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Abstract—Policies are used for developing adaptable and
flexible systems in a variety of areas. They are especially suitable
for reducing the complexity of managing tasks, by providing a
mechanism for automatically tuning the system without human
intervention. Policy-based systems have been applied for wireless
sensor networks (WSNs) for controlling several functionalities.
However, none of them has been proposed as a storage model,
by making a clear distinction between storage functions and their
behaviour. In this paper we propose SeSP, a Sensor Storage model
based on Policies. SeSP explores concepts that are common in
storage models proposed for WSNs in order to reduce the number
of message transmissions and thus minimize the sensors’ energy
consumption. We have conducted a case study applying our
policy-based system on two existing storage models: Scoop and
DYSTO. Our experimental study, based on simulations, shows
that SeSP can effectively reduce the number of transmissions,
compared to the fixed values considered by both systems.

I. INTRODUCTION

Policies are defined by rules that determine the behaviour
of a system [1]. They are used for developing adaptable
and flexible systems in a variety of areas such as distributed
systems, and data and network security. As the complexity
of these systems increases, managing their resources also be-
comes a hard task. Thus, it is desirable to rely on a mechanism
that can provide automatic tuning of the system without human
intervention. Policy-based mechanisms are a suitable approach
since they make a clear distinction between the system’s
functionality and behaviour. As a consequence, it is possible
to adapt the system’s behaviour according to its needs without
changing its functions, and without interruptions. Hence, such
capabilities are essential to support the management of several
types of networks and their services.

Wireless sensor networks (WSNs) are composed of small
devices with low processing power and data storage. They
have been applied for monitoring applications, which involve
capturing sensing data from the monitored environment, and
then storing and querying the sensed information. In general,
sensor devices present limited energy and communicate with
each other via short-range radio signals [2]. In WSNs the
energy consumption for transmissions is the main factor for
shorter network longevity and consequent loss of data [3].
Solutions have been proposed taken into account energy aware-
ness. Thus, an important topic of investigation for WSNs is on
minimizing the number of transmissions both for storing and
querying sensed data.

Policies have been applied in the context of WSNs for
providing an adaptable routing mechanism [4], for providing
reliable message delivery [5], for controlling the network

functionality [6], and as a means for application development
[7]. To the best of our knowledge there exists no policy-
based storage model proposed for WSNs. However, there are
a number of models that apply policies implicitly. As an
example, consider models that group sensors into clusters with
a designated sensor for storing the group members’ readings,
denoted as the group repository. Some existing models have
implicit rules for determining group membership. CAG [8] and
SIDS [9], for instance, have an implicit rule which determines
that a sensor should migrate to a different cluster, or start a
new one, if its reading is not within the expected interval of
values defined for the cluster. Others, determine the periodicity
in which sensor readings are updated in the repository. It can
be in fixed intervals, such as in Scoop [10], or based on
the difference between the current reading and the previous
reported one, as in HDMST [11] and DACS [12]. Models also
apply implicit rules for moving the repository to a different
sensor. The decision can be based on the sensors’ residual
energy [13], rotation among cluster members [14], proximity
to other nodes [15], or caused by a failure on the current
repository [16], or by changes on the number of queries and
sensor readings updates [10].

In this paper we propose a sensor storage model based
on policies called SeSP (Sensor Storage model based on
Policies). SeSP explores concepts that are common in storage
models proposed for WSNs in order to reduce the number
of message transmissions and thus minimizing the sensors’
energy consumption. Periodicity of sensor reading updates and
frequency for determining new repositories are examples of
concepts. This set of concepts compose the basis of our policy-
based system. That is, a policy is a set of user-defined rules
that determine the behaviour of the system by setting values
for each concept. Moreover, rules can be dynamically changed
without interrupting the system. We have conducted a case
study applying our policy-based system on Scoop [10] and
DYSTO [17]. Our experimental study, based on simulations
on a real data set [18], shows that our system can effectively
reduce the number of transmissions, compared to the fixed
values considered by both systems.

The paper is organized as follows. Section II presents
related work. Section III describes SeSP architecture and
language. Section IV presents the case study and Section V
reports the performance evaluation. We conclude in Section
VI highlighting future works.

II. RELATED WORK

In recent years WSNs evolved significantly. From simple
networks with few computational capabilities and communica-
tion, they have become complex networks with various levels978-1-4799-0913-1/14/$31.00 c© 2014 IEEE



of data abstraction and with a constant increase on the volume
of generated data [2]. This increase on the volume of data rose
new challenges to data management and storage.

The selection of the location for data storage is critical
for optimizing the available resources. If the system scenario
changes significantly during its execution then it is intuitive to
think that the ideal solution to reduce the cost of transmissions
both for data storage and querying may also change. A policy
can be defined as a set of rules that provide adaptability
and flexibility to the system. Many works have proposed
different solutions for WSNs based on policies, both in data
management and routing mechanisms.

SRM [5] is based on a hierarchical management architec-
ture and policy-based network management paradigm. SRM
consists of four modules: a user policy specification module,
an evaluation module, a decision making module and an action
module. The interaction among these modules ensures that
the network provides adequate information to the users while
reducing energy consumption. SRM uses the Policy Frame-
work Definition Language (PFDL) with simple policies[19].
PARAW [4] offers a high-level and flexible way to execute
management tasks related to routing in WSNs, which can be
defined progressively as more knowledge from the environ-
ment is acquired or as the application requirements change.
PTSN [6] presents a policy-based paradigm for fine-tuning
and optimization of the WSN runtime environment. CaPI [7]
is an expressive policy language that supports the specification
and management of behavioural concepts by administrators or
domain experts. CaPI provides a clear decoupling between ap-
plication logic and behaviour, enabling efficient customization
and dynamic reconfiguration of the application functionality
and behaviour.

DYSTO [17] is an in-network and dynamic data storage,
inspired by Scoop [10], in which the location of the repository
is chosen based on information collected over the network.
Intuitively, both Scoop and DYSTO choose to store sensed
data close to where it is most frequently needed: close to
the query entry point when the query rate is high, and close
to data sources for coping with high sensed data production
rates. Moreover, DYSTO analyzes the query load in order
to keep values that are frequently queried together in the
same repository. DYSTO also focuses on reducing the power
consumption of the network based on an adaptive approach for
repository selection, and a user-defined update strategy based
on data thresholds. Another system that dynamically switch
between different storage models is proposed in [20], based
on an implicit rule that determines the appropriate one for the
current context.

In our proposed approach, on the other hand, storage mod-
els change based on user-defined rules. Thus, SeSP provides a
storage system that can adapt to different scenarios in order to
optimize the available resources without decreasing the overall
quality of the system output. Our policy definition language is
also based on the concepts defined by the Policy Framework
Definition Language (PFDL) [19], but follows an XML format
with elements defined based on the components of our storage
model, as described in Section III.

III. A POLICY-BASED STORAGE MODEL

In WSNs value-based queries are particularly hard to
process. For instance, if the system employs a local storage
model, in which each sensor stores its own reading, in order
to obtain the set of sensors (or their geographical location)
with values in a given interval, every sensor on the field have
to be contacted. Common approaches for reducing the number
of transmissions for processing such queries, and thus their
energy consumption, consist of electing sensors to store the
readings of a group of devices, and create indexing structures
on the repository sensors. Following this approach, in this
section we first identify the components of a sensor storage
model, and their functionality. Our policy-based storage model,
called SeSP (Sensor Storage model based on Policies), is
defined on these components for controlling their behaviour.

A. The Storage Model

A WSN is represented as a graph G = (S,L), where
S = {s1, . . . , sn} is a set of sensors spread over a monitored
area M , and L is a set of links such that (si, sj) is in L
if si and sj are within the radio communication range of
each other. We say that the distance between si and sj is
one-hop and that si and sj are neighbors. Communication
between two arbitrary sensors requires the existence of links
{(s1, s2), (s2, s3), . . . (sn−1, sn)} such that s1 is the sensor
that originates the message and sn is the message final desti-
nation. That is, WSNs are based on multi-hop communication,
and rely on a routing protocol for determining paths that
establish communication between sensors. In our model, we
assume that sensors are static, and thus have a fixed geographic
coordinate. To simplify our discussion, we also assume that
each sensor is responsible for monitoring a single measurement
from the environment. We denote the current reading of a
sensor s as reading(s), and its domain of values as D.

Some sensors in the network are designated as repositories.
That is, they are responsible for storing the readings of a
group of sensors such that only repositories may have to
be contacted in order to answer value-based queries. In our
model, there exists a commodity computer, the base station
(BS), which is the single access point for query injection. The
BS is also responsible for grouping sensors into clusters and
for determining a repository for each of them. Observe that
sensors can be grouped based either on their location or on
their readings. If the model is location-based, we can define
clustering as a mapping Cl : S → S from each sensor to
its group’s repository. That is, given two sensors s1 and s2, if
Cl(s1) = Cl(s2) then s1 and s2 belong to the same cluster, and
they send their readings to the same repository. On the other
hand, if grouping is based on the sensors’ reading, clustering
can be defined as a function Cv : (D × D) → S. That is, a
sensor repository s in S is chosen for each interval of values
i = [v1, v2) in (D ×D). That is every sensor with a reading
v in the interval i notifies the repository Cv(i) of its current
reading.

As an example, consider the set of sensors in Fig-
ure 1, where each sensor is depicted with its identifier
and current reading. Observe that there are three reposito-
ries (s4, s6, and s8), each one in a cluster composed of
{s2, s3, s4}, {s1, s5, s6}, and {s7, s8}. The clustering can be
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Fig. 1. SeSP components

defined based on the sensor location by the following function:
Cl = {s1 7→ s6, s2 7→ s4, s3 7→ s4, s4 7→ s4, s5 7→
s6, s6 7→ s6, s7 7→ s8, s8 7→ s8}. The same clustering
can be by defined by the following value-based function:
Cv = {[6− 10) 7→ s6, [10, 12) 7→ s4, [12, 14) 7→ s8}.

Information on all components of the storage system is
stored in the Sensors DB. Besides, the behaviour of the system
relies on four types of transmissions: monitoring, mapping,
update, and query/reply messages. Monitoring messages are
sent from each sensor to the BS for communicating its current
status. It contains information required by the BS for clustering
sensors and choosing the repositories. The clustering function
is communicated to all sensors by mapping messages. Based
on this function, sensors can determine to which repository
they should send their current reading by an update message.
Inquiries on these readings are issued on the BS, which sends
a query/reply message to the repositories.

To illustrate, consider a clustering function based on the
sensors’ readings. Each sensor sends a monitoring message
to the BS with information such as a histogram of its last
readings. The periodicity in which sensors send this type of
message can be defined by a local policy, defined for each
sensor, or by a global policy, defined for the entire WSN.
Based on the information collected from the entire network,
the BS defines how sensors should be grouped, and for each
of them, determines which sensor is defined as the group
repository. Suppose that the result of this step is function Cv =
{[6 − 10) 7→ s6, [10, 12) 7→ s4, [12, 14) 7→ s8}. This function
is broadcast to all sensors on the field by a mapping message.
Similar to monitoring messages, the frequency in which the
BS regroups sensors or change the repository may be defined
by the policy system. Every sensor locally stores the clustering
function, such that whenever it obtains a new reading, it may
communicate the appropriate repository. Suppose, for example,
that sensor s5, which previously had a reading of 9, gets 11
as its new reading. Thus, instead of reporting its value to
repository s6, it now sends an update message to repository
s4, along with the reading timestamp. The periodicity each
sensor sends an update message can also be controlled by
the policy system. Value-based queries are issued on the BS.
Consider, for example, a query to determine which sensors
have readings between 8 and 11. Based on the last clustering
function, the BS determines that only repositories s6 and s4
have to be contacted. Thus, it sends query messages to these
sensors, which in turn send back reply messages to the BS
with the query answer.

Once the basic functionality of the system has been defined,
they can be refined by a set of rules, as described in the next
section.

B. A Policy-based Storage System

A policy is a set of rules that express decisions made to
achieve specific goals [1]. Observe that an isolated command
to execute an action is not a policy. Policies are persistent and
should dynamically change the behaviour of a system without
interrupting its functionality. Thus, in our policy-based system,
the BS stores the rules that compose its policy in a Policy DB,
as depicted in Figure 1.

1) Policy Definition Language: A policy is a set of rules
of the form (E, T,C,A) where E is the rule’s subject, T is
the target, C is the condition to be satisfied for the application
of the rule, and A is the action to be performed. In SeSP these
elements are defined in XML format. XML has been chosen
because it is a flexible format, allowing rules with new actions
and variables in conditions to be considered by extending the
XML Schema used to validate the input document.

The subject E is the element that authenticates the rule
and executes the action. In SeSP, the subject can be either
the BS or a set of sensors. The target T is the element on
which the action is applied. The target can be defined as
global if the rule applies to all sensors on the field or
local, if it targets only a set of sensors. The condition
C defines the requirements for the application of the rule.
A requirement may be temporal and/or involve system
defined variables. Temporal conditions provide a means
for expressing distinct behaviour on different periods of time.
They may be defined with a start and end time or only
with the start time. Variable conditions, on the other hand,
are defined on the sensor’s reading (current_val) or on
variation of values of the storage model components: the
variation on the sensor reading (var_update), the variation
on the system monitoring information (var_monitoring),
and the difference on the result of the clustering function
var_mapping.

The action element A identifies the set of actions to be
applied when the requirements are met. Currently, we consider
two types of actions: send alert messages (sendMsg), and
determine the periodicity on which each type of message is
transmitted (setParam). The periodicity can be defined as
fixed intervals, or based on the variation of values, similar
to the condition element. For instance, it can be determined
that monitoring messages should be transmitted within fixed
intervals of 110 seconds (fix_monitoring = 110) or
when it varies by 10% (var_monitoring = 10). Simi-
larly, we can define the periodicity of sensor readings up-
date (fix_update, var_update) and mapping messages
(fix_mapping, var_mapping).

Examples of rules are given in Figures 2 and 3. The rule
in the first example sets the frequency of transmissions for
each type of message. Update and monitoring messages are
transmitted based on their variations, which are set to 1%
and 30%, respectively (Lines 12 to 19). Mapping messages,
on the other hand, are transmitted within fixed intervals of
240 seconds (Lines 20 to 23). These frequencies are valid for
all sensors on the field since the rule is defined to be global



(Line 4), and apply from the first second of the system runtime
until the 2600th second (Lines 6 to 9). Observe that the ability
to define temporal conditions is particularly interesting when
the system presents behavioural seasonality. The example in
Figure 3 shows a rule that targets only sensor s3, determining
the transmission of an alert message when its sensing value
rises to a value above 50 degrees.

1. <policy>
2. <rule>
3. <subject> <eb /> </subject>
4. <target> <global /> </target>
5. <condition>
6. <temporal>
7. <start> 1 </start>
8. <end> 2600 </end>
9. </temporal>
10. </condition>
11. <action>
12. <setParam>

13. <parameter> <var_update /> </parameter>
14. <value>1</value>
15. </setParam>

16. <setParam>

17. <parameter> <var_monitoring /> </parameter>
18. <value>30</value>
19. </setParam>

20. <setParam>

21. <parameter> <fix_mapping /> </parameter>
22. <value>240</value>
23. </setParam>

24. </action>
25. </rule>
26. </policy>

Fig. 2. Example of policy for setting parameters

1. <policy>
2. <rule>
3. <subject>
4. <sensor> s3 </sensor>
5. </subject>
6. <target>
7. <local>
8. <sensor> s3 </sensor>
9. </local>
10. </target>
11. <condition>
12. <variable>
13. <parameter> <current_val /> </parameter>
14. <operator> &gt; </operator>
15. <value> 50 </value>
16. </variable>
17. </condition>
18. <action>
19. <sendMsg>
20. Emergency!! Risk of fire!!
21. </sendMsg>
22. </action>
23. </rule>
24. </policy>

Fig. 3. Example of policy to send an alert message

2) Architecture: The functionality of our policy-based stor-
age system relies on four main components, as shown in
Figure 4: XML input, the Policy DB, policy points of decision
(PPD) and policy points of application (PPA). The XML Input
contains a set of rules, as described in Section III-B1. The
rules are interpreted by the BS and stored in the Policy DB.

PPD

PPD

PPA

BS

XML Input

DBPolicy

(1)

(2)

(3)

Fig. 4. Policy components

The PPDs are responsible for actively checking whether the
requirements of the active rules are met. When the conditions
are satisfied, PPDs are responsible for dispatching an action
message to a PPA, which in turn implements the action. PPD
agents are executed both by the base station and by sensors.
The base station’s PPD is responsible for verifying all active
policies stored in the repository, and it is the only agent with
access to the Policy DB. A sensor PPD, on the other hand,
only verifies local rules that have as subject the sensor itself.

The base station PPD can dispatch actions to be executed
by a sensor PPA and also remotely update the rules defined in
one or more sensors. In general, local rules are simple, since
sensors have limited resources. The PPAs are executed only by
sensors. As depicted in Figure 4, the PPA agents listen to the
network for action messages sent by the base station’s PPD (1)
and also rules to be executed by its own PPD, and implements
the action. If the message contains a policy update, the PPA
updates the sensor local rules storage (2), which are interpreted
by the sensor’s PPD for activating actions executed by the PPA
(3).

Observe that there are two types of messages that are sent
from a PPD to a PPA: action and policy update messages.
Action messages consist of: a target sensor and the action to be
performed. In addition to these fields, policy update messages
contain a set of conditions, as illustrated in Figure 5(a). The
number of conditions is defined by the field number of

conditions, while the condition type can be either
variable or temporal. As an example, the policy update
message in Figure 5(b) is sent from the BS to sensor s3
determining that the sensor reading updates at its repository
should be increased to fixed intervals of 10 seconds when
the variation between the last value monitored and the current
value is above 10%.

IV. CASE STUDY

We have applied our storage model to implement DYSTO
[17], a dynamic storage model that chooses the data reposi-
tories based on the frequency of sensor reading updates, and
the volume of queries issued to the system. DYSTO has been
inspired by Scoop [10] and they are both based on a clustering
function that maps value intervals to repositories (as function
Cv defined in Section III-A) and their placement is based
on the following observation: repositories should be close to
where they are needed more often in order to reduce the
number of transmissions. That is, with an increase of queries
on a given interval, the corresponding repository should be



Message
Type

Target
Sensor

Numbe of
Conditions

Condition
Type Parameter Operator Value

Variable Condition

Condition
Type

Message
Type

Target
Sensor

Numbe of
Conditions

Condition
Type

Parameter

Action

Value

Temporal Condition

Start Date End Date

Action Message

Policy Message
Message Recipient: s3

(a)

(POLICY)
Parameter

(FIX_UPDATE)

Action

(s3) (10s)
Value

(1) (VARIABLE) (VAR_UPDATE)
Parameter Operator Value

(>) (10%)

Variable Condition

Message Recipient: s3

(b)

Fig. 5. Action and policy update messages

moved closer to the BS, which is the query injection point. On
the other hand, if the frequency of sensor reading updates is
high, then the repository should be placed close to the sensors
that produce values within the interval.

Since clustering and repository placement are value-based,
the BS stores information on the frequency of queries on the
domain of values produced by the sensors. In addition, sensors
send monitoring messages to the BS containing a histogram
of their last readings. The size of the buffer containing the
readings and number of entries (or bins) in the histogram
depend on the sensor’s storage capacity. Both DYSTO and
Scoop report experiments with a buffer of 30 readings and a
histogram with 10 equiwidth bins. That is, the interval of the
minimum and maximum readings in the buffer is divided into
10 subintervals of the same size. Then, each bin is filled with
the quantity of readings in the buffer within its corresponding
subinterval. Based on the sensors’ histograms and the query
frequency the BS computes the clustering function Cv which
is communicated to all sensors by mapping messages. Update
and query/response messages provide the means for updating
a repository with the sensor’s current reading and to answer
queries, as described in Section III-A.

The time interval adopted by DYSTO and Scoop between
transmissions of each message type differs. Scoop defines fixed
intervals for sending mapping, update, monitoring messages
(240, 75, and 110 seconds, respectively). In SeSP they can
be implemented by defining action rules to assign values to
fix_mapping, fix_update, and fix_monitoring

parameters. On the other hand, DYSTO is based on user-
defined thresholds that determine the maximum difference be-
tween the contents of two consecutive messages. For instance,
the variation between two consecutive readings is defined by
|1 − (current_reading/previous_reading)|, while the varia-
tion between two monitoring messages is based on the value
associated with a histogram h, which is defined as the average
value of all sensor readings in its buffer. We denote this value
as M(h) and define the difference between two histograms
h1 and h2 as |1− (M(h1)/M(h2))|. The difference between
two mapping functions can be computed similarly based on
the number of sensors that moved to a different repository.
Given these definitions, they can be implemented in SeSP
by defining action rules to assign values to var_mapping,

var_update, and var_monitoring parameters.

Observe that our policy-based storage system is quite gen-
eral and can be applied to model a number of storage models
proposed in the literature, as long as functions that implement

their basic components are provided. Namely, the BS should
be provided with functions for computing the clustering of
sensors based on the monitoring messages, and determine the
difference between two clustering functions. Sensors should
be provided with functions that: compute the contents of
the monitoring message, determine the difference between
the results of two monitoring messages, and determine the
difference between two consecutive readings. Observe that in
our study case, monitoring information is based on the sensors’
readings. However, a common approach for modifying sensor
clustering and repository location is to define a function based
on the sensors’ remaining energy. In this case, monitoring
messages received by the BS simply contain the sensors’
residual battery level in order to elect new repositories.

V. EXPERIMENTAL STUDY

We have conducted simulations in order to validate SeSP,
and to determine whether it does have an impact on the number
of transmissions of a WSN. SeSP has been implemented on
NS2 network simulator version 2.34 [21], along with functions
that implement the components of both DYSTO [17] and
Scoop [10], as described in Section IV. Given that energy
consumption on WSNs is dominated by the communication
overhead [3], our cost metric is the total number of transmis-
sions sensors and the BS send collectively. For a study on the
impact of the fixed intervals adopted by Scoop compared to
the threshold-based intervals defined by DYSTO, we refer the
interested reader to our previous work [17]. Since the impact
of the two different forms of determining transmission rates
has already been assessed, here we report experiments on the
system ability to correctly interpret and apply policies (Section
V-B) and on the impact of defining different rules at distinct
periods of time (Section V-C).

A. Simulation Settings

We have evaluated SeSP using a real data set made
available by the Intel Lab Data [18]. The trace was collected
from 54 Mica2 motes deployed in the Intel Research Lab
over a period of 35 days. The data set comprises a timestamp
and information on temperature, humidity, light, and voltage.
However, only temperature measures along with the sensor
locality information were used in our simulations. We refer to
this setting as the real scenario.

In order to evaluate the model on a larger WSN, we have
also generated a synthetic scenario composed of 500 sensors
on a 500×500 square meter field, with similar characteristics
on their sensing data as the real trace. Based on the observation
that the metrics collected in the real scenario present highly
spatially correlated readings, we have generated the sensors’
initial readings using a Matlab tool [22], which has been
especially designed to produce data with this property. The
tool receives as input a correlation coefficient (h) and the size
of the monitoring area (m). It generates as output a matrix D
of dimension m × m, used to determine sensors readings as
follows: each sensor s, randomly placed at a position (xs, ys),
gets as reading the value at D[⌊xs⌋], ⌊ys⌋]. The correlation
coefficient determines the level of similarity. That is, h = 0
generates data with no spatial similarity, and higher values of
h induces higher spatial correlation. All simulations described
in this section have been executed on a scenario generated



with high correlation (h = 9). Each of the values initially
calculated were then updated applying a random variation of
zero to 30%, applied on the initial value, based on the sensor
location in order to preserve the spatial similarity.

The simulation parameters are presented in Table I. All
results reported in this section consider these values as default
unless otherwise specified, and consist of the average value
collected from five executions on each simulation setting.

Parameter real scenario synthetic scenario

Network devices 54 sensors + 1 BS 500 sensors + 1 BS

Data source real data[18] synthetic data

Sensor communication range 30 meters

Simulation duration 40 minutes

Sample rate 1 sensor reading every 15 seconds

Query rate 1 query every 15 seconds

Mapping messages transmission every 240 seconds

TABLE I. SIMULATION PARAMETERS

B. Correctness of the Policy Implementation

The goal of this experiment is twofold: first, to determine
the impact of policy messages on the overall number of
transmissions; and second, to determine the correctness of the
system’s behaviour according to the rules given as input.

Figure 6 shows the number of transmissions of each type of
message in four different settings. In each of them we consider
that a policy similar to the one presented in Figure 2 has been
defined for setting the frequency of message transmissions
and that the same rate has been maintained throughout the
experiment. We have chosen four settings based on the results
reported previously by [10] and [17] in order to determine
whether our results are consistent with them.

The first column in both graphs of Figure 6 corresponds to
the frequency chosen by Scoop: fixed intervals of 240 seconds
for mapping messages, 75 seconds for update messages, and
110 seconds for monitoring messages. The same rate for
mapping messages has been adopted for all the other settings,
but defining the frequency of update and monitoring messages
based on the variation of their contents: var_update of 1%
combined with var_monitoring of 30% for the real sce-
nario and 20% for the synthetic scenario; both parameters set to
5%; and both parameters set to 10%. The first combination has
been chosen combining parameters that produce query results
with maximum relative error of 1% and 0.5% in average, with
monitoring message rates that produce the maximum reduction
on the total number of transmissions, based on the experiments
reported in [17].

In this experiment since a single policy has been sent once
from the BS to all sensors, the impact of policy messages
is only 1% of the total number of transmissions in both
scenarios. The values collected for the other types of messages
are consistent with the ones reported by previous works. That
is, compared to the fixed rates adopted by Scoop, variable
rates reduce the overall number of transmissions by 22.72%,
11.74% and 32.15% in the real scenario, and 17.02%, 26.01%
and 52.15% in the synthetic scenario.

We have also run experiments with rules that send alert
messages, similar to the one presented in Figure 3. In this case,
we tried to simulate a real situation of service break due to a
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high temperature in a server room at night. That is, the rule was
defined both with a temporal condition (start 700 and end

1700) and a variable condition on the sensor current reading
(current_val > 40). In the experiment we have injected
several readings that exceeded the maximum value inside and
outside the policy’s action time using the real scenario. The
results can be seen on Table II. They show that the sensor
correctly interpreted the policy and sent the messages correctly
when necessary, although two of them did not arrive at the BS.
We conjecture that the cause for the missing messages was the
lack of synchronization on the start and end time the alert rule
was active.

System Time(s) Readings above limit Alert Messages at the BS

0-700 12 0

700-1700 20 18

1700-2400 14 0

TABLE II. EXPERIMENT WITH ALERT MESSAGES

C. Dynamic Thresholds

The goal of this experiment is to determine whether SeSP
correctly modifies the message transmission frequencies when
there are different rules that apply at distinct periods of
time. We have defined a rule that changes the frequency of
monitoring messages of a single sensor s3 as follows: from
time 600 to 1200 var_monitoring is set to 10%; and after
time 1500 the same parameter is set to 5%. Figure 7 shows the
number of monitoring messages dispatched from s3 at different
execution times, comparing it to a policy with fix transmission
rates of 110 seconds.

Observe that the fix rate applies in all the other periods
of time in which parameter var_monitoring is not set.



Thus, from time 0 to 600 both bars report the transmission
of 7 messages in the period. At time 600, the policy that sets
var_monitoring to 10% is activated, reducing the number
of messages in the period by 57%. In the beginning of the third
interval the fix transmission rates is restated, but at the end of
this period var_monitoring is set to 5%. The activation
of the rule reduces the number of messages in the period from
7 to 6. In the last interval 4 messages is transmitted, which
represents an improvement of 43% in comparison to the fix
rate rule.
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Fig. 7. Impact of changes on var_monitoring

This experiment shows that the our system provides adapt-
ability to a storage model. Changes on the system behaviour
are usually hard to be implemented without coding and inter-
ruption of the system.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed an adaptable and flexible storage
model called SeSP (Sensor Storage model based on Policies).
Our first contribution is on identifying components and types
of messages that are common to several storage models that
rely on a single entity (the BS) for choosing a data repository,
and for determining sensor clustering, which can be based on
any information sent from the sensors to the BS in a monitoring
message. Thus, no matter the algorithm for performing such
tasks, the types of messages exchanged are exactly the same.
These components are frequently found in storage models
proposed for WSNs in the literature, and define the basic
functionality provided by WSN’s storage systems. Based on
the types of messages exchanged between the components,
we have defined a set of parameters to control their trans-
mission rates. By making a clear distinction between the
components’ functionality and a control mechanism defined
by policy rules, we are able to provide dynamic adaptability
to a number of existing storage models. We have described a
study case that shows how SeSP can be applied to implement
two similar storage models: Scoop [10] and DYSTO [17].
Our experimental study, based on simulations, shows that,
unlike these two previous models, SeSP can dynamically
change the storage system behaviour, providing a means for
adopting distinct configurations suited for different scenarios.

We believe that this is a first step towards self management
and self configuration capabilities for WSN storage systems.

There are still a number of issues to investigate in the
future. Some of them are related to the policy system itself.
We plan to develop a mechanism to check whether there exist
conflicts among policy rules, and provide the ability to define
precedence between rules. A possible approach would be to
determine that for each sensor, local rules have precedence
over global rules. We also intend to extend the parameters and
monitoring actions provided by the system. With respect to
the storage model, we would like to generalize it to handle
multiple sensor attributes, and to consider hierarchical storage
models that combine location and value-based mappings.
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