 55305.2 ± 58.1 55312.6 ± 77.0 55352.1 ± 60.6 55326.9 ± 70.2
kroA100 21282 21287.0 ± 9.5 21287.0 ± 10.0 21287.0 ± 10.0 21285.4 ± 0.0
kroA200 29368 29393.5 ± 59.2 29398.2 ± 67.6 29426.1 ± 111.9 29395.7 ± 62.3
kroB100 22141 22140.9 ± 11.1 22148.2 ± 28.7 22141.3 ± 13.3 22145.9 ± 21.6
kroB150 26130 26148.2 ± 49.5 26190.0 ± 64.9 26162.5 ± 60.7 26149.8 ± 51.1
kroC100 20749 20750.8 ± 0.0 20750.8 ± 0.0 20750.8 ± 0.0 20750.8 ± 0.5
kroD100 21294 21311.2 ± 30.1 21333.5 ± 45.0 21374.0 ± 31.8 21314.5 ± 33.2
lin105 14379 14383.0 ± 0.0 14383.0 ± 0.0 14383.0 ± 0.0 14383.0 ± 0.0
lin318 42029 42321.6 ± 175.3 42323.7 ± 180.6 42314.6 ± 154.1 42297.7 ± 167.8
pcb1173 56892 57909.2 ± 166.2 57982.5 ± 250.3 57885.9 ± 199.6 57909.2 ± 201.1
pcb442 50778 51263.1 ± 132.1 51305.7 ± 199.0 51312.8 ± 202.1 51307.3 ± 167.3
pr1002 259045 262779.5 ± 868.7 263100.1 ± 1115.0 263427.5 ± 786.9 263178.0 ± 942.0
pr107 44303 44328.9 ± 39.9 44337.7 ± 50.8 44372.1 ± 74.5 44336.6 ± 50.0
pr124 59030 59030.7 ± 0.0 59030.7 ± 0.0 59032.9 ± 9.6 59030.7 ± 0.0
pr144 58537 58535.2 ± 0.0 58536.1 ± 5.2 58562.5 ± 14.8 58565.3 ± 19.9
pr152 73682 73697.4 ± 41.3 73711.2 ± 55.0 73783.6 ± 61.2 73691.6 ± 49.9
pr226 80369 80374.6 ± 12.4 80374.4 ± 12.4 80382.9 ± 38.8 80385.8 ± 29.7
pr299 48191 48320.1 ± 111.8 48370.7 ± 165.5 48434.7 ± 210.8 48398.6 ± 134.6
pr439 107217 107600.7 ± 424.3 107597.9 ± 354.4 107666.0 ± 498.6 107875.6 ± 510.4
rat195 2323 2340.6 ± 5.5 2344.9 ± 6.3 2343.1 ± 5.2 2342.9 ± 6.1
rat783 8806 8932.3 ± 23.8 8949.3 ± 25.4 8946.2 ± 25.5 8941.6 ± 22.8
rd100 7910 7912.3 ± 8.3 7911.9 ± 5.4 7914.7 ± 12.5 7914.7 ± 11.4
rd400 15281 15394.0 ± 54.6 15428.7 ± 58.8 15386.8 ± 54.3 15377.9 ± 55.8
si1032 92650 92650.0 ± 0.2 92656.6 ± 19.8 92720.3 ± 43.9 92673.4 ± 22.2
si535 48450 48496.4 ± 17.4 48496.2 ± 22.6 48543.2 ± 33.1 48487.8 ± 16.2
tsp225 3916 3876.3 ± 21.1 3877.8 ± 21.1 3873.1 ± 21.5 3869.2 ± 16.8
u1060 224094 226731.1 ± 671.0 226627.1 ± 721.0 226825.6 ± 690.4 226962.5 ± 687.4
u159 42080 42075.7 ± 0.0 42075.7 ± 0.0 42075.7 ± 0.0 42075.7 ± 0.0
u724 41910 42298.9 ± 137.3 42337.1 ± 119.3 42247.3 ± 96.4 42280.5 ± 121.7
vm1084 239297 241691.7 ± 962.0 241953.6 ± 898.0 241432.7 ± 704.0 241822.2 ± 770.0

Total best 21 10 12 12

control the family-wise error rate we adjusted the obtained p-values by using the
Holm–Bonferroni correction method.

The adjusted p-values for pairs of methods of auxiliary objective selection
were the following: OLHP – MOEA+RL = 1.0e-03, OLHP – Jensen = 4.2e-
02, OLHP – Jensen/Jähne = 4.2e-02. Therefore, the OLHP method shows a
significant improvement over MOEA+RL, Jensen and Jensen/Jähne approaches,
with the level of significance α = 0.05.
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4 Applying OLHP to Job Shop Scheduling Problem

The OLHP method was applied to the Job Shop Scheduling Problem (JSSP)
for further verification of its efficiency. Similarly to TSP, JSSP is a well-known
NP-hard combinatorial optimization problem.

A JSSP instance of size n × m consists of n jobs {J1, J2, . . . , Jn} = J and m
machines {M1,M2, . . . ,Mm} = M . Each job Ji contains a sequence of m opera-
tions (oi1, oi2, . . . , oim). Jobs and machines have mutual constraints, because an
operation oij may be processed only on the corresponding machine Mj . Each
operation oij takes the corresponding processing time τij ∈ IN. All jobs from
the set J need to be scheduled properly on the given machines, while trying to
minimize the amount of spent time resources. We consider the following JSSP
variation: each machine may process only one operation at the same time, oper-
ations related to one job can not be processed concurrently and processing of an
operation can not be interrupted.

There are several types of target objective which can be used in evolutionary
computations for the JSSP. We minimize the total flow-time of the schedule S:

F (S) =
n∑

i=1

(S(omaxi
) + τomaxi

), (5)

where omaxi
is the operation of the job Ji with the maximum start time in the

schedule S, S(omaxi) defines the start time value of operation omaxi and τomaxi

is the processing time of operation omaxi
.

4.1 JSSP Meta-Features

The JSSP meta-features were developed similarly to the TSP meta-features from
Sect. 3.1. The following features present the JSSP instance properties:

1. Mnum – the number of machines.
2. Jnum – the number of jobs.
3. MJratio = Mnum

Jnum
– the ratio between the number of machines and the number

of jobs.
4. τmin – the minimum operation processing time.
5. τmax – the maximum operation processing time.
6. τmean – the mean operation processing time.
7. Devτ – the standard deviation of the operation processing time.

8. τavgM =
∑m

j=1

∑n
i=1 oij

n

m – the average processing time, which is also averaged
per machine.

4.2 JSSP Auxiliary Objectives Generation

The restriction mentioned in the Sect. 3.2 (an auxiliary objective should have
some property defined by the problem instance) is reached by the The Shortest
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Job First (SJF) auxiliary objective generating method proposed by Lochtefeld
et al. in [16].

Each particular job Ji has a minimum processing time, which can be calcu-
lated by the following equation: Fmin(Ji) =

∑m
j=1 oij . The next step is to define

the subset of jobs Hk, which would be used in the k-th auxiliary objective.
Then, the Eq. (5) evaluates the value of each auxiliary objective. The following
algorithm is used to determine a subset of jobs Hk of the particular auxiliary
objective:

1. The minimum processing times of all jobs Fmini
, i = 1 . . . n are calculated.

2. The set of all jobs J is sorted with respect to the minimum processing time:

Sort(J) → SJ = J1, J2, . . . , Jn,whereFmin(Ji) ≤ Fmin(Jj). (6)

3. The sorted set of all jobs SJ is divided into r subsets with equal number of
elements. Such a subset defines the auxiliary objective.

More details about the SJF auxiliary objectives can be found at [17].
The subsets Hk for the objectives can also be formed in a random way. Such a

technique is used by Jensen in [4]. We test performance of the random composed
subsets of jobs and the subsets generated by the SJF algorithm.

4.3 Experimental Evaluation on JSSP

In [4], Jensen also suggests using random auxiliary objectives for the JSSP prob-
lem. In [18] Petrova et al. apply the MOEA + RL method to this problem. We
also consider the problem specific approach proposed by Lochtefeld et al. [16],
based on job prioritization for auxiliary objective selection order. The OLHP
method was compared with the aforementioned algorithms.

The JSSP instances were taken from the Beasley’s OR Library6. The Gen-
eralized Order Crossover (GOX) [19] and the Position Based Mutation (PBM)
were used in all the considered algorithms. EA solution candidates were repre-
sented as an ordered permutation list of different operations with repetitions.
For example, an individual for a 2×3 problem may be encoded as (1, 2, 2, 1, 1, 2),
where the first “1” is the first operation of the job J1, the second “1” is the sec-
ond operation of J1 and so forth. Furthermore, the Giffler-Thompson schedule
builder [20] is used to transform genome to the proper solution candidate.

The crossover probability was set to 80%. The population size was Psize =
100. The stopping condition was whether an EA reached the limit of iterations.
This limit was calculated as follows: itermax(N,M) = N ∗ M ∗ 2, where N was
the total number of machines, M was the total number of jobs in the prob-
lem instance. Likewise in the TSP experiments, we used NSGAII algorithm.
The number of EA runs for each training instance was n = 4. For the OLHP,
Lochtefeld’s, MOEA+RL methods we used 4 different SJF auxiliary objectives
(remember that only one auxiliary objective was optimized simultaneously with

6 http://people.brunel.ac.uk/∼mastjjb/jeb/.

http://people.brunel.ac.uk/~mastjjb/jeb/
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Table 2. Mean and standard deviation of resulting fitness (JSSP)

Problem Best OLHP MOEA+RL Lochtefeld Jensen
abz6 7808 8180.2 ± 143.8 8261.3 ± 137.6 8213.2 ± 134.3 8244.6 ± 125.9
abz7 12561 13116.1 ± 167.3 13272.3 ± 180.7 13193.5 ± 188.9 13150.7 ± 179.7
abz9 12813 13441.6 ± 187.7 13574.6 ± 172.9 13475.9 ± 191.0 13463.0 ± 216.9
ft06 265 272.7 ± 7.0 272.0 ± 7.1 272.2 ± 7.0 270.4 ± 6.8
ft20 14279 16047.1 ± 516.4 16892.9 ± 542.8 16370.6 ± 499.5 16426.7 ± 590.5
la01 4832 4989.6 ± 81.7 5043.2 ± 96.6 5015.2 ± 87.6 5003.3 ± 71.3
la03 4175 4236.4 ± 68.2 4328.6 ± 70.5 4271.8 ± 64.6 4280.6 ± 73.9
la05 4094 4189.0 ± 59.5 4270.0 ± 61.6 4215.3 ± 63.5 4263.4 ± 66.1
la06 8694 9298.3 ± 162.3 9693.7 ± 201.4 9442.8 ± 215.1 9435.1 ± 189.1
la08 8176 8708.9 ± 202.6 9175.4 ± 194.6 8929.1 ± 221.8 8947.6 ± 229.2
la09 9452 9777.7 ± 140.6 10166.5 ± 170.2 9932.6 ± 170.4 9952.9 ± 211.5
la10 9230 9557.7 ± 161.7 10015.0 ± 214.6 9698.0 ± 176.8 9762.9 ± 189.8
la11 14801 15840.5 ± 321.2 16786.1 ± 367.3 16197.8 ± 339.1 16253.5 ± 434.1
la12 12484 13449.3 ± 263.5 14319.7 ± 301.4 13783.4 ± 339.3 13928.9 ± 377.5
la14 15595 16199.8 ± 268.9 17119.5 ± 300.9 16568.6 ± 338.3 16624.7 ± 341.3
la16 7393 7836.2 ± 136.7 7984.5 ± 151.4 7893.9 ± 158.1 7872.4 ± 145.4
la17 6555 6847.5 ± 99.5 6907.5 ± 96.3 6850.9 ± 88.1 6866.2 ± 99.5
la20 7427 7751.9 ± 117.6 7832.4 ± 144.0 7794.4 ± 124.8 7773.9 ± 119.5
la21 12953 13940.4 ± 203.1 14272.6 ± 200.6 14083.7 ± 253.4 14068.1 ± 219.9
la22 12106 13120.0 ± 221.2 13251.0 ± 213.5 13094.6 ± 208.3 13132.4 ± 223.9
la25 12465 13154.3 ± 222.3 13445.0 ± 243.1 13344.7 ± 260.6 13246.0 ± 214.8
la26 20234 22351.7 ± 309.0 22823.0 ± 312.0 22467.0 ± 272.3 22449.4 ± 311.8
la29 20404 21498.7 ± 394.6 22047.7 ± 386.5 21707.8 ± 383.1 21733.0 ± 392.2
la30 22333 23725.8 ± 472.4 24323.1 ± 382.8 24026.2 ± 471.2 23948.2 ± 419.7
la31 39007 44400.9 ± 619.9 45201.8 ± 541.6 44548.8 ± 580.2 44524.4 ± 614.9
la35 44059 46014.8 ± 638.6 46843.0 ± 633.2 46382.7 ± 679.1 46161.3 ± 784.9
la36 17073 18461.3 ± 289.8 18565.4 ± 244.1 18485.6 ± 272.2 18484.2 ± 270.3
la38 16621 17346.9 ± 290.6 17595.4 ± 280.3 17474.5 ± 280.0 17439.8 ± 282.9
la40 16618 17667.4 ± 264.3 17894.0 ± 270.7 17771.0 ± 267.2 17726.0 ± 274.6
orb02 7353 7684.6 ± 123.8 7753.5 ± 118.9 7739.5 ± 125.5 7708.2 ± 125.8
orb03 8280 8772.8 ± 170.3 8895.3 ± 194.0 8774.7 ± 189.7 8784.9 ± 235.5
orb06 8418 8950.3 ± 205.2 9113.8 ± 221.3 8979.7 ± 202.7 8950.6 ± 203.8
orb07 3296 3505.6 ± 61.5 3551.1 ± 74.9 3523.7 ± 63.2 3510.5 ± 74.1
orb09 7582 8025.0 ± 180.5 8231.8 ± 233.7 8062.8 ± 162.9 8149.8 ± 198.5
orb10 8043 8335.7 ± 125.8 8419.0 ± 146.9 8358.3 ± 147.4 8367.5 ± 134.5
swv01 20688 24859.5 ± 711.2 25710.4 ± 649.8 25441.2 ± 630.2 25461.3 ± 709.7
swv03 23266 24617.6 ± 623.1 25547.2 ± 633.0 25023.4 ± 668.7 25150.6 ± 652.5
swv04 24271 25665.5 ± 574.4 26457.5 ± 543.8 25978.6 ± 642.5 25957.5 ± 660.7
swv07 27385 32738.5 ± 710.4 33407.3 ± 652.0 32744.2 ± 711.8 32843.7 ± 755.0
swv08 32976 36043.0 ± 775.3 36655.9 ± 765.7 36136.3 ± 852.7 36265.8 ± 724.1
swv09 31841 33783.7 ± 696.4 34350.2 ± 744.4 34037.0 ± 855.6 33920.3 ± 788.5
swv11 108842 140735.9 ± 2939.1 145240.3 ± 3350.8 142351.2 ± 3360.4 141638.6 ± 3386.9
swv12 109128 140695.3 ± 3173.4 145495.7 ± 3093.0 142674.0 ± 2961.3 141281.9 ± 3247.0
swv14 126333 137137.8 ± 3101.6 141119.4 ± 3524.9 137850.9 ± 2779.5 137362.5 ± 3225.5
swv15 131037 139467.0 ± 3991.3 143849.0 ± 3676.6 140435.0 ± 3224.6 140211.6 ± 3476.1
swv16 113398 117369.9 ± 1303.0 119494.0 ± 1008.8 117937.3 ± 1045.1 117466.7 ± 1194.2
swv17 110145 113689.1 ± 1020.0 115666.0 ± 1042.6 114240.4 ± 981.0 113760.8 ± 1444.7
swv20 109742 112866.7 ± 1060.6 115285.1 ± 977.5 113277.0 ± 1038.2 113184.2 ± 1043.8
yn1 17317 18199.5 ± 234.9 18397.8 ± 212.6 18236.6 ± 210.0 18229.1 ± 227.3
yn4 19107 19916.3 ± 253.7 20115.0 ± 220.2 19997.4 ± 244.7 19959.7 ± 222.8

Total best 48 0 1 1

the target objective). Jensen’s method was compared with the approach based
on random generating of auxiliary objectives. We used the same OLHP imple-
mentation and the same frameworks as for the TSP.
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Meta-Classifier Learning. The meta-classifier for selection of auxiliary objec-
tives was trained on 32 JSSP instances (see Appendix A). The considered train-
ing instances were not so diverse as the training instances for the TSP. So we
could cross-validate the learned classifier model on the training set of JSSP
instances with high probability not to have a situation, when we would try to
validate on some data, which was not considered in the learning process. The
performance measure values of our classification model on JSSP after the 10-fold
cross-validation were: Estimated Error Rate = 0.21, Precision = 0.72, Recall =
0.74, F-measure = 0.73. The correlation between the EA state features and
selection of the most efficient auxiliary objective also exists for this benchmark
problem.

Results of Solving the JSSP. There were 50 various JSSP test instances. Each
instance was solved η = 100 times with NSGAII and each auxiliary objective
selection method. We present comparison results in the same way as for the TSP
problem. The averaged results for each method of objective selection with the
standard deviations are listed in Table 2. The calculated comparison results show
that the OLHP method has significantly outperformed all the other methods of
auxiliary objective selection. It is also worth mentioning that we were not able
to find sources with the best known solutions for the Beasley’s OR Library
problems. So we run a single objective EA 1000 times on each instance and
gathered the best found results.

Statistical Testing. As in the TSP problem experiments, we used the Wilcoxon
signed-rank test and the Holm-Bonferroni correction method for statistical ver-
ification of the results. We obtained the following adjusted p-values for pairs of
objective selection methods: OLHP – MOEA+RL = 2.3e-09, OLHP – Lochte-
feld = 2.3e-09, OLHP – Jensen = 2.3e-09. The aforementioned adjusted p-values
show that average performance of the OLHP method and the other considered
algorithms was significantly different. Moreover, the confidence level of this fact
is more than 99%.

5 Conclusion and Future Work

The new method for selection of the most efficient auxiliary objective named The
Offline Learned Helper Picker is proposed in this paper. The OLHP approach
consists of two stages. At first, training instances of an optimization problem are
used to build a meta-classifier for selection of auxiliary objectives. Properties of a
problem instance and features derived from the fitness landscape of the current
EA population compose the state of the evolutionary algorithm, i.e. the data
vector for machine learning. Further, the trained meta-classifier is used to predict
the most efficient auxiliary objective at different EA runtime points. Specifically,
the selected auxiliary objective is predicted and optimized simultaneously with
the target objective during a number of EA iterations.
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The OLHP method was compared with similar approaches of objective selec-
tion on two NP-hard combinatorial problems: The Traveling Salesman Problem
and The Job Shop Scheduling Problem. The newly proposed method outper-
formed the considered algorithms. Statistical significance of the obtained results
was confirmed by the Wilcoxon signed-rank test followed by the Holm-Bonferroni
correction.

In the future work we plan to use additional well-known statistical, proba-
bilistic and informational measures for fitness landscapes. This should increase
performance of the meta-classifier used for selection of auxiliary objectives. It
is also desirable to use more computational power for obtaining experimental
evaluation on real world problems. Better computational performance will also
provide an opportunity to automatically find and use the most efficient para-
meters for EA with OLHP and other auxiliary objective selection methods. For
example, the most efficient algorithm settings may be found with tools such as
the irace package [21].

A Appendix: TSP and JSSP Instances Lists

TSP Train: att532, bays29, brazil58, ch130, d198, d493, eil101, gil262, gr120, gr202, gr24, gr431,

hk48, kroA150, kroB200, kroE100, p654, pa561, pr136, pr264, rat575, rat99, si175, st70, ts225, u574,

ulysses22. TSP Cross-validate: a280, att48, bayg29, bays29, berlin52, bier127, brazil58, brg180,

burma14, ch130, ch150, d198, d493, dantzig42, eil101, eil51, eil76, fl417, fri26, gil262, gr17, gr21,

gr24, gr48, gr96, gr120, gr137, gr202, gr229, gr431, hk48, kroA100, kroA150, kroA200, kroB100,

kroB150, kroB200, kroC100, kroD100, kroE100, lin105, lin318, pcb442, pr76, pr107, pr124, pr136,

pr144, pr152, pr226, pr264, pr299, pr439, rat195, rat99, rd100, rd400, si175, st70, swiss42, ts225,

tsp225, u159, ulysses16, ulysses22.

JSSP Train and Cross-validate: abz5, abz8, ft10, la02, la04, la07, la13, la15, la18, la19, la23,

la24, la27, la28, la32, la33, la34, la37, la39, orb01, orb04, orb05, orb08, swv02, swv05, swv06, swv10,

swv13, swv18, swv19, yn2, yn3.
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Abstract. Online bin packing is a classic optimisation problem, widely
tackled by heuristic methods. In addition to human-designed heuristic
packing policies (e.g. first- or best- fit), there has been interest over
the last decade in the automatic generation of policies. One of the
main limitations of some previously-used policy representations is the
trade-off between locality and granularity in the associated search space.
In this article, we adopt an interpolation-based representation which
has the jointly-desirable properties of being sparse and continuous (i.e.
exhibits good genotype-to-phenotype locality). In contrast to previous
approaches, the policy space is searchable via real-valued optimization
methods. Packing policies using five different interpolation methods are
comprehensively compared against a range of existing methods from the
literature, and it is determined that the proposed method scales to larger
instances than those in the literature.

Keywords: Hyper-heuristics · Online bin packing · CMA-ES · Heuris-
tic generation · Sparse policy representations · Metaheuristics ·
Optimisation

1 Introduction

Bin-packing is a well-known NP-hard problem in combinatorial optimization, in
which the goal is to pack a set of items into the smallest possible number of
fixed-capacity bins [1]. It has been extensively studied in both its online and
c© Springer International Publishing AG 2017
B. Hu and M. López-Ibáñez (Eds.): EvoCOP 2017, LNCS 10197, pp. 189–200, 2017.
DOI: 10.1007/978-3-319-55453-2 13
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offline forms. Whereas the sizes of all of the items to be packed are known in
advance in the offline case, online bin packing [2,3] requires each piece from a
‘lengthy’ sequence of items to be considered in individually, with no knowledge of
the sizes of the following pieces to pack. A packing policy is a heuristic defining
how to pack items of different sizes depending on the currently available space in
the set of open bins. Here we consider the one dimensional variant of the online
bin packing problem, where items have a fixed width and vary in size in only
a single dimension [4]. This problem has a wide range of practical applications
in industry, e.g. in stock cutting, where a length of fixed width stock material
needs to be cut into shorter segments with the minimum waste [5].

Our approach uses the method of generative hyper heuristics [6]. These meth-
ods seek to generate new heuristics, operating over a search space of heuristics
rather than directly over a space of solutions (e.g. [7,8]). A number of generative
hyper-heuristic approaches exist in the online bin-packing literature, with previ-
ous work focussing on generating packing policies using different representations.
Some previous methods have used Genetic Programming (GP) to represent a
packing policy [9,10], evolving a scoring metric to rank each choice of bin for
the current item under consideration. Other work used a matrix representation
to define a packing policy [11]. When using a matrix-based representation, each
row of the matrix corresponds to a particular item size and each column to a
particular remaining bin capacity. Entries for each (size, capacity) combination
define the score for packing an item of that size into a bin with that remaining
capacity.

These two representations for packing policies suffer from opposing limi-
tations of the search space they present. Typically, GP suffers from a poor
genotype-to-phenotype locality, meaning that small changes to a GP program
lead to large changes in the solution and the search landscape is correspondingly
rugged. Conversely, the use of a matrix representation suffers from being too
dense: a large number of changes to the representation are required in order to
make a significant difference to its phenotypic expression, tending to necessitate
a correspondingly large number of evaluations of the objective function.

In this article, we describe an alternative representation of bin packing poli-
cies using interpolants that we claim does not suffer from defects present in both
GP and matrix-based representations. Interpolants are mathematical functions
defined by a set of control points, with an associated deterministic formula for
values between these points. Interpolants are sparsely represented by their con-
trol points, and are constructed specifically so that they exhibit good locality.
Searching the space of control points, a vector of real-valued parameters, we
test five different interpolation methods to define packing polices for the online
one-dimensional bin packing problem. We compare our approach to a number of
previous approaches from the literature over 12 sets of instances for this problem.
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2 Previous Approaches for Online One-Dimensional Bin
Packing

Given a set of n items, with each item j having an associated weight wj , and a
set of n bins with capacity c, Martello and Toth [1] formulated the bin packing
problem as follows:

Minimise
n∑

i=1

yi (1)

Subject to
n∑

j=1

wjxij ≤ cyi, i ∈ N = {1, ..., n} (2)

n∑

i=1

xij = 1, j ∈ N (3)

with yi ∈ {0, 1}, i ∈ N (4)
xij ∈ {0, 1}, i ∈ N, j ∈ N (5)

where yi denotes whether or not bin i has pieces packed in it, xij denotes whether
or not item j has been packed into bin i. The objective function (Expression 1)
minimises the total number of bins used, Expression 2 ensures that the fixed
capacity of each bin is respected and Expression 3 ensures that each item is only
packed once. The online bin packing variant considers the packing of a ‘large’
number of items which arrive one at a time and a decision regarding which open
bin to place each item needs to be made immediately.

Traditionally, online bin packing problems were solved using deterministic
heuristics such as Best Fit (BF) and First Fit (FF) [11]. In FF bins are placed into
a fixed order and each item is placed into the first bin with sufficient space [12].
The intention is that bins early on in the sequence will be quickly filled and
removed from consideration [11]. However, this method relies on an ordering of
the bins and this is not possible in the online case. In BF each item is placed into
the fullest bin which has room for it. Where ties occur this algorithm operates
like FF [12]. Lee and Lee [4] introduced a Harmonic heuristic, which normalises
item sizes, and then separates this interval from (0,1] into non-uniform partitions,
each representing a certain type and restricting the number of items than can
be placed.

A disadvantage of all of these methods is that they assume that the rela-
tionship between the preferable choice of bin on one hand, and space/item size
on the other, is smooth. A recent study by Özcan and Parkes found that good
(optimal) policies could actually be ‘spiky’ and complex [11,13]. Recent research
in bin packing has tended to focus on metaheuristic strategies capable of auto-
matically devising policies which are more complex than FF or BF and better
suited to solving the problem [11,13,14].

One metaheuristic often employed is Genetic Programming (GP). An exam-
ple of a GP solution to the bin packing problem can be found in the work of
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Burke et al. [15]. In this work the trees evolved by GP are used to assign a score
to each open bin, indicating the desirability of packing the current item into
that bin. This technique was able to automatically generate human-developed
policies such as FF, as well as a wide range of alternative policies. Further work
by Burke et al. [16] showed that the evolved policies were able to scale effectively
to instances much larger than those on which they were trained. Burke et al. [9]
evolved heuristics for specific sets of bin packing instances and were able to out-
perform the classic BF heuristic in some cases. Although this method was able
to gain some results comparable to BF, crucially, it was not able to consistently
outperform it on a regular basis.

Ross et al. developed a hyper heuristic approach using the XCS learning
classifier system [17]. Motivated by the fact that traditional metaheuristics such
as GAs generate a single heuristic policy that will likely not adapt if the nature
of the problem changes, their approach instead evolved a set of rules through
which low-level heuristics can be adapted to a changing problem. As more bins
were packed, the state of the problem was analysed and matched to appropriate
policies using the rule set. This approach performed well on a range of data sets.

Özcan and Parkes [11] used an approach in which policies were represented
as two dimensional matrices, with rows corresponding to remaining bin capac-
ity and columns corresponding to item size. The desirability of placing an item
of size s into a bin with remaining capacity r, is provided in each matrix at
column s and row r. Each item is then packed into the bin with the highest
desirability. Matrices were evolved using a Genetic Algorithm. Unlike the previ-
ously discussed approaches based on GP, policies evolved using this representa-
tion were able to outperform the BF heuristic. This approach was expanded
on in a later paper in which each matrix was viewed as a heuristic with a
high number of parameters [14]. A heuristic configuration method called the
Iterated Racing Algorithm [18] was then used to tune these parameters. Even
though the number of parameters was greater than the number usually found
in the problems to which iterated racing is applied, it still managed to improve
upon human made heuristics such as BF. The original, Genetic Algorithm based
approach was still found to be the more successful of the two approaches. In
developing these approaches Özcan and Parkes found that the ideal solution was
often one which could not easily be expressed through via an arithmetic func-
tion. This demonstrates an advantage over GP which is designed to find solu-
tions, expressed through arithmetic functions [11,13]. Moreover, it was observed
that GP mutations often correspond to large moves within the space of policy
matrices [19].

3 Learning Mechanisms for Packing Policies

A packing policy can be implemented as a function of the incoming item size s,
by assigning an ordinal value to each bin of remaining capacity r (and also to
the empty bin). This can either be a bivariate function p2(s, r) or else, as is the
case here, a univariate function p1(r − s).
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As discussed in Sect. 1, policy representations (e.g. matrix, GP as above)
may be characterized as dense or sparse, according to the minimum granularity
of possible changes to the representation. Since individual matrix elements are
independent, the dense matrix representation is clearly maximally fine-grained.
Additionally, we can characterize representations as continuous1 if small changes
to the input produce correspondingly small changes to the output. The matrix
representation is therefore both dense and continuous, whereas the GP repre-
sentation is comparatively more sparse and less continuous. While continuity
of representation is clearly desirable, density is not, since many invocations of
the objective function are required in order to learn the corresponding policy.
This suggests that it may be advantageous to consider alternative representa-
tions that are both sparse and continuous. One such possibility are the variety
of function interpolation schemes used in numerical analysis. A function inter-
polator is an (invariably sparse) representation parametrically defined by a set
of control points. Notably, this includes splines: piecewise polynomial functions
which are continuous by construction.

Our approach is therefore to perform a hyper-parameter search over the
vector of control points of a univariate function interpolator, which is then used
to implement the packing policy. The hyper-heuristic search space is given by
R

k, where k is the number of control points. A candidate solution (represented
at the hyper-level by a point in R

k) is used to generate a packing policy by
using these k values as the y value of the control points (with corresponding x
points equally-spaced across the input domain [0, c] of packing policies). Each
value along the along the x-axis corresponds to a potential packing (i.e. r − s).
A packing policy then ranks the desirability of placing the current item into each
bin, using the y value defined by the interpolation scheme for the corresponding
x value of r − s for that bin. The interpolation schemes considered are:

– Linear: Piecewise linear function.
– Cubic Spline: Piecewise degree 3 polynomial function, which is continuous

and twice differentiable.
– Divided Difference: Interpolation via Newton’s method of divided differ-

ences, expressing the interpolating polynomial as a linear combination of New-
ton basis polynomials [20].

– LOESS: Piecewise polynomial function obtained via locally weighted least
squares [21].

– Neville: Polynomial function with degree one less than the number of control
points which passes exactly through them [22]. The construction uses Newton
polynomials via the method of divided differences.

Figure 1 plots the values from different interpolation schemes. For the con-
trol points given, the plot for Neville visibly coincides with divided difference,
however, the resulting function values do exhibit small differences. LOESS is
parameterized here by a vector of random weights of length equal to the num-
ber of control points—if all weights were the same, then LOESS would coincide

1 The term ‘locality’ is often used in this context in evolutionary computation.
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with cubic. The piecewise description of interpolators also helps to overcome
one of the limitations of expressing packing policies through purely arithmetic
functions (i.e. lack of conditional statements) [11].
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Fig. 1. Interpolation from control points {(1, 1), (3, 3), (5, 0), (7, 2), (9, 1)}

As seen in Fig. 1, alternative interpolation schemes define rather different
functions. For our purposes, this is not an issue: since we only require good
genotype-to-phenotype locality, i.e. from the control points to the corresponding
univariate function.

The components used in the hyper-parameter search are as follows:

– Representation: For k x-values equally-spaced across the domain of the
packing policy function, the solution representation is then a vector in R

k,
denoting the corresponding y-values of the k control points.

– Fitness: the sum of the average generic fullness value, taken over each UBP
instance in the training set, where average fullness f for each instance is cal-
culated as:

f =
1
B

∑

t

ft (6)
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where B is the number of bins used and ft is the fullness of bin t.
– Perturbation: Solution vector elements are modified according to the mech-

anism of CMA-ES.

CMA-ES [23] is a well-known and effective metaheuristic for search in R
k.

It is one of the most widely-used gradient-free approaches (partly because it
requires minimal parameter tuning by the user), and is of particular value when
applied to problems with rugged search landscapes. CMA-ES is based upon
the foundational Evolutionary Strategies method due to Rechenberg [24], which
maintains a companion vector σ of k real values, denoting the mutation step-
size to be applied to the corresponding element of the solution vector. CMA-ES
further develops the ES approach by adaptively updating mutation step-size via
a covariance matrix. Details of the CMA-ES implementation we use in this paper
are given in the following section.

4 Experimental Framework and Results

Our experimental design follows the same methodology used by Asta et al. [13]
to enable us to fairly compare against both their technique and the state
of the art. Each algorithm compared was tested on a set of progressively
larger configurations of the Uniform Bin Packing problem, referred to as
UBP’s. Each UBP is defined by three parameters, maximum bin capacity,
minimum item size and maximum item size, denoted as UBP(maxCapacity,
minItemSize,maxItemSize) herein. An additional parameter, the total number
of items, was kept constant at 105 in every test. The first 10 UBP problems that
we have used were taken directly from the work of Asta et al. [13]. An 11th and
12th have also been introduced in this paper in order to demonstrate the scalabil-
ity of our technique. These two UBPs, UBP(225,30,150) and UBP(300,40,200),
were produced by multiplying each parameter in UBP(150,20,100) by 1.5 and 2
respectively.

For each UBP a two step testing process was used. First of all, a training set
consisting of 10 instances of the UBP is randomly generated and candidate pack-
ing policies are evolved in one evolutionary run on these training instances. The
best packing policy generated is then tested on 100 instances of the UBP, the
testing set. Separate training and testing sets ensures that the policies obtained
generalise to new problem instances and are not simply obtained by overfit-
ting. Randomization, both of the evolutionary process and of the generation of
problem instances, is achieved through the use of the Mersenne Twister random
number generator, known to produce a good distribution of random values [25].
In accordance with the recommendations of Luke [26], a set of random seeds is
first generated. Each seed is used to generate a separate Mersenne Twister for
each UBP. Each interpolant variant is run using the same seeds and tested on
the same training and test sets.

As discussed in the previous section, the search over the vector of control
points was performed via CMA-ES, a widely-used evolutionary algorithm. The
CMA-ES implementation used here was Apache Commons Math, using default
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parameter settings2. After some initial experimentation, the number of control
points k was set to 15, with each training run allowed a maximum of 7,500
fitness evaluations. The possible input range for each function is the amount
of space left in a bin after adding the current item under consideration, that
is ∈ [0,(maxCapacity − minItemSize)]. For each possible bin, the interpolated
functions generate a real-valued output score, representing the preference value
for that bin.

4.1 Comparison Between Interpolants and Previous Results in
the Literature

The results in Table 1 show the %-average (mean) fullness of the best solution
for the interpolant techniques compared to other approaches over 100 instances
for each UBP type. Existing methods used for comparison are the classic Best
Fit (BF), First Fit (FF), Worst Fit (WF) and Harmonic [4] heuristics as given
by Asta et al. [13], in addition to more recent methods: policy matrix based
approaches of Yarimcam et al. [14], Asta et al. [13] and Asta and Özcan [27].

From this table, we can see that the performance of different interpolation
methods varies depending on the size of the instance considered. In general, we
can observe that the interpolant methods offer very good results on the largest
instances tested whilst still offering good performance on smaller instances.
Linear interpolation is particularly strong in the larger instances, outperform-
ing all other methods on 3 of the 5 largest instance sets. For the largest 3
instance sets we can compare to previous automated policy generation meth-
ods: UBP(75,10,50), UBP(80,10,50) and UBP(150,20,100), the best method is
always one of the interpolants (twice linear and once divided difference). LOESS
and Neville’s method of interpolation perform well on the smallest instances,
particularly UBP(6,2,3) and UBP(20,5,10) compared to the traditional heuris-
tic methods, however in general they are outperformed by the policy matrix
approaches.

Interestingly, the interpolant methods seem to struggle on some mid-size
instances when compared to matrix based approaches, particularly in the case
of UBP(40,10,20) and UBP(60,15,25). For both of these instance sets, the max-
imally dense GAORIGINAL method outperforms all others. Asta et al. [13]
observed that in the smaller instances tested (particularly from UBP(6,2,3)
to UBP(15,5,10)), there are disconnected neutralities (plateaus) in the rugged
search space of policies for GA to traverse. It could be the case that these
mid-sized instances also exhibit this behaviour and are relatively easy for
GAORIGINAL to traverse. In the case of the interpolant methods, performance
might be improved by increasing the number of control points used, creating a
denser, more fine-grained space of policies.

It is clear that the policy matrix approaches perform well on the smallest
instances, however as the size of the problem increases, the interpolant methods

2 https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.
html.

https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
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begin to outperform these approaches. As mentioned previously, matrix-based
representation is maximally dense, as a desirability score for each (s, r) pair
is maintained explicitly. This property restricts this representation in terms of
scalability, as an increasingly large number of independent variables must be
maintained as the problem size grows. This leads to an incredibly large search
space in the case of large instances, which is subsequently much more difficult
to search effectively. The search space of policies expressed using interpolant
methods is constant irrespective of the problem instance size, as long as the
number of control points and the range of values each point can take is fixed.

5 Conclusions

In this paper we have presented a new method of representing packing policies
for online bin packing using function interpolation. A policy is defined as a
function of the remaining space in a given bin after adding the current item to
be packed, providing a score for the desirability of packing the item that bin. Such
policies are represented using a set of ‘control points’, fixed along the input axis,
with the exact nature of the function determined by the interpolation method
used. Search takes place in hyper-parameter space, across the locations of each
control point on the output axis, consisting of a vector of real-valued variables.
Unlike previously proposed representations, policies defined using this approach
are both sparse and exhibit good locality. Our experiments have shown that
policies generated by CMA-ES using this representation can yield better results
than both traditional heuristics and state-of-the-art ‘policy matrix’ approaches,
particularly in the case of larger problem instances.

As a result of this work, a number of potential avenues for further research
have emerged. One of the limitations of this work is that a fixed number of con-
trol points are used. It may be the case that the best choice in terms of number of
control points is dependent on the size of the instance being solved, or even dif-
fer within a particular instance set depending on the interpolation method used.
We intend to explore the relationship between the number of control points used
and the number of possible item sizes in an instance and different interpola-
tion methods. Additionally, although here we have chosen to use CMA-ES to
search the hyper-parameter space, other continuous optimisation methods such
as Genetic Algorithms or Differential Evolution could have been used. Future
work will focus on applying other continuous optimisation methods to this prob-
lem, assessing their ability to search the hyper-parameter space effectively.
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Abstract. This work deals with the so-called weighted independent
domination problem, which is an NP -hard combinatorial optimization
problem in graphs. In contrast to previous theoretical work from the liter-
ature, this paper considers the problem from an algorithmic perspective.
The first contribution consists in the development of an integer linear
programming model and a heuristic that makes use of this model. Sec-
ond, two greedy heuristics are proposed. Finally, the last contribution
is a population-based iterated greedy algorithm that takes profit from
the better one of the two developed greedy heuristics. The results of
the compared algorithmic approaches show that small problem instances
based on random graphs are best solved by an efficient integer linear
programming solver such as CPLEX. Larger problem instances are best
tackled by the population-based iterated greedy algorithm. The experi-
mental evaluation considers random graphs of different sizes, densities,
and ways of generating the node and edge weights.

1 Introduction

The so-called weighted independent domination (WID) problem is a combi-
natorial optimization problem that was introduced in [1]. The problem is an
extension of the well-known independent domination (ID) problem. Given an
undirected graph G = (V,E), V is the set of nodes and E refers to the set
of edges. An edge e ∈ E that connects nodes u �= v ∈ V is equally denoted
by (u, v) and by (v, u). The neighborhood N(v) of a node v ∈ V is defined as
N(v) := {u ∈ V | (v, u) ∈ E}, the closed neighborhood N [v] of a node v ∈ V is
defined as N [v] := N(v) ∪ {v}, and the set of edges incident to a node v ∈ V is
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defined as δ(v) := {e = (v, u) ∈ E}. Given an undirected graph G = (V,E), a
subset D ⊆ V of the nodes is called a dominating set if every node v ∈ V \ D
is adjacent to at least one node from D, that is, if for every node v ∈ V \ D
exists at least one node u ∈ D such that v ∈ N(u). Furthermore, a set I ⊆ V
is called an independent set if no two nodes from I are adjacent to each other.
Correspondingly, a subset D ⊆ V is called an independent dominating set if D
is both an independent set and a dominating set. Finally, given an independent
dominating set D ∈ V , for all v ∈ V \D we define the D-restricted neighborhood
N(v | D) as N(v | D) := N(v) ∩ D, that is, the neighborhood of v is restricted
to all its neighbors that are in D.

In the WID problem we are given an undirected graph G = (V,E) with node
and edge weights. More specifically, for each v ∈ V , respectively e ∈ E, we are
given an integer weight w(v) ≥ 0, respectively w(e) ≥ 0. The WID problem
consists in finding an independent dominating set D in G that minimizes the
following cost function:

f(D) :=
∑

u∈D

w(u) +
∑

v∈V \D

min{w(v, u) | u ∈ N(v | D)} (1)

In words, the objective function value of D is obtained by the sum of the weights
of the nodes in D plus the sum of the weights of the minimum-weight edges that
connect the nodes that are not in D to nodes that are in D. As an example
consider the graphics in Fig. 1. The node weights are indicated inside the nodes
and the edge weights are provided besides the edges. A possible input graph is
shown in Fig. 1a. An optimal minimum weight dominating set (the set of gray
nodes) is shown in Fig. 1b. However, note that this set is not an independent
set because the two nodes that form the set are adjacent to each other. An
optimal minimum weight independent dominating set1 is given in Fig. 1c. Note
that for both, the minimum weight dominating set problem and the minimum
weight independent dominating set problem, the edge weights are not consid-
ered. Finally, the optimal solution to the WID problem is shown in Fig. 1d. The
minimum weight edges that are chosen to connect nodes not in D to nodes in
D are indicated with bold lines. The objective function value of this solution is
13, which is composed of the nodes weights (2 + 1 + 2) and the edge weights
(4 + 1 + 3).

1.1 Our Contribution

So far, the WID problem has only been considered from a theoretical perspec-
tive. It is easy to see that the problem is NP -hard. This is because with w(v) = 1
for all v ∈ V and w(e) = 0 for all e ∈ E the problem reduces to the indepen-
dent domination problem which was shown to be NP -hard in [2]. A linear time
algorithm for the WID problem in series-parallel graphs was proposed in [1].
1 In this problem, given an undirected graph with node weights, the goal is to find

an independent dominating set for which the sum of the weights of the nodes is
minimal.
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(a) Graph with
node and edge
weights.

(b) Minimum
weight dominating
set.

(c) Minimum
weight dominating
independent set.

(d) Optimal solu-
tion to the WID
problem.

Fig. 1. Example that relates the WID problem with the minimum weight dominating
set problem and with the minimum weight independent dominating set problem.

In this work we consider the WID problem in general graphs from an algorith-
mic perspective. Our contributions are as follows. First, we present an integer
linear programming (ILP) model for the WID problem, together with an ILP-
based heuristic. Second, we propose two different greedy heuristics for solving
the problem. The first one is known from the minimum weight independent
dominating set problem, while the second one is specifically developed for the
WID problem. Finally, we propose a so-called population-based iterated greedy
(PBIG) algorithm. This algorithm employs an iterated greedy metaheuristic in a
population-based fashion, and can therefore be seen as a hybrid between methods
based on local search and population-based methods.

1.2 Related Work

On one side, there is related work for problems similar to the one considered
in this work. The minimum independent dominating set problem, for example,
has recently been tackled by a greedy randomized adaptive search procedure
(GRASP) in [3]. Another related problem is the minimum weight dominating
set problem. This problem has been quite popular in recent years as a test case
for metaheuristics. The most recent research efforts for this problem have led
to the development of an ant colony optimization approach and a genetic algo-
rithm in [4], a hybrid evolutionary algorithm in [5], a hybrid approach combining
iterated greedy algorithms and an ILP solver in a sequential way in [6], and a
memetic algorithm in [7].

On the other side, there is related work concerning the employed optimization
technique, that is, PBIG. In general, iterated greedy (IG) algorithms have shown
to be able to work very well in the context of problems for which a good and fast
greedy heuristic is known. Prime examples include those to various scheduling
problems such as [8,9]. The first PBIG approach was proposed in the context of
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the minimum weight vertex cover problem in [10]. Later, PBIG was also applied
to the delimitation and zoning of rural settlements [11] and, as mentioned above,
to the minimum weight dominating set problem [6].

1.3 Organization

The remainder of this paper is organized as follows. In Sect. 2 an ILP model for
the WID problem is proposed. The greedy heuristics are outlined in Sect. 3, the
ILP-based heuristic is presented in Sect. 4, and the PBIG approach is described
in Sect. 5. Finally, an extensive experimental evaluation is provided in Sect. 6
and conclusions as well as an outlook to future work is given in Sect. 7.

2 An ILP Model

The proposed ILP uses three sets of binary variables. For each node v ∈ V it
uses a binary variable xv. Moreover, for each edge e ∈ E the model uses a binary
variable ye and a binary variable ze. Hereby, xv indicates if v is chosen for the
solution. Moreover, ze indicates if e ∈ E is selected for connecting a non-chosen
node to a chosen one. Variable ye is an indicator variable, which indicates if e is
choosable, or not.

(ILP) min
∑

v∈V

xvw(v) +
∑

e∈E

zew(e) (2)

s.t. xv + xu ≤ 1 for e = (u, v) ∈ E (3)
xv + xu = ye for e = (u, v) ∈ E (4)
ze ≤ ye for e ∈ E (5)

xv +
∑

u∈N(v)

xu ≥ 1 for v ∈ V (6)

xv +
∑

e∈δ(v)

ze ≥ 1 for v ∈ V (7)

xv ∈ {0, 1} for v ∈ V

ye ∈ {0, 1} for e ∈ E

ze ∈ {0, 1} for e ∈ E

Hereby, constraints (3) are the independent set constraints, that is, they
make sure that no two adjacent nodes can form part of the solution. Con-
straints (4) ensure the proper setting of the indicator variables. Note that edges
that contribute to the objective function value must always connect a node that
is not chosen for the solution with a node that is in the solution. Therefore,
if—concerning an edge e = (u, v)—either v or u is in the solution, variable ye

is forced to take value one, which indicates that this edge is choosable. Con-
straints (5) relate the indicator variables with the variables that actually show
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which edges are chosen. In particular, if an indicator variable ye has value zero,
ze is forced to take value zero, which means e cannot be chosen. Constraints (6)
are the dominating set constraints. They ensure that for each node v ∈ V , either
the node itself or at least one of its neighbors must form part of the solution.
Finally, constraints (7) ensure that each node v ∈ V that does not form part
of the solution—that is, when xv = 0—is connected by an edge to a node that
forms part of the solution. Due to the fact that the optimization goal concerns
minimization, the edge with the lowest weight is chosen for this purpose.

3 Greedy Heuristics

The first one of two different greedy heuristics developed in this work is a simple
extension of a well-known heuristic for the minimum weight independent domi-
nating set problem. Given an input graph G, this heuristic starts with an empty
solution S = ∅ and adds, at each step, exactly one node from the remaining
graph G′ to S. Initally, the remaining graph G′ is a copy of G. After adding
a node v ∈ V ′ to S, all nodes from N [v | G′]—that is, from the closed neigh-
borhood of v in G′—are removed from V ′. Moreover all their incident edges are
removed from E′. In this way, only those nodes that maintain the property of
S being an independent set may be added to S. At each step, the node v ∈ V ′

that maximizes |N(v|G′)|
w(v) is chosen to be added to S, where N(v | G′) refers

to the neighborhood of v in G′. In other words, nodes with a high degree in
the remaining graph G′ and with a low node weight are preferred. Note that
this greedy heuristic does not take the edge weights into account. They are only
considered when calculating the objective function value of the final solution S.
The pseude-code of this heuristic, henceforth referred to as Greedy1, is shown
in Algorithm 1.

In contrast to Greedy1, the second greedy heuristic is designed to take
into account the edge weights already during the process of constructing a solu-
tion. The algorithmic framework of this greedy heuristic—henceforth denoted by
Greedy2—is the same as the one of Greedy1. However, the way in which a
node is chosen at each step is different. For the description of this greedy heuris-
tic the following notations are required. First, the maximum weight of any edge

Algorithm 1. Greedy Heuristic (Greedy1)
1: input: a undirected graph G = (V,E) with node and edge weights
2: S := ∅
3: G′ := G
4: while V ′ �= ∅ do

5: v∗ := argmax{ |N(v|G′)|
w(v)

| v ∈ V ′}
6: S := S ∪ {v∗}
7: Remove from G′ all nodes from N [v | G′] and their incident edges
8: end while
9: output: An independent dominating set S of G



206 P.P. Davidson et al.

in E is denoted by wmax. Then, let S ∈ V be a partial solution, that is, S is an
independent set which is not yet a dominating set, but which can be extended
to be a dominating set. The auxiliary objective function value faux(S) is defined
as

∑
v∈V c(v | S), where c(v | S) is called the contribution of node v with respect

to partial solution S. Given S, these contributions are defined as follows:

1. If v ∈ S: c(v | S) := w(v)
2. If v /∈ S and N(v) ∩ S = ∅: c(v | S) := wmax

3. If v /∈ S and N(v) ∩ S �= ∅: c(v | S) := min{w(e) | e = (v, u), u ∈ S}
Note that in the case of S being a complete solution, it holds that f(S) =
faux(S). Now, in order to obtain Greedy2, line 5 of Algorithm 1 must be
exchanged with the following one:

v∗ := argmin {faux(S ∪ {v}) | v ∈ V ′} (8)

4 Heuristic Based on the ILP Model

One possibility to take profit from the ILP model outlined in Sect. 2 is to devise
a heuristic based on graph reduction. The main idea is to remove a certain
percentage of the edges with the highest weights from the input graph G, which
results in a reduced graph G′. Then, a general-purpose ILP solver such as CPLEX
is used to solve the problem in G′, forcing that the provided solution is also a
feasible solution for G. However, this is not trivial, as indicated by the example
in Fig. 2. In this example, the edge set E of the input graph G consists of all
dashed and continuous lines. The edge set E′ of the reduced graph G′ only
consists of the continuous lines. A feasible solution in the original graph consists
of exactly one of the four nodes. As a consequence, the remaining three nodes
must be connected to the chosen node. Observe that none of these solutions can
be generated in the reduced graph. Therefore, for solving the problem in G′ we
devised the following ILP model, which makes use of additional binary variables
pv for all v ∈ V . Moreover, let wv denote the weight of the edge with the highest
weight of all those edges incident to v, that is, wv := max{w(e) | e ∈ δ(v)}.

Fig. 2. Example for graph reduction. The edge set E of the input graph G consists of
all dashed and continuous lines. The edge set E′ of the reduced graph G′ only consists
of the continuous lines.
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(ILP2) min
∑

v∈V

(xvw(v) + pvwv) +
∑

e∈E′
zew(e) (9)

s.t. xv + xu ≤ 1 for e = (u, v) ∈ E (10)
xv + xu = ye for e = (u, v) ∈ E′ (11)
ze ≤ ye for e ∈ E′ (12)

xv +
∑

u∈N(v)

xu ≥ 1 for v ∈ V (13)

xv + pv +
∑

e∈δ′(v)

ze ≥ 1 for v ∈ V (14)

xv, pv ∈ {0, 1} for v ∈ V

ye ∈ {0, 1} for e ∈ E′

ze ∈ {0, 1} for e ∈ E′

Note that constraints (10) and the neighborhood function N in constraints
(13) are defined using input graph G. This is done such that the set of nodes
chosen in any solution form a valid solution for the original input graph G. In
contrast, constraints (11), (12) and the incidence function δ′() of constraints (14)
refer to the edge set E′ of the reduced graph G′. This is because for a solution
of ILP2 only edges of the reduced graph may be chosen. In comparison to the
original ILP, ILP2 has an objective function which is augmented by the term∑

v∈V pv ·wv and the left-hand-side of constraints (14) is augmented by summing
pv. This has the effect that, in those cases in which any feasible solution for G
causes that node v cannot be connected to any chosen node using an edge from
E′, variable pv is forced to take value one. This, in turn, results in summing the
weight of the highest-weight edge from E which is incident to v to the objective
function value.

In summary, the ILP-based heuristic—henceforth called Ilp-Heuristic—
works as follows. First, heuristic Greedy2 is applied to G. Second, graph G
is reduced by removing X% of the highest-weight edges, without removing any
edges used by the solution of Greedy2 and without removing more than (100−
X)% of the edges incident to any node in G. This is done by ordering all edges
in E according to decreasing edge weight, and considering one edge after the
other for removal, from left to right. This process results in a graph G′. Then,
CPLEX is applied to G′ using model ILP2. Moreover, the solution of Greedy2
is provided as a warm-start to CPLEX. This process results in a set S′ of chosen
nodes. On the basis of S′ we generate the corresponding solution in G by simply
connecting any node in V \ S′ using the edge from E with the lowest weight to
any of the nodes in S′. Note that by preventing any edges used in the Greedy2
solution from being removed from G during the graph reduction step, the solution
provided by Ilp-Heuristic must always be at least as good as the one provided
by Greedy2.
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5 PBIG: Population-Based Iterated Greedy

A high level description of the implemented PBIG approach is given in Algo-
rithm 2. Apart from the input graph G, PBIG requires values for five parameters:
(1) the population size psize ∈ Z

+, (2) the lower bound (Dl) and the upper bound
(Du) for the degree of destruction applied to each solution of the population at
each iteration, (3) the determinism rate drate ∈ [0, 1], and (4) the candidate list
size lsize > 0. The latter two parameters control the greediness of the probabilis-
tic solution (re-)construction procedure. Moreover, note that for the values of
the above-mentioned bounds it must hold that 0 ≤ Dl ≤ Du ≤ 1. For the follow-
ing description, each solution S is a subset of the nodes of V , has an objective
function value f(S), and an individual, possibly dynamic, destruction rate DS .

The algorithm works as follows. First, the psize solutions of the initial popula-
tion are generated by functionGenerateInitialPopulation(psize, drate, lsize) (see line 2
of Algorithm 2). Afterwards, each iteration consists of the following steps. First,
an empty population Pnew, called offspring population, is created. Then, each solu-
tion S ∈ P is partially destroyed using procedure DestroyPartially(S) (see line 6
of Algorithm 2). This results in a partial solution Ŝ. On the basis of Ŝ, a com-
plete solution S′ is then constructed using procedure Reconstruct(Ŝ, drate, lsize)
(see line 7 of Algorithm 2). Then, the destruction rate DS of solution S is adapted
depending on the quality of solution S′ in function AdaptDestructionRate(S, S′).
Each newly obtained complete solution is stored in Pnew. Note that the two phases
of destruction and re-construction are applied to all solutions from P indepen-
dently of each other. When the iteration is completed, procedure Accept(P,Pnew)
selects the best psize solutions from P ∪ Pnew for the population of the next iter-
ation. In the case of two solutions from P ∪ Pnew being equal, the criterion used
for tie-breaking is based on the individual destruction rates. More specifically, the
solution S with the highest individual destruction rate DS is preferred over the
other one. Finally, the algorithm terminates when a predefined CPU time limit is
reached, and the best found solution is returned. The four procedures that form
the core of PBIG are described in more detail in the following.

Algorithm 2. PBIG for the WID problem
1: input: input graph G, parameters psize > 0, Dl, Du, drate, lsize ∈ [0, 1]
2: P := GenerateInitialPopulation(psize, drate, lsize)
3: while termination condition not satisfied do
4: Pnew := ∅
5: for each candidate solution S ∈ P do
6: Ŝ := DestroyPartially(S)
7: S′ := Reconstruct(Ŝ, drate, lsize)
8: AdaptDestructionRate(S, S′)
9: Pnew := Pnew ∪ {S′}

10: end for
11: P := Accept(P,Pnew)
12: end while
13: output: argmin {f(S) | S ∈ P}
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GenerateInitialPopulation(psize, drate, lsize): This function generates psize solutions
for the initial population. For this purpose it uses the mechanism of Greedy22

(see Sect. 3) in a probabilistic way. At each construction step, first, a random
number δ ∈ [0, 1] is generated. In case δ ≤ drate, the best node according to
the greedy function is chosen. Otherwise, a candidate list of size min{|V ′|, lsize},
where V ′ ⊆ V are the nodes that can be selected at the current construction step,
is generated, and one of the nodes from the candidate list is chosen uniformly
at random. Note also that the initial destruction rate (DS) of each solution S is
set to the lower bound Dl for the destruction rates.

DestroyPartially(S): In this function, max{3, 
DS · |S|�} randomly selected nodes
are removed from S, where DS is the current individual destruction rate of
solution S.

Reconstruct(Ŝ, drate, lsize): Given as input a partial solution Ŝ, this function re-
constructs a complete solution S′ in the same way in which solutions are prob-
abilistically constructed in the context of generating the initial population (see
above). Moreover, the initial destruction rate DS′ of S′ is set to Dl.

AdaptDestructionRate(S, S′): The individual destruction rate DS of solution S
(from which partial solution Ŝ was obtained) is updated on the basis of the lower
bound Dl and the upper bound Du as follows. If f(S′) < f(S), the value of DS

is set back to the lower bound Dl. Otherwise, the value of DS is incremented by
a certain amount. After initial experiments, we determined this amount to be
0.05. If the value of DS , after this update, exceeds the upper bound Du, it is set
back to the lower bound Dl.

Note that the idea behind this way of dynamically changing the value of DS

is as follows. As long as the algorithm is able to improve a solution using a low
destruction rate, this rate is kept low. In this way, the re-construction is faster.
Only when the algorithm seems not to be able to improve over a solution, the
individual destruction rate of this solution is increased in a step-wise manner.

6 Experimental Evaluation

The following five algorithmic approaches are evaluated on a variety of bench-
mark instances: (1) Greedy1, (2) Greedy2, considering edge-weights dur-
ing the solution construction, (3) the application of the ILP solver CPLEX to
the ILP model presented in Sect. 2 (Cplex), (4) the ILP-based heuristic (Ilp-
Heuristic), and (5) Pbig. All techniques were implemented in ANSI C++
using GCC 4.6.3 for compiling the software. Moreover, we used CPLEX version
12.6 in single-threaded execution. The experimental results that are presented
in the following were obtained on a cluster of computers with Intel R© Xeon R©
CPU 5670 CPUs of 12 nuclei of 2933 MHz and (in total) 32 Gigabytes of RAM.
For each run of CPLEX we allowed a maximum of 2 Gigabytes of RAM, which

2 Note that Greedy2 is chosen over Greedy1 because, as it will be shown later,
Greedy2 generally works better than Greedy1.
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was never reached within the allotted computation time. In the following, first,
the set of benchmark instances is described. Then, a detailed analysis of the
experimental results is presented.

6.1 Benchmark Instances

For the evaluation of the proposed algorithms we used random graphs of various
sizes and densities. In particular, we generated graphs of 100, 500 and 1000 nodes,
that is, |V | ∈ {100, 500, 1000}. Edges between nodes were generated totally at
random, with a given probability ep for each edge. This probability controls
the density of the graph. In particular, we considered ep ∈ {0.05, 0.15, 0.25}.
Three different schemes for generating the node and edge weights were consid-
ered. In the first scheme, both node and edge weights were drawn uniformly
at random from {0, . . . , 100}. Henceforth we call the resulting graphs neutral
graphs. In the second scheme, node weights were drawn uniformly at random
from {0, . . . , 1000} and edge weights were drawn uniformly at random from
{0, . . . , 10}. In these graphs, henceforth called node-oriented graphs, the choice
of the nodes is presumably very important because of the high weights associated
to the nodes. Finally, in the third scheme node weights were drawn uniformly
at random from {0, . . . , 10} and edge-weights were drawn uniformly at random
from {0, . . . , 1000}. In these edge-oriented graphs, the choice of the nodes is
important due to edges that are made available for connecting non-chosen nodes
to chosen nodes. For each combination of graph size, edge probability, and weight
generation scheme we produced 10 problem instances. This makes a total of 270
graphs.

6.2 Tuning of PBIG

The five concerned parameters are the following ones: psize, Dl, Du, drate and
lsize. The automatic configuration tool irace [12] was applied separately for each
combination of the number of nodes and the weight generation scheme. Note
that no separate tuning was performed concerning the graph density (depending
on ep). This is because, after initial runs, it was shown that the other parameters
have a higher influence on the behavior of the algorithm. Summarizing, irace was
applied 9 times with a budget of 1000 applications of Pbig per tuning run.

For each application of Pbig a time limit of |V |/5 CPU seconds was given.
For each run of irace, two tuning instance were generated for each combination
of number of nodes, graph density, and weight generation scheme. This gives
a total of six tuning instances per run of irace. The following parameter value
ranges were considered for each tuning run:

– psize ∈ {1, 10, 50, 100}.
– For the lower and upper bound values of the destruction percentage, the follow-

ing value combinations were considered: (Dl,Du) ∈ {(10,10), (20,20), (30,30),
(40,40), (50,50), (60,60), (70,70), (80,80), (90,90), (10,50), (30,70), (50,90)}.
Note that in those cases in which both bounds have the same value, the per-
centage of deleted nodes is always the same.
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– drate ∈ {0.0, 0.3, 0.5, 0.7, 0.9}.
– lsize ∈ {1, 3, 5, 10}.

The results of the tuning processes are shown in Table 1. The trends are very
clear. The population size should be rather high, the determinism rate rather
low, and the candidate list size rather high. Moreover, a dynamically changing
value of the destruction rate does not seem to be necessary. In most cases a fixed
value of around 0.5 is selected.

Table 1. Results of tuning Pbig with irace.

Weight scheme |V | psize (Dl, Du) drate lsize

Neutral 100 100 (0.7, 0.7) 0.3 10

500 100 (0.5, 0.9) 0.0 10

1000 100 (0.4, 0.4) 0.3 10

100 50 (0.5, 0.5) 0.3 10

Node-oriented 500 50 (0.6, 0.6) 0.5 10

1000 100 (0.5, 0.5) 0.3 10

100 100 (0.5, 0.5) 0.0 5

Edge-oriented 500 100 (0.5, 0.5) 0.0 10

1000 100 (0.4, 0.4) 0.0 10

6.3 Numerical Results

The results are presented in numerical form in Table 2, which has the following
format. The first three table columns indicate the number of nodes in the graph
(|V |), the weight generation scheme, and the graph density in terms of the edge
probability (ep). The results of Greedy1, Greedy2 and Ilp-Heuristic are
presented by means of two columns each. The first column presents in each row
the average result obtained for the corresponding 10 problem instances. The
second column provides the average computation times (in seconds). Pbig was
applied with a computation time limit of |V |/5 seconds to each problem instance.
We provide the average results in the first column and the average computation
times at which these results were found in the second column. Cplex was applied
with two different computation time limits. In the columns with heading Cplex
we present the results that were obtained with the same computation time limit
as Pbig, while the columns with heading Cplex-L contain the results were
the computation time limit was set to 3600 s per application. In both cases,
the first one of the two columns presents the average of the objective function
values of the best solutions found within the computation time limit for the
10 problem instances of each row. The second column indicates the average
optimality gaps (in percent). Note that when the average optimality gap is zero,
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all 10 corresponding instances were solved to optimality. Finally note that Ilp-
Heuristic was applied with a graph reduction of X = 20% and with the same
computation time limit as Cplex-L. The best result of each table row is shown
with gray background.

The experimental results allow us to make the following observations:

– Concerning the comparison between Greedy1 and Greedy2 it can be
observed that, generally, Greedy2 outperforms Greedy1 in the context of
neutral graphs and edge-oriented graphs. Only in the context of node-oriented
random graphs Greedy1 outperforms Greedy2. This shows that, generally,
it is a good idea to take the edge weights already into account during the
construction of a solution. Only when the edge weights are not important in
comparison with the node weights—that is, in the context of node-oriented
graphs—Greedy1 has advantages.

– Cplex is able to obtain very good results for the smallest instances with 100
nodes. However, for larger problem instances, it is not competitive anymore.
Increasing the computation time limit to 3600 s (Cplex-L) helps for some of
the medium size problem instances, where the results in comparison to Cplex
improve considerably. However, when large problem instances are concerned,
Cplex-L is still not competitive.

– Ilp-Heuristic improves in all but two cases over Greedy2. However, this
is at the cost of a huge increase in computation time. Moreover, it improves
in most cases (especially for what concerns medium and large size instances)
over Cplex and Cplex-L.

– Pbig is, overall, clearly the best-performing algorithm. It outperforms both
greedy heuristics in all cases. Moreover, it outperforms both CPLEX vari-
ants and Ilp-Heuristic for all problem instances with more than 100 nodes.
Moreover, in those cases where Pbig is worse than Cplex, it is only slightly
worse. This is with the exception of two cases (node-oriented graphs on 100
nodes with ep ∈ {0.05, 0.15}) where the difference is more pronounced.

– Concerning the computation time requirements, the two greedy variants are
clearly the fastest methods. However, even Pbig produces its best solutions
in a very short computation time.

Summarizing, we can state that the algorithm of choice for small problem
instances, no matter the graph density, is CPLEX, whereas for larger problem
instances Pbig is clearly the best-performing approach.

7 Conclusions and Future Work

This paper has dealt with an NP-hard problem in graphs, the so-called weighted
independent domination problem. We proposed the first integer linear pro-
gramming model for this problem, together with a heuristic that makes use
of this model. Additionally, we presented two different greedy heuristics, and a
population-based iterated greedy algorithm which takes profit from the better
one of the two greedy heuristics. The results have shown that small problem
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instances are best solved by applying a general-purpose integer linear program-
ming solver. Medium and large scale instances, on the other side, are best solved
by the population-based iterated greedy approach.

In the near future we plan to investigate if there are better ways to take
profit from the developed ILP model in a heuristic way, for example, in the
context of a large neighborhood search algorithm or another hybrid algorithm
called construct, merge, solve and adapt.
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Abstract. The proper setting of algorithm parameters is a well-known
issue that gave rise to recent research investigations from the (offline)
automatic algorithm configuration perspective. Besides, the character-
istics of the target optimization problem is also a key aspect to elicit
the behavior of a dedicated algorithm, and as often considered from
a landscape analysis perspective. In this paper, we show that fitness
landscape analysis can open a whole set of new research opportunities
for increasing the effectiveness of existing automatic algorithm configu-
ration methods. Specifically, we show that using landscape features in
iterated racing both (i) at the training phase, to compute multiple elite
configurations explicitly mapped with different feature values, and (ii) at
the production phase, to decide which configuration to use on a feature
basis, provides significantly better results compared against the stan-
dard landscape-oblivious approach. Our first experimental investigations
on NK-landscapes, considered as a benchmark family having control-
lable features in terms of ruggedness and neutrality, and tackled using a
memetic algorithm with tunable population size and variation operators,
show that a landscape-aware approach is a viable alternative to handle
the heterogeneity of (black-box) combinatorial optimization problems.

1 Introduction

Following the advent of increasingly complex problems coming from different
application fields, and implying optimization scenarios with different proper-
ties, the optimization community is continuously pushing towards the design
of novel techniques that are both effective when tackling a particular problem
instance, and as generic as possible in order to be flexibly adapted to a variety
of problem classes. In particular, evolutionary algorithms are extremely effective
to deal with a broad range of black-box optimization problems, which is one
of the major reasons of their widespread uptake. Nonetheless, and despite the
c© Springer International Publishing AG 2017
B. Hu and M. López-Ibáñez (Eds.): EvoCOP 2017, LNCS 10197, pp. 215–232, 2017.
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tremendous knowledge gained on the design of general-purpose techniques, this
success can be seriously impacted by the choice of the algorithm components and
parameters. For example, when designing a genetic algorithm, one has to specify
what crossover and mutation rates to set in order to reach a good performance,
as well as the choice of the variation operators. Moreover, it is a fact that the
robustness of an algorithm, in terms of the best reachable performance, can be
directly related to the characteristics of the problem instances being tackled.
In this respect, a number of paradigms, techniques and dedicated software tools
from automatic algorithm configuration have been proposed in order to alleviate
the design of algorithms from the challenging and crucially important issue of
setting their parameters [1–5]. Similarly, a huge body of literature from fitness
landscape analysis was devoted to eliciting the features that make a problem
instance fundamentally different from another, and to better grasp the behav-
ior of evolutionary algorithms. In this paper, we aim at providing a first step
in bridging automatic algorithm configuration with fitness landscape analysis,
towards the achievement of a more powerful offline tuning framework.

Automatic Algorithm Configuration. Informally speaking, given a num-
ber of algorithm parameters (that might be numerical, discrete, or categorial),
(offline) automatic algorithm configuration seeks a good configuration, that is a
particular choice of the parameter values that best suits the solving of some a pri-
ori unknown instances [2]. Clearly, the motivation is not only to get rid from the
burden of a manual calibration or the bias of personal and ad-hoc configuration
processes, but more importantly to set up a principled approach for algorithm
design, allowing to systematically explore their strengths and weaknesses when
tackling a whole family of problems. In this context, several approaches have been
proposed, ranging from racing [1,2] to statistics [3], experimental design [4], and
heuristic search [5].

In this paper, we focus on the iterated racing method, which is gaining a lot
of popularity, especially thanks to the flexibility of the user-friendly irace soft-
ware [6]. Racing approaches, as most existing automated algorithm configuration
methods, can be viewed from a machine learning perspective as operating in a
training phase followed by a test or a production phase. Based on some given
instances forming the training set, the training phase is intended to learn a good
configuration that would hopefully perform well when experimented later, on
some new unseen instances coming from the production phase. Roughly speak-
ing, different configurations are first evaluated in parallel by racing, and those
that are performing poorly are then discarded until one single configuration
remains. Since the parameter space can be huge and an exhaustive search on the
training set of instances prohibitive, a biased sampling procedure is typically
implemented in order to cleverly select which configurations are to be evaluated.
More specifically to iterated racing [6], the sampling distribution associated with
each input parameter is updated at each iteration based on some statistical tests
on the performance of running the considered configurations on some instances
chosen from the input training set. It has been pointed out that the way the
parameter sampling procedure and the statistical evaluation of the performance
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of different configurations plays a key role in guiding the iterated racing process
towards the most promising configurations [6]. However, and as for any machine
learning technique, the properties of the training set is a key issue in order to
guarantee a high accuracy of the output configuration.

To our best knowledge, this issue has been studied only to a small extent
in the context of automatic algorithm configuration. In fact, although one can
safely claim that a set of available instances are already known a priori for
a particular problem class, they might have fundamentally different structural
properties, thus making them not homogeneous enough to be tackled using a sin-
gle configuration. The heterogeneity of training instances was discussed briefly
in [6] in the context of a tuning scenario implying SAT instances and irace. It
was argued that such a scenario can constitute a real challenge for algorithm
configuration. We also argue that a single output parameter configuration might
not be suitable for the target algorithm to best suit a whole set of instances hav-
ing different properties. In this paper, we rather advocate for the computation
of a set of configurations, not a single one, that can then be mapped accurately
with respect to the characteristics of an instance. Notice that, in iterated racing,
a whole set of elite configurations can be provided as output – the set of configu-
rations that were found to statistically have similar performance, which actually
happens in many tuning scenarios, especially when the number of parameters
is large. Nevertheless, it is still unclear which configuration has to be chosen
in practice. Additionally, it often happens that the structural properties of a
production instance, that is an instance on which the algorithm was not tuned
beforehand, require a seemingly different parameter settings to reach optimal
performance. This is for example typically the case in black-box optimization,
where no assumption is made on the structure of the fitness function. This is
precisely where fitness landscape analysis comes into play.

Fitness Landscape Analysis. When tackling black-box optimization prob-
lems, for which expert domain knowledge is typically not available, a funda-
mental issue is to understand what makes a problem instance difficult to solve.
Similarly, it is essential to elicit the performance of a randomized search heuris-
tic in light of the structural properties of the tackled problem. In this respect,
fitness landscapes analysis [7,8] provides a set of general-purpose tools and a
principled approach to systematically investigate the characteristics of an opti-
mization problem in an attempt to guide algorithm designers towards a more
in-depth understanding of the search behavior, and thus towards more effec-
tive algorithms. A typical issue addressed in fitness landscape analysis consists
in studying how the performance of a given algorithm configuration can be
impacted in light of insightful features from the considered problem instances. In
particular, different general-purpose features were studied for this purpose [8],
and such landscape features have prove their interest in successfully distinguish-
ing between instances [9]. The general idea developed in this paper is that such
features can actually serve to differentiate which parameter configuration can
be more suitable for a particular problem instance, both during the training
phase and during the production phase of automatic algorithm configuration.
In other words, since it might be useless to search for just one single parameter
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configuration for an heterogeneous instance set, an alternative solution would
be to consider a whole set of configurations that are explicitly associated with
some elicited computable instance features. We, in fact, claim that such an idea
is useful to enhance the robustness of the output configuration.

Contributions. The contributions of this paper can be stated following the
next aspects:

• We adopt a landscape-oriented methodology to strengthen the accuracy of
automated algorithm configuration. By partitioning the training set into dif-
ferent groups based on the value of landscape features, we conduct an inde-
pendent training phase in parallel for each group, thus ending up with mul-
tiple algorithm configurations corresponding to the different groups. At the
production phase, the appropriate configuration is selected based on the fea-
ture value of the considered instance. As a byproduct, we derive a novel
landscape-aware methodology to complement existing automatic algorithm
configuration in deciding on a suitable parameter setting.

• We validate the proposed landscape-aware methodology through an empirical
study on the well-established benchmark family of NK-landscapes. This prob-
lem class allows us to model a black-box optimization scenario with a variety
of problem instances coming from the same (pseudo-boolean) domain, but
with seemingly different intrinsic characteristics. By construction, a number
of features, that are often found to impact the performance of evolution-
ary algorithms, are in fact made controllable. This results in a particularly
interesting adversary benchmark for studying the challenges that automated
algorithm configuration has to face when tackling heterogenous instances. In
particular, we focus on the behavior of iterated racing when tackling problems
with a variable degree of ruggedness and neutrality.

• By fairly taking the extra computational cost induced by our methodology
into account, we investigate the gain of deciding which parameter configura-
tion to choose for an unseen production instance based on general-purpose
low-cost computable features. Our empirical findings reveal that landscape-
aware iterated racing is able to find better configurations when experimented
in a conventional memetic algorithm with tunable population size, variation
operators, crossover and mutation rates.

Positioning. Our work shares similarities with previous attempts from auto-
matic configuration. In Hydra [10], a portfolio builder is used together with an
automatic configuration method in order to construct a portfolio of algorithm
configurations. The portfolio builder typically uses problem features to discard or
add new configurations found by automatic configuration, and the method was
proved effective when experimented with SAT specific tools. However, it requires
both a suitable portfolio builder and a domain-specific knowledge, which can
constitute a bottleneck in practice for black-box optimization. In SMAC [11],
landscape features are used within the tuning process as a subset of input vari-
ables in order to construct a model predicting algorithm performance, but a
single recommended algorithm configuration is returned for the whole instance
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set. In ISAC [12], features are used for instance-specific algorithm configura-
tion, but the authors consider problem-specific features, whereas our proposal
attempts to address black-box optimization problems.

Outline. For the sake of presentation and completeness, we first start by
describing in Sect. 2 the rationale behind NK-landscapes, as well as by defining
some general-purpose features that we shall use in order to empirically revisit
the characteristics of NK-landscapes. In Sect. 3, which is the core of the paper,
we describe the proposed landscape-aware methodology for automatic algorithm
configuration and experimentally investigate its accuracy on NK-landscapes. In
Sect. 4, we conclude the paper while providing some future research questions.

2 Initial Considerations on Pseudo-Boolean Landscapes

2.1 NK-, NKq- and NKp-Landscapes

The family of NK-landscapes constitutes a problem-independent model used for
constructing multimodal benchmark instances with variable ruggedness [13]. The
fitness function f is a pseudo-boolean function f : {0, 1}N → [0, 1] to be maxi-
mized. Candidate solutions are binary strings of size N , i.e. the solution space is
X := {0, 1}N . The fitness value f(x) of a solution x = (x1, . . . , xi, . . . , xN ) is an
average value of the individual contributions associated with each variable xi.
Indeed, for each xi, i ∈ [[1, N ]], a component function fi : {0, 1}K+1 → 0, 1
assigns a positive contribution for every combination of xi and its K epistatic
interactions {xi1 , . . . , xiK}. Thus, the individual contribution of a variable xi

depends on the value of xi, and on the values of K < N other binary vari-
ables {xj1 , . . . , xjK}. The problem can be formalized as follows:

arg max
x∈{0,1}N

f(x) =
1
N

N∑

i=1

fi(xi, xi1 , . . . , xiK )

The epistatic interactions, i.e. the K variables that influence the contribution
of xi, are here set uniformly at random among the (N − 1) other variables,
following the random model from [13]. By increasing the number of epistatic
interactions K from 0 to (N − 1), NK-landscapes can be gradually set from
smooth to rugged. It is worth noticing that this is intended to provide a family
of black-box benchmark functions that allow to study challenging aspects that
can make a practical combinatorial optimization problem instance difficult to
solve, such as ruggedness or multimodality [7,13,14].

Moreover, NK-landscape were shown to be extendable to optimization sce-
narios in the presence of different degrees of neutrality, which is also a critical
issue when dealing with combinatorial optimization problems [15,16]. Accord-
ingly, Newman [17] and Barnett [18] introduced a controllable level of neutrality
as follows. In the so-called quantized NKq-landscapes [17], the fi-values are gen-
erated following a discrete uniform distribution [[0, q−1]], and are scaled down by
a factor of 1

q−1 . In the so-called probabilistic NKp-landscapes [18], the fi-values
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are set to 0 with a probability p, and otherwise generated as in the original
NK-landscapes with a probability (1 − p), where p is a benchmark parameter.
To summarize, we shall consider NKq|p-landscapes as described above, where it
is expected that the larger K the higher the level of ruggedness, and that the
smaller q (respectively the larger p) the higher the level of neutrality.

2.2 NKq|p-Landscapes Features

As mentioned earlier, fitness landscape analysis aims at studying the topology of
a combinatorial optimization problem by gathering important information such
as ruggedness or multimodality [7,14]. It is important to remark that such an
information is typically not available a priori, when effectively solving a given
unseen problem instance. Actually, in a typical black-box optimization scenario,
even the parameters that originate a particular problem instance might not be
available. With respect to the NKq|p-benchmark family, we might typically con-
sider a configuration scenario where the instance parameter values such as K, p
or q, are not known by the optimizer. In this context, a fitness landscape analysis
might allow us to extract valuable information on the structural properties of an
instance. For this purpose, we first report some general-purpose properties of the
considered NKq|p benchmarks by taking inspiration from [18]. Our goal is also to
provide empirical evidence that this benchmark family is rather heterogenous,
and is indeed a good adversary candidate for evaluating the behavior of auto-
matic algorithm configuration. We consider an instance dataset of 800 NKq|p-
landscapes with a problem size N ∈ [[500, 2 000]], an epistatic degree K ∈ [[0, 10]],
and a neutral degree q ∈ [[2, 10]] for NKq-landscapes, respectively p ∈ [0.60, 0.93]
for NKp-landscapes. The range of the parameters q and p have been chosen in
order to obtain a similar range of neutral degrees on NKq- and NKp-landscapes.
A total of 800 instances are considered, with one instance generated at ran-
dom for each parameter combination. Half of the instances correspond to NKq-
landscapes, while the other half are NKp-landscapes. The parameters have been
generated from a design of experiments based on a latin hypercube sampling.

Formally, a fitness landscape is defined by a triplet (X,N , f), such that X is
a set of admissible solutions (the search space), N : X → 2X is a neighborhood
relation between solutions, and f : X → R is a black-box fitness function, here
assumed to be maximized. A simple sampling technique for examining features
from the landscape is to perform a random walk over the landscape. More specif-
ically, an infinite random walk is an ordered sequence 〈x0, x1, . . .〉 of solutions
such that x0 ∈ X, and xt is a neighboring solution selected uniformly at random
from N (xt−1). In the same spirit than for the heterogeneous scenario mentioned
in [6], a first feature that we might consider is the average fitness value of a
random walk, which can be approximated by means of a finite random walk
〈x0, x1, . . . , x�〉 of length � as follows: f̄ = 1

�

∑�
t=1 f(xt). The average fitness

value encountered along a random walk can actually be used to differentiate a
given set of instances. This is exactly what we report in Fig. 1 for the NKq|p-
landscapes, where � is set to 1 000. We can observe that NKq-landscapes clearly
differ from NKp-landscapes, as the range of average fitness values is substan-
tially different. While the instances generated with different q−values appear to
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Fig. 1. Scatter plot of mufit (average fitness value) as a function of p and q for all
instances.

be rather uniform in terms of average fitness value (independently of K), the
average fitness value is in contrast decreasing linearly as a function of p. This
provides a first hint on the differences that we might encounter in the landscape
of different instances.

In order to go further in the analysis, the autocorrelation [14] between the
fitness values of consecutive solutions in a random walk can be used to charac-
terize an important feature of an instance, namely its ruggedness. We consider
the following approximation to estimate the so-called autocorrelation coefficient
r̂(k):

r̂(k) =
∑�−k

t=1 (f(xt) − f̄) · (f(xt+k) − f̄)
∑�

t=1(f(xt) − f̄)2

We use the first autocorrelation coefficient r(1) to characterize ruggedness: the
larger r(1), the smoother the landscape [14]. We report in Fig. 2 this coefficient
as a function of K. As expected, we can observe that the first autocorrelation
coefficient tends to decrease with the degree of non-linearity. This means that the
larger K, the more likely to fall into a local optimum. Notice that this tendency
is the same for both NKq- and NKp-landscapes.

At last, we shall examine a feature capturing the degree of neutrality, which
explicitly relates to parameters p and q in NKq|p-landscapes. Given a solution
x, we denote a neighboring solution x′ ∈ N (x) as a neutral neighbor if it has
the same fitness value: f(x′) = f(x) [15]. The neutral degree of a solution is
then defined as the number of its neutral neighbors. Consequently, different sta-
tistics can be used to quantify the neutral degree of a given instance, following
different sampling strategies that induce different computational costs. Since we
shall fairly include the cost of computing such features later when addressing the
effectiveness of an algorithm configuration method, we consider a new estimator
that solely looks at consecutive solutions along a random walk. More specifi-
cally, let NN = {(xi, xi+1) | f(xi) = f(xi+1), i ∈ {0, . . . , � − 1}} be the set of
pairs of solutions with the same fitness value in the random walk. We consider
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Fig. 2. Scatter plot of rho1fit (first autocorrelation coefficient) as a function of K for
all instances.

the following low-cost feature to render neutrality: rateeq = |NN |
� , which is the

proportion of pairs of neutral neighbors along the random walk. In Fig. 3, we
report the neutral degree of the considered instances as a function of the dif-
ferent parameters K, q and p. The neutral degree decreases (resp. increases)
with q (resp. p), which is with no surprise given the definition of these two para-
meters in NKq|p-landscapes. However, a notable observation is that the neutral
degree is relatively higher for NKp-landscapes (up to 0.8) compared against
NKq-landscapes (up to 0.6), which is yet another interesting information about
the heterogeneity of these instances. Interestingly, we clearly see that the neutral
degree is not only dependent on parameters q or p, but also on the degree of
non-linearity K, as previously pointed out in [18]. Actually, the higher the value
of K, the lower the neutral degree. We also remark that for instances with a high
level of non-linearity K, the difference in the range of neutrality between NKp-
and NKq-landscapes decreases significantly, and the neutral degree appears to
be roughly the same.

To conclude this section, let us emphasis that, although NKq|p-landscapes
belong to the same problem family, they are seemingly different as they expose
different degrees of ruggedness and neutrality. This is likely to be the case in
practice for other problem classes, where one can expect different instances to
have different properties, and hence to expose different degrees of difficulty. In
this respect, a reasonable hypothesis is that the optimal setting of the considered
optimization algorithm depends on instance properties. This is precisely what
we address in the remainder of this paper.

3 Feature-Based Algorithm Configuration

In this section, we describe a feature-based algorithm configuration methodology,
and provide an empirical evidence of its benefits when tuning a standard memetic
algorithm.
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Fig. 3. Scatter plot of rateeq (neutral degree) as a function of p and q for all instances.

3.1 Feature-Aware Iterated Racing

For completeness, we first start recalling the main steps of conventional iterated
racing as performed in irace [6]. Our interest in this approach stems from its
successful application in tuning different optimization techniques for a rather
wide range of optimization problems [6]. The input of irace is a set of parame-
ters θ = {x1, . . . , xn} from the algorithm to be configured, and a set of training
instances I = {I1, . . . , Ik}. The output is typically a set of elite configurations
θ∗ = {θ1, . . . , θr} that allow the target algorithm to perform at its best with
respect to some performance metric. Notice that irace is actually a stochastic
search process performing in the parameter space, and hence no guarantee is
actually provided on the optimal performance of the output configuration. That
said, irace consists in three main steps that are repeated sequentially as fol-
lows, until a termination condition is met. First, some configurations are sampled
according to a particular probability distribution. The best configurations are
then selected using a racing procedure [6]. More specifically, the sampled config-
urations are evaluated for a number of steps by executing the algorithm with the
parameter setting mapping to those configurations. At each step of the race, one
instance from I is considered. The configurations that were found to perform
statistically worse than others are then discarded, and the race continues with
the surviving configurations. Finally, the distribution from where the configura-
tions are sampled from is updated in order to bias the search towards the most
promising configurations found in previous iterations. As will be detailed later,
we use a standard termination criterion which is a user-defined computational
budget, in terms of a number of algorithm execution. The performance metric
is simply the quality of the best solution found during an algorithm execution.

At this stage, it is important to remark that irace is intended to be a general-
purpose tuning approach. In particular, no assumption is made from the set of
input training instances I. Following the same motivations from the no-free lunch
theorem, the idea developed in this paper is precisely that there cannot exist a
unique optimal configuration for a whole set of instances. Consequently, irace
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can only output a configuration representing a good compromise with respect
to the characteristics of all training instances. This is to contrast with an ideal
case where one wants the output configuration to perform in an accurate manner
to an unseen production instance, independently of its intrinsic properties. In
this paper, we hence argue that a methodology where some knowledge about
the landscape is considered as a helpful information from which the algorithm
configuration can valuably benefit, can be of special interest. To provide an
empirical evidence of the soundness of the previous claim, we propose a rather
simple, yet efficient, procedure as described in the next paragraph.

We consider that an instance is characterized by the value of some landscape
feature. We hypothesis that instances having similar feature values are likely
to expose a similar difficulty for the target optimization algorithm, and that it
can then be configured similarly for those instances. Let us denote by feat(I)
the value of feature feat for instance I. Since we might have numerical, discrete,
or even categorial features, we assume for now that we are able to classify an
instance I into a unique class according to its feature value feat(I). Let us assume
as well that we have s such classes, where s is a pre-defined parameter. We then
proceed as follows: (i) we partition the training set into s groups according to
the feature values, i.e. I = I1 ∪ I2 ∪ . . . ∪ Is, where Ii contains instances from
the same class; and (ii) we run irace independently, using every partition Ii

separately as an input training set. Since irace is then executed s times on the s
training sets, we obtain as output s elites configurations: θ∗

1 ∪θ∗
2 ∪ . . .∪θ∗

s , where
θ∗

j maps to instances of class j ∈ {1, . . . , s}. Since these output configurations are
hence explicitly related to the feature class, it becomes straightforward to decide
which elite configuration to choose when experiencing a new unseen production
instance. More specifically, given a new unseen test instance, we first compute its
feature class j, and we simply consider the elite configuration θ∗

j , computed by
irace beforehand, in order to effectively set the parameters of the optimization
algorithm for this unseen instance. Designing insightful problem features is to
be understood as a challenging issue in practice, and it is worth noticing that
the general-purpose landscape features for black-box combinatorial optimization
that we consider in this paper do not require any expert domain knowledge. The
proposed methodology is to be viewed as a first step towards the design of more
sophisticated approaches, as will be discussed in more details in the conclusions.
Our main goal is in fact to study at which extent a landscape-aware automatic
algorithm configuration methodology could be beneficial.

Up to now, we did not address the cost of computing the feature values, nor
the computational effort devoted to the tuning task. This is an important issue
when evaluating the proposed methodology. For fairness, we split the available
budget B equally over the s runs of irace, i.e. each run j ∈ {1, . . . , s} of irace
with Ij uses as termination condition a maximum number of algorithm runs
which is set to B/s. Additionally, we consider to subtract the cost of computing
the feature from the computational effort devoted to execute the algorithm on a
given instance, both at the training phase of irace, but more importantly at the
test or production phase, when computing the class of a new unseen instance.
This is to be specified in more details in our experimental setup.
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Table 1. Parameter space for tuning the Memetic Algorithm (MA) for NKq|p-
landscapes.

Parameter Domain Type

Population size {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1 024, 2 048} Ordinal

Crossover operator {unif, 1-point, 2-point} Categorical

Crossover rate {0.00, 0.05, 0.1, . . . , 0.95, 1.00} Ordinal

Mutation rate c/N , s.t. c ∈ {0.0, 0.5, 1.0, . . . , 9.5, 10.0} Ordinal

3.2 Memetic Algorithm and Parameter Space

As a case study, and in order to highlight the relevance of the previously-
described methodology, we consider the configuration of the main components
of a memetic algorithm (MA) similar to [19] as one alternative to solve the class
of NKq|p-landscapes. The MA evolves a population of candidate solutions rep-
resented as binary strings. Starting from a randomly-generated population P of
size μ, the MA proceed in consecutive iterations. At each iteration, two solutions
from the current population are selected using a binary tournament selection,
and a new offspring is created by means of crossover followed by mutation. The
crossover is applied with a fixed probability rc. The mutation consists in flip-
ping each bit with a probability rm. We then use a local search to enhance the
so-obtained offspring. Specifically, a first-improvement hill-climbing algorithm is
implemented. Solutions at hamming distance 1 are examined in a random order,
and the first improving neighbor is selected until a local optimum is found.
After a set of μ offspring solutions are created in this manner, a generational
replacement is performed. The newly-generated solutions becomes the current
population and the best individual from the old population replaces the worst
solution if it is better than the best newly generated offspring. The algorithm
terminates after a fixed number of fitness function evaluations.

The parameter space for the automatic design of the MA is given in Table 1.
We consider to tune the population size, which is known to be a critical issue
in evolutionary computation. We hence choose a set of values ranging from very
small (1) to very large (2 048). For crossover, we consider three well-established
binary string operators, namely one-point crossover, two-point crossover, and
uniform crossover. The possible values for the crossover rate (rc) ranges from
0 (no crossover) to 1 (crossover always performed). The possible values for the
mutation rate (rm) are set as a function of N (the bit-string size), and controls
the number of bits that are flipped in average. Although some of these parameters
could have been specified as real or integer parameters, we decided to discretize
them in order to reduce the size of the parameter space in irace.

3.3 Experimental Setup

We use the irace R-package [6], that provides the reference implementation of
iterated racing. As training instances, we consider the same set of 800 instances as
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described previously in Sect. 2. We consider two types of features: (i) the bench-
mark parameters from NKq|p-landscapes: N, K, p or q, and the type of neutrality,
where the first three are numerical and the last one is categorial (i.e. quantized
or probabilistic), and (ii) the general-purpose features as discussed in Sect. 2,
namely the average fitness mufit, the first autocorrelation coefficient rho1fit, and
the neutral rate rateeq, all computed based on a random walk of budget � = 1000.
In order to partition the training set, we consider a one-dimensional simple strat-
egy that takes each feature separately, and then splits the instances into a fixed
number of clusters with equal range of that feature values (see Table 2). This
simple partitioning strategy is to be viewed as a first step towards more sophis-
ticated clustering strategies involving more than one feature at a time, that is
left for future research. Except for the feature involving the type of instance
(and where the number of clusters is two), we choose to partition the training
instances into four clusters. Notice also that since neutrality can be controlled
independently by parameter p or q, we combine these parameters to constitute
one feature denoted p|q, for which we also have four groups: two from NKq-
and two from NKp-landscapes. For the test phase, we independently generate
a test set of 200 instances, following the same experimental design discussed in
Sect. 2. These additional instances are used to test the accuracy of the output
configurations and are not available for irace during the training phase. As one
can appreciate in Table 2, the instances from the training set and the test set
are actually well balanced over the different clusters.

Following [6], we use irace with a tuning budget of 20 000 algorithm runs,
where each run of the MA performs 100 000 calls to the fitness function. As
previously mentioned, when the proposed feature-based methodology is experi-
mented, we split the budget equally over the different clusters. Since we need to
perform a random walk beforehand to compute the features mufit, rho1fit, rateeq,
we subtract 1 000 fitness function calls from the overall MA budget, both during
the training and the test phases, in order to tune the MA in production-like
conditions. Notice that, although K, p and q are typically not available for the
algorithm, we still include them in our experiments for the sake of illustrating
the gain one can expect from the proposed methodology.

3.4 Experimental Results

In Table 2, we report the best configuration (the first one in the elite set) found
when running irace with the whole set of training instances, which is consid-
ered as a baseline approach (first row in the Table). We thereby report the best
configurations found when combining irace with the proposed feature-based
methodology. The most notable observation at this stage of the analysis is that
a uniform crossover is always preferred, except for the second group of instances
partitioned with respect to rho1fit, together with a relatively high crossover rate
(except for the third group of instances partitioned by K). However, the best-
found population size varies substantially when comparing the output of the
baseline irace and the proposed methodology. We can also remark that, when
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Table 2. First elite configuration found by irace for each feature cluster. The first row
corresponds to the configuration found when considering the whole training set.

.tsni#melborp pop. crossover cross. mut.
feature cluster feature range (training , test) size operator rate rate

* (— 800 , 200 ) 32 uniform 0.95 5.5

N

#0: N ∈ [ 501 , 877 ) (200 , 50 ) 16 uniform 0.95 6.5
#1: N ∈ [ 877 , 1 253 ) (200 , 51 ) 32 uniform 1.00 6.5
#2: N ∈ [ 1 253 , 1 627 ) (200 , 49 ) 64 uniform 0.75 6.5
#3: N ∈ [ 1 627 , 2 000 ] (200 , 50 ) 64 uniform 1.00 8.5

K

#0: K ∈ [ 0 , 3 ) (218 , 54 ) 256 uniform 1.00 7.5
#1: K ∈ [ 3 , 6 ) (218 , 55 ) 64 uniform 0.95 7.0
#2: K ∈ [ 6 , 9 ) (219 , 54 ) 32 uniform 0.30 7.0
#3: K ∈ [ 9 , 10 ] (145 , 37 ) 16 uniform 1.00 6.0

type #0: type = NKq (400 , 100 ) 32 uniform 0.75 7.0
#1: type = NKp (400 , 100 ) 64 uniform 0.85 7.5

p | q
#0: param ∈ [ 0.600 , 0.765 ) (200 , 50 ) 64 uniform 1.00 8.0
#1: param ∈ [ 0.765 , 0.930 ] (200 , 50 ) 32 uniform 0.95 7.0
#2: param ∈ [ 2.000 , 6.000 ] (222 , 55 ) 32 uniform 0.80 6.5
#3: param ∈ [ 7.000 , 10.000 ] (178 , 45 ) 64 uniform 0.95 7.0

avg fitness

#0: mufit ∈ [ 0.031 , 0.117 ) (200 , 49 ) 64 uniform 0.95 7.5
#1: mufit ∈ [ 0.117 , 0.486 ) (200 , 51 ) 64 uniform 0.75 8.0
#2: mufit ∈ [ 0.486 , 0.501 ) (200 , 59 ) 32 uniform 0.90 6.5
#3: mufit ∈ [ 0.501 , 0.519 ] (200 , 41 ) 32 uniform 0.85 7.5

r1 fitness

#0: rho1fit ∈ [ 0.955 , 0.985 ) (200 , 50 ) 32 uniform 0.95 6.5
#1: rho1fit ∈ [ 0.985 , 0.989 ) (200 , 60 ) 32 1−point 0.90 7.5
#2: rho1fit ∈ [ 0.989 , 0.993 ) (200 , 46 ) 64 uniform 1.00 7.5
#3: rho1fit ∈ [ 0.993 , 0.998 ] (200 , 44 ) 32 uniform 0.95 7.5

neutral rate

#0: rateeq ∈ [ 0.000 , 0.044 ) (205 , 55 ) 16 uniform 0.80 7.0
#1: rateeq ∈ [ 0.044 , 0.085 ) (197 , 48 ) 64 uniform 0.90 6.5
#2: rateeq ∈ [ 0.085 , 0.193 ) (198 , 47 ) 16 uniform 1.00 6.5
#3: rateeq ∈ [ 0.193 , 0.841 ] (200 , 50 ) 128 uniform 0.95 7.5

adopting a feature-based tuning methodology, the mutation rate is higher com-
pared against the baseline setting. Although it is difficult to correlate these obser-
vations with the considered NKq|p-landscapes, we can clearly see that irace is
able to seemingly find different configurations, depending on how the input train-
ing test is partitioned. We attribute this to the fact that instances belonging to
the same group are expected to expose less heterogeneity for the configuration
procedure.

To go further into the analysis, we evaluate, for each individual feature,
how the feature-based methodology performs against the configuration obtained
when mixing all the instances as in baseline irace. To do so, we examine the per-
formance of the MA when experimented on 200 independently-generated testing
instances. We execute the MA with every configuration for 30 runs on each test
instance, while subtracting the cost of computing the features to the budget
allocated to MA whenever necessary. In Fig. 4, we report the number of test
instances where the configuration found by feature-based irace allows the MA
to perform significantly better (resp. worst, and insignificantly different) than
when configured using the output of baseline irace. For the pairwise compar-
ison of configurations on the same instance, we use a Wilcoxon signed rank
statistical test with a p-value of 0.05 and a Bonferroni correction. Overall, the
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Fig. 4. Number of test instances where the landscape-aware configuration with respect
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Fig. 5. Number of test instances (out of 200) where the baseline configuration (mix-
ing all training instances) and each feature-based configuration (partitioning training
instances) is not statistically outperformed by any other (left), and rank of each con-
figuration over all test instances (right).

proposed methodology appears to effectively enhance the baseline one, since the
number of instances on which the feature-based configuration provides better
results is significantly higher than the baseline configuration, independently of
the considered feature. This is confirmed by the basic statistics reported in Fig. 5,
comparing baseline irace against irace using the feature-based partitioning.
More precisely, on the left subfigure, we show the number of instances where
the corresponding configuration is not statistically outperformed by any other.
In the right subfigure, we report the number of times a given MA configuration
is statistically outperformed by another. For a given configuration, a dot corre-
sponds to the average rank over all test instances, where a value of 0 means that
a specific configuration was actually never outperformed by any other on any test
instance. Interestingly, baseline irace appears to identify the configuration with
the largest rank. We can also see that the feature-based configuration method-
ology performs at its best when using K, which suggests that the non-linearity
and the ruggedness of the instances is one of the most important feature one
has to take into account when configuring the MA. The problem size N and the
average fitness value avg fitness are also among the most insightful features when
searching for a good configuration of the MA. Notice also that feature rho1fit,
which is intended to approximate the ruggedness of an instance, does not allow
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irace to perform as well as with K, although it still has a better overall ranking
compared to baseline irace. This suggests that alternative features that could
approximate the ruggedness of a given instance more accurately would be worth
investigating in the future.

The previous statistics aggregate the instances over the whole test set. In
Fig. 6, we report a more detailed description on the relative behavior of feature-
based irace. Specifically, the x-axis of each subfigure refers to the corresponding
feature values from all test instances. Then, for each instance, the y-axis indicates
whether configuring the MA with baseline irace provides statistically better
(resp. worst, tied) performance than the proposed methodology. This allows us
to investigate in more details the distribution of instances where we are able to
improve or to worsen the performance of baseline irace by feature values. We
clearly see that, overall, the feature-based methodology allows to enhance irace,
independently of the feature values, and then independently of the characteristics
of the considered instance. This is of high importance, since we can then claim
that a landscape-aware automatic algorithm configuration effectively allows to
improve parameter accuracy for a relatively large spectrum of heterogeneous
instances.

At last, we report in Fig. 7 the results of cross-validating the performance
of the different configurations that irace is able to obtain for each partition,
with respect to a particular feature. Specifically, the x-axis refers to the group
of test instances obtained by partitioning, i.e. four groups except for type. Then,
for each group of test instances, we compare all other configurations that irace
is able to find when considering either the whole set of training instances or
a specific subgroup of training instances. The number of test instances where
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Fig. 6. Detailed distribution of test instances where the landscape-aware configuration
with respect to each feature is significantly better, tied or worse than the baseline
configuration, as a function of the feature value.
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Fig. 7. Number of test instances where each landscape-aware configuration is not out-
performed by any other, as a function of the feature group.

the corresponding configuration is not statistically outperformed by any other
is reported in the y-axis. One should expect that, when running the algorithm
configuration obtained specifically for the group of training instances to which
the test instance belongs to, the performance is at its best relatively to other
configurations. This is precisely what Fig. 7 is aiming to elicit. In fact, we are
able to appreciate that the best-found algorithm configuration for a given group
of instances is actually the best one, with some exceptions that we can likely
attribute to the randomness of the algorithm configuration process itself.

4 Conclusions

We provided a first step towards a more systematic investigation of the design
of landscape-aware enhanced automatic algorithm configuration methods, which
is to be understood as a baseline for future improvements. By using the well-
established iterated racing procedure to tune a standard memetic algorithm for
the benchmark family of NK-landscapes, our empirical findings show that par-
titioning instances with respect to feature values enables to obtain more robust
algorithm configurations when facing a heterogeneous set of instances. Besides,
the proposed approach opens several new research questions. Firstly, the simple
partitioning procedure that we adopted in this paper can be extended in differ-
ent ways. Considering a multi-dimensional approach, where training instances
are clustered by using multiple landscape features simultaneously, is of special
interest in order to capture the similarities and differences of instances from dif-
ferent inter-dependent and orthogonal perspectives. Additionally, the number of
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groups was fixed empirically in our study, such as the global budget allowed for
the whole tuning process. We believe that a more systematic investigation on
the granularity of the partitioning procedure and its relation with the available
budget will lead to new insightful results on the accuracy of landscape-aware
algorithm configuration. Notice that the granularity of the partitioning actually
opens nice opportunities for distributing the flow of the tuning procedure over
different parallel cooperating entities, thus improving the quality and runtime
of offline algorithm configuration, which is actually known to be time consum-
ing. Secondly, the methodology adopted in this work does not change the way
the tuning process is conducted, but simply considers the tuning procedure as
a black-box mechanism. Nevertheless, we believe that the same idea of using
landscape analysis to characterize instances can be seemingly used inside the
tuning procedure itself, thus ending-up with new algorithm configuration meth-
ods. With respect to iterated racing, one particularly promising idea consists
in carefully choosing the instances where some configuration should race at
every iteration based on the features values of the instances experimented in
previous iterations. At last, it would be interesting to benchmark and extend
our work with other scenarios, such as different algorithms, different problems,
different domains, or different tuners, and to compare our methodology with
approaches from [10–12]. A particularly challenging issue is to highlight which
general-purpose features can allow to provide the highest insights, and then the
most accurate configurations.

Acknowledgments. We are grateful to M. López-Ibáñez for fruitful suggestions on
the paper.
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Abstract. Phase transitions play an important role in understand-
ing search difficulty in combinatorial optimisation. However, previous
attempts have not revealed a clear link between fitness landscape prop-
erties and the phase transition. We explore whether the global landscape
structure of the number partitioning problem changes with the phase
transition. Using the local optima network model, we analyse a number
of instances before, during, and after the phase transition. We compute
relevant network and neutrality metrics; and importantly, identify and
visualise the funnel structure with an approach (monotonic sequences)
inspired by theoretical chemistry. While most metrics remain oblivious to
the phase transition, our results reveal that the funnel structure clearly
changes. Easy instances feature a single or a small number of dominant
funnels leading to global optima; hard instances have a large number of
suboptimal funnels attracting the search. Our study brings new insights
and tools to the study of phase transitions in combinatorial optimisation.

1 Introduction

It has been recognised that phase transitions play an important role in analysing
combinatorial optimisation problems; yet a clear link between fitness landscape
structure and the phase transition phenomenon is still lacking. We use the local
optima networks model to analyse and visualise the global structure of Number
Partitioning fitness landscapes.

The Number Partitioning Problem (NPP) is defined as follows. Given a set
of N positive numbers L = {r1, r2, . . . , rN}, find a partition A ∪ B = L such
that the partition difference
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ri

∣
∣
∣
∣
∣
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is minimised. The decision version of the NPP belongs to the class of NP-
complete problems which appear to require a super-polynomial amount of com-
putation time in the instance input size [1,2]. NP-hard optimisation problems are
at least as hard as the corresponding decision problems. Many important practi-
cal optimisation problems are NP-hard and it is thus important to find efficient
approximate methods to solve them. Though requiring exponential time to be
solved in the worst case, several hard constraint-satisfaction problems show an
instance-dependent computational phase transition, meaning that below some
critical point, instances are typically easy to solve while they become hard to
solve above such a point. Well-known examples are the Boolean Satisfaction
Problem (SAT) [1,3], the Graph-Colouring problem [1,4], and the NPP [1,5].
The control parameter is a problem-dependent quantity that must be suitably
defined; for example, in SAT, it is the ratio of the number of clauses to the
number of variables, and the phase transition phenomenon has been observed in
both random and structured instances [6,7].

For problems undergoing a computational hardness phase transition it is of
interest to understand how it arises and what are the problems’ features that
characterise the transition. The original methodology was developed by physi-
cists and it is based on the statistical mechanics approach to physical phase
transitions such as the ferromagnetic/paramagnetic transition. An introduction
to this rather technical field as applied to hardness phase transitions can be
found in [8]. We consider, instead, fitness landscape analysis as a tool for revisit-
ing the phase transition phenomenon. In particular, the Local Optima Network
(LON) model [9,10]. Local optima networks compress the whole search space into
a graph, where nodes are local optima and edges are transitions among them
with a given search operator. Local optima are key features of fitness landscapes
as they can be seen as obstacles for reaching high quality solutions. The local
optima networks model emphasises the number, distribution and most impor-
tantly, the connectivity pattern of local optima in the underlying search space.
They are therefore an ideal tool for modelling and visualising the global struc-
ture of fitness landscapes. Among local optima network metrics, we particularly
study the presence and distribution of so-called funnels in the landscape.

The term ‘funnel’ was introduced in the protein folding community to
describe “a region of configuration space that can be described in terms of a
set of downhill pathways that converge on a single low-energy structure or a
set of closely-related low-energy structures” [11]. It has been suggested that the
energy landscape of proteins is characterised by a single deep funnel, a feature
that underpins their ability to fold to their native state. In contrast, some shorter
polymer chains (polypeptides) that misfold are expected to have other funnels
that can act as traps. Energy landscapes are conceptually related to fitness
landscapes, and funnel structures have also been studied in heuristic continuous
optimisation [12,13], and more recently in combinatorial optimisation [14–16].

The next section overviews previous and related work. Section 3 presents
relevant definitions and algorithms related to local optima networks. Section 4
presents our fitness landscape analysis and visualisation. Finally, Sect. 5 sum-
marises our main findings and suggests directions of future work.
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2 Background and Related Work

2.1 The Number Partitioning Fitness Landscape

The existence of the NPP hardness phase transition was first demonstrated
numerically by Gent and Walsh [5], who introduced the control parameter k
and estimated the transition point to occur around kc = 0.96. The control para-
meter k corresponds to the number of significant bits in the encoding of the
input numbers ri divided by N (the instance size), specifically k = log2(M)/N ,
where M is the largest number in the set L = {r1, r2, . . . , rN}. For log2(M)
and N tending to infinity, the transition occurs at the critical value of kc = 1,
such that for k < 1, there are many perfect partitions with probability tending
to 1, whereas for k > 1, the number of perfect partitions drops to zero with
probability tending to 1 [5].

Further studies within the physics community, have confirmed the existence
of the NPP phase transition characterising it rigorously [17,18]. However, they
provide no direct answer to the question of what features of the correspond-
ing fitness landscapes, if any, are responsible for the widely different observed
behaviour. A step in this direction was taken by Fontanari et al. [19] who studied
various landscape features before and after the transition, in particular consid-
ering barrier trees [20]. However, they were unable to find any effect of the tran-
sition on barrier tree features and other landscape metrics. Likewise, Alyahya
and Rowe [21] performed an exhaustive statistical analysis of NPP landscapes
for instances of size N = 20 and several number distributions, but did not find
any significant correlation between most landscape features and easy or hard
instances. They observed differences only in the number of global optima, which
is high before the phase transition and low after it, and in the existence of neu-
tral networks which are abundant in the easy phase and tend to disappear in
the hard phase.

Considering these studies and given the lack of a clear picture, we decided to
investigate additional landscape features based on local optima networks, and
the recently proposed approach to identifying multiple funnels in combinatorial
search spaces.

2.2 Multiple Funnels in Combinatorial Landscapes

The big-valley hypothesis [22] suggests that on the travelling salesman problem
(TSP) and other combinatorial optimisation problems, local optima are not ran-
domly distributed, instead they are clustered around one central global optimum.
Recent studies on TSP landscapes, however, have revealed a more complex pic-
ture [14,15,23]. The big-valley seems to decompose into several sub-valleys or
multiple funnels. This helps to explain why certain iterated local search heuris-
tics can quickly find high-quality solutions, but fail to consistently find the global
optimum.

The procedure for identifying funnels on the TSP has evolved in recent
work, ranging from visual inspection of the fitness distance correlation plots [23],
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connected components in the local optima networks [14], and 3D LON visualisa-
tion [15]. We propose here to use the notion of monotonic sequences from theoreti-
cal chemistry [24], which describes a sequence of local minima where the energy of
minima is always decreasing. We adapt this notion to the context of fitness land-
scapes and consider a monotonic sequence as a sequence of local optima where the
fitness (costs) of solutions is non-deteriorating. The set of monotonic sequences
leading to a particular optimum has been termed ‘basin’ [24], ‘monotonic sequence
basin’ [25] and ‘super-basins’ [26], in the theoretical chemistry literature. We chose
here to call them ‘funnel basins’ or simply ‘funnels’ borrowing from the protein
folding literature. We can distinguish the primary funnel, as the one involving
monotonic sequences that terminate at the global optimum (there can be more
than one). The primary funnel is separated from other neighbouring secondary
funnels by transition states laying on a so-called ‘primary divide’ [24]. Above such
a divide, it is possible for a local optima to belong to more than one funnel through
different monotonic sequences.

The presence of multiple funnels has also been recently observed on binary
search spaces (NK landscapes) [16], where the authors observed a connection
between groupings (communities) in local optima networks and the notion of fun-
nels. Results confirm that landscapes consists of several clusters and the number
of clusters increases with the epistasis level. A higher number of clusters leads to a
higher search difficulty, measured by the empirical success rate of an iterated local
search implementation. The success rate was also found to strongly correlate with
the size of the cluster containing the global optimum.

There is evidence of clustering of solutions in Random Satisfiability prob-
lems [27] but a study of the funnel structure of SAT instances has not yet been
conducted.

3 Definitions and Algorithms

This section overviews the definitions and algorithms constituting the local
optima network model for the number partitioning problem.

3.1 Preliminaries

Fitness Landscape. A landscape [28] is a triplet (S, V, f) where S is a set of poten-
tial solutions, i.e., a search space; V : S −→ 2|S|, a neighbourhood structure, is a
function that assigns to every s ∈ S a set of neighbours V (s), and f : S −→ R is a
fitness function that can be pictured as the height of the corresponding solutions.

In our study, the search space is composed of binary strings of length N , there-
fore its size is 2N . The neighbourhood is defined as the 1-move or bit-flip operation,
but definitions can be generalised to larger neighbourhoods.

Neutral Neighbour. A neutral neighbour of s is a neighbour configuration x with
the same fitness f(s).

Vn(s) = {x ∈ V (s) | f(x) = f(s)}
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The neutral degree of a solution is the number of its neutral neighbours. A
fitness landscape is neutral if there are many solutions with high neutral degree.
The landscape is then composed of several sub-graphs of configurations with the
same fitness value.

Plateau. A plateau, also known in the literature as a neutral network [29,30], is
a set of connected configurations with the same fitness value. Two vertices in a
plateau are connected if they are neutral neighbours, that is, if they differ by one
point mutation. With the bit-flip mutation operator, for all solutions x and y, if
x ∈ V (y) then y ∈ V (x). So in this case, the plateaus are the equivalence classes
of the relation R(x, y) iff (x ∈ V (y) and f(x) = f(y)).

Local Optimum. A local optimum, which in the NPP case is a minimum, is a solu-
tion s∗ such that ∀s ∈ V (s∗), f(s∗) ≤ f(s). Notice that the inequality is not strict,
in order to allow the treatment of the neutral landscape case.

In the presence of neutrality, local minima are identified by a stochastic hill-
climber h that, starting from any solution s, chooses the next best-improving
mutant at each iteration by splitting ties at random, until convergence on a local
optimum plateau.

Local Optimum Plateau. A plateau is a local optimum if all its configurations are
local optima.

3.2 Local Optima Networks

In order to construct the networks, we need to define their nodes and edges. Nodes
are local optima and edges represent escape probabilities. Local optima networks
for neutral landscapes have been studied before by Verel et al. [10]; we borrow
their notation and definitions, but name a sequence of connected solutions with
the same fitness as plateaus rather than as neutral networks, to avoid confusion
with the local optima network terminology.

Since we are interested in determining the landscape’s funnel structure using
the notion of monotonic sequences, we only consider transitions between local
optima where fitness is non-deteriorating. This leads to a variant of the model
which we term Monotonic Local Optima Networks (M-LON). Furthermore, our
experiments revealed that neutrality is also present at the level of local optima
transitions, that is, there are connected components in the M-LON which share
the same fitness value. This leads us to define an even coarser model of the land-
scape, where these M-LON plateaus are compressed into single nodes, we termed
this new model Compressed Monotonic Local Optima Networks (CM-LON). Rel-
evant formal definitions are given below.

LON Nodes. The set of local optimum plateaus (formed of one or more local
optima), LOp = {lop1, lop2, . . . , lopn} corresponds to the node set of the local
optima network. The basin of attraction of a lopi is the set of solutions bi = {s ∈
S | h(s) = lopi with probability pi(s) > 0} and its size is |bi| =

∑

s∈S pi(s).
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Monotonic Edges. The set of monotonic edges, ME is defined according to a dis-
tance function d (minimal number of moves between two solutions), and a posi-
tive integer D > 0. Edges account for the chances of jumping from a local opti-
mum plateau lopi into the basin of a non-deteriorating local optimum plateau
lopj after a controlled perturbation. Namely, if we perturb a solution s ∈ lopi
by applying D random moves, we obtain a solution s′ that will belong to another
basin bj with probability pj : that is, h(s′) = lopj with probability pj . The prob-
ability to go from s to bj is then p(s → bj) =

∑

s′∈bj
p(s → s′)pj(s′), where

p(s → s′) = P (s′ ∈ {z | d(z, s) ≤ D}) is the probability for s′ to be within D
moves from s and can be evaluated in terms of relative frequency. Therefore, we
can draw an edge eij between lopi and lopj with weight wij = p(lopi → bj) =

1
|lopi|

∑

s∈lopi
pi(s)p(s → bj).

Monotonic Local Optima Network (M-LON). The weighted, oriented local optima
network M-LON = (LOp,ME ) is the graph where the nodes lopi ∈ LOp are the
local optimum plateaus, and there is an edge eij ∈ ME , with weight wij , between
two nodes lopi and lopj if wij > 0.

M-LON Plateau. Is a set of connected nodes in the M-LON with the same fitness
value. Two nodes are connected if there is a monotonic edge between them.

Compressed LON Nodes. The set of M-LON plateaus, CLOp = {clop1, clop2,
. . . , clopn} corresponds to the node set of the compressed local optima network.

Compressed Monotonic Local Optima Network (CM-LON). The weighted, ori-
ented local optima network CM-LON = (CLOp,ME ) is the graph where the
nodes clopi ∈ CLOp are the M-LON plateaus. Weighted edges correspond to the
aggregation of the multiple edges from nodes in a plateau to single edges in the
compressed network. The weights of the multiple edges are added to constitute
the weight of the mapped edge.

3.3 Detecting the Funnel Structures

To detect the funnel structures we first identify the funnels’ ‘ends’ or ‘bottoms’. To
do so, we take advantage of the Compressed Monotonic Local Optima Networks.
CM-LONs are directed graphs without loops. In a directed graph, one can dis-
tinguish the outdegree (number of outgoing edges) from the indegree (number of
incoming edges); a source node is a node with indegree zero, while a sink node is a
node with outdegree zero. We consider the CM-LONs sinks as the funnel bottoms.

We thus define the funnel sinks as the CM-LON nodes without outgoing edges.
Once the funnel sinks are detected, we can proceed to identify the funnel basins
(see Algorithm 1). This is done by finding all nodes in the CM-LON graph which
are reachable from each funnel sink. Breadth-First-Search is used for this pur-
pose. The set of unique nodes in the combined paths to a given funnel sink corre-
sponds to the funnel basin. The cardinality of this set corresponds to the funnel
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size. Notice that the membership of a node to a funnel might be overlapping, that
is, a node may belong to more than one funnel, in that there are paths from that
node to more than one funnel sink. The relative size of the primary funnel (or any
other secondary funnel) is calculated as its size divided by the total number nodes
in the graph.

Data: CM-LON: Compressed monotonic local optima network, S: funnel sinks
Result: bsizes: funnel basin sizes vector, basins: funnel basins vector

i ← 0
for s ∈ S do

basin[i] ← breadthFirstSearch(CM-LON, s)
bsize[i] ← length(fbasin[i])
i ← i + 1

end
Algorithm 1: Identifying funnel basins.

4 Results and Analysis

One advantage of modelling landscapes as complex networks is the possibility of
visualising them. After describing the experimental setting, we visualise a set of
selected instances before, during, and after the phase transition. We continue with
a study of local optima network metrics, including the new set of funnel measure-
ments, and explore how they relate to the phase transition.

4.1 Experimental Setting

In order to minimise the influence of the random creation of landscapes, we con-
sidered 30 different and independent landscapes for each parameter combination:
N and k. Measurements consider the distribution of values across these 30 land-
scapes. The empirical study considers N ∈ {10, 15, 20}, where N = 20 is the
largest possible value allowing practical exhaustive enumeration of the search
space. The parameter k was varied from 0.4 to 1.2 in steps of 0.1. For each land-
scape, we extract the full local optima network using code adapted from Daolio
et al. [31,32]. We then construct both the monotonic local optima networks (M-
LON) and the compressed monotonic local optima networks (CM-LON). When
extracting the local optima networks, we set the parameter D for the maximum
escape distance to D = 2.

4.2 Visualisation

We visualise CM-LONs for selected instances with N = 15 and k ∈ {0.4, 0.6,
0.8, 1.0}. Due to space constraints, the instance with k = 1.2 is not shown, but it
reflects a similar structure to that of k = 1.0
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Network plots were produced using theR statistical language together with the
igraph and rgl packages. Graph layouts consider force-directed methods. Networks
are decorated to reflect features relevant to search dynamic. Red nodes correspond
to global sinks, while blue nodes to suboptimal sinks; all other nodes are grey.
An edge’s width is proportional to its weight, which indicates the probability of
transitions. That is, the most probable transitions are thicker in the plots.

We explored two ways of visualising nodes. First, as rectangles (Fig. 1) with
lengths proportional to plateau sizes (i.e. the number of single local optima within
a plateau). As the plots in Fig. 1 illustrate, for low values of k the landscape global
optima form a large plateau, and there are several other large plateaus in the
vicinity. With increasing k, the plateaus shrink, with nodes becoming single local
optima for k ≥ 8. Neutrality at the optima network level is, therefore, high for
low values of k, gradually decreases with intermediate values of k and finally dis-
appears for k ≥ 0.8.

A second alternative is to visualise nodes with sizes proportional to their
incoming strength (weighted incoming degree), as in Fig. 2. Incoming strength is
relevant as it reflects the extent to which a node ‘attracts’ the search dynamics;
that is, it conveys the combined probability of a stochastic search process reaching
it. We present both 2D and 3D images. In the 3D visualisations, the x and y coordi-
nates are determined by the force-directed graph layout algorithm; while fitness is
visualised as the z coordinate. This provides a clearer representation of the funnel
and sink concepts, bringing an almost tangible aspect to these metaphors.

As Fig. 2 illustrates, for k = 0.4 there is a single funnel structure easily guiding
the search to the single global optimum. For k = 0.6, a single dominant central
structure is still visible, but several different unconnected global optima now stem
out from it. For k ≤ 0.6 only optimal (red) sinks are observed, indicating that
instances are easy to solve. When k increases over 0.6, suboptimal (blue) sinks
start to emerge; initially only a few of them, but the number increases with increas-
ing k. The number of optimal (red) sinks decreases and rapidly becomes only two.
Search thus become harder, as can be inferred from the 2D and 3D visualisations
of the landscape with k = 1.0; 16 blue sinks are observed and their combined
incoming strength exceeds that of the 2 red sinks. Moreover, as indicated by the
3D image, some suboptimal blue sinks are deep, that is, they are close in fitness
to the optimal solution.

4.3 Metrics

Due to space constraints, we can only visualise a few examples. Therefore, we turn
to the statistical analysis of the complete dataset. Many features can be collected
from fitness landscapes and local optima networks [9,10]. Moreover, a new set of
metrics can be gathered from computing the landscape sinks and funnel struc-
ture. We selected a subset of metrics after some preliminary experiments, includ-
ing some that corroborate previous findings, and new local optima network met-
rics that intuitively relate to search dynamics. Figure 3 summarises the results,
showing metrics for local optima network cardinality (1st row), neutrality (2nd
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(a) N = 15, k = 0.4 (b) N = 15, k = 0.6

(c) N = 15, k = 0.8 (d) N = 15, k = 1.0

Fig. 1. Local optima networks (CM-LONs) for selected NPP instances with N = 15.
Nodes are local optimum plateaus visualised as rectangles with length proportional to
their size (i.e. number of single local optima on them). Long rectangles indicate large
plateaus, while squares indicate single local optima. For k = 0.4 the whole network is
visualised, while for k ∈ {0.6, 0.8, 1.0}, the fittest part of the network is shown.

row), sinks and funnels (3rd and 4th rows). The last row in Fig. 3 shows the empir-
ical search cost of an Iterated Local Search (ILS) implementation, using a single
bit-flip best-improvement hill-climber and a two bit-flip random perturbation.

Plot (a) confirms the surprising result, noted in previous studies [19,21], that
the number of local optima remains virtually invariable across different values of
k. Indeed most of the landscape metrics studied before: the size of the global and
local basins, the correlation between basin size and fitness [21], and several barrier-
tree metrics [19], are oblivious to the hardness phase transition. An exception is
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(a) N = 15, k = 0.4, 1 optimum sink, 0 suboptimal sinks.

(b) N = 15, k = 0.6, 8 optimal sinks, 0 suboptimal sinks.

(c) N = 15, k = 1.0, 2 optimal sinks, 16 suboptimal sinks.

Fig. 2. Local optima networks (CM-LONs) for selected NPP instances with N = 15.
Images are shown in 2D and a 3D projection (where the vertical dimension corresponds
to fitness). Node sizes are proportional to their incoming strength, and edge thickness
to their weight. Red nodes correspond to globally optimal sinks, while blue nodes to
suboptimal sinks. For k = 0.4 the whole network is visualised, while for k ∈ {0.6, 1.0},
the fittest part of the network is shown. (Color figure online)
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Fig. 3. Local optima network features averaged over 30 instances per value of k (x-
axis) and N (legend). The first row of plots illustrate cardinality metrics, the second
describes neutrality, and the third statistics on the number of sinks. The fourth row
shows metrics that relate to search dynamics: (j) the fraction of local optima that lie on
monotonic sequences to a global optimum sink, (k) the aggregated incoming strength of
optimal sinks, and (l) the equivalent measure for suboptimal sinks. The last row shows
the empirical search cost of an ILS algorithm on the same problem instances in terms of:
(m) success probability, and (n) number of function evaluations with restarts. All plots
are in semi-log scale.
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the number of global optima (plot b), which decreases progressively to 2 at about
k ≈ 1.

The rest of the landscape metrics reported in Fig. 3 can only be gathered using
the local optima network model, specifically the compressed monotonic model
(CM-LON) proposed in this article. The number of nodes in the CM-LON, grad-
ually increases with increasing k, which correlates to (d) the number of distinct
fitness values in the LON (Pearson’s correlation r ≈ 0.82). Other metrics reflect-
ing the amount of neutrality at the local optima network level are: (e) the mean
number of nodes in a LON plateau and (f) the proportion of adjacent nodes that
have the same fitness. Plot (e) reflects a sharp decrease from lower to higher k
values, more noticeable for the largest N ; which suggests that the amount of neu-
trality is relevant to the phase transition.

Plot (g) presents the total number of sinks. This is divided into (h) the num-
ber of globally optimal sinks and (i) the number of suboptimal sinks. The bell
shape for the number of globally optimal sinks appears because, for low values of
k, global optima are part of a single LON plateau which gets compressed into one
sink. Higher k show reduced neutrality, as seen in plots (d, e and f). From the NPP
definition, higher values of k also mean that the number of global optima progres-
sively decreases to reach 2 on average at k ≥ 1. The theoretical minimum number
of global optima is 2, where one solution is the negation of the other. An illus-
tration of this phenomenon is provided in Figs. 1 and 2. These metrics also hint
to a transition starting to occur for values of k in the range 0.6 and 0.8. Again,
a sharper change is observed for the largest N . The number of suboptimal sinks
(plot i) is clearly relevant to search, as sinks act as traps for the search process.
Once a suboptimal sink is reached it is not possible to escape, and the search stag-
nates in a suboptimal solution.

The plots in the fourth row show three metrics that also relate to search
dynamics. Plot (j) reflects the average relative size of global optima funnels, that
is, the fraction of local optima that lie on monotonic sequences leading to a global
optimum sink. Clearly, the larger this value, the more chances a search process will
have to find a path to an optimum. This metric decreases with k, more sharply
for N = 20, with a transition between 0.6 and 0.8. Plots (k) and (l) report the
weighted incoming degree (incoming strength) of the globally optimal and sub-
optimal sinks, respectively. These values are clearly relevant to search, the larger
the aggregated incoming strength of optimal sinks, the higher the probability of a
search process successfully reaching one of them. On the other hand, the larger the
incoming strength of suboptimal sinks, the higher the changes of getting trapped.
Again, a transition gradually occurs for values of k between 0.6 and 0.1.

Finally, the last row summarises the empirical cost of 1000 ILS runs in terms
of (m) probability of success with a stopping condition consisting of 215 function
evaluations, and (n) number of function evaluations when the ILS is combined
with random restarts until a global optimum is found [33]. We can notice a clear
relationship between the aggregate incoming strength of globally optimal sinks
and the probability of success. Figure 4a highlights this relationship with a scat-
ter plot fitted with a univariate linear regression model. This confirms the strong



Understanding Phase Transitions with Local Optima Networks 245

y = 0.048 + 0.92 ⋅ x
R2 = 0.94

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
aggregate instrength of optimal sinks

IL
S

 s
uc

ce
ss

 p
ro

ba
bi

lit
y

N
10
15
20

(a)

y = 0.97 − 0.92 ⋅ x
R2 = 0.94

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
aggregate instrength of suboptimal sinks

N
10
15
20

(b)

Fig. 4. ILS success probability against (a) the aggregate incoming strength of the opti-
mal sinks and (b) the aggregate incoming strength of the suboptimal sinks. The lines
are univariate linear regression models. The equation and coefficient of determination
of each line are given in the plots.

correlation, with coefficient of determination R2 ≈ 0.94 (which corresponds to
Pearson’s r correlation). Figure 4b is the scatter plot for the probability of success
against the aggregate incoming strength of suboptimal sinks. Here, as we might
expect, the relation is reversed. The number of suboptimal sinks is also inversely
correlated to the probability of success (r ≈ −0.68). These are useful relation-
ships for future work on performance prediction since an approximation of the
number of sinks and their incoming strength might be estimated using some sam-
pling method.

Several of the metrics studied seem to reflect and explain the known hardness
NPP phase transition. The transition, however, seems to appear earlier than the
theoretical expected value of k = 1.0 [5,17,18], and is not exactly bracketed. How-
ever, these trends can be explained in the following way. In theory, the NPP com-
putational phase transition becomes sharp only in the limit of infinite system size
N and for log2M , the number of bits in the input numbers, tending to infinity as
well keeping k finite. In practice, we can only simulate finite systems because of
computational limitations. A semi-rigorous argument [34] shows that in this case
the transition point, kc, becomes kc ≈ 1 − log2N

2N where the second term accounts
for finite-size effects. For example, with N = 15, kc is around 0.87 instead of one.
This means that the phase transition is observed earlier and that it is not sharp,
rather the system changes more gradually approaching it, and this is what we qual-
itatively observe in our numerical study.

5 Conclusions

Previous studies have failed to reveal clear links between the structure of fit-
ness landscapes and the hardness phase transition known to exist on number
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partitioning problems when varying the critical parameter k. Most landscape met-
rics, except the number of global optima, are oblivious to the phase transition, and
surprisingly remain invariable for easy and hard instances of this problem. Our
study sheds light into this puzzle, by considering new landscape metrics obtained
from fully enumerated local optima networks. In particular we propose a local
optima network model consistent with the monotonic sequences studied in theo-
retical chemistry, where the so-called multi-funnel structure of energy landscapes
is well established. Our study reveals clear connections between the global struc-
ture of landscapes and the hardness phase transition. Easy instances show a domi-
nant funnel structure leading to a set or connected global optima, or a small num-
ber or disjoint global optima (red nodes in Figs. 2a and b). On the other hand,
hard instances reveal multiple suboptimal funnels (blue nodes in Fig. 2c), which
explain why search gets trapped and is unable to escape with the commonly used
perturbation operators. We found a strong correlation between the number, as
well as the combined attracting strength, of suboptimal (blue) sinks and empiri-
cal search difficulty on the studied instances. Another important contribution of
this work is to bring a more accessible visual approach to understanding search
difficulty in combinatorial optimisation.

Future work will consider larger NPP instances using sampling, probe other
number distributions, and most importantly, study whether other constraint sat-
isfaction problems such as MAX-SAT reveal a similar global funnel structure
explaining the hardness phase transition.
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