

Ficha 2 (variável)

Disciplina: Complexidade Computacional									Código: Cl1339
Natureza: () Obrigatória (X) Optativa						(X) Semestral () Anual			() Modular
Pré-requisito: Cl056 Co-requisito: Modali					Modal	idade: (X) Presencial () Totalmente EAD ()% EAD ¹			
	CH Total: 60 Padrão(PD): Laboratório(LB): CH semanal: 4 PD=45 LB=15		_B):	Campo(CP) CP=0	Estágio(ES) ES=0	Orientada(OR): OR=0	Prática Específica(PE): PE=0		
	EMENTA (Unidade Didática)								
Elementos da Teoria da Complexidade Computacional									
PROGRAMA (itens de cada unidade didática)									
Problemas Computacionais e Algoritmos									
2. Esquemas de Representação, Modelos de Computação e a Tese de Church-Turing									
3. O Modelo de Computação de Turing									
4.	4. Problemas de Decisão e o Problema da Parada								
5.	5. Computabilidade e Enumerabilidade								
6.	6. Reduções entre Problemas de Decisão								
7.	7. A Classe \mathcal{P}								
8.	8. A Classe \mathcal{NP}								
9.	9. Máquinas de Turing não-Determinísticas								
10.	0. \mathcal{NP} -completude								
11.	. O Teorema de Cook — Levin								
12.	12. Reduções entre problemas \mathcal{NP} -completos								
13.	. Problemas \mathcal{NP} -completos Notáveis								
14.	14. Problemas de Decisão Complementares								
15.	15. \mathcal{NP} -completude forte e Pseudo-polinomialidade								
16.	16. \mathcal{NP} -dificuldade								
	OBJETIVO GERAL								

Apresentar noções básicas da Teoria da Complexidade Computacional.

OBJETIVO ESPECÍFICO

- 1. Formalização das noções de problema computacional e algoritmo
- 2. Definição de Esquemas de Representação e Modelos de Computação e formulação da Tese de Church-Turing
- 3. Definição do Modelo de Computação de Turing
- 4. Definição de Problemas de Decisão e demonstração de não-computabilidade do Problema da Parada
- 5. Discussão das relações entre Computabilidade e Enumerabilidade
- 6. Formalização da noção de Redução entre Problemas de Decisão
- 7. Definição de computabilidade em tempo polinomial e da Classe $\mathcal P$
- 8. Definição de verificabilidae em tempo polinomial e da Classe \mathcal{NP}
- 9. Definição de Máquinas de Turing não-Determinísticas
- 10. Definição e discussão da noção de \mathcal{NP} -completude
- 11. Enunciado e prova do Teorema de Cook Levin
- 12. Exemplos de Reduções entre problemas \mathcal{NP} -completos
- 13. Apresentação de problemas \mathcal{NP} -completos Notáveis
- 14. Definição de Problemas de Decisão Complementares e das classes co $-\mathcal{NP}$ e co $-\mathcal{NP}_C$
- 15. Apresentação dos conceitos de \mathcal{NP} -completude forte e Pseudo-polinomialidade
- 16. Apresentação do conceito de \mathcal{NP} -dificuldade

PROCEDIMENTOS DIDÁTICOS

Aulas expositivas e práticas.

Material complementar estará disponível para os alunos a partir da página da disciplina de forma a integralizar 60 horas de atividades didáticas.

FORMAS DE AVALIAÇÃO

Provas

BIBLIOGRAFIA BÁSICA (mínimo 03 títulos)

- [1] Michael R. Garey e David S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness*. San Francisco: W. H. Freeman e Company, 1979.
- [2] Christos H. Papadimitriou. Computational Complexity. D Pap: Addison-Wesley, New York, 1994.
- [3] Michael Sipser. *Introduction to the Theory of Computation*. Boston, Massachusetts: PWS Publishing Co., 1997. ISBN: 0-534-944728-X.

BIBLIOGRAFIA COMPLEMENTAR (mínimo 05 títulos)

- [4] A.J. Kfoury, R.N. Moll e M.A. Arbib. *A programming approach to computability*. Texts and monographs in computer science. Springer-Verlag, 1982. ISBN: 9783540907435. URL: https://books.google.com.br/books?id=111QAAAAMAAJ.
- [5] Neil D. Jones. *Computability and Complexity From a Programming Perspective*. The MIT Press, 1997. ISBN: 978-0262100649. URL: www.diku.dk/~neil/comp2book2007/book-whole.pdf.
- [6] W. Carnielli e R. L. Epstein. *Computabilidade, Funções Computáveis, Lógica e os Fundamentos da Matemática*. Ed. UNESP, 2006.
- [7] Sanjeev Arora e Boaz Barak. Computational Complexity A Modern Approach. en. Cambridge University Press, jul. de 2013. ISBN: 978-0-521-42426-4. URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.297.6224;%20http://www.math.sc.edu/~cooper/math778C/abct.pdf.
- [8] Oded Goldreich. *Computational complexity a conceptual perspective*. Cambridge University Press, 2008. ISBN: 978-0-521-88473-0.

Professor da Disciplina: Renato Carmo
Assinatura:
Chefe de Departamento: Prof. Dr. Fabiano Silva
Assinatura:

OBS (1): ao assinalar a opção % EAD, indicar a carga horária que será à distância.