

# Ficha 2 (variável)

| Disciplina: Introdu                            | ução à Computação Científica (2021-2)                                                |                         |                                                       |                  | <b>Código:</b><br>CI1164 / CI164 |                                |  |
|------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------|------------------|----------------------------------|--------------------------------|--|
| Natureza:<br>( X ) Obrigatória<br>( ) Optativa | (X)Semestr                                                                           | al ()An                 | ual ()Mo                                              | dular            |                                  |                                |  |
|                                                |                                                                                      | Modali                  | dade:(X)Pr                                            | esencial () Tota | almente EaD                      | ( ) *с.н.ЕаD                   |  |
| Pré-requisito:                                 | Co-requisito: ( ) 100% ERE (Ensino Remoto Emergencial), Res. 22/21-CEPE, art 2°, §5° |                         |                                                       |                  | 22/21-CEPE,                      |                                |  |
| CH Total: 60h<br>CH semanal: 4h                | Padrão (PD): 60                                                                      | Laboratório<br>(LB): 00 | Campo (CP): 00                                        | Estágio (ES): 00 | Orientada (OR):<br>00            | Prática Específica<br>(PE): 00 |  |
|                                                | Estágio de<br>Formação<br>Pedagógica(EPP)<br>: 00                                    | Extensão<br>(EXT): 00   | Prática como<br>Componente<br>Curricular<br>(PCC): 00 |                  |                                  |                                |  |
| l                                              |                                                                                      |                         |                                                       |                  |                                  |                                |  |

### **EMENTA (Unidade Didática)**

Estudo teórico-prático dos principais métodos de cálculo numérico utilizados em computação científica, com foco na implementação eficiente destes métodos em computadores seriais e abordando técnicas de otimização de código e resiliência a erros numéricos. Gasto energético e meio ambiente.

### PROGRAMA (itens de cada unidade didática)

| Aula  | Data                      | Conteúdo                                                                                                                                                                                              |  |  |
|-------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1-2   | 31/jan, 02/fev            | Apresentação da disciplina: Definição das regras, provas, notas, apresentação da bibliografia. Ambientação dos alunos ao Moodle e recursos a serem usados durante a disciplina; Erros e Aproximações; |  |  |
| 3-4   | 07/fev, 09/fev            | Representação binária de ponto flutuante.                                                                                                                                                             |  |  |
| 5-6   | 14/fev, 16/fev            | Solução de Equações Não-lineares.                                                                                                                                                                     |  |  |
| 7-9   | 21/fev, 23/fev<br>07/ma   | Solução de Sistemas de Equações Lineares.<br>Sistemas K-diagonais.                                                                                                                                    |  |  |
| 10-11 | 09/mar, 14/mar            | Solução de Sistemas de Equações Não-lineares                                                                                                                                                          |  |  |
|       |                           | Trabalho T1 [submissão]                                                                                                                                                                               |  |  |
| 12    | 16/mar                    | Prova 1                                                                                                                                                                                               |  |  |
| 13-15 | 21/mar, 23/mar<br>28/mar  | Arquiteturas modernas de processadores: Hierarquias de memória, técnicas eficientes de programação, análise de desempenho e custo energético.                                                         |  |  |
|       |                           | Trabalho T2 [submissão]                                                                                                                                                                               |  |  |
| 16-18 | 30/mar, 04/abr,<br>06/abr | Otimização de código serial.                                                                                                                                                                          |  |  |

| 19-20 | 07/abr-14/abr            | Trabalho T1 [entrega e demonstração]         |  |
|-------|--------------------------|----------------------------------------------|--|
| 21-23 | 11/abr, 13/abr<br>18/abr | Interpolação Polinomial e Ajuste de Curvas.  |  |
| 24-25 | 20/abr, 25/abr           | Integração Numérica. Métodos de Monte Carlo. |  |
|       |                          | Trabalho T2 [entrega]                        |  |
| 26    | 27/abr                   | Prova 2                                      |  |
|       | 02/mai                   | 2ª-chamada Provas 1                          |  |
| _     | 04/mai                   | 2ª-chamada Provas 2                          |  |
| -     | 11/mai                   | Exame Final                                  |  |

#### **OBJETIVO GERAL**

Apresentar ao aluno os principais algoritmos para solução numérica de problemas matemáticos, comumente utilizados na computação científica e na simulação de sistemas reais. Apresentar técnicas eficientes de implementação destes algoritmos considerando as arquiteturas dos computadores atuais. Ao final da disciplina o aluno deve ser capaz de implementar tais métodos, de maneira eficiente, para computadores com arquitetura x64.

#### **OBJETIVOS ESPECÍFICOS**

- O aluno será capaz de entender e implementar métodos numéricos para zeros de funções, interpolação de funções e integração numérica.
- O aluno conhecerá métodos e será capaz de criar programas para a solução exata e iterativa de sistemas de equações lineares e não-lineares.
- O aluno será capaz de escolher o método apropriado para solução de determinado problema em função da arquitetura do computador a ser utilizado.
- O aluno será capaz de otimizar as implementações dos métodos numéricos utilizando ferramentas de análise de desempenho, considerando as características do processador e memória utilizados.
- O aluno será capaz de identificar regiões críticas de cada método em termos de desempenho computacional, bem como avaliar implementações alternativas.

#### PROCEDIMENTOS DIDÁTICOS

- 1. **Atividades síncronas:** As atividades síncronas consistirão de aulas **presenciais** em sala, com duração total de **2 horas** por aula.
- 2. Material didático específico: Serão utilizados documentos digitalizados como material de referência básico sobre o tema da disciplina. Também serão disponibilizados links para sites existentes para exercitar os conceitos básicos e eventualmente materiais já disponíveis na Internet. O professor também poderá produzir vídeos próprios onde serão esclarecidos aspectos específicos ou avançados que possam surgir no decorrer da disciplina.
- 3. Previsão de período de ambientação dos recursos tecnológicos a serem utilizados pelos discentes: Haverá na primeira semana de aula a disponibilização de material de leitura indicando como deverá ser o andamento da disciplina.



- 4. **Identificação do controle de frequência das atividades:** O controle de frequência será feito com base na presença do aluno nas aulas presenciais.
  - As aulas presenciais corresponderão a 26 aulas de 2 horas = 52 horas (de acordo com resoluções 22/21-CEPE e 52/21-CEPE, e instrução normativa IN 02/21-PROGRAD), sendo a frequência total no semestre assim calculada (em horas):

#### 60 \* (aulas presenciais frequentadas / 26)

- 5. Carga horária semanal: As atividades serão distribuídas da seguinte forma:
  - Atividades presenciais: 26 aulas com 2h/aula o que totaliza 52h presenciais.
  - Trabalhos de programação (T1 e T2): 8h/semestre de atividade fora do horário de aula presencial. O professor definirá um horário de atendimento presencial na UFPR para atendimento dos alunos durante o desenvolvimento destes exercícios.

## FORMAS DE AVALIAÇÃO

Deverão ser realizadas 2 (duas) provas escritas (atividade **presencial** em sala de aula) e 2 (dois) trabalhos (**T1** e **T2**). Será reservada uma semana para demonstração em horários agendados junto ao professor. Trabalhos não entregues dentro do prazo estipulado receberão nota 0 (zero).

Provas, assim como trabalhos não realizados pelo aluno, seguem as regras para 2ª-chamada, nos casos amparados pelo artigo 106, Seção V da Resolução 37/97-CEPE, e considerando também disposto no artigo 12, § 7º e 8º da Resolução 22/21-CEPE, em data e local divulgados no Calendário.

Para a validação dos trabalhos, os alunos poderão ser chamados, a critério do professor. Serão usados sistemas de detecção de similaridade nas produções dos alunos. Em se verificando similaridades e plágio, os alunos envolvidos serão chamados pelo professor e poderão receber nota 0 (zero), conforme regimentos vigentes na UFPR.

Não serão aceitas entregas de trabalhos após o final do período previsto para a disciplina.

As médias parcial e final serão calculadas da seguinte forma, de acordo com os critérios para aprovação com ou sem exame final seguirão o disposto na Resolução 37/97-CEPE. Capítulo X, Seção I – Normas Gerais de Avaliação:

$$MP = (P1 + P2 + T1 + T2) / 4$$

Se MP  $\geq$  70  $\rightarrow$  Aprovado, com MF = MP Se MP < 40  $\rightarrow$  Reprovado por nota Se MP  $\geq$  40  $\rightarrow$  Exame Final : MF = (MP + EXAME) / 2 Se MF < 50  $\rightarrow$  Reprovado por nota

## **BIBLIOGRAFIA BÁSICA (mínimo 03 títulos)**

- [1] M. Cristina C. Cunha. Métodos Numéricos. 2ª edição. Editora Unicamp, 2000.
- [2] Georg Hager e Gerhard Wellein. Introduction to High Performance Computing for Scientists and Engineers. Chapman & Hall, 2010. ISBN: 978-1439811924.
- [3] William H. Press. Numerical recipes: The Art of Scientific Computing. 3a. edição. Cambridge University Press, 2007. ISBN: 9780521880688.

#### **BIBLIOGRAFIA COMPLEMENTAR (mínimo 05 títulos)**

- [1] A. Kaw e E. Kalu. Numerical Methods with Applications. University South Florida, 2011. URL: <a href="http://nm.mathforcollege.com/">http://nm.mathforcollege.com/</a>
- [2] D.A.R. Justo, E. Sauter et al. Cálculo Numérico Um Livro Colaborativo. Universidade Federal do Rio Grande do Sul, 2017. URL: <a href="https://www.ufrgs.br/reamat/CalculoNumerico/">https://www.ufrgs.br/reamat/CalculoNumerico/</a>



- [3] S. Peters e J.F. Szeremeta. Cálculo Numérico Computacional. Editora UFSC, 2019. URL: https://sergiopeters.prof.ufsc.br/livro-calculo-numerico-computacional/
- [4] F.F.Campos, filho. Algoritmos Numéricos uma abordagem moderna de Cálculo Numérico. 3ª edição. LTC Editora, 2018.
- [5] S. Arenales e A. Darezzo, Cálculo Numérico, 2ª Edição, Cengage Learning, 2015.
- [6] M.A.G Ruggiero e V.L.R Lopes. Cálculo Numérico: Aspectos Teóricos e Computacionais. 2ª Edição. Pearson Makron Books, 1996.

| Professor da Disciplina: Prof. Dr. Guilherme Alex D | Perenievicz, Prof. Armando Luiz N. Delgado |
|-----------------------------------------------------|--------------------------------------------|
| Assinatura:                                         |                                            |
| Chefe de Departamento ou Unidade equivalente:       | Prof. Dr. Fabiano Silva                    |
| Assinatura:                                         |                                            |
|                                                     |                                            |

# Disciplina: CI1164 – Iniciação à Computação Científica

### I. Turmas, vagas e professor responsável:

| CURSO   | TURMA | VAGAS | PROFESSOR                                                             | Formato    | Horário<br>aulas síncronas      |
|---------|-------|-------|-----------------------------------------------------------------------|------------|---------------------------------|
| BCC/IBM | А     | 30    | Guilherme Derenievicz <guilherme@inf.ufpr.br></guilherme@inf.ufpr.br> | Presencial | 2ª- e 4ª-feira<br>15:30h-17:30h |
| BCC/IBM | В     | 30    | Armando L.N. Delgado<br><nicolui<u>@inf.ufpr.br&gt;</nicolui<u>       | Presencial | 2ª- e 4ª-feira<br>15:30h-17:30h |

# II. Carga horária e Período das atividades:

- 60 horas, de 31/jan a 07/mai [ 14 semanas ]
  - 26 aulas presenciais de 2h cada = 52h presenciais
  - 8h Realização de trabalhos

# III. Plano de Ensino e Cronograma da disciplina

Vide Ficha 2.