
The Resource Description Framework
(RDF 1.1)

M2 CPS²

RDF

RDF is to the Semantic Web what HTML is to the
WWW
RDF is simple: everything is just triples
RDF is a data model: it is not a file format!
RDF is a logical formalism: it has a formal semantics
RDF is more than XML: XML has a tree-based model,
RDF has a graph-based model
RDF is a Web standard: W3C recommendation

M2 CPS²

RDF: lingua franca of the Semantic Web

Like HTML for documents, there can be many models
that would achieve a Web of Data and a Semantic
Web
PDF documents can be linked and visualised in Web
browsers…
…but HTML makes it easy to read and write
documents (whereas one cannot edit PDFs in a text
editor)
Design decisions govern HTML and RDF
The decisions may not be the best for your
application, but they fix a common norm

M2 CPS²

RDF 1.1 Abstract Syntax (1)
RDF graphs: a set of triples
Triple: a 3-uple with:

A subject (an IRI or a blank node)
A predicate (an IRI)
An object (an IRI, a blank node or a literal)

IRI: Internationalized Resource Identifier (in RDF 1.0,
it was URI references) is a UNICODE string
conforming to RFC 3987

Note: to shorten notations, we use namespace prefixes,
e.g., rdf: is for http://www.w3.org/1999/02/22-rdf-syntax-
ns#

M2 CPS²

RDF 1.1 Abstract Syntax (2)

Literal: has 2 or 3 elements, including:
A lexical form is a UNICODE string
A datatype IRI

and in case the datatype IRI is rdf:langString:
A language tag, as defined in IETF BCP47

A literal with lang tag is a language-tagged string
Blank node: an element of an infinite set disjoint
from the IRIs and the literals (but otherwise
undefined)

M2 CPS²

The RDF 1.1 abstract syntax is specified at:
http://www.w3.org/TR/rdf11-concepts/

RDF 1.1 Primer is a gentle introduction to RDF 1.1:
http://www.w3.org/TR/rdf11-primer/

Read the RDF 1.1 Primer for next week.
It’s relatively simple with many examples.

Datatypes

Datatype definition borrowed from XML Schema
Datatype: has 3 components:

The lexical space, a set of UNICODE strings
The value space, a set of values
The lexical-to-value mapping, a function from the lexical
space to the value space

E.g., xsd:boolean has the lexical space
{"true","false","1","0"}, the value space {true, false}
and the lexical-to-value mapping {("true", true),
("false", false), ("1", true), ("0", false)}

M2 CPS²

Vocabularies

RDF Vocabulary: a set of IRIs and literals
There are standardised vocabularies that serve a
specific purpose, or have a special meaning (see
later)
Any set of IRIs or literals form a vocabulary, but it is
possible to specify a specific set of IRIs to be used in a
certain way in RDF graphs  such distinguished
vocabularies are sometimes called ontologies (more
on that later)

M2 CPS²

Concrete syntaxes: RDF/XML

The graph:

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF>
<rdf:RDF xmlns:ex="http://ex.org/#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/">

<foaf:Person>
<foaf:knows rdf:resource="http://ex.com/#you"/>
<foaf:name>Antoine</foaf:name>

</foaf:Person>
</rdf:RDF>

ex:you

Antoine

foaf:Person

M2 CPS²

Concrete syntaxes: N-Triples

The graph:

_:genId384902443 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://http://xmlns.com/foaf/0.1/Person> .
_:genId384902443 <http://xmlns.com/foaf/0.1/knows> <http://ex.org/#you> .
_:genId384902443 <http://xmlns.com/foaf/0.1/name> "Antoine" .

ex:you

Antoine

foaf:Person

M2 CPS²

Concrete syntaxes: JSON-LD

The graph:

{
"@id": "_:bn0",
"@type": "http://xmlns.com/foaf/0.1/Person",
"http://xmlns.com/foaf/0.1/knows": [
{ "@id": "http://ex.org/#you" },
{ "@id": "http://ex.org/#him" },
{ "@id": "http://ex.org/#her" }

],
"http://xmlns.com/foaf/0.1/name": "Antoine"

}

ex:you

Antoine

foaf:Person

M2 CPS²

Concrete syntaxes: Turtle

The graph:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix ex: <http://ex.org/#> .

[] a foaf:Person;
foaf:knows ex:you, ex:him, ex:her;
foaf:name "Antoine" .

ex:you

Antoine

foaf:Person

M2 CPS²

Format specifications
RDF 1.1 XML Syntax – W3C Recommendation 25 February
2014

https://www.w3.org/TR/rdf-syntax-grammar/

RDF 1.1 N-Triples - A line-based syntax for an RDF graph –
W3C Recommendation 25 February 2014

https://www.w3.org/TR/n-triples/

JSON-LD 1.0 - A JSON-based Serialization for Linked Data –
W3C Recommendation 16 January 2014

https://www.w3.org/TR/json-ld/

RDF 1.1 - Turtle Terse RDF Triple Language – W3C
Recommendation 25 February 2014

https://www.w3.org/TR/turtle/
M2 CPS² 13

Publishing RDF on the Web

Use case: I want to publish my personal profile in RDF,
with my name, affiliation, interests, education,
professional relationships, etc.
Simple conceptual model but…

what IRI should I use (for myself, my company, etc)?
what properties?
where do I put the data?
how do I make the data easily usable?
…

See also: Best Practices for Publishing Linked Data – W3C Note 9 January 2014

https://www.w3.org/TR/ld-bp/
M2 CPS²

Linked Data principles

1. Use URIs as names for things
2. Use HTTP URI so that people can look up those

names
3. When someone looks up a URI, provide useful

information, using the standards (RDF*, SPARQL)
4. Include links to other URIs. so that they can discover

more things.

See: Linked Data. Tim Berners-Lee’s design issues. July 2006 (revised June
2009)

https://www.w3.org/DesignIssues/LinkedData.html
M2 CPS²

Linked Data principles

1. Use URIs as names for things
2. Use HTTP URI so that people can look up those

names
3. When someone looks up a URI, provide useful

information, using the standards (RDF*, SPARQL)
4. Include links to other URIs. so that they can discover

more things.

M2 CPS²

Dereferenceing

Dereferenceing: operation that consists in using an
IRI as a URL to get whatever document you can
access using that URL
Corresponds to issueing a GET method in HTTP, with
the URL stripped of any fragment identifier
An IRI is dereferenceable if it can be used in a HTTP
GET request to access a document

M2 CPS²

Dereferenceing example

http://danbri.org/foaf#danbri

 get rid of the fragment #danbri

http://danbri.org/foaf

 issue a GET request:
GET /foaf HTTP/1.1
Host: danbri.org

 server replies:
HTTP/1.1 200 OK
Date:…
Content-type: application/rdf+xml
…[other stuff]

M2 CPS²

What do HTTP URIs identify?

Rule of thumb:
if a URL locates a document then the URL must

identify the document
How do we identify things that are not documents
(physical objects, people, ideas, etc.)?

Non HTTP URIs?  breaks rule n°2 of Linked Data
HTTP URIs that do not locate documents (e.g., gives 404)
 breaks rule n°3 of Linked Data

M2 CPS² 19

Technical architecture group advice

If the server returns 200 OK to an IRI look up, then
the IRI must denote an information resource (≈ a
Web document)
Otherwise, the IRI may denote anything
Advice: to identify non-information resources, use
either « hash IRIs » or [303-redirected] « slash IRIs »

Warning: controversial decision of the TAG, discussions
on this issue have been occasionnally showing up on
mailing lists since 2002!

M2 CPS²

Slash IRIs (1)
A slash IRI is an IRI with a ‘/’ followed by a local name:

http://dbpedia.org/resource/Semantic_Web

 issue a GET request:
GET /resource/Semantic_Web HTTP/1.1
Host: dbpedia.org
Accept: text/html

 server replies:
HTTP/1.1 303 See Other
Location: http://dbpedia.org/page/Semantic_Web

 issue a new GET request:
GET /page/Semantic_Web HTTP/1.1
Host: dbpedia.org
Accept: text/html

 server replies:

HTTP/1.1 200 OK
M2 CPS²

Slash IRIs (2)

 issue a GET request:
GET /resource/Semantic_Web HTTP/1.1
Host: dbpedia.org
Accept: application/rdf+xml

 server replies:
HTTP/1.1 303 See Other
Location: http://dbpedia.org/data/Semantic_Web

 issue a new GET request:
GET /data/Semantic_Web HTTP/1.1
Host: dbpedia.org
Accept: application/rdf+xml

 server replies:
HTTP/1.1 200 OK

M2 CPS²

Hash IRIs

A hash IRI is an IRI with a fragment identifier:
http://danbri.org/foaf#danbri

HTTP GET always removes fragment, so a hash IRI
cannot be used to return 200 OK.
 so it can be used for non-information resources

Advantages of hash VS slash:
http://www.w3.org/wiki/HashVsSlash

See also: Cool URIs for the Semantic Web – W3C Interest Group Note 3
December 2008

https://www.w3.org/TR/cooluris/
M2 CPS²

Means of publishing RDF

Put RDF files online (in RDF/XML, Turtle, etc)
Publish RDF along with web pages (RDFa)

Some CMS generate RDFa automatically (e.g., Drupal 7)
You’ll see more about RDFa later

Generate RDF from other existing formats
Triplifiers: http://www.w3.org/wiki/ConverterToRdf
Mapping languages:

For relational DBs: W3C R2RML and Direct Mapping
For other formats: XSLT, RM, SPARQL Generate

Keep RDF inside database, but provide access via
queries (SPARQL endpoints)

M2 CPS²

Existing online RDF datasets

The Linked Open Data Cloud:
http://lod-cloud.net/

List of SPARQL endpoints and availability
http://sparqles.ai.wu.ac.at/

M2 CPS²

Defining vocabularies

There are IRIs that identify generic things:
Types / Classes
Properties

These are likely to be useful in many applications
Reuse existing terms (Linked Data principle #4)
How to find the existing terms?
How to define new terms that will be used by many?

M2 CPS²

RDF Schema (RDFS) (1)

A basic vocabulary for defining vocabularies
rdf:type (relates an instance to one of its classes)
ex:me rdf:type foaf:Person .
rdf:Property (the class of all properties)
foaf:name rdf:type rdf:Property .

rdfs:Class (the class of all classes)
foaf:Person rdf:type rdfs:Class .

rdfs:Resource (the class of everything)
rdfs:Resource rdf:type rdfs:Resource .

rdfs:Datatype (the class of data types)
xsd:integer rdf:type rdfs:Datatype .

M2 CPS²

RDF Schema (RDFS) (2)

rdfs:subClassOf (relates a class to one of its super
classes)
foaf:Person rdfs:subClassOf foaf:Agent .
rdfs:subPropertyOf (relates a property to one of its
super properties)
foaf:skypeID rdfs:subPropertyOf foaf:nick .

rdfs:domain (relates a property to a class of things it is
about)
foaf:firstName rdfs:domain foaf:Person .

rdfs:range (relates a property to a class of things it
relates to)
foaf:homepage rdfs:range foaf:Document . And more

M2 CPS²

rdf:type

Paul is a person
ex:paul rdf:type ex:Person

Product number 87876R5 is a laptop
product:87876R5 rdf:type ex:Laptop

X was employed by Y between 2010 and 2013
a:e2010-2013 rdf:type ex:Employment

M2 CPS²

rdf:Property

People know other people
foaf:knows ex:type rdf:Property

Products have prices
ex:price rdf:type rdf:Property

People are employed by companies for a time
ex:employment rdf:type rdf:Property

M2 CPS²

Instance of properties

Paul knows Rémi
ex:paul foaf:knows ex:remi

Laptop X in store Y costs €1200
ex:laptopXY ex:price "1200"^^xsd:decimal

Paul was employed by Google between 2008 and
2013

ex:paul ex:employment _:e255 .

_:e255 ex:by g:Google .

_:e255 ex:starting "2008"^^xsd:gYear …

M2 CPS²

rdfs:Class

People, products, employment, etc
ex:Person rdf:type rdfs:Class

ex:Product rdf:type rdfs:Class

ex:Employment rdf:type rdfs:Class

rdfs:Resource, rdfs:Datatype:
Not particularly needed in modelling, everything is a
rdfs:Resource, datatypes are pre-defined in general

M2 CPS²

rdfs:subClassOf

People are agents
ex:Person rdfs:subClassOf ex:Agent

Laptops are products
ex:Laptop rdfs:subClassOf ex:Product

Employments are events
ex:Employment rdfs:subClassOf ex:Event .

M2 CPS²

rdfs:subPropertyOf

Being friend is knowing
ex:friendOf rdfs:subPropertyOf ex:knows

Being inside is being near
ex:isInside rdfs:subPropertyOf ex:basedNear

…

M2 CPS²

rdfs:domain and rdfs:range

Only people are employed
ex:employment rdfs:domain ex:Person

Something is based near a location
ex:basedNear rdfs:range ex:Location

Events starts at a date and time
ex:startsAt rdfs:range xsd:dateTime

…

M2 CPS²

Other useful things

rdfs:label – a human readable "name" for a thing
_:e255 rdfs:label "Paul’s employment 2012"@en

rdfs:comment – a description or commentary for a
thing

ex:laptopXY rdfs:comment "Laptop in my office,
with 8 GB RAM, 2.9 GHz Quad Core"@en

M2 CPS²

Other useful things
rdf:List, rdf:first, rdf:rest, rdf:nil

isbn:1617290394 ex:author _:authorList .

_:authorList rdf:type rdf:List .

_:authorList rdf:first ex:dwood .

_:authorList rdf:rest _:restList .

_:restList rdf:first ex:mzaidman .

...

_:endList rdf:first ex:mhausenblas .

_:endList rdf:rest rdf:nil .

In Turtle:
isbn:1617290394 ex:author

(ex:dwood ex:mzaidman ex:lruth ex:mhausenblas) .

M2 CPS²

Inferences with RDFS semantics (1)

Given: ex:C rdfs:subClassOf ex:D .
ex:D rdfs:subClassOf ex:E .

It can be proved that:
ex:C rdfs:subClassOf ex:E .

Given: ex:p rdfs:subPropertyOf ex:q .
ex:q rdfs:subPropertyOf ex:r .

It can be proved that:
ex:p rdfs:subPropertyOf ex:r .

Given: ex:C rdfs:subClassOf ex:D .
ex:x rdf:type ex:C .

It can be proved that:
ex:x rdf:type ex:D .

M2 CPS²

Inferences with RDFS semantics (2)

Given: ex:x ex:p ex:y .
ex:p rdfs:subPropertyOf ex:q .

It can be proved that:
ex:x ex:q ex:y .

Given: ex:p rdfs:domain ex:C .
ex:x ex:p ex:y .

It can be proved that:
ex:x rdf:type ex:C .

Given: ex:q rdfs:range ex:D .
ex:x ex:q ex:y .

It can be proved that:
ex:x rdf:type ex:D .

And more

M2 CPS²

Finding existing vocabularies
Reuse well known vocabularies (Dublin Core, FOAF,
SIOC, Good Relations, SKOS, voiD, etc.)
Try an ontology / vocabulary search engine or
repository:

Search engines: FalconS, SWSE, Sindice, OU’s Watson,
Swoogle, vocab.cc
Repositories: Linked Open Vocabulary, ScheWeb,
Schemapedia, Cupboard, Knoodl, Ontology Design
Patterns, prefix.cc, DERI vocabularies, OWL Seek,
SchemaCache

Ask mailing lists, forums (semantic-web@w3.org,
public-lod@w3.org, answers.semanticweb.com)

M2 CPS²

Build your own vocabulary
Editors:

Protégé, WebProtégé, NeOn TK, SWOOP, Neologism,
TopBraid Composer, Vitro, Knoodl, Ontofly, Altova OWL
editor, PoolParty, IBM integrated development TK, Anzo
for Excel, Euler GUI

Learn, evaluate:
Protégé tutorial, …bits and pieces here and there
RDF validator, OWL validator, Linked Data validator,
Data Hub LOD Validator
Best practices for publishing RDF vocabularies

Link to other ontologies
more at http://www.w3.org/wiki/Ontology_Dowsing

M2 CPS²

Use case 1: describing the world

Describe in RDF the following situation:
"Marco is a student at Université Jean Monnet, studying in the
Master 2 programme Web Intelligence. There, he follows the
course Semantic Web, taught by Antoine Zimmermann. Marco
is italian but lives in Saint-Étienne, place Jean Jaurès, with his
friends and flat mates Enrico and José. Marco is interested in
Web technologies, theater and sci-fi literature. Enrico is
interested in marijuana, reggae and is an activist for world-
wide peace. Antoine Zimmermann is associate professor at
École des mines, with colleagues Olivier Boissier, Gauthier
Picard, etc. École des mines is a higher education
establishment depending on the Ministry of industry."

M2 CPS²

Use case 2: using existing data

Translate the following tables to RDF:
TeamID Name Country Coach

FRA XV de France France Laporte

NZL All Blacks New Zealand Henry

ENG XV of the Rose England Ashton

… … … …

PlayerID Name TeamID Position

1 Vincent Clerc FRA wing

2 Lionel Beauxis FRA flyhalf

3 Joe Rokocoko NZL wing

… … … …

M2 CPS²

Use case 3: UML to ontology

Usually, these translations are appropriate:
UML classes  RDF classes

UML attribute RDF properties with literals as range

UML links  RDF properties

UML generalization rdfs:subClassOf
Visibility and methods are normally not represented in RDF
(it’s not a programming language)

Cardinalities cannot be represented with RDFS, but can in
OWL (cf. future courses), but be careful!

Note: in RDF, properties are not attached to classes. They
are first class citizens.

M2 CPS²

RDF files and RDF APIs

RDF files (RDF/XML, Turtle, N-triples, etc) can be read
into memory with RDF APIs
The in-memory model of an RDF graph can be
manipulated with API methods

Java APIs: Apache Jena (part of documentation in
French), Sesame
.NET C#: dotNetRdf
Python: pyRDF
PHP: rdflib (not maintained any longer)
Javascript
Many more

M2 CPS²

Storing and managing RDF

RDF databases are also called triple stores
Some triple stores scale up to trillions of RDF triples,
given enough hardware:

AllegroGraph, OWLIM, Virtuoso, …

Small capacity triple stores (good for quick
development of simple Web apps):

Jena Fuzeki, Sesame, and others

M2 CPS²

Managing multiple RDF graphs
RDF 2004 philosophy: every triples express
something about the world. More graphs mean more
knowledge. If we find more graphs, we just add
triples.
 Putting 2 graphs together to make a single equivalent

RDF graph requires more than set union

RDF graph merge: the merge of 2 RDF graphs G1 and
G2 is an RDF graph G such that if G is true then G1
and G2 are true, and if G1 and G2 are both true then
G is also true

In practice, it requires making the blank nodes of G1 and
G2 disjoint, before taking the union

M2 CPS²

RDF datasets
In many situations, graph merge is not ideal:

RDF graphs disagree (keep track of who says what)
RDF graphs evolve (keep track of temporal evolution)
RDF graphs are imprecise (keep track of fuzziness)
RDF graphs are sometimes private (keep track of access
control)

RDF 1.1 defines a new data structure (RDF dataset)
RDF dataset: a structure comprising:

An RDF graph called the default graph
Zero or more "named graph", which are pairs (IRI, RDF
graph), and the IRI is the "name" of the named graph

M2 CPS²

