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1 Problem Formulation

The permutation flow shop problem requires to find the order in which n jobs are to be processed
in m consecutive machines. The jobs are processed in the order machine 1, machine 2, . . . , machine
m. Machines can only process one job at a time and jobs can be processed by only one machine at
a time. No job can jump over any other job, meaning that the order in which jobs are processed
in machine 1 is maintained throughout the system. Moreover, no machine is allowed to remain
idle when a job is ready for processing. All jobs and machines are available at time 0. Each job i

requires a processing time on machine j denoted by pij .
Given a permutation π = π(1), . . . , π(n), where π(q) is the index of the job assigned in the q-th

place, a unique schedule is obtained by calculating the starting and completion time of each job
on each machine. The starting time startπ(q),j of the q-th job on machine j is calculated as:

startπ(q),j = max{startπ(q),j−1, startπ(q−1),j},

with
startπ(0),j = 0 and startπ(q),0 = 0,

and its completion time is calculated as:

Cπ(q),j = startπ(q) + pπ(q),j .

Given a schedule, let Ci be the time when job i finishes its processing on machine m. The
permutation flow shop problem requires to find the processing order of n jobs in such a way that
the resultant schedule minimises the completion time of the last job to exit the shop, i.e. minimises
maxi Ci.

The problem domain module described in this report offers a set of operators to initialise and
modify solutions which are commonly found in effective meta-heuristics and a set of benchmarks
instances (due to [10]) that are readily available. These are explained in detail next.
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2 Solution initialisation

The method initialiseSolution(b) creates a new solution and places it in slot b in memory.
The solution is created with a randomised version of the well established NEH algorithm [1]. The
NEH procedure has been used as an important component of many effective meta-heuristics for
the permutation flow shop problem [2, 3, 4, 5]. It works as follows. First a random permutation of
the jobs is generated. Second, a schedule is constructed from scratch by assigning the first job in
the permutation to an empty schedule; the second job is then assigned to places 1 and 2 and fixed
where the partial schedule has the smallest makespan; the third job is assigned to places 1, 2 and
3 and fixed to the place where the partial schedule has the smallest makespan, and so on.

3 Low level heuristics

A total of 15 low level heuristics h1, . . . , h15 were implemented. These are described next. Please
bear in mind that all of the following heuristics act on an initial solution s (permutation of job
indices) and produce a new solution s′.

3.1 Mutational heuristics

h1: Reinserts a randomly selected job into a randomly selected position in he permutation, shift-
ing the rest of the jobs as required.

h2: Swaps two randomly selected jobs in the permutation.

h3: Shuffles randomly the entire permutation.

h4: Creates a new solution using NEH and using the current permutation to rank the jobs.

h5: Shuffles k randomly selected elements in the permutation, where k = 2 + bα · (n − 2)c, and
α is the mutation intensity parameter.

3.2 Ruin and recreate heuristics

h6: Remove l, l = bα ·(n−1)c, randomly selected jobs and reinsert them in an NEH fashion. This
heuristic resembles the main component of the iterated greedy heuristic proposed in [3] for
the permutation flow shop and later for the permutation flow shop with sequence dependent
setup times [5].

h7: Remove l, where l is as above, randomly selected jobs, reinsert them in an NEH fashion but
this time, at every iteration of the NEH procedure the best q, q = bβ · (l− 1)c+ 1, sequences
generated so far are considered for the reinsertion.

3.3 Local search heuristics

h8: This is a steepest descent local search. At every iteration each job is removed from its current
position and assigned into all remaining positions. The job is fixed to the position that leads
to the best schedule. This is repeated until no improvement is observed.
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Table 1: Instance size

instance size

0-9 20× 5
10-19 20× 10
20-29 20× 20
30-39 50× 5
40-49 50× 10
50-59 50× 20
60-69 100× 5
70-79 100× 10
80-89 100× 20
90-99 200× 10

100-109 200× 20
110-119 500× 20

h9: This is a first improvement local search. At every iteration each job is removed from its
current position and assigned into the remaining positions. This time, if an improvement
movement is found, this is immediately accepted, and the search continues with the next job.
This is repeated until no improvement is observed.

h10: This is a random single local search pass. In this, r = bβ(n− 1)c+ 1 randomly selected jobs
are tested (one at a time) on all positions and fixed to the best possible place. This is only
done once.

h11: This is a first improvement random single local search pass. This is as h9 but jobs are
assigned to the first place that improves the current schedule, i.e. jobs are not necessarily
tested in all positions. This is only done once.

3.4 Crossover heuristics

The following crossover heuristics take two permutations as an input and return a new permutation.
These operators have been designed for permutation representation problems, including scheduling
problems.

h12: Order crossover, [7]

h13: Partially mapped crossover, [8]

h14: Precedence preservative crossover, [9]

h15: One point crossover

4 Problem Instances

The HyFlex permutation flow shop problem domain provides a subset of the hardest instances
in the Taillard set [10]. The complete set is given in Table 1, where the second column gives
the instance size in the format n ×m. The job processing times, on all instances, are uniformly
distributed random integers in the range [1, 99].
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