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a b s t r a c t 

Recommender Systems (RS) currently represent a fundamental tool in online services, especially with the 

advent of Online Social Networks (OSN). In this case, users generate huge amounts of contents and they 

can be quickly overloaded by useless information. At the same time, social media represent an important 

source of information to characterize contents and users’ interests. RS can exploit this information to fur- 

ther personalize suggestions and improve the recommendation process. In this paper we present a survey 

of Recommender Systems designed and implemented for Online and Mobile Social Networks, highlighting 

how the use of social context information improves the recommendation task, and how standard algo- 

rithms must be enhanced and optimized to run in a fully distributed environment, as opportunistic net- 

works. We describe advantages and drawbacks of these systems in terms of algorithms, target domains, 

evaluation metrics and performance evaluations. Eventually, we present some open research challenges 

in this area. 
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Fig. 1. Recommender System architecture. 
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1. Introduction 

Recommender Systems (RS) and Online Social Networks (OSN)

have established a strong cooperation in the last few years. They

both aim at coping with the huge amount of data produced and

shared by users through online platforms, trying to maintain a

high user engagement. This cooperation is built upon the ad-

vantages that both systems can achieve: the optimization of the

recommendation techniques, by exploiting additional content and

user characterization derived from OSN, and the increasing request

of OSN services’ personalization. RS targeting the social media do-

main have been already defined in the literature as Social Recom-

mender Systems (SRS) [1,2] . However, this notion should be further

expanded, embracing also the recent evolution of social media to-

wards the pervasive and mobile computing environment. Here, the

network can be also implemented by the physical co-location of

users and devices, and their ability to exploit direct wireless com-

munications for content sharing and dissemination, without re-

quiring a constant Internet access. In this direction, the concept

of Mobile Social Networks (MSN) has been introduced in [3] , not

as a simple extension of OSN services running on mobile devices,

but as the opportunity to create real networks of people , in which

users actively participate in the generation and sharing of contents,

anywhere and anytime, based on opportunistic networking and

device-to-device (D2D) communications. In this scenario, RS can be

optimized by exploiting additional information derived from users’

mobile devices (i.e., sensors), which help contextualize the user’s

preferences, and to rely on a partial and dynamic knowledge of

the network and the available data. This concept contributes to the

migration towards a new Internet paradigm, the Internet of People

(IoP) [4] , in which users are at the center, by actively contributing

to the network evolution both from the communication and data

point of views. 

In this paper we present a survey of RS defined both for OSN

and MSN, highlighting advantages and drawbacks of standard rec-

ommendation techniques applied in these environments, and how

those systems evolved over time, in terms of technical solutions,

target domains, evaluation metrics and performance evaluations.

In Section 2, we summarize the problem of recommendations and

the evaluation metrics generally used in the literature. Then, in

Section 3 , we present an overview of standard techniques like Col-

laborative Filtering (CF), Content-based RS, Network-based RS and

Context-aware RS, with particular attention to the various infor-

mation used to characterize the relationship between users and

items to further optimize and personalize the recommendations.

This section would also introduce the reader with standard nota-

tions and methods applied in RS, which will be analyzed in the

subsequent sections. In Sections 4 and 5 , we describe the main so-

lutions presented in the literature for OSN and MSN, respectively.

The first area has been widely studied in the last years, proposing

solutions that can address different target domains (e.g., to recom-

mend people, locations, point of interests, tags or contents) by ex-

ploiting heterogeneous context information. Therefore, we decided

to group the proposed solutions by the type of context information

used (e.g., social relationships, tags, location) and the recommen-

dation target (e.g., to recommend contents, tags, friends, people). 
The research area of RS for MSN is still in its infancy, and

ew solutions have been presented in the literature, mainly aimed

t optimizing content dissemination in opportunistic networks

hrough personalized recommendations. The main difference be-

ween RS for OSN and MSN relies on the knowledge they use to

elect the recommendations for their final users. In OSN, RS as-

ume to have access to a complete knowledge of all the avail-

ble objects in the network (i.e., contents, tags, etc.), residing on

 centralized infrastructure. Instead, in MSN, RS can rely on the

ocal knowledge of each user, represented by the local available

bjects and those declared by other users in proximity through

2D communications. In this scenario, each mobile device has a

ifferent knowledge of the network, which grows up through its

ersonal mobility and its opportunities to communicate with the

thers. In addition, mobile devices have limited computational ca-

abilities and RS must be characterized by efficient response time.

his is due to the limited and unpredictable duration of the oppor-

unistic contact, during which mobile devices can exchange their

ocal knowledge and the recommended objects. In order to evalu-

te and compare the performance of RS for MSN, it is necessary to

eproduce the realistic behavior of mobile users in a synthetic en-

ironment, since a common evaluation framework and appropriate

eal datasets are not currently available. In Section 5 we present

he proposed RS in this area, highlighting the advantages of us-

ng context information to improve the recommendation process

nd demonstrating their efficiency with respect to centralized so-

utions. Eventually, in Section 6 we present some concluding re-

arks and open research challenges in this area. 

. The recommendation task 

As a general concept, RS try to identify and foresee users’ inter-

sts in specific contents, based on their previous experiences. Fig. 1

epicts the high-level architecture of a typical RS. When a user in-

eracts with the system, she provides a set of explicit or implicit

eedbacks (e.g., likes, clicks, ratings) about her tastes. For example,

f a user positively rates an article about a new smartphone, she

ay also be interested in reading news about mobile apps. There-

ore, the basic idea of RS is to exploit this information to infer user
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nterests. Based on the user’s past feedbacks, RS learn a model to

redict how much a user can be interested in new items. Those

tems are then ranked according to their predicted relevance for

he user. Finally, the higher ranked items will be proactively sug-

ested to the user. 

The relationship between users and items is generally repre-

ented by a matrix R M 

storing a rating r u, i to identify how much

he user u liked the item i in the past. More formally, the matrix

 M 

is called ratings matrix and it can be defined as follows: 

 M 

: U × I → R, (1)

here U = { u 1 , . . . , u m 

} represents the set of users, I = { i 1 , . . . , i n }
s the set of items, and R = { r 1 , . . . , r k } denotes the set of possible

atings that users can use to express their grade of interest for a

pecific item. 

The semantic value of the ratings highly depends on the ap-

lication domain. They are often specified as a discrete set of or-

ered numbers (e.g., a 5-point rating scale is commonly used in e-

ommerce websites, like Amazon, and video-on-demand services,

ike Netflix), or a binary value, as in most OSN (i.e., “like” on Face-

ook 1 or a “retweet” on Twitter 2 ). In the first case, the ratings are

onsidered as explicit feedbacks of the users, while in the latter

hey are considered as implicit feedbacks , derived from the users’

ctivities in OSN. In this paper, we generally refer to ratings scale

ncluding both cases. 

A missing value in the ratings matrix can have two meanings:

i) the user does not want to express an opinion about a specific

tem, or (ii) the user does not know that item yet. 

As we will discuss in details in the next sections, a great num-

er of recommendation techniques (e.g., Collaborative Filtering)

ims to predict missing ratings in R M 

in order to generate lists

f new items to recommend to the users. However, there are also

ther Recommender Systems (e.g., some network-based RS) that

imply provide ranked lists of items without explicitly predicting

atings, using the ratings matrix just to model the users’ prefer-

nces. 

Typically, there are a lot of missing values in R M 

. In [5] the

parsity of the ratings matrix has been calculated to be gener-

lly larger than 99% in commercial systems. This is due to the

ong tail property [6] , which is satisfied by different real-world set-

ings. According to this property, just a small subset of the con-

ents in the system is associated with a high number of rates (i.e.,

opular items ) and, consequently, the vast majority of the items

s rarely rated by the users. This characteristic of the ratings ma-

rix has an important implication for RS: the system may not have

nough information to generate relevant recommendations for the

arget user, and the presence of popular items may bias the recom-

endation process, likely providing trivial recommendations. The

ain recommendation approaches presented in Section 3 address

his problem in different ways. However, before detailing them, we

riefly describe the most used evaluation metrics. 

.1. Evaluation metrics 

RS performance can be measured in terms of accuracy in

redicting ratings or improvement of the user’s experience. This

hoice depends on the RS target: to increase the profit of the ser-

ice or to improve the user’s satisfaction. 

In addition, RS can be evaluated through online or offline ap-

roaches. The online approach mainly leverages on the continuous

nteraction between the users and the system; the user selects an

tem among those recommended, and this choice is used as in-

ut to machine learning algorithms used to adapt the RS behavior
1 https://www.facebook.com 

2 https://twitter.com 

f

 

r  

i  
o the user’s preferences. This approach requires that a large num-

er of users is involved in the RS evaluation, and only few research

orks explored this kind of evaluation until now (e.g., [7–9] ). Most

S are currently evaluated using the offline approach by exploit-

ng available datasets including the history of the users actions. In

hese cases, the datasets are generally divided into two subsets,

amely the training ( T r ) and test ( T e ) sets. The former represents

 set of examples used to fit the parameters of the proposed rec-

mmendation model, and the latter is used to test its accuracy. 

.1.1. Prediction accuracy 

The prediction accuracy measures how much the predicted rat-

ngs, derived from the learning phase of the RS, differs from the ac-

ual ratings computed on the test set T e . More formally, let r jz ∈ T e 
e the explicit rating given by the user u j for the item i z in the

est set, and ˆ r jz be the rating predicted by the RS for the user u j 
elated to the item i z , the accuracy is determined by the error com-

uted for the user–item couple ( u j , i z ) ∈ T e as e jz = ̂  r jz − r jz . Lever-

ging on the single e jz errors for each pair < user, item > , different

ccuracy metrics have been proposed to compute the overall error

ver the entire test set T e . The most used are Root Mean Squared

rror ( RMSE ) [10] and Mean Absolute Error ( MAE ) [10] . However,

hey both depend on the specific rating scale used in the refer-

nce dataset. Thus, in order to compare the performance of a RS

ver different datasets, we should use their normalized versions:

ormalized RMSE ( NRMSE ) and Normalized MAE ( NMAE ), defined as

ollows: 

M SE = 

√ ∑ 

(u j ,i z ) ∈ T e e 
2 
jz 

| T e | ; NRM SE = 

RM SE 

r max − r min 

, (2)

 AE = 

∑ 

(u j ,i z ) ∈ T e 
∣∣e jz ∣∣

| T e | ; NM AE = 

M AE 

r max − r min 

, (3)

here r max and r min are, respectively, the maximum and minimum

atings in the dataset. Both RMSE and MAE (and their normalized

ersions) are meaningful accuracy measures: smaller values, bet-

er RS performance. However, as RMSE sums the squared errors, it

ay be highly affected by outliers. This means that a few wrong

redictions could lead to a worst overall RMSE. 

.1.2. Ranking accuracy 

Ranking accuracy deals with the different levels of utility of the

ecommended items with respect to their position in the ranked

ist proposed to the user. Ideally, the best ranking in the recom-

endation list should be assigned to the items considered as the

ost useful to the user. One of the most popular metrics used to

valuate the ranking accuracy is the Discounted Cumulative Gain

 DCG ) [11] and its normalization, Normalized Discounted Cumulative

ain ( NDGC ) [12] , which are defined as follows: 

C G = 

1 

m 

m ∑ 

u =1 

∑ 

j∈ I u 

g u j 

log 2 (v j + 1) 
; NDC G = 

DC G 

IDC G 

, (4)

In DCG formula, m is the number of users in the test set T e ,

 u represents the set of items rated by the user u , and v j is the

osition of the item j in the recommended list. The numerator, g uj ,

epresents the utility (i.e., the gain) of the item j for the user u ,

nd the denominator represents a discount factor with respect to

he item position in the ranking list. The utility directly derives by

he ground-truth (i.e., the actual rating r uj provided by the user in

he test set). The Ideal value IDCG is computed with the same DCG

ormula by using the ground-truth ranking. 

Generally, a RS suggests to the users the top- k elements of the

ecommendation list. An alternative way to evaluate its accuracy

s to consider the trade-off between the length of the list R and
L 

https://www.facebook.com
https://twitter.com
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Fig. 2. Example of matrix factorization. 
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the number of actual relevant items for the user (i.e., the items

positively rated by the user in the test set). 

The relevant items contained in R L are also identified as the

true-positives ( tp ), while the relevant items not included in R L are

called false-negative ( fn ). In the same way, the proposed items not

actually relevant for the target user are called false-positive ( fp ),

while those not relevant and discarded are called true-negative ( tn ).

Therefore, the trade-off between the length of R L and the number

of relevant items can be measured using the Precision and Recall

measures defined as follows [13] : 

P recision = 

t p 

t p + f p 
; Recall = 

t p 

t p + f n 

(5)

In addition, one way to create a single metric that summarizes

both the aforementioned measures is the F-measure [14] , which is

the harmonic mean of equally weighted Precision and Recall: 

F = 

2 · P recision · Recall 

P recision + Recall 
(6)

3. Main approaches for Recommender Systems 

3.1. Collaborative Filtering 

Collaborative Filtering (CF) is considered the most popular and

widely implemented technique in RS [15] . The underlying assump-

tion of CF is that people with similar preferences will rate the

same objects with similar ratings [16] . Existing CF solutions can be

categorized in two main classes: (i) memory-based and (ii) model-

based methods. Memory-based solutions leverage on similarities in

users’ behaviors and preferences to make inferences about missing

values in the ratings matrix. Instead, model-based methods exploit

the matrix values to learn a model, similarly to a classifier that

trains a model from labeled data. The learned model is then used

to predict the relevance of new items for the users. 

3.1.1. Memory-based 

Memory-based algorithms (also known as Neighborhood-based )

rely on the notion of similarity among users, or items, to predict

the possible interest of a user in items that she has not seen (or

rated) before. In the literature, memory-based CF solutions are typ-

ically divided in two main categories: user-based and item-based .

The former approach is based on the assumption that similar users

typically rate the items in a similar way. Therefore, a user-based CF

predicts the rating that a user u might assign to an item by aggre-

gating the ratings that the most similar users to u have previously

given to that item. Formally, the predicted rating of a user u to the

item j can be formulated as follows: 

ˆ r u, j = 

1 

K 

∑ 

k ∈ N u 
Sim (u, k ) · r k, j , (7)

where N u is the set of the K users most similar to the target user

u; Sim ( u, k ) represents the similarity between the users u and k

for a predefined similarity measure, and r k, j represents the rating

made by the user k for the item j . 
In contrast with user-based CF, item-based CF focuses on the

imilarities among items. It is based on the assumption that similar

tems are rated in a similar way by the same user. In this case, the

tems recommended to the user u are ranked by aggregating the

imilarities between each candidate item and the items that u has

ated in the past. It is possible to formulate the prediction rating

or the item-based CF as follows: 

ˆ 
 u, j = 

1 

K 

∑ 

k ∈ N i 
Sim ( j, k ) · r u,k , (8)

here N i represents the set of neighbor items of item j , and Sim ( j,

 ) is the similarity value (for a predefined similarity measure) be-

ween items j and k . 

The similarity computation between users (or items) represents

 crucial step in memory-based approaches, as it can seriously re-

uce both the accuracy and the performance of RS [17] . In the lit-

rature, a number of similarity measures have been proposed, but

he Pearson Correlation (PC) similarity seems to provide the most

ccurate results [18] . PC selects just the co-rated items and consid-

rs the differences in the mean and variance of the ratings made

y two users u and v . PC similarity between two users is given by

he following formula: 

 C(u, v ) = 

�i ∈ I u, v (r ui − r̄ u ) · (r v i − r̄ v ) √ 

�i ∈ I u, v ( r ui − r̄ u ) 2 · �i ∈ I u v ( r v i − r̄ v ) 2 
, (9)

here I u, v is the set of items rated by both users u and v, r ui is

he rating made by u for the item i , and r̄ u is the mean value of

he ratings made by u . On the other hand, PC similarity between

wo items i and j can be calculated comparing the ratings made by

sers that have rated both items: 

 C(i, j) = 

�u ∈ U i, j 
(r ui − r̄ i ) · (r u j − r̄ j ) √ 

�u ∈ U i, j 
( r ui − r̄ i ) 2 · �u ∈ U i j 

( r u j − r̄ j ) 2 
, (10)

here U i, j is the set of users who rated both items i and j , and r̄ i
s the average rating value obtained by the item i . For a complete

omparison of the similarity measures typically used in memory-

ased CF, we refer the reader to [17] . 

The main drawback of memory-based CF is represented by the

omputational cost: the computation of similarities between all

airs of users, or items, typically requires a quadratic time. How-

ver, they gained popularity due to their very simple implementa-

ion, providing an intuitive justification for the computed predic-

ions. For instance, in item-based CF, the list of similar items can

e presented to the user in order to better understand the reason

f the recommendation. 

.1.2. Model-based 

Although memory-based CF approaches are easy to implement

nd useful in effectively predicting missing ratings, model-based

olutions typically show more accurate results [19] . The main char-

cteristic of model-based CF is the use of machine learning tech-

iques to learn models that are able to predict the missing rat-

ngs. In the last few years, different models have been proposed for

odel-based CF, such as Association rule-based [20,21] , Bayesian
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etworks [22,23] , Support Vector Machines [24] , Neural networks

25] and, more recently, Deep learning methods [26] . However, the

atrix Factorization (MF) models [27] are considered to be the

tate-of-the-art in recommendation systems due to their advan-

ages with respect to scalability and accuracy [19] . Generally, MF

odels exploit the typically high correlation between rows (e.g.,

sers) and columns (e.g., items) of an incomplete ratings matrix in

rder to learn low-rank representations of both users and items.

oreover, these low-rank matrices (also referred as latent factors )

an be used to approximate the full rating matrix and, then, to

redict missing scores between users and items. Specifically, latent

actors derived from the correlation patterns in the ratings matrix,

hich can be used to describe with more details both users and

tems profiles. Consider the toy-example depicted in Fig. 2 . The

atings matrix contains the preferences of 3 users for 3 different

ooks. The latent factors may represent the genres of the books.

herefore, the users’ latent factors describe how much each user

s interested in a specific genre and, in the same way, the items’

atent factors represent how much a book belongs to a specific

enre. 

Formally, the matrix factorization method can be expressed as

ollows: 

 ≈ U · V 

T , (11) 

here R is the full rating matrix, and U and V are two matrices of

sers and items latent factors, respectively. The main goal of a MF

lgorithm is to learn the optimal latent factors ( U 

∗ and V 

∗) which

etter approximate R . The most common formulation of MF is for-

alized as follows [5] : 

 

∗, V 

∗ = argmin 

U,V 

{ 

1 

2 

M ∑ 

i =1 

N ∑ 

j=1 

I i j (r i j − U i V 

T 
j ) 

2 + 

λU 

2 

‖ 

U ‖ 

2 
F 

λV 

2 

‖ 

V ‖ 

2 
F 

} 

, 

(12) 

here U i is the latent factors of user i and, in the same way, V i rep-

esents the latent factors of item i. I ij denotes an indicator function

hat is equal to 1 if rating r ij is not a missing value of the start-

ng rating matrix. Finally, ‖ ·‖ 2 F represents the (squared) Frobenius

orm of a matrix, and λU and λV are regularization parameters to

et in order to prevent the model’s overfitting. U and V can be seen

s unknown variables, which need to be learned in order to min-

mize the objective function presented in Eq. 12 . This is typically

chieved with the well-known Gradient Descent algorithm or one

f its variants (e.g., Stochastic Gradient Descent – SGD). 

Compared to memory-based approaches, the predictions’ accu-

acy is not the only advantage of model-based CF. In fact, space

equirements for model-based CF are often lower than those re-

uired by memory-based algorithms. This is due to the fact that

emory-based approaches should load into memory all the rat-

ngs in order to perform the recommendations, while the model

earned by model-based CF is typically much smaller than the orig-

nal ratings matrix. However, learning a model may require lots of

raining data and time. In addition, if the system is highly dynamic

e.g., new users or items are frequently added), it could be neces-

ary to train a new model several times since the current one can

asily become obsolete, thus affecting its accuracy. This could be

n issue for some specific application domain. For example, in a

obile Social Network, each node (e.g., mobile device) has a lim-

ted knowledge of the items (and users) available in the network,

nd it could be difficult to train an accurate model. 

.2. Content-based Recommender Systems 

CF approaches can be considered inherently “social” since they

xploit the correlations in the ratings patterns among users of the
ame system. However, CF methods typically ignore the item’s at-

ributes to compute the predictions in their recommendation pro-

ess, while they can be useful to improve the recommendations’

ccuracy. 

Content-based Recommender Systems [28,29] are specifically de-

igned to recommend items similar to the ones that the user has

referred in the past. In CF the similarity between two items (or

wo users) is calculated in terms of correlation or similarity among

atings provided by other users. Instead, content-based approaches

onsider only the ratings provided by the target user and the

eatures of the rated items [19] . Content-based RS are typically

mplemented using traditional classification and clustering algo-

ithms, such as Support Vector Machines (SVM) or Nearest Neigh-

ors methods (NN) [29] . In SVM the features of the items and the

atings made by the target user are combined together to form a

ataset of < features, rating > instances. Based on this dataset, a

pecific classifier (or regressor) for the target user is trained in or-

er to predict the ratings of new items, never seen before by the

ser. In NN, in order to classify a new, unrated item, the algorithm

ompares it with all the stored items, derived from the training

ata, by using a similarity function (typically the Euclidean dis-

ance or the Cosine similarity). 

According to Aggarwal [19] and Tang et al. [16] , content-based

S have the following drawbacks: 

1. Items’ features . The accuracy of RS relies on the set of features

that describe the items. The identification of the most relevant

features is not trivial, and highly depends on the specific appli-

cation. 

2. Over-specialization . Since the content-based methods rely just

on the characteristics of the items already rated by the target

user, it typically suffers from low diversity and novelty of the

recommended items. 

Thus, a content-based RS typically tends to provide obvious rec-

ommendations, which could bother the user in the long term. 

3. Training set size . In order to allow a content-based RS to learn

the user’s preferences, the user has to rate a sufficient number

of items [16] . Otherwise, the RS does not has enough informa-

tion to learn an accurate model and it fails to recommend items

for a user with few or no ratings. 

Despite the aforementioned drawbacks, content-based RS are

seful to alleviate some critical problems of CF. For example, when

 new item is added to the ratings matrix, CF methods are not

ble to perform recommendations about this item because the sys-

em has not yet collected sufficient ratings about it. In the liter-

ture, this problem is called cold-start , and a content-based ap-

roach can well complement a CF system because of its ability to

xploit the characteristics of the items in the recommendation pro-

ess [19,30] . Mixing two or more approaches is often referred as

ybrid RS [31] in which the goal is to combine the strengths of

ifferent methods to create a more robust RS. 

.3. Graph-based 

Social Networks can be naturally modeled as graphs, in which

odes represent users and items, and edges model the different re-

ationships among user–user or user–item pairs (e.g., friendships,

ollow, likes, share). These relationships can also be used in RS to

dentify similar users and/or items. In fact, several graph-based RS

ave been recently proposed in the literature [32] . Their first ob-

ective is to perform a ranking of the nodes to identify the most

nteresting items for a user or a neighborhood (e.g., the most sim-

lar users/items) to be used in a traditional CF method. 

PageRank [33] is clearly the most famous method to produce a

anking of the nodes in a graph. It is based on the idea that a node

s important if it is linked to other important nodes. This simple
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and general idea can be applied to many different situations, in-

cluding ranking of websites in a search engine, or finding relevant

items (or people) in a RS. PageRank exploits a random-walk model.

Specifically, it performs an exploration of the given graph by vis-

iting nodes following randomly selected links among them. The

long-term frequency of visits to a node represents its final rank-

ing value, which is clearly influenced by the number of incoming

links of the node. It is also referred to as the steady-state proba-

bility . However, directed graphs can have some nodes (or group of

them) without out-going links; this part of the network would act

as a trap for the random-walk process. In order to overcome this

problem, PageRank uses the so called restart mechanism. Accord-

ing to this strategy, at each transition, the random walk may either

jump to an arbitrary node of the network with a probability α, or

follow one of the out-going links connected to the current node

with probability (1 − α) . Formally, the steady-state probability at a

node i is defined as follows: 

π(i ) = 

α

n 

+ (1 − α) ·
∑ 

j∈ In (i ) 

π( j) · p ji , (13)

where n is the total number of network’s nodes, In ( i ) is the set of

nodes that have out-going links directed to i , and p ji is the transi-

tion probability from node j to node i . 

Although PageRank is very effective in finding popular nodes

in the graph, it does not take into account the user’s preferences,

which means that it is not able to provide personalized recom-

mendations. To this aim, Haveliwala [34] proposes personalized

PageRank , a biased version of PageRank, specifically designed to

find popular nodes which are also similar to specific nodes in the

graph. In this case, the key idea is to use the restart mechanism to

bias the random walk process towards specific nodes that repre-

sent the user’s interests. If we consider a specific OSN represented

as a graph, nodes represent the items available in a social media,

and the links represent the relations between users and items. The

restart nodes represent the items consumed by the target user in

the past. Then, exploiting the biased random-walk, personalized

PageRank provides a way to calculate similarity scores of nodes

based on their structural similarity to the restart nodes. Finally,

the items with higher similarity values can be recommended to

the target user. 

Even if personalized PageRank, and other similar random walk-

based algorithms (e.g., FolkRank [35] , SocialRank [36] , and Item-

Rank [37] ), can be directly employed to build Social Recommender

Systems (SRS) [36,38] , they are mostly used to select user/item’s

neighbors in memory-based CF solutions [39,40] . In fact, rather

than using standard similarity measures (e.g., Pearson Correlation

Coefficient on user’s ratings), it is possible to use such structural

measures to identify the most relevant users (or items) for the rec-

ommendation purpose. Since they only leverage on the structural

transitivity of the network’s edges, instead of the users’ ratings,

they typically result very effective to alleviate the problems related

to the sparsity of the ratings matrix. However, random walk-based

approaches typically require multiple iterations before the transi-

tion probabilities converge to a steady state. 

On the contrary, other solutions require only few steps to

generate effective recommendations [41] . Diffusion-based methods

[32] represent the most used approach for recommendation in

graph-based RS. They have been initially proposed by Zhou et al.

[41,42] with their algorithms ProbS (Probability Spreading) [42] and

HeatS (Heat Spreading) [41] . These algorithms exploit a bipartite

user–item graph where users are directly connected to the items

collected in the past. 

In ProbS, a resource is initially assigned to each item connected

to the target user, initialized to a unitary value. This resource is

then spread uniformly from the collected items to the users con-

nected with them ( first diffusion step ) and then, in a second step
ack, to the items connected with those users ( second diffusion

tep ). The final value of this resource, associated with each item, is

hen interpreted as the recommendation score of that item for the

arget user. The higher the score obtained by an item, the greater

ould be the interest in it by the target user. 

HeatS [41] is similar to ProbS, but it is based on opposite rules:

ach time the resource (or a portion of it) is redistributed, it is

ivided by the number of edges connected to the node towards

hich it is heading to. Fig. 3 depicts the diffusion steps of the two

lgorithms, highlighting the differences in the two recommenda-

ions. 

Unfortunately, both of them are actually biased by the presence

f extremely popular or non-popular items (i.e., nodes with very

igh or low degree, respectively), not taking into account the char-

cteristics of the users’ interests. To overcome these limitations, a

robS+HeatS hybrid approach, simply called Hybrid , has been pro-

osed in [41] . Hybrid calculates a linear combination of the results

f ProbS and HeatS with a parameter λ governing the relative im-

ortance of one of the two original algorithms. By tuning λ appro-

riately, Hybrid is able to obtain simultaneous gains in both accu-

acy and diversity of recommendations with respect to the previ-

us solutions. 

The diffusion-based approach has been generalized in multiple

ays. Some authors proposed to compensate the HeatS’s prefer-

nce for unpopular items modifying its spreading process [43] and

llocating higher weight to links connecting nodes with high de-

ree [44] . On the other hand, in order to compensate the ProbS’s

ias towards very popular items, Lü and Liu [45] proposed to high-

ight less popular items in the second diffusion step by making

heir score inversely proportional to the degree of the nodes. 

Furthermore, Zhou et al. [46] investigated the effect of bias-

ng the initial resource allocation in ProbS. Results indicate that

ecreasing the initial resource allocated on popular objects can

urther improve the algorithmic accuracy. Similarly, Liu and Zhou

sed heterogeneous initial resources in Hybrid, further improv-

ng both the accuracy and diversity of the recommendations [47] .

owever, in addition to the ProbS–HeatS hybridization parameter

, they introduce a second parameter to tune, which governs the

eterogeneity of the initial resources. 

For a complete comparison and evaluation of the diffusion-

ased methods, we refer the reader to [32] . 

.4. Context-Aware Recommender Systems 

RS we have presented focus on recommending the most rel-

vant items to individual users taking into account just two en-

ities: users and items they liked in the past. However, they do

ot consider additional information that can be useful to improve

he recommendations’ quality and personalization [5] . To this aim,

ontext-Aware Recommender Systems ( CARS ) [48] have been re-

ently proposed in the literature. CARS methods perform their rec-

mmendations considering also the information characterizing the

pecific situation in which the target user is involved. This addi-

ional information is referred to as the context . The notion of con-

ext has been studied in multiple disciplines and several hetero-

eneous definitions exist [48] . In CARS, context is defined as the

dditional information relevant to improve recommendations, such

s the time of the day, the locations of the target user, and her

ocial relationships. 

As we described in Section 2 , the objective of a traditional RS is

o approximate the rating’s function f R : U × I → R in order to pre-

ict the possible interest of a user for a specific item. CARS gener-

lize this approach by using a multidimensional approach [49] in

hich the rating function can be seen as a mapping from a n -

imensional tensor (i.e., a multidimensional matrix) to the set of
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Fig. 3. Execution of ProbS and HeatS on a bipartite user–item graph. 

Fig. 4. Example of a multidimensional cube for the User × Item × Location recom- 

mendation space. 
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atings R : 

f R : D 1 × · · · × D n → R, (14)

here two dimensions, typically, are the sets of users and items

i.e., U and I ), and the other dimensions represent the context

ariables. Grafically, CARS’s rating function can be represented as

 multidimensional cube. Fig. 4 shows an example with a 3-

imensional cube that stores the ratings for the recommendation

pace User × Item × Location , where f R (u 1 , i 4 , home ) = 5 means that

he user u 1 rated with a score of 5 the item i 4 when she was at

ome. 

The paradigms used to incorporate context information in RS

re divided in three main categories [50] : (i) Contextual pre-

ltering , (ii) Contextual post-filtering , and (iii) Contextual modeling .

n the following we describe in details each approach. 

ontextual pre-filtering. In contextual pre-filtering the idea is to re-

uce the multidimensional cube to a 2-dimensional matrix in or-

er to apply traditional algorithms. As depicted in Fig. 5 , the cur-

ent context c of the target user is used as a filter to “slice” the

ating cube and extract the relevant user–item matrix, which can

e used with traditional CF algorithms. 
However, using the exact context c sometimes can be a prob-

em. If there are just few ratings associated with c , this can lead to

 low accuracy in the recommendation because the system has not

nough data points about the past preferences of the target user.

herefore, the notion of generalized pre-filtering [49] has been in-

roduced in the literature to cope with this problem. Instead of us-

ng the specific context c , this approach suggests to use a broader

ontext c ′ , which includes c and other similar context variables.

et us consider the context of watching a movie on Saturday (i.e.,

 = “Saturday”). In order to base the recommendation on a wider

et of ratings, the generalized pre-filtering approach may use the

ore general context c ′ = “Weekend" , which includes the two con-

ext variables c = “Saturday” and c 1 = “Sunday”. Then, the system

ggregates the selected ratings using some aggregation function

e.g., the average) to reduce the recommendation space to the 2-

imensional user–item matrix and, finally, perform the recommen-

ation. 

It is clear that the context generalization becomes a crucial as-

ect of the recommendation process. One possible strategy is to

se a process similar to the cross-validation: in a learning phase,

he predictive performance of the system is empirically evaluated

sing different contextual filters. Then, the filter that allows the

est performance is automatically selected [50] . In addition, mul-

iple context generalization can be used for the same specific con-

ext. For this reason, in the literature several works propose to use

 combination of different filters and prove that this solution can

rovide a significant performance improvement compared to the

se of a single filter [50,51] . In this case, multiple pre-filters are

sed to generate several different 2-dimensional ratings matrices.

ventually, those user–item matrices are merged in one single ma-

rix in order to perform the recommendation process. Codina et al.

ecently proposed in [52] the use of semantic similarities between

ontextual situations in order to select the most relevant context

ariables for a specific situation. They showed that their seman-

ic pre-filtering model is able to obtain better results than others

ontext-aware approaches. 

ontextual post-filtering. In this case the filtering step is applied to

he output obtained after applying traditional RS to the data set.

herefore, the recommendation process of a post-filtering method

an be summarized in two steps: 
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Fig. 5. Process of a pre-filtering method to generate contextual recommendations. 

Fig. 6. Process of a post-filtering method to generate contextual recommendations. 
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1. In a first stage, the context information are completely ignored,

and a list of recommended items are generated using tradi-

tional RS on an aggregated 2-dimensional user–item matrix. 

2. Given a specific context c , recommendations not relevant for c

are filtered out, and the ranking of recommendations in the list

is adjusted according to c . 

Fig. 6 depicts the recommendation process of the post-filtering

approach. Here, aggr ( U, I ) refers to the aggregation function (e.g.,

the average) used to create the 2-dimensional user–item matrix,

and filter ( c ) represents the filtering (or adjustment) step of the rec-

ommendation’s list, based on the current context c of the target

user. 

The selection of the best contextual filter represents a crucial

point in the overall recommendation process. All the techniques

related to the context generalization, previously discussed, can be

applied also in post-filtering methods. The main difference be-

tween the two approaches lies in the data set on which the con-

textual filter is applied: the ratings contained in the multidimen-

sional tensor (i.e., the input) for the pre-filtering approach, and the

recommendation list (i.e., the output) generated by a traditional RS

for post-filtering methods. 

Both approaches share the same advantages: their implemen-

tation is relatively simple, and both of them allow the use of the

traditional recommendation techniques described in the previous

sections. In addition, comparing their performance, none of them

seems to clearly outperform the other. Panniello et al. [53] evalu-

ated different solutions based on both approaches by using several

real world datasets. The authors did not find any solution that

dominates over the others for all the datasets, indicating that

the choice of the best approach really depends on the specific

application. 

Contextual modeling. Contextual modeling approaches consider

context information directly in the recommendation function in

order to predict a user rating for a specific item [50] . Differently

from pre- and post-filtering techniques, contextual modeling meth-

ods use predictive models or heuristics to create multidimensional

recommendation functions. 
The simplest solution adapts neighborhood-based CF methods

o perform context sensitive recommendations [49] . In this case,

he traditional user–user (or item–item) similarity metric is re-

laced by an n -dimensional distance metric, which includes the

ontextual information. For instance, let’s consider two points in

 3-dimensional user–item–context cube, respectively A = (u, i, c)

nd B = (u ′ , i ′ , c ′ ) . The distance between them, Dist ( A, B ), can be

alculated as the sum of the weighted distance between each di-

ension or, alternatively, using the Euclidean metric [49] . There-

ore, by extending the traditional neighborhood rating prediction

i.e., Eq. (7) ), the specific rating for user u , item i in the context c ,

an be expressed as follows: 

 u,i,c = k 
∑ 

(u ′ ,i ′ ,c ′ ) � =(u,i,c) 

1 

Dist((u 

′ , i ′ , c ′ ) , (u, i, c)) 
· r u ′ ,i ′ ,c ′ , (15)

here k is a normalization factor, and the inverse of the multidi-

ensional distance between points has been used for weighting

he rating r u ′ ,i ′ ,c ′ (i.e., the more the two points are close, and the

igher is the weight). 

More complex approaches extend model-based solutions. In

articular, tensor factorization methods [54,55] can be considered

s a generalization of matrix factorization for latent factor models

see Section 3.1.2 ). As depicted in Fig. 7 , a 3-dimensional tensor

actorization aims at learning three latent factors matrices ˆ U , ˆ I , Ĉ 

i.e., respectively, the user, item, and context latent factors) and a

ore tensor ˆ T to build a prediction model. However, the compu-

ational complexity of this kind of models increases exponentially

ith the number of the tensor’s dimensions [56] . To solve this

ssue, some simplified forms of these factorization methods have

een recently proposed. For instance, the Pairwise Interaction Ten-

or Factorization ( PITF ) [56] and Factorization Machines [55,57] are

ble to predict missing ratings exploiting the pairwise interactions

etween the different dimensions of the tensor, maintaining at the

ame time a low computational complexity. 

To conclude the description of main RS methods, we present in

ig. 8 a summary of their classification and the references of the

ain representative solutions for each method. 
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Fig. 7. Tensor factorization. 

Fig. 8. Classification of Recommender Systems methods. 
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. Recommender systems for Online Social Networks 

With the advent of OSN, RS have been further enhanced by

xploiting additional information characterizing both users and

tems, becoming thus SRS [16,58] . Specifically, OSN can provide

nformation able to identify virtual and physical social relation-

hips among users, common interests and habits, in addition to

ersonal preferences. RS can exploit this information depending

n the application domain in which they are implemented. Specif-

cally, SRS widened their recommendation targets, from generic

tem recommendations up to people/friend recommendations, lo-

ations, tags and others. In this section, we provide a description
f SRS grouped by the type of recommendations they provide, and

he context information used to optimize their process, as shown

n Fig. 9 . Specifically, we identify three types of recommendations:

i) social-aware recommendations , in case SRS recommend people

r friends, and include the notion of trust and social relationships

n generic items recommendation; (ii) tag-based recommendations ,

hen SRS exploit a specific characterization of items based on tags

o recommend other items, tags and/or people, e.g., if they share

imilar interests derived from tags; (iii) location-aware rec-

mmendations , when SRS exploit location-related information

o recommend items, point-of-interest (POIs), trajectories, and

eople. 
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Fig. 9. Classification of Social Recommender Systems. 

a b

Fig. 10. Graphical representation of (a) a basic friendship network, and (b) a trust-network with inferred trust links (dashed lines). 
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4.1. Social-aware recommendations 

OSN provide several information that characterizes the social

context of a user and her generated items. OSN analysis mainly

refers to the topological structure of the social network, in terms of

(virtual) social relationships among users [59,60] . In addition, OSN

can reflect the presence of the homophily principle [61] also in the

cyber-world, as the tendency of individuals to associate and con-

nect with similar others, as demonstrated by recent studies [60] . 

The social structure of a OSN can be represented as a graph

G = (U, S) , where U is the set of users and S is the set of social

links among them, which can be: (i) undirected, if they model

friendship relations, such as in Facebook, or (ii) directed, if they

model trust or follow relations, such as in Epinions 3 or Twitter.

Social links in OSN represent the explicit declaration of a user to

be virtually in contact with others, but they do not reveal anything

about the effective nature of the relationships or its strength and

value for the user. However, analyzing OSN contents and users’ vir-

tual interactions (e.g., explicit users’ feedbacks, ratings [62] , etc.)

we can derive additional information that can further character-

ize those links, like for example the notion of trust among users,

which can be represented through links’ weights ( Fig. 10 (b)). 

SRS exploit this structure to provide two types of social-aware

recommendations: (i) friends or other people, and (ii) OSN items.
3 http://www.epinions.com 

[  

b  

b  
n the first case, SRS suggest to the users new social relationships

ased on the prediction of common interests, while in the sec-

nd case they exploit social/trust relationships in order to sug-

est interesting items to the users. In the following we review the

ain solutions proposed in the literature, highlighting different ap-

roaches, and how they take into account different aspects of the

ocial context. 

.1.1. Friends and people recommendations 

This recommendation task differs from the generic items rec-

mmendation since it must take into account specific aspects of

he social network of each user, like trust, reputation, privacy and

ersonal attraction [58,63] . From a technical point of view, this

ask is associated with the problem of link prediction in the social

etwork, which tries to infer new possible relationships or interac-

ions between pairs of entities, based on their properties and the

xisting links [64] . 

In the literature, several techniques have been proposed for

ink prediction [65] . The most commonly used can be divided into

wo main categories: unsupervised and supervised methods. The

rst category includes all those techniques that exploit the struc-

ure of the network to calculate similarity values among the users

nodes of the graph), and then recommend the most similar ones.

or instance, Jaccard coefficient [65] or the Adamic–Adar measure

65] can be used to calculate the similarity between two nodes

ased on their common neighbors. Alternatively, random walk-

ased approaches such as Katz measure [65] , or PageRank [33] and

http://www.epinions.com
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imRank [66] algorithms, can represent a different way to recom-

end new links based on the connectivity between pairs of nodes.

One of the first unsupervised RS for people recommendation

as been proposed by Guy et al. for an IBM enterprise social

etwork called SONAR [67–69] . It defines a “relationship score”

ased on a combination of various social context information de-

ived from the enterprise intranet applications (e.g., organizational

harts, papers database, patents database, a social networking site,

 friending system and others). For each application, they de-

ne a user–user graph in which the links’ weight is computed

ith a specific metric depending on the application (e.g., manager-

mployee relationship, paper/patent co-authorship, users belong-

ng to the same group in the friend network). Then, a linear com-

ination of the weights of each graph is computed for each pair

f users, and it is used as general relationship score. The authors

ompared SONAR relationship score with that provided by other

pproaches: (i) Friend-of-friends (FOF) metric, applied to the inter-

al friending system of the company; (ii) a Content-Matching ap-

roach, defining the users’ similarity based on a set of keywords

xtracted only from the contents generated on the social network

i.e., posts, picture descriptions and tags); (iii) Content-plus-Link , by

oubling the similarity value derived from the Content-Matching

n case the pair of users are also explicitly connected in the so-

ial network application. They evaluated SONAR with real experi-

ents involving up to 30 0 0 users in different testing scenarios and

emonstrated the effectiveness of the proposed solution with re-

pect to the other approaches. 

Other solutions have been proposed by exploiting the concept

f ego-network , the representation of a social network centered on

he individual (i.e., ego) and her social links (i.e., alters) divided

n a series of “circles”. The inner-most circle includes alters with

 very strong relationship with the ego. Each subsequent circle

in hierarchy) includes all the relationships of the previous cir-

les along with an additional set of social links characterized by

 weaker level of intimacy. The last set, included in the outermost

ircle only, contains simple acquaintances, with a relatively weak

elationship with the ego. This representation has been defined in

ntropology for classical (offline) social networks [70,71] , and it

as been recently demonstrated that the same representation can

lso be adopted in OSN [72,73] . 

Epasto et al. [74] proposed a RS for friends recommendation

ased on the features derived from the co-occurrences of two

odes in different ego-networks. In contrast to random walk-based

easures, these features can be computed much more efficiently

n very large graphs, by just analyzing selected neighbors of each

ode. The authors evaluated the system on an anonymized snap-

hot of Google+ social network, and compared the proposed solu-

ion with two other unsupervised methods (i.e., common friends

nd Adamic–Adar) in terms of precision and recall. A 2-week test,

uring which the authors observed the social network evolution

ased on the different recommendations, demonstrated the effec-

iveness of their solution. 

In general, the effectiveness of the proposed unsupervised

ethods highly depends on the social network structure used for

heir evaluation, and they are not easy to compare [75] . On the

ther hand, supervised methods try to cope with this issue, by

reating the link prediction in a social network as a classification

roblem and by defining the characteristics of the network in a

ata-driven way, i.e., by creating a vector of features for each pair

f nodes, in which the set of features can include different heuris-

ics and metrics. To this aim, for each pair of nodes, a multidimen-

ional vector is extracted and associated with a positive or neg-

tive label, based on the presence or absence of a link between

he nodes. Finally, a classifier is trained using the set of vectors

s training data. In this way, the classifier automatically learns the

elevance of the features, and the learned model can be used to
redict the creation of new links (i.e., the label) between any pair

f nodes. 

The following solutions are representative of this class of link

rediction approaches. Fire et al. [76] proposed a set of features

elated to different characteristics of the graph (e.g., nodes, edges,

ubgraphs, and multi-hop paths) in order to learn a classifier that

dentifies the missing links. They used different datasets (e.g., Face-

ook, Flickr, YouTube, Academia, etc.) and by using a common

ramework they developed different classifiers for each dataset

e.g., decision tree C4.5, kNN, Naive Bayes, SVM, neural networks)

n order to evaluate both single solutions and the combinations of

ome of them. Finally, they compared the prediction accuracy by

sing all the features or some limited sets. 

Backstrom and Leskovec [77] proposed Supervised Random

alks, a supervised algorithm that combines the network struc-

ure with attributes about both nodes and edges in a unified

ink prediction algorithm. Given a source node s, and train-

ng examples about which nodes s will connect to in the fu-

ure, the algorithm learns a function that assigns a strength

i.e., random walk transition probability) to each edge, provid-

ng higher scores to the possible new links of s . This solution

as been compared to both unsupervised methods (e.g., ran-

om walk with restart, Adamic–Adar, Common Friends) and other

wo supervised approaches (i.e., decision-tree e logistic regres-

ion) on heterogeneous datasets (i.e., arXiv and Facebook). All

he supervised methods outperformed the unsupervised ones in

erms of precision and the ranking metric AUC [108] , and Su-

ervised Random Walk performed better than the others of the

ame class. We can thus observe that supervised methods gen-

rally performs better than unsupervised ones in friends and

eople recommendations, thanks to their ability to automatically

earn the hidden relationships between social links and their

eatures. 

.1.2. Items recommendations 

Social context positively impacts also on generic items’ recom-

endation (such as books, movies, or news), and several works

ave been presented in the literature exploiting most of the stan-

ard recommendation techniques. The first category we consider

s related to the neighborhood CF approach. These solutions use

arious strategies to select relevant users for the recommendations

urpose. For instance, authors in [78,79] considered only the con-

ected friends of the target user and their items as the possible

bjects to recommend. Instead, in [79] an evaluation between dif-

erent strategies has been proposed. Specifically, the authors con-

idered (i) a Friends Average approach, which simply averages the

atings of the direct friends, (ii) a Weighted Friends, in which co-

ine similarity among friends is used to define links’ weight, and

iii) a traditional CF method without social context. All the social-

ware recommendation tasks achieve better results than traditional

F in terms of prediction accuracy. 

Other memory-based solutions exploit trust relations among

sers to obtain the set of relevant neighbors [80–82] . Generally,

hese solutions exploit different graphs’ exploration techniques in

rder to propagate trust within the user-to-user network. In fact,

n this case, the network is represents as a direct graph in which

odes represent the users and edges connect two users if they are

riends or at least one of them declares a trust towards the other

reater than 0. As a first step, the trust values among directly con-

ected users are typically calculated leveraging on a user-to-user

imilarity measure (e.g., the cosine similarity calculated on the rat-

ngs of the two users) [16] . Then, these values of trust are propa-

ated through the graph’s edges in order to calculate the transi-

ivity trust among nodes that are not directly connected to each

ther. For instance, TidalTrust [80] aims at estimating the trust

alues of a node (i.e., source) towards another one not directly
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connected (i.e., sink). In a first phase, it finds a path from the

source to the sink while rating the nodes on the path, and then

it aggregates the trust value backwards towards the source. As a

result, TidalTrust assumes that: (i) shorter propagation paths pro-

duce more accurate trust estimates, and (ii) paths with higher trust

values create better results in selecting neighbor nodes to be used

for items recommendations. Therefore, TidalTrust selects as rele-

vant neighbors only those nodes that are on the shortest path be-

tween the source user and the sink. MoleTrust [81] is another ex-

ample, which uses a random walk to propagate trust values on the

graph, and it defines a threshold on the length of the path between

a source and a sink. Therefore, it limits the number of possible

paths between a pair of users. 

In contrast with memory-based approaches, model-based Rec-

ommender Systems learn models that predict the user’s interest

for new items. As it happens for traditional RS, the matrix factor-

ization (MF) represents the most used model-based technique in

SRS. The common idea of Social-aware MF solutions is that social

connections mainly influence the users’ preferences (i.e., the rat-

ings). The preferences of two friends should be much more similar

than those of two strangers, and for this reason these solutions

typically associate a weight to the social relations, which indicates

the strength of the social tie among the related users and it is usu-

ally calculated based on the ratings similarity. 

Each of the MF solutions proposed in the literature differs from

the others by the method used to include social and/or trust infor-

mation into the factorization process. For example, SoRec [83] , in-

stead of factorizing only the user–item matrix, as in traditional MF

methods, it extends the factorization objective function performing

a co-factorization both of the user–item matrix and the user–user

social matrix. Instead, other solutions (e.g., SocialMF [84] and Social

Regularization [85] ) focus on the regularization term of the factor-

ization objective function (see Section 3.1.2 ), introducing new con-

straints related to the social factors. Specifically SocialMF [84] , by

assuming that the behavior of a user is affected by the behavior

of her direct neighbors, introduces a new regularization term that

forces the preference of a user to be closer to the average prefer-

ence of the users in her social neighborhood. On the other hand,

Social Regularization [85] considers the fact that the target user’s

neighbors may have different tastes. For this reason it uses a pair-

wise regularization of the users’ latent factors where the prefer-

ences’ similarity of two connected users depends on their ratings’

similarity. In order to evaluate Social Regularization, authors com-

pared the performance of their solution with other three MF ap-

proaches: two traditional user–item MF (i.e., non-negative matrix

factorization [86] , probabilistic matrix factorization [87] ), and So-

cial Trust Ensemble (STE) [88] , a social-aware MF solution where

the missing ratings are predicted as a linear combination of rat-

ings from the target user and her friends. By using the datasets

extracted from two real-world OSNs (i.e., Douban 

4 and Epinions),

Social Regularization demonstrated to outperform the other ap-

proaches in terms of both MAE and RMSE metrics. In addition,

in the same work [85] , authors propose the use of two differ-

ent similarity metrics for the pairwise regularization: the Pearson

Correlation Coefficient and Vector Space Similarity [89] . However,

the evaluation results show no significant differences between the

two measures, but they both perform better than random similar-

ity values, showing the importance of similarity function enhanced

with social context information. 

Recent works (i.e., [90,91] ) use different regularization terms.

In [90] , Sun et al. propose RSboSN (Recommender System based

on Social Networks), which leverages on a clustering algorithm to

identify groups of friends. RSboSN outperforms SoRec in terms of
4 https://www.douban.com 

t  

c  

t  
recision and recall, proving the effectiveness of their clustering-

ased regularization approach. Moreover, Reafee et al. [91] propose

he EISR (Explicit and Implicit Social Relation Probabilistic Matrix

actorization) algorithm, aimed at including both explicit and im-

licit social relations as regularization parameters. Explicit social

elations are the direct friendships ties among users, while the im-

licit ones refer to not directly connected users and they are in-

erred using link prediction. Compared with Social Regularization

85] and two diffusion-based algorithms (i.e., HeatS [41] and Hy-

rid [41] , described in Section 3.3 ), EISR shows a clear improve-

ent in terms of prediction error (i.e., MAE and RMSE), demon-

trating the effectiveness of taking into account also the implicit

elationships in the social recommendations. 

.2. Tag-based recommendations 

Over the past few years the use of special user-defined key-

ords, called tags , to categorize or describe web and OSN con-

ents, gained a lot of popularity. This user-driven phenomenon

s known in the literature as folksonomoy [92] and it is a well-

tudied topic in both information retrieval and Recommender Sys-

ems fields [93–95] . 

An important aspect of folksonomies is that, differently from

ntologies, no relationship between the terms is required a priori.

n the contrary, relationships are automatically built exploiting the

ags created by the users and explicitly assigned to contents (e.g.,

ashtags assigned to tweets). Since tags are generally defined as

eywords that can reflect a semantic meaning of the associated

ontent, they represent an important feature in the content charac-

erization. In addition, folksonomies dynamically adapt to changes

n the users’ vocabulary, further personalizing the user’s interests,

nd they are independent from the type of item they describe.

or instance, the features used to represent the characteristics of

 movie are typically very different from the features used to de-

cribe music files or books. Instead, tags can be seen as generic

eatures that can be used to create multi-domain Recommender

ystems [96] . 

However, folksonomies have some drawbacks due to the user

anguage. Synonyms, homonyms, polysemies, and different users’

agging behavior make the recommendation process difficult to

erform in some cases, and undermine the use of simple tag

atching (e.g., group items characterized by the same tag). To

vercome these limitations, a novel family of Recommender Sys-

ems, called Tag-based Recommender Systems (TBRSs) [94,95] ,

ave been proposed in the literature. 

Formally, the folksonomy can be modeled in the following two

ays. First, it is possible to use three distinct sets of elements: the

et of users U = { u 1 , . . . , u n } , the set of items I = { i 1 , . . . , u m 

} , and

he set of tags T = { t 1 , . . . , t k } . These elements can represents the

et of nodes in a tripartite graph, as shown in Fig. 11 (a). Each bi-

ary relation between them can be described using adjacency ma-

rices, A 

UI , A 

IT , and A 

UT for user–item, item–tag and user–tag rela-

ions respectively. If the user u l has collected the item i s , we set

 

UI 
ls 

= 1 , otherwise a UI 
ls 

= 0 . Similarly, we set a IT sq = 1 if the item i s

as been tagged with t q, and a IT sq = 0 otherwise. Furthermore, we

et a UT 
lq 

= 1 if u l owns items tagged with t q, and a UT 
lq 

= 0 otherwise.

lternatively, the folksonomy can be modeled as a third-order ten-

or taking into account only complete ternaries Y = (u, i, t) , as

hown in Fig. 11 (b). Specifically, the tensor’s component is set

 = 1 if the ternary exists in the folksonomy, and Y = 0 otherwise.

A variety of different approaches have been proposed in the lit-

rature for tag-based RS. Works presented in [97,98] investigated

he tag co-occurrence frequency to support the user tagging pro-

ess. Specifically, given a specific item (e.g., a photo in Flickr),

he system recommends to its users the most relevant tags to

https://www.douban.com
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a b

Fig. 11. Representation of a folksonomy with (a) a graph, and (b) a tensor. 
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5 https://foursquare.com/ 
6 https://www.yelp.com 
ssociate with it. The underlying idea is that, if the co-occurrence

requency of two tags is high, they could be closely related. On the

ontrary, if two tags are not related at all, their co-occurrence fre-

uency should be very low. 

Several works extend CF towards tag-based RS. To this aim, the

ser–item–tag ternary is typically reduced to two-dimensional ma-

rices. Firan et al. [99] leverage on the user–tags projection matrix

o compute a ranked list of tags, then a list of recommended items

s extracted according to those tags. Instead, Guy et al. [100] select

eighbors users by using a similarity measure based on common

ags and items, while [101] exploits the co-occurrence of tags. 

In order to overcome the issues related to the folksonomies

e.g., synonyms and polysemies), and to improve the performance

f CF, Shepitsen et al. [102] and Gemmell et al. [103] use hierarchi-

al tags clustering techniques, while [104] weights each tag based

n the relationships between users, items, and tags. Recently, a hy-

rid framework for both item and tag recommendations has been

roposed in [96] . Authors use text analysis techniques (e.g., bi-

rams) to solve the ambiguity problem of folksonomies and per-

orm tag recommendations. In addition, they exploit temporal in-

ormation and trust relationships among the users to provide item

ecommendations using a CF approach. 

By modeling the folksonomy as a third-order tensor, some re-

earchers proposed Recommender Systems based on tensor factor-

zation techniques (see Section 3.4 ). Specifically, in [105] the rec-

mmendation is performed by the product of three low rank ma-

rices (i.e., the latent components of the users, items, and tags)

nd a low rank core tensor produced by the Higher-Order Singu-

ar Value Decomposition (HOSVD) [106] . Rendle et al. [107] pro-

osed a different learning approach for tensor factorization mod-

ls called Ranking with Tensor Factorization (RTF), which optimizes

he model parameters for the ranking statistic AUC [108] . 

Another natural way to represent the folksonomies is to use

ypergraphs. According to this representation, nodes of the graph

epresent the folksonomy entities (i.e., users, items, and tags), and

he relationships between them are modeled with edges among

odes. Consequently, a number of researchers proposed differ-

nt graph-based solutions for tag-based RS. These approaches ex-

loit the structure of the folksonomy hypergraph in order to pro-

ide tags or items recommendations to the user. Hotho et al.

93] proposed FolkRank, a graph-based ranking algorithm inspired

y PageRank [109] . Here, the underlying idea is that an item tagged

ith “important” tags by “important” users becomes “important”

y itself. Essentially, FolkRank identifies the most “important” tags

i.e., the most visited tags during the random walk) for a specific

ser by performing a biased random walk with restart on the folk-

onomy graph. 
Other solutions refer to the diffusion-based approach described

n Section 3.3 . Zhang et al. [110] first proposed a diffusion-based

ecommender System based on the tripartite user–item–tag graph.

pecifically, they apply the diffusion process proposed in [42] on

oth the user–item and item–tag bipartite networks and then, they

ombine the two results to provide the recommendations to the

ser. Their results show that the integration of tags can enhance

he accuracy of the recommendations with respect to previous

iffusion-based algorithms. However, due to their diffusion pro-

ess, the solution proposed in [110] and other similar works tend

o suggest the most popular items in the folksonomy network, pe-

alizing the personalization of the recommendations [41] . 

To this aim, we recently proposed PLIERS (Popularity-based

tEm Recommender System), a tag-based RS designed both for bi-

artite [111] and tripartite graphs [112] . In order to provide even

ore personalized items to the users, PLIERS assumes that the

opularity of an item/tag (i.e., the degree of the node) can be re-

ated to its semantic. Therefore, a very popular item or tag can se-

antically relate to a more “generic” topic compared to a less pop-

lar item/tag that, instead, describes a more “specific” topic. For

nstance, any content related to the football club Millwall can be

agged with both tags “Millwall” and “Football”, but the opposite is

ot always true: all content concerning football will not always be

agged with “Millwall”. According to this assumption, we can there-

ore say that the tag “Football” refers to a more generic topic than

hat referred by the tag “Millwall”. Users interested in the Millwall

ootball club, but not connected to items tagged with “Football”, are

learly not interested in all the items tagged with the latter tag, as

hese could contain information about other football clubs. In this

ays, PLIERS solves the dilemma of the choice between popular or

on-popular items in the network in a more natural way than the

ther diffusion-based algorithms. PLIERS does not require any tun-

ng parameter, and it ensures that the popularity of recommended

tems is always comparable with the popularity of items already

dopted by the users. Compared with other diffusion-based solu-

ions, PLIERS shows comparable performance in terms of precision

nd recall, while providing better novelty in the recommendations.

A very recent and promising approach to build tag-based Rec-

mmender Systems is represented by the use of deep learning to

iscover latent features from the tag space. The system proposed in

113] uses a sparse autoencoder [114] to extract a set of dense la-

ent features from the user–tag matrix. Based on the extracted fea-

ures, users’ profiles are updated and the traditional CF is used to

ecommend items or tags. On the other hand, Xu et al. [115] pro-

oses a pure deep learning model to provide item recommendation

o the user. Here, two neural networks map the tag-based user and

tem profiles to an abstract deep feature space. Then, the relevance

f the specific item for the user is calculated based on the sim-

larity between the deep representation of the two profiles. Au-

hors compared their solution with three different approaches: a

ierarchical clustering model [102] , CF and the autoencoder-based

odel proposed in [113] . With respect to these solutions, experi-

ental results show that the proposed approach significantly im-

roves the effectiveness of the recommendations in terms of both

recision and recall. 

.3. Location-aware recommendations 

The recent advances in location-acquisition techniques, and the

ide spread use of GPS-enabled smartphones, led to the creation

f the so-called Location-Based Social Networks (LBSN), such as

oursquare 5 or Yelp 

6 . These systems allow users to tag, rate, and

https://www.foursquare.com
https://www.yelp.com
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Fig. 12. Data in location-based social networks. 
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describe the locations they visit, in order to aid the discovery of

unknown points of interests (POIs), like restaurants or shops, or to

enable new social relations among users [116] . 

According to Bao et al. [117] , the location is one of the most im-

portant information to describe the user’s context. The addition of

spatial information in social networking systems is able to bridge,

at least partially, the gap between cyber and physical social rela-

tionships among users. Fig. 12 depicts the main information mod-

eled by a typical LBSN. In the upper layer, users and their social

relationships are represented. These social relationships can be ex-

plicitly defined by the users (e.g., friends or followers) or they can

be inferred from their activities on the OSN. The middle layer de-

picts the social media content generated by the users. The nature

of these content can be very different; for instance, a user can

share a check-in at a public place, a geo-tagged photos, a review

of a restaurant, or the workout tracked by a fitness application. As

depicted in the lower layer, each content should be associated with

one or more geographical locations. 

Given the multi-dimensional nature of the LBSNs, SRS applied

to these specific OSN must be able to handle a multitude of het-

erogeneous data. They can be divided into four different categories

based on their recommendation task: (i) location, (ii) user, (iii) ac-

tivity, and (iv) social-media. The first category mainly focuses on

suggesting new locations to the user, based on her preferences.

The objective of the recommendations can be both single POIs or

a sequence of locations, such as the best route to take or the se-

quence of attractions to visit during a trip. To recommend a single

place, both content-based and CF techniques have been exploited.

In the former case, the solutions proposed in the literature, e.g.,

[118–120] , typically suggest new locations by matching the user’s

profile with the places’ meta-data (e.g., text description, categories,

or tags). These solutions inherit the main advantages and draw-

backs of the content-based approach: they are effective in mitigat-

ing the cold-start problem but, on the other hand, they may suffer

from the recommendation quality issue. In fact, taking into account

just the preferences of the target user and ignoring the opinions

coming from other users, the system may recommend a matching

place with poor quality from the social opinion standpoint. In or-

der to overcome this problem, a large number of works exploit the

users’ location histories and CF models. Leveraging on the other

users’ past actions (e.g., reviews or check-ins), these location-based

RS are able to improve the quality of the recommendations by ig-

noring poorly-reviewed locations that otherwise match the target
ser’s profile. As we argued in Section 3.1 , the crucial point in the

F’s recommendation process is represented by the selection of

eighbors users (or items). The early solutions define their neigh-

ors selection according to the first law of geography of Tobler

121] , which claims that “everything is related to everything else, but

ear things are more related than distant things”. For instance, the

ork in [122] considers only individuals who live near the location

rom which the target user has made the query, while in [123] can-

idate POIs are pruned by using a spatial range around the user’s

urrent location. In addition to the spatial distance between places

nd users, several works propose to use a different kind of infor-

ation in order to further improve the quality of the recommenda-

ions. For example, Shi et al. [124] proposes a category-regularized

atrix factorization model, taking into account the category of the

laces visited by the user in the past (e.g., “Italian restaurant” or

Irish pub”). 

Sentiment analysis can also be used in order to build a more

ne-grained model of the user’s preferences [125,126] . Yang et al.

127] exploit the user’s comments left in the check-ins in a tensor

actorization framework to build a personalized location ranking

ystem, while the system proposed in [126] considers as neighbors

ot just the users with similar preferences, but also those with

omparable needs. Specifically, it clusters the places’ reviews ac-

ording to different aspects, such as the topics covered in the text

e.g., service, food, facilities), the intent and the nationality of the

uthor. In a recent work, Wang et al. [128] face the problem of

OIs recommendation considering the user interest drift [129] . Ac-

ording to this phenomenon, users tend to have different interests

hen they travel out of their hometown. To this aim, the authors

ropose a model to simulate the decision-making process of users’

heck-in behaviors, both in hometown and out-of-town areas, us-

ng both geographical clustering and topic modeling (i.e., Latent

irichlet Allocation – LDA [130] ) on users’ check-ins and reviews. 

Furthermore, other works explore the influence of social aspects

n location-based recommendations. Assuming that friends share

any more preferences than strangers, Ye et al. [131] limit the

hoice of neighbors to the user’s friends only. They extend their

ork in [132] by selecting candidate neighbors taking into account

he user preferences extracted from check-ins histories and so-

ial connections, but also the geographical distance between users

nd candidate places. They also perform a comparative evalua-

ion among different CF and random walk-based approaches, prov-

ng that the geographical factor has more impact on the accuracy

f the recommendations than personal social relations. However,

ocial links better address the cold-start problem because social

riends may provide potentially relevant POIs to new users without

ocation histories. Therefore, the combination of different aspects,

uch as geographical influence, social relations and user prefer-

nces, ensures to obtain the highest performance in recommending

ndividual locations [133] . 

As previously described, SRS can provides people/friend recom-

endations mainly exploiting the underlying social structure and

ser interaction patterns [74,77,134] . However, it has been proven

hat location has significant correlation with users’ social behaviors

n their real life, such as friendship relationships [135,136] . There-

ore, LBSNs can provide also a new way to make people/friend rec-

mmendations taking into account the users’ location histories. For

xample, Zheng et al. [137] and Ying et al. [138] focus on finding

opular users in LBSNs. They consider as “popular” the users with

ore knowledge about the locations (e.g., those who made sev-

ral check-ins) and they assume that this kind of users are able

o provide high quality location recommendations. A large body

f research (e.g., [139–143] ) leverages on users’ location histories

o improve the effectiveness of friend recommendations. Here, the

ain idea is that the history of visited places can reveal prefer-

nces, and thus people with similar location histories may have
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imilar preferences and may become friends more likely. Scellato

t al. [143] propose a supervised learning framework that exploits

sers’ visited locations to predict new links among place-friends ,

.e., users who visit the same places, and friends-of-friends . Their

esults show how the inclusion of information about places, and

elated user activities, offers high link prediction probability for

he friend recommendation task. Another example is represented

y Xiao et al. [140] , which estimates the similarity between users

ccording to the semantic of their visited locations (e.g., restau-

ants or cinemas). This allows the system to recommend connec-

ions between users who have different geographic behaviors (e.g.,

iving in different cities), but share similar semantic behaviors (e.g.,

hey frequently visit the same types of locations). 

Leveraging on the data shared by users in LBSNs, it is also pos-

ible to extract useful knowledge about locations and user activi-

ies. For instance, users may be interested in knowing which ac-

ivities (e.g., dining, shopping, watching movies/shows, enjoying

ports/exercises) can be practiced in a given place. Activity rec-

mmendations can be performed by exploiting both the meta-data

ssociated with the locations (e.g., tags) [144] and the users’ loca-

ion histories [145] . On the other hand, other works provide activ-

ty recommendations by exploiting information from all the users

ith collaborative-based approaches. For instance, Zheng et al.

146] and Symeonidis et al. [147] propose the use of a 3-order ten-

or to characterize each user check-in operation. In this case, the

ensor includes the current user’s location, the performed activity

nd a rating on that activity. They use factorization methods on

hese tensors in order to provide location-specific activity recom-

endations. 

The last type of recommendations that can benefit from the use

f geographical information is the content recommendation, with

pecific reference to social media contents. In this case, the system

rovides users with suggestions of photos, videos, or other web

ontent they might like, which have been shared by other users

hrough a OSN. Several works exploit the histories of users loca-

ion to improve the quality of social media recommendations. For

nstance, Kawakubo and Yanai [148] proposes a picture ranking al-

orithm that exploits the locations in order to improve the rele-

ance of search results. Silva and Martins [149] presents a method

o suggest the most relevant tags for georeferenced photos, and

150] builds a location-based RS aimed at increasing the diversity 

f recommendations, while mitigating popularity bias of web con-

ents. In a recent work, Pálovics et al. [151] address the problem of

ecommending highly volatile items, as locations or events char-

cterized by strict time constraints (e.g., a concert or an expo).

pecifically, they use both online machine learning and matrix fac-

orization techniques to recommend to their users the most rel-

vant hashtags for a given geo-referenced tweet at a given time.

heir solution performed much better than online matrix factor-

zation [152] and content-based [153] methods, which justifies the

mportance of temporal and geographic information in the social-

edia recommendation task. 

. Recommender Systems for Mobile Social Networks 

In Mobile Social Networks (MSN), typically, a mobile device

hould be able to autonomously share information with other de-

ices in proximity in order to discover useful contents for its user.

n this context, RS represent a useful tool to improve the con-

ent dissemination in MSN, by proactively suggesting to the users

he information discovered in the nearby. However, given the dis-

ributed nature of MSN, the solutions proposed for OSN (discussed

n Section 4 ) cannot be simply extended to this new scenario. In

act, RS for OSN generally rely on standard client/server centralized

odels, where the recommendation engine runs on the server side

or a cloud-based infrastructure) and processes the requests com-
ng from fixed and mobile clients. In addition, the recommendation

ask in MSN significantly differs from that defined for the online

nvironment. As discussed in Section 2 , RS for OSN typically focus

n learning a predicting model for missing values in the ratings

atrix. This matrix can be seen as a systems’ global knowledge

bout both the available items and users’ preferences. Thus, the

ecommendation engine learns a single global model which will

e used to perform the recommendations for all its users. On the

ontrary, in MSN each device may be aware of just a small part of

he global information. This local knowledge is initially related to

nformation about the local user only, then it grows up with those

xchanged with encountered users and devices, through D2D com-

unications. Therefore, in MSN each device should learn a recom-

endation model focused on the preferences of its local user. 

The first approaches proposed in the literature for RS in dis-

ributed environments refer to the Peer-to-Peer (P2P) paradigm.

n a P2P architecture, RS are fully distributed over several nodes,

hich act as client and server at the same time [154] . The solu-

ions proposed in this context (e.g., [155–157] ) are typically based

n Neighborhood CF. Specifically, the user–item ratings are main-

ained in a distributed way on the P2P infrastructure and, when

 peer has to make a prediction for its local user, it exploits P2P

ookup methods to find and retrieve the relevant ratings necessary

o locally calculate the rating for the target item. 

By shifting the recommendation process to the client side, P2P

olutions are able to alleviate some critical points of centralized

ethods; for example, the possible bottleneck represented by the

erver, or security and privacy issues that can arise when data is

andled by a single organization [158,159] . However, by using stan-

ard P2P systems, peers should be able to communicate to each

ther by using infrastructured networks (i.e., accessing the Inter-

et), in order to have a constant access to the entire knowledge of

he network. This is not always possible in MSN and, in the last

ew years, some RS explicitly tailored for MSN and opportunistic

etworks have been presented in the literature. 

We classify the proposed solutions based on the RS

ethod used: (i) CF, and (ii) tag-based, previously described

n Sections 3.1 and 4.2 , respectively. Hereafter we present the

ain solutions belonging to the two categories. 

.1. Collaborative Filtering 

The first set of RS proposed in the field of MSN uses CF. In this

ase, the recommendation task is performed on each local device,

nd it is based on the users’ ratings exchanged among nodes via

2D communications. 

The proposed solutions differ in two main aspects: (i) the met-

ics used to measure the similarity between users, and/or (ii) the

euristics implemented to reduce the computational complexity of

F in a mobile environment. The simplest similarity measures refer

o the rating-based metrics used in standard CF (e.g., the Pearson

oefficient discussed in Eq. (9) ), while other solutions take into ac-

ount additional context information to further improve the quality

f the recommendations. 

.1.1. OppCF 

De Spindler et al. [160] are among the first in the literature

ho investigated the use of RS in opportunistic environments.

pecifically, they use a distributed user-based CF approach to pre-

ict ratings based on shared information among co-located mo-

ile devices. They present a preliminary idea of “social context ”

hared among mobile devices during their opportunistic contacts

nd aimed at improving the recommendation process. In this case,

he social context is identified by the co-location of users related

o a specific event (e.g., attending a conference or a concert). This
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condition is the basic assumption of the authors to identify simi-

lar users, as those who are physically co-located in a specific time

interval. The authors do not consider the possibility to exploit also

the occasional co-location of users as potential source of interest-

ing contents. This pioneering solution has never been evaluated,

thus its accuracy cannot be assessed. 

5.1.2. MobHinter 

MobHinter [161] presents two main contributions: (i) the defi-

nition of Affinity networks aimed at identifying similar users, and

(ii) an epidemic protocol designed to distribute and exchange

users’ ratings among mobile devices in ad-hoc networks. The au-

thors focus on the concept of affinity on ratings, by calculating the

percentage of similar ratings provided by two users on a common

set of items, and by assigning a threshold value to identify sim-

ilar users. Therefore, to apply CF method based on users’ affini-

ties, MobHinter proposes an epidemic protocol to exchange a set

of ratings information through ad hoc communications: (i) the list

of ratings of the local node, (ii) the list of ratings of its current

neighbors and (iii) the ratings of the nodes encountered in the

past. Then, each node is able to locally compute its affinity net-

work, and to apply standard CF methods to predict missing rat-

ings and provide the recommendation. The authors proposed also

optimized versions of the protocol, by exchanging only the list of

ratings of the local node or by excluding those of the nodes en-

countered in the past. 

Authors evaluate their proposal using the MovieLens dataset, by

simulating a fully connected scenario (to estimate the optimal be-

havior) and an ad hoc network scenario based on a random mobil-

ity model. In the former scenario, they compared their model with

other user-based CF methods, evaluating the prediction accuracy

(i.e., MAE and RMSE). Then, they performed a simulation to evalu-

ate the number of random meetings needed on average by users to

approximate the reference prediction accuracy obtained in the fully

connected scenario. The authors showed that by exchanging all the

ratings information known by each user, the system approximates

the reference accuracy with a limited number of meetings. How-

ever, the use of a random mobility model is not realistic to simu-

late an opportunistic networking scenario as largely demonstrated

in the literature [162] . 

5.1.3. DiffeRS 

Del Prete and Capra [163] propose an interesting approach to

reduce the complexity of CF in MSNs. They propose diffeRS [163] ,

a decentralized RS aimed at locally classify the user as mass-like

minded or individual , based on the increasing knowledge about the

other encountered users and their profiles. In fact, also in this case,

mobile devices exchange the users profile through D2D communi-

cations (by exploiting Bluetooth technology, in this case). For each

recommendation task, diffeRS evaluates the average deviation of

the local user’s profile with respect to the preferences expressed by

the local community as a whole (i.e., the average ratings). If the lo-

cal user is identified as mass-like minded , the recommendations are

simply based on the average of the community preferences, thus

reducing at the minimum the computation on the mobile device.

On the other hand, if the local user is an individual , a user-based

CF approach is applied, considering only other individual users that

differ from the community’s preferences in the same proportion of

the local user. To this aim, the system selects only those neighbors

that share with the local user at least one rated item, and it com-

putes the difference among their co-ratings to define a measure

of their similarity with respect to their deviation from the average

of the community preferences. In this way, diffeRS further reduces

the sparsity of the rating matrix used in CF and, consequently, the

recommendation complexity for both user profiles, by exchanging

a limited amount of information during the opportunistic contacts.
The authors evaluate diffeRS both in a fully connected scenario

nd in an opportunistic one by using two datasets: MovieLens

o model users’ ratings, and MIT Reality Mining [164] to model

sers’ mobility. In the fully connected scenario, the authors evalu-

te the prediction accuracy in terms of MAE and they demonstrate

hat the proposed correlation measure, divided between mass-like

inded and individual, performs better than the standard Pearson

orrelation. 

In the opportunistic scenario, they randomly map100 users

rom the MovieLens ratings dataset to the 100 users of the MIT

eality Mining dataset. Predictions are computed at regular inter-

als of time, comparing accuracy (i.e., MAE) and coverage of dif-

eRS with respect to CF based on Pearson correlation. The obtained

esults show that diffeRS always outperforms the user-based CF. 

.1.4. LocPref 

In a recent work, Zhao et al. [165] propose the use of CF to rec-

mmend privacy preferences depending on the user location. They

efer to a Location Sharing Service (LSS) scenario, where users can

hare their current location using the “check-in” functionality of

ocial network applications. The declaration of a user to be in some

pecific location (e.g., a clinic or religious sites) may be consid-

red as a sensitive information, and people usually may not wish

o share them with the others [166] . LSS can autonomously share

ocation information, following the general privacy settings of the

ser. LocPref is aimed at recommending the user with specific pri-

acy settings for sharing her current location through the LSS. To

his aim, it leverages on the assumption that people who visited

he same location can share similar privacy preferences. Therefore,

sers’ mobile devices can exchange location-privacy preferences

hrough opportunistic communications and locally compute their

ecommendations. 

The authors also propose a simple but elegant mechanism to

educe the vulnerability of CF to shilling attack [167] : the tentative

f malicious users (i.e., attackers) to bias the recommendations by

iving false information and/or ratings [168] . The attackers can cre-

te fake profiles (also called shill profiles ) in order to inject mod-

fied data into the recommendation process. For instance, in the

ontext of LSSs, a business owner may force the customers to share

heir location when they visit her shops in order to increment their

isibility on social media. In the same way, she may want to pre-

ent the customers’ check-ins at competitors’ shops to reduce their

opularity. 

In order to prevent shilling attacks, authors propose a repu-

ation scheme based on the encounter frequency of nodes. Every

ime a node receives a user’s profile from another node, it incre-

ents a counter associated with that specific profile and considers

t as the reputation level of the encountered user. Once the sys-

em needs to perform a recommendation, it uses only those pro-

les whose counter is greater than the average reputation of all the

rofiles in the local cache (i.e., the average number of encounters

f all nodes in the cache). An attacker usually creates multiple fake

rofiles, but in an opportunistic environment, it can share just one

f them during a contact. For this reason, this simple mechanism

s able to associate a lower reputation with the shill profiles than

hose calculated for real ones. 

To evaluate the proposed solution, locPref implements two dif-

erent schemes for the opportunistic data exchange: (i) nodes ex-

hange only the local user profile (in terms of privacy settings) at

ach opportunistic contact ( D-Ind ); and (ii) nodes exchange both

he local profile and those previously received by the others ( D-

et ). In order to obtain a reference evaluation metric, the authors

imulate the system in a fully connected environment and then

n a mobile scenario. They exploit the st_andrews/locshare dataset

vailable in CRAWDAD [169] , which contains the location-privacy

references of 40 users collected in the city of St Andrews (UK),
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7 https://developer.twitter.com/en/docs/tweets/filter-realtime 
nd they simulate the user mobility patterns based on St Andrews

oad map and selected POIs in the city. 

Simulations results show a comparison between D-Ind and D-

et versions of locPref, highlighting the time needed to reach the

ame accuracy of the fully connected scenario (comparable with

 centralized solution) and the advantages of exploiting the ex-

hange of additional profile information to compute the recom-

endations. In addition, the authors demonstrate the efficiency

f their reputation-based mechanism, which allows to prevent the

ecommender System from being abused by shilling attacks. 

.2. Exploiting tags 

As we described in Section 4.2 , exploiting user-defined tags (i.e.,

olksonomies) is an effective method to improve the quality of the

ecommendations. Tags can be also used in MSN to further char-

cterize contents even from a semantic point of view. However, in

rder to implement tag-based MSN solutions, we need a mecha-

ism which is able to infer the relations among different tags using

ust the user’s preferences and the limited information obtained

y other nodes in proximity. In the following, we present in detail

he two solutions proposed in the literature, which exploit tags in

SNs: ICe-Habit [170] and p-PLIERS [112] . 

.2.1. Information-Centric Habit (ICe-Habit) 

To the best of authors’ knowledge, ICe-Habit [170] is the first

pproach proposed in the literature that exploits folksonomies to

mprove the performance of a content dissemination protocol (i.e.,

abit [171] ) for opportunistic networks. In ICe-Habit, each user’s

rofile is characterized by a vector of tags used in the past by

he user to describe her contents. User profiles are exchanged by

odes during opportunistic contacts. In this way, each node can lo-

ally build a tag co-occurrence matrix M . Each entry of the matrix,

 [ i, j ] represents the number of items characterized by the co-

ccurrence of tags ( t i , t j ). Therefore, M is used to select contents

o be forwarded to potentially interested users in opportunistic

etworks. 

Whenever a user creates a new content, she associates a set

f tags T = { t 1 , . . . , t n } with it. Then, the system performs the tag-

xpansion procedure to further enrich the set of tags T . Specifically,

he system queries the matrix M to extract the k tags (i.e., T k ) with

he highest value of co-occurrence with those specified in T . Then,

he expansion set of tags T ′ = T ∪ T k is associated to the new con-

ent. Finally, the item is opportunistically forwarded to the poten-

ially interested users, i.e., each user x whose profile T x contains at

east one of the tags in T ′ . 
The authors evaluate ICe-Habit, via simulation, in an oppor-

unistic scenario. To this aim, they use the MIT Reality Mining

atasets, which contains the contact traces of 96 nodes. In addi-

ion, the MovieLens dataset has been used to create a user’s pro-

le for each node. Specifically, each profile contains the set of tags

he user has created to tag movies in the dataset. Furthermore,

or each < user i , tag j > pair, the MovieLens dataset contains also

he timestamp information in which the tag j has been created by

he user i . The authors use the timestamp information to map the

reation of new items on the simulated time. In order to mea-

ure the performance of the proposed solution, authors use the

ollowing approach: when a node creates a new content, it does

ot include all the tags it would normally associate with it, but it

andomly drops 50% of the item’s tags. In this way, authors mea-

ure the Tag Recovery and Destination Recovery , which are, respec-

ively, the percentage of the dropped tags and correct destination

eached by each message that could be recovered by the tag ex-

ansion method. 

Although the results demonstrate that the tag expansion im-

roves the content dissemination’s performance in a MSN, they
lso prove that this approach is not able to correctly infer the se-

antic relations between different tags. In fact, considering just

he tags’ co-occurrences, nodes could receive more items than

hose really interesting for them because users may not be inter-

sted in the topics represented by the expanded tags. 

.2.2. Pervasive PLIERS (p-PLIERS) 

Recently, we proposed a novel framework for the content dis-

overy and evaluation in MSN called pervasive PopuLarity-based

tEm Recommender System ( p-PLIERS ) [112] . It can be used both

s standalone RS for MSN, and as a useful support tool for con-

ent dissemination or routing protocols in fully distributed envi-

onments (e.g., opportunistic networks). 

Differently from ICe-Habit [170] , p-PLIERS does not leverage just

n the tags’ co-occurrences. It exploits all the folksonomy’s infor-

ation, i.e., the relations among users, shared or created items,

nd tags used to semantically describe the contents. This infor-

ation is locally maintained by each node, and modeled as a tri-

artite users–items–tags graph, which is called Local Knowledge

raph ( LKG ). The LKG of each node merges the information about

he items created or downloaded by its local user, with the local

nowledge of other encountered nodes, obtained through oppor-

unistic communications. Specifically, when a node creates a new

tem, it updates its LKG by inserting the relation between its user

ntity, the generated item and the related tags. Similarly, when a

ode encounters another node in the network, the two nodes ex-

hange their LKGs, and locally integrate them with the received in-

ormation. 

Once each node has updated its local LKG with the informa-

ion coming from the other node, p-PLIERS implements PLIERS

111] (described in Section 4.2 ) to evaluate the relevance of the

ew available items with respect to the interests of its local user. 

As a first set of experiments, we evaluate the accuracy of PLIERS

ecommendations in a centralized scenario with respect to other

olutions proposed for MSN: the Tag Expansion mechanism ex-

loited by ICe-Habit [170] and user-based CF used in similar works

e.g., MobHinter [161] or diffeRs [163] ). To this aim, we extract a

eal dataset from Twitter using the Twitter Streaming API 7 . Specifi-

ally, we have downloaded the tweets generated during a big event

i.e., the World Food Day at Expo 2015) in the urban area of Mi-

an, and we have built a tripartite graph composed by more than

0 0 0 users, 2946 tweets, and 3202 hashtags. This represents a re-

listic folksonomy user–item–tag graph of online tagged contents

elated to a popular event. To assess the accuracy of the recom-

endations, we perform a link prediction task on a tripartite graph

y removing one link from each user connected at least to 5 items

ith popularity greater than one (i.e., the number of connected

sers). Then, we calculate the performance of PLIERS, Tag Expan-

ion and user-based CF in terms of precision and recall, based on

he number of links that are included in the recommendations of

ach algorithm (i.e., the “recovered links”). In the centralized sce-

ario, PLIERS outperforms the two reference algorithms for both

onsidered measures. Specifically, it reaches a precision score up

o eight times higher than that obtained by Tag Expansion and

 score 40% higher than CF. With regard to the Recall measure,

LIERS obtains a score around 50% higher than Tag Expansion and

round 30% higher than CF. These results indicate that PLIERS, ex-

loiting all the information contained in the folksonomy graph (i.e.,

ser–item–tag relationships), is able to obtain better results than

he other solutions proposed for MSN, which consider only part of

he user–item or item–tag relationships. 

In order to validate the overall framework, we have simulated

hree realistic scenarios: a big event (Expo 2015), a conference

https://developer.twitter.com/en/docs/tweets/filter-realtime
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. . .

Fig. 13. Map of Expo 2015 area with the position of five of the simulated communities [112] . 
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venue (ACM KDD 2015), and a working day in the Helsinki city

center. In this case, we investigate the efficiency of p-PLIERS in a

fully decentralized environment, where the contents are dynami-

cally generated over time by nodes. In particular, we measure the

similarity of the recommendations generated by the framework on

the nodes’ LKGs and on the global knowledge graph (GKG), that is,

the union of all the LKGs at each time-step of the simulations. To

this aim, we use both real and synthetic mobility traces, and we

build three different datasets from Twitter for the nodes’ content

generation during the simulations. Specifically, for the Expo 2015

scenario, we simulate different sets of nodes (i.e., 250, 500, and

900 nodes) moving in the Expo area of Milan using the HCMM

[172] human mobility model. Using this model, we are able to sim-

ulate the presence of different communities, which fits well with

the reference scenario, as the Expo area was divided into several

pavilions. Fig. 13 depicts the simulated area in the Expo scenario

with the communities of nodes used in HCMM. In addition, we

use the dataset related to the World Food Day in Expo 2015 as

content (i.e., tweets) generation pattern of the nodes during the

simulations. 

As a second dynamic scenario, we consider a school campus

during a conference event, where people stay most of the time

within rooms, but they regularly gather at breaks (e.g., coffee or

lunch breaks). Therefore, we use real contact traces represent-

ing the physical interactions of a group of students, professors,

and staff of an American high school during a typical school day

(i.e., the high resolution Human Contact Network – HCN [173] ). As

American high schools are not organized into classes as in Europe,

but rather around study tracks, and students are free to decide

which lectures to attend, we think that their movements can be as-

similated to those of people attending a large conference. For this

reason, we have downloaded the tweets generated during a large

computer science conference (i.e., the 21st ACM SIGKDD Confer-

ence on Knowledge Discovery and Data Mining), and we use this

data to simulate the nodes’ content generation during the simula-

tion. 

Finally, in order to simulate the use of p-PLIERS on a larger

scale than the previous scenarios, we extract the contact traces of

a typical working day in Helsinki using a realistic human mobility

model highly customized on the considered area. Specifically, we

have used the ONE [174] simulator, which implements the Working

Day Mobility Model ( WDMM ) [175] and the map of the city cen-

ter of Helsinki. Then, we have downloaded the tweets generated

within the same geographic area to use them as content generated

by nodes during the simulation. 

In the best case, i.e., the conference scenario, the average simi-

larity reaches 80% already in two hours simulated time, over eight

hours duration. In the worst case, i.e., Helsinki scenario, the aver-
t  
ge similarity reaches 80% at the end of the simulation, due to the

educed number of contacts during the working day. 

This implies that, in dense scenarios, nodes require just few

ontacts to well approximate the global knowledge with their local

raphs, demonostrating that p-PLIERS is able to provide effective

ecommendations, comparable to those achievable if global knowl-

dge is accessible. For the urban scenario of Helsinki, in which the

onsidered area is much larger than that of the other scenarios and

he density of nodes is lower, the results indicate that a larger time

indow is required for a good approximation of the global knowl-

dge about contents in the network. With a view to smart cities,

 possible solution to improve the diffusion of knowledge and the

ccuracy of p-PLIERS might be based on exploiting also the public

ransportation system nodes (e.g., buses, trams, or taxis) as addi-

ional information carriers. 

In Table 1 we summarize and compare the solutions presented

n the previous sections specifying, for each of them, the method

mplemented for recommendation, the context information used to

ptimize the process, and the details of their performance evalu-

tion in terms of (i) dataset, (ii) mobility traces and (iii) perfor-

ance metrics. 

. Concluding remarks and open challenges 

In this work, we have presented a survey of the main RS pro-

osed in the literature for Online and Mobile Social Networks, with

articular attention to the use of social context information to im-

rove the recommendation process. We describe advantages and

rawbacks of standard recommendation techniques in these envi-

onments and we highlight RS challenges in the fully distributed

nvironment of Mobile Social Networks. Several solutions have

een proposed for OSN, while the study of efficient RS for MSN

s still in its infancy and presents several open research challenges,

ike the use of additional context information, specifically related

o the mobile environment, to further optimize the recommenda-

ion process. 

Due to their sensing capabilities and the constant presence

n human daily life, modern personal devices (e.g., smartphones

nd tablets) represent the bridge between the cyber and phys-

cal worlds, characterizing the situation in which the user is

nvolved during everyday life. Therefore, mining the information

rovided by these devices, and properly combining them with

SN data, can provide a more accurate model of the user’s con-

ext and preferences. For example, the social context of the user

ay be defined combining the virtual social relationships extracted

rom OSNs with the physical contacts among the devices and

he information contained in the user’s personal device (e.g., the

ontacts saved in the address book, call logs, and messages). In

his case, the user’s preferences and needs can be inferred from
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Table 1 

RS for MSN. 

Algorithm RS method Context info Dataset Evaluation mobility scenario Metrics 

OppCF [160] User-based CF 

Location 

Time 

Ratings 

Mobhinter [161] User-based CF Ratings MovieLens Random 

RMSE 

MAE 

DiffeRS [163] User-based CF + heuristic Ratings MovieLens 
MIT Reality MAE 

Mining [164] Coverage 

LocPref [165] User-based CF + heuristic 

Location 

LocShare Map-based 

Custom 

Time Accuracy metric 

Ratings 

ICe-Habit [170] Tags correlations Tags MovieLens 
MIT Reality 

Recall 
Mining [164] 

p-PLIERS [112] Graph- and diffusion-based 

Users 

Twitter 

HCMM [172] Precision 

Items HCN [173] Recall 

Tags WDMM [175] 

h  

a  

a  

a

 

a  

s  

b  

a  

c  

p  

t  

a  

v  

t  

t  

t  

e  

t  

q

 

e  

R  

t  

b  

i  

a  

p  

e  

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

o  

i  

t

A

 

p  

R  

U  

F  

R

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eterogeneous sources of data, e.g., the web browser history, the

ctions performed in OSNs, the generated contents both in OSN

nd MSN, the visited locations, and the set of most used mobile

pps. 

The availability of this heterogeneous information represents

 crucial aspect in building and evaluating new recommending

olutions. However, in order to validate and evaluate the possi-

le solutions in realistic environments, it is necessary to gener-

te new datasets, collecting all the contextual information that can

haracherizes characterise the mobile environment and can be ex-

loited in MSN. Collecting new datasets is a very time consuming

ask, requiring the implementation of a real prototype application

nd the involvement of a high number of mobile users in real en-

ironments. A possible solution is represented by the use of syn-

hetic (but realistic) context data generator (e.g., [176,177] ) but, at

he moment, none of these solutions is able to integrate realistic

emporal settings in the data generation process. Since user’s pref-

rences are highly dynamic, especially in a mobile environment,

he use of an obsolete preference model could negatively affect the

uality of the recommendations. 

In addition, several frameworks have been recently proposed to

valuate RS performance in OSN, e.g., LibRec [178] , LensKit [179] ,

ankSys [180] , and CARSKit [181] . They provide an implementa-

ion of some RS methods (e.g., CF, MF) and performance metrics,

ut they are developed exclusively for centralized RS, not consider-

ng the unique characteristics of MSNs (e.g., the limited knowledge

vailable in each device). Therefore, in order to perform a fair com-

arison among different RS for MSN, we should define a common

valuation framework with the following three main characteris-

ics: 

• Mobility : RS should be evaluated in realistic mobile scenarios.

Therefore, the evaluation framework should include datasets of

real mobility traces and human mobility models. 

• Data : as we previously pointed out, RS for MSN should char-

acterize the user’s context with several heterogeneous data. To

this aim, the framework should also include proper datasets or

context data generators. In addition, given the extremely dy-

namic nature of the MSN environment, during the simulation

nodes should be able to generate data over time. 

• Evaluation : the framework should include the main evaluation

metrics proposed in the literature for the two main recommen-

dation tasks (i.e., prediction and ranking). Furthermore, due to

the typically limited duration of the opportunistic contacts, it is

also needed to consider the time complexity of the RS in MSN.
In fact, if the RS is not able to provide recommendations in a

limited time window, a node may miss the opportunity to ex-

change useful data with another one in proximity. 

All these aspects represent a wide research area, including not

nly the definition of new RS algorithms, but also the creation

f experimental testbeds including new opportunistic network-

ng protocols, opportunistic sensing features and context reasoning

ools. 
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