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1. Problem Formulation 
 

The personnel scheduling problem basically involves deciding at which times and on 

which days (i.e. which shifts) each employee should work over a specific planning 

period. However, the personnel scheduling problem is actually a title for a group of very 

similar problems. There is no general personnel scheduling problem. Instead there is a 

group of problems with a common structure but which differ in their constraints and 

objectives. This creates an additional challenge in implementing a problem domain 

module for personnel scheduling. To overcome this we have designed a data file format 

for which each instance can select a combination of a objectives and constraints from a 

wide choice. We then implemented a software framework containing all the functions for 

these constraints and objectives. The framework also contains methods for parsing these 

data files, data structures which can be used by heuristic algorithms (such as 

neighbourhood searches) and libraries for visualisations of instances and solutions. 

As mentioned, there is a large and diverse collection of constraints and objectives that 

can appear in personnel scheduling problems. For example, in one problem there may be 

a constraint on the maximum number of hours a nurse can work in the planning period. In 

another problem though this constraint may be an objective. That is, the nurse is allowed 

to exceed a certain number of hours but the excess should be minimised. The objective 

may then also be given a priority (relative to other objectives) using a weight. To be able 

to handle all these variations yet at the same time minimise the complexity of the file 

format and the amount of programming necessary, a key design decision was made: All 

constraints are modelled as weighted objectives. When modelling a problem which 

contains constraints, the constraints are transformed to objectives with very high weights. 

As the weight is very high it is simple to tell if a solution is feasible or not just by 

examining the objective function value. The overall objective function is a weighted sum 

of all the sub-objectives. 

 

The objectives for nurse rostering problems can be categorised into two groups: 

 

Coverage objectives. These objectives aim to ensure that the preferred number of 

employees (possibly with skills) are working during each shift. Minimum and maximum 

levels of cover can also be set. 
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Employee working objectives. This group of objectives relates to the individual work 

patterns (schedules) for each employee. They aim to maximise the employees’ 

satisfaction with their work schedules. Example objectives within this group include: 

 

 Minimum/maximum number of hours worked. 

 Minimum/maximum number of days on or off. 

 Minimum/maximum number of consecutive working days. 

 Minimum/maximum number of consecutive days off. 

 Minimum/maximum number of consecutive working weekends. 

 Minimum/maximum number of consecutive weekends off. 

 Minimum/maximum number of shifts of a certain type. For example night shifts. 

 Minimum/maximum number of consecutive shifts of a certain type. For example 

consecutive night shifts. 

 Shift rotations. For example early shifts after late shifts should be avoided. 

 Satisfying requests for specific shifts/days on or off. 

 

 

To provide a more formal explanation of the problem we have included an IP model for 

the ORTEC01 instance. This problem was originally examined in [4] and subsequently in 

[8]. As according to our format, the constraints in the original formulation have been 

changed to objectives. The only constraint is that each employee can only work one shift 

per day. 

 

Parameters: 

I = Set of nurses available. 

}3,2,1{| tIt  Subset of nurses that work 20, 32, 36 hours per week respectively, I = I1 + 

I2 + I3. 

J = Set of indices of the last day of each week within the scheduling period = {7, 14, 21, 

28, 35}. 

K = Set of shift types = {1(early), 2(day), 3(late), 4(night)}. 

K = Set of undesirable shift type successions = {(2,1), (3,1), (3,2), (1,4), (4,1), (4,2), 

(4,3)}. 

djk = Coverage requirement  of shift type k on day j, }7,...,1{ Jj . 

mi = Maximum number of  working days for nurse i. 

n1 = Maximum number of consecutive night shifts. 

n2 = Maximum number of consecutive working days. 

ck = Desirable upper bound of consecutive assignments of shift type k. 

gt = Desirable upper bound of weekly working days for the t-th subset of nurses. 

ht = Desirable lower bound of weekly working days for the t-th subset of nurses. 

Decision variables: 

xijk = 1 if nurse i is assigned shift type k for day j, 0 otherwise 

 

The constraints are:   

 

1. A nurse may not cover more than one shift each day. 
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The objectives are formulated as (weighted iw ) goals. The overall objective function is: 
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Where the goals are: 
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5. A minimum number of consecutive shifts of type early and late. 
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6. A maximum and minimum number of working days per week. 
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7. A maximum of three consecutive working days for part time nurses. 
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8. Avoiding certain shift successions (e.g. an early shift after a day shift). 
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9. Maximum number of working days. 
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10. Maximum of three working weekends. 
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11. Maximum of three night shifts. 
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12. A minimum of two consecutive night shifts.                                                       
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13. A minimum of two days off after a series of consecutive night shifts. This is 

equivalent to avoiding the pattern: night shift – day off – day on. 
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14. Maximum number of consecutive night shifts. 
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15. Maximum number of consecutive working days. 
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2. Solution Initialisation 
 

In the HyFlex framework it is necessary to implement a method for initialising a new 

solution. For the personnel scheduling domain the solution is initialised using local 

search heuristic 3 described in section 3. The pseudocode for this heuristic is shown in 

Figure 9. It is a hill climbing heuristic which uses a neighbourhood operator which adds 

new shifts to the roster. 

3. Heuristics  
 

In HyFlex, the heuristics are classified into four categories: 

 

Mutation : A heuristic which randomly mutates a solution. This usually returns a 

solution which is worse than the original solution. 

 

Crossover : A heuristic which combines two solutions to produce a new solution. 

Usually aiming to keep some of the good qualities of both parent solutions in the new 

solution. 

 

Ruin and recreate : A perturbative heuristic which changes part of a solution (usually 

making the solution worse) and then attempts to recreate/repair it. 
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Local search : A heuristic which attempts to improve the objective function value of the 

solution it is applied to. The new solution will not have a worse objective function value 

but it may be the same as the original solution’s value. 

 

There are also two general parameters which can be set (in the range 0.0 to 1.0) by the 

hyperheuristic. They are Depth of search and Intensity of mutation. One or both of these 

parameters may have an effect on each heuristic. 

 

We will now describe the heuristics in each category currently implemented in the 

personnel scheduling domain.  

Mutation Heuristic 

Mutation heuristic 1:  randomly un-assigns a number of shifts, keeping a feasible 

solution. The number of shifts the operator un-assigns is proportional to the intensity of 

mutation parameter. 

Crossover Heuristics 

 

There are currently three crossover heuristics.  

 

Crossover heuristic 1 was presented in [3]. It operates by identifying the best x 

assignments in each parent and making these assignments in the offspring. The best 

assignments are identified by measuring the change in objective function when each shift 

is temporarily unassigned in the roster. The best assignments are those that cause the 

largest increase in the objective function value when they are unassigned. The parameter 

x ranges from 4-20 and is calculated using the intensity of mutation parameter as below:  

 
x = 4 + round((1 - intensityOfMutation) * 16) 

 

Crossover heuristic 2 was published in [5]. It creates a new roster by using all the 

assignments made in the parents. It makes those that are common to both parents first and 

then alternately selects an assignment from each parent and makes it in the offspring 

unless the cover objective is already satisfied.  

 

Crossover heuristic 3 creates the new roster by making assignments which are only 

common to both parents. 

 

Local Search Heuristics 

 

A number of neighbourhood operators have been previously proposed for the personnel 

scheduling problem. They can be classified into three groups: Vertical swaps, Horizontal 

swaps and New swaps. 

 

The New swaps are so called because they introduce new shifts into the roster (or 

oppositely delete shifts). Examples of these swaps are given in Figure 1 and Figure 2. 
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Figure 1 

 
Figure 2 

 

Horizontal swaps move shifts in single employee’s work pattern hence the shifts move 

horizontally in the roster. Examples are given in Figure 3 and Figure 4. 

 

 
Figure 3 

 
Figure 4 

 

Vertical swaps move shifts between two employees hence the shifts move vertically in 

the roster. Examples are given in Figure 5 and Figure 6. 
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Figure 5 

 
Figure 6 

 

For all of these neighbourhood operators it is possible to move/swap shifts over a block 

of adjacent days. For example the swaps/moves shown in Figure 1, Figure 3 and Figure 5  

can be considered moves over a block of days of length one day. Figure 2 and Figure 6 

show moves over blocks of length three days and Figure 4 illustrates a swap using blocks 

of length two days. The length of the block to test is a parameter which can be set for 

each neighbourhood operator. 

 

Local search heuristics 1-3 are ‘hill climbers’ which each use one of these types of 

neighbourhood operator. Note that, technically they are actually hill descenders as we are 

minimising the objective function, but we will use the term hill climber as it tends to be 

more familiar. Heuristic 1 uses the vertical neighbourhood operator, heuristic 2 uses the 

horizontal neighbourhood operator and heuristic 3 uses the new neighbourhood operator. 

The pseudocode for these heuristics is shown in Figure 7, Figure 8 and Figure 9 

respectively. For each heuristic, the moves/swaps that are tested range in size of block 

length one up to a maximum block length (MaxBlockLength). This parameter is set to a 

value of 5. Previous investigations suggest that this is a good choice with regard to the 

balance between solution quality and computation time (see for example [6]).  

 
1.  WHILE there are untried swaps 

2.    FOR BlockLength=1 up to MaxBlockLength 

3.      FOR each employee (E1) in the roster                  

4.        FOR each day (D1) in the planning period 

5.          FOR each employee (E2) in the roster 

6.            Swap all assignments between E1 and E2 on D1 up  

              to D1+BlockLength 

7.            IF an improvement in roster penalty THEN 

8.              Break from this loop and move on to the next day 

9.            ELSE 

10.             Reverse the swap 

11.           ENDIF   

12.         ENDFOR 

13.       ENDFOR                   

14.     ENDFOR 

15.   ENDFOR 

16. ENDWHILE 
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Figure 7 Pseudocode for 'vertical' hill climber 

 
1.  WHILE there are untried swaps 

2.    FOR BlockLength=1 up to MaxBlockLength 

3.      FOR each employee (E1) in the roster                  

4.        FOR each day (D1) in the planning period 

5.          FOR D2 := D1+BlockLength, up to num days in planning period 

6.            Swap all assignments for E1 on D1 up to D1+BlockLength 

              with all assignments for E1 on D2 up to D2+BlockLength 

7.            IF an improvement in roster penalty THEN 

8.              Break from this loop and move on to the next day (D1+1) 

9.            ELSE 

10.             Reverse the swap 

11.           ENDIF   

12.         ENDFOR 

13.       ENDFOR                   

14.     ENDFOR 

15.   ENDFOR 

16. ENDWHILE 

Figure 8 Pseudocode for 'horizontal' hill climber 

 
1.  WHILE there are untried swaps 

2.    FOR BlockLength=1 up to MaxBlockLength 

3.      FOR each employee (E1) in the roster                  

4.        FOR each day (D1) in the planning period 

5.          FOR each shift type (S1) (including day off) 

6.            Remove all assignments for E1 on D1 up to D1+BlockLength 

              and assign shifts of type S1 to E1 on D1 up to  

 D1+BlockLength 

7.            IF an improvement in roster penalty THEN 

8.              Break from this loop and move on to the next day (D1+1) 

9.            ELSE 

10.             Reverse the swap 

11.           ENDIF   

12.         ENDFOR 

13.       ENDFOR                   

14.     ENDFOR 

16.   ENDFOR 

17. ENDWHILE 

Figure 9 Pseudocode for 'new’ shifts hill climber 

 

Local search heuristics 4 and 5 are variants of the variable depth search described in 

[6]. The first version is similar to the one presented in that paper. The main difference is 

that it also uses new moves such as the ones shown in Figure 1 and Figure 2 as links in 

the ejection chain (the original version only tests vertical swaps as it was originally 

designed for instances where the cover requirements were a hard constraint rather than an 

objective). In the second version, as well as using the moves shown in Figure 1 and 

Figure 2, as potential links in the ejection chains, it also tests replacing an entire work 

pattern for a single employee as a link in the chain. These patterns are generated using a 

greedy heuristic method. The maximum search time for these two heuristics is set as: the 

depth of search parameter multiplied by a maximum time of 5 seconds. 

‘Ruin and Recreate’ Heuristics 

 

The ruin and recreate heuristics implemented are based on the one presented in [4].  
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Ruin and Recreate Heuristic 1: The heuristic works by un-assigning all the shifts in one 

or more randomly selected employees’ schedules before heuristically rebuilding them. 

They are rebuilt by firstly satisfying objectives related to requests to work certain days or 

shifts and then by satisfying objectives related to weekends. For example min/max 

weekends on/off, min/max consecutive working or non working weekends, both days of 

the weekend on or off etc. Other shifts are then added to the employee’s schedule in a 

greedy fashion, attempting to satisfy the rest of the objectives. Finally, shifts in this 

schedule are then swapped/moved by hill climber heuristics which use the horizontal and 

new neighbourhood operators. 

In [4] it was observed that it was best to un-assign and rebuild only 2-6 work patterns at a 

time (for instances of all sizes). For this reason the first ruin and recreate heuristic un-

assigns x schedules where x is calculated using the intensity of mutation parameter as 

follows: 
x = Round(intensityOfMutation * 4) + 2 

 

Ruin and Recreate Heuristic 2: The second heuristic provides a larger change to the 

solution by setting x using: 

 
x = Round(intensityOfMutation * Number of employees in roster) 

 

Ruin and Recreate Heuristic 3: The third variant of the heuristic creates a small 

perturbation in the solution by using x=1. 

4. Instances 
 

The instances have been collected from a number of sources. Some of the instances are 

from industrial collaborators. These include: ORTEC an international consultancy and 

software company who specialise in workforce planning solutions and SINTEF, the 

largest independent research organisation in Scandinavia. Other instances have been 

provided by other researchers or taken from various publications. The collection is a very 

diverse data set drawn from eleven different countries. The majority of the instances are 

real world scenarios. Table 1 lists the instances. As can be seen, they vary in the length of 

the planning horizon, the number of employees and the number of shift types. Each 

instance also varies in the number and priority of objectives present. 

 

 Instance 
Best 

known 
Staff 

Shift 

types 

Length 

(days) 
Ref. 

 BCV-1.8.1 252 8 5 28 [2, 7] 

 BCV-1.8.2 853 8 5 28 [2, 7] 

 BCV-1.8.3 232 8 5 28 [2, 7] 

 BCV-1.8.4 291 8 5 28 [2, 7] 

 BCV-2.46.1 1572 46 4 28 [2, 7] 

 BCV-3.46.1 3280 46 3 26 [2, 7] 

 BCV-3.46.2 894 46 3 26 [2, 7] 
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 BCV-4.13.1 10 13 4 29 [2, 7] 

 BCV-4.13.2 10 13 4 28 [2, 7] 

 BCV-5.4.1 48 4 4 28 [2, 7] 

 BCV-6.13.1 768 13 5 30 [2, 7] 

 BCV-6.13.2 392 13 5 30 [2, 7] 

 BCV-7.10.1 381 10 6 28 [2, 7] 

 BCV-8.13.1 148 13 5 28 [2, 7] 

 BCV-8.13.2 148 13 5 28 [2, 7] 

 BCV-A.12.1 1294 12 5 31 [2, 7] 

 BCV-A.12.2 1953 12 5 31 [2, 7] 

 ORTEC01 270 16 4 31 [4] 

 ORTEC02 270 16 4 31 [4] 

 GPost 5 8 2 28  

 GPost-B 3 8 2 28  

 QMC-1 13 19 3 28  

 QMC-2 29 19 3 28  

 Ikegami-2Shift-DATA1 0 28 2 30 [9] 

 Ikegami-3Shift-DATA1 2 25 3 30 [9] 

 Ikegami-3Shift-DATA1.1 3 25 3 30 [9] 

 Ikegami-3Shift-DATA1.2 3 25 3 30 [9] 

 Millar-2Shift-DATA1 0 8 2 14 [9] 

 Millar-2Shift-DATA1.1 0 8 2 14 [9] 

 Valouxis-1 20 16 3 28 [13] 

 WHPP 5 30 3 14 [14] 

 LLR 301 27 3 7 [10] 

 Musa 175 11 1 14 [11] 

 Ozkarahan 0 14 2 7 [12] 

 Azaiez 0 13 2 28 [1] 

 SINTEF 0 24 5 21  

 CHILD-A2 1111 41 5 42  

 ERMGH-A 795 41 4 48  

 ERMGH-B 1459 41 4 48  

 ERRVH-A 2197 51 8 48  

 ERRVH-B 6859 51 8 48  

 MER-A 9915 54 12 48  

Table 1Problem Instances 
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The instances can be downloaded from http:///www.cs.nott.ac.uk/~tec/NRP/. New results, 

instances and other related information and software are also be published at this 

location. 

5. Conclusion 
 

We have described the implementation of a personnel scheduling problem domain for the 

hyperheuristic software framework HyFlex. Within this domain we have implemented a 

number of heuristics for this problem. These heuristics have appeared in various 

publications on personnel scheduling and have be shown to be successful methods. The 

benchmark instances available are diverse and challenging. The majority are real world 

and have been taken from scenarios worldwide.  
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