

Ficha 2 (variável)

Disciplina: Ana	álise de Algor	itmos				Código: Cl1165		
Natureza: (X) Obrigatória () Optativa				(X) Semestral () Anual () Modular				
Pré-requisito:	requisito: Co-requisito:		Modalidade	ade: (X) Presencial () Totalmente EAD () % EAD ¹				
CH Total: 60 CH semanal: 4	Padrão(PD): PD=45	Laboratório(LB): LB=15		Campo(CP): CP=0	Estágio(ES): ES=0	Orientada(OR):	Prática Específica(PE): PE=0	
	Estágio de Formação Pedagó- gica(EFP):	Extensão(EX):		Prática como Com- ponente Curricu- lar(PCC):				
	EFP=0	EX=0		PCC=0				
EMENTA (Unidade Didática)								
Introdução à análise de algoritmos. Notação assintótica. Análise de algoritmos iterativos e recursivos. Análise dos casos: melhor, pior e esperado.								
PROGRAMA (itens de cada unidade didática)								
1. Notação Assintótica								
2. Divisão e Conquista								
3. Algoritmos Gulosos								
4. Programação Dinâmica								
5. Análise Amortizada								
6. Algoritmos e Estruturas de Dados Aleatorizados								
7. Algoritmos de Aproximação								
8. Busca Exaustiva								
OBJETIVO GERAL								

OBJETIVO ESPECÍFICO

Apresentar um conjunto de técnicas de análise de algoritmos, considerando o recurso consumido, os casos

de execução e notação assintótica.

- Explicar o que se entende pelos casos "melhor", "esperado" e "pior" do comportamento de um algoritmo.
- 2. Identificar as características, condições ou suposições que levam a comportamentos diferentes de algoritmos.
- 3. Determinar a complexidade do tempo de algoritmos simples.
- 4. Contrastar classes de complexidade linear, quadrática, logarítmica e exponencial.
- 5. Usar formalmente a notação O, Ômega e Teta para fornecer limitantes assintóticos e de caso esperado na complexidade de tempo de algoritmos.
- 6. Usar relações de recorrência para determinar a complexidade do tempo de algoritmos recursivamente definidos.
- 7. Resolver relações de recorrência com notação assintótica.

PROCEDIMENTOS DIDÁTICOS

Aulas expositivas e práticas.

Material complementar estará disponível para os alunos a partir da página da disciplina de forma a integralizar 60 horas de atividades didáticas.

FORMAS DE AVALIAÇÃO

Provas e trabalhos práticos

BIBLIOGRAFIA BÁSICA (mínimo 03 títulos)

- [1] Thomas H. Cormen et al. *Introduction to Algorithms*. 3ª ed. MIT Press, 2009, pp. I–XIX, 1–1292. ISBN: 978-0-262-03384-8. URL: http://mitpress.mit.edu/catalog/item/default.asp?ttype=2& tid=11866.
- [2] Jon Kleinberg e Éva Tardos. Algorithm Design. Addison-Wesley, 2005. ISBN: 0-321-29535-8.
- [3] S. Dasgupta, C. H. Papadimitriou e U. Vazirani. Algorithms. McGraw Hill, 2006, p. 336.

BIBLIOGRAFIA COMPLEMENTAR (mínimo 05 títulos)

- [4] Donald E. Knuth. *The art of computer programming, volume 3: (2nd ed.) sorting and searching.* Redwood City, CA, USA: Addison Wesley Longman Publishing Co., Inc., 1998. ISBN: 0-201-89685-0.
- [5] Udi Manber. *Introduction to Algorithms: A Creative Approach*. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989. ISBN: 0201120372.
- [6] Robert Sedgewick. Algorithms in C. Addison-Wesley, 1990, p. 657.
- [7] Michael Mitzenmacher e Eli Upfal. *Probability and Computing: Randomized Algorithms and Probabilistic Analysis*. New York, NY, USA: Cambridge University Press, 2005. ISBN: 0521835402.
- [8] Robert Sedgewick e Philippe Flajolet. *An Introduction to the Analysis of Algorithms*. 512 pages. (ISBN 0-201-40009-X). Addison-Wesley Publishing Company, 1996.

Professor da Disciplina: André Guedes

Assinatura:						
Chefe de Departamento: Prof. Dr. Fabiano Silva						
Assinatura:						

OBS (1): ao assinalar a opção % EAD, indicar a carga horária que será à distância.