
Incremental Data Fusion based on

Provenance Information

Carmem Satie Hara1, Cristina Dutra de Aguiar Ciferri2, and
Ricardo Rodrigues Ciferri3

1 Universidade Federal do Paraná – Curitiba, PR – Brazil, carmem@inf.ufpr.br
2 Universidade de São Paulo – São Carlos, SP – Brazil, cdac@icmc.usp.br

3 Universidade Federal de São Carlos – São Carlos, SP – Brazil,
ricardo@dc.ufscar.br

Abstract. Data fusion is the process of combining multiple represen-
tations of the same object, extracted from several external sources, into
a single and clean representation. It is usually the last step of an inte-
gration process, which is executed after the schema matching and the
entity identification steps. More specifically, data fusion aims at solv-
ing attribute value conflicts based on user-defined rules. Although there
exist several approaches in the literature for fusing data, few of them
focus on optimizing the process when new versions of the sources be-
come available. In this paper, we propose a model for incremental data
fusion. Our approach is based on storing provenance information in the
form of a sequence of operations. These operations reflect the last fusion
rules applied on the imported data. By keeping both the original source
value and the new fused data in the operations repository, we are able to
reliably detect source value updates, and propagate them to the fusion
process, which reapplies previously defined rules whenever it is possible.
This approach reduces the number of data items affected by source up-
dates and minimizes the amount of user manual intervention in future
fusion processes.

1 Introduction

The huge amount of data available nowadays and the need to integrate data
imported from several external sources continue to be a challenge to the database
community. Although data integration has been investigated for several years,
there is no single solution that suits all applications.

The integration process involves both schema and instance level integration.
At the instance level, the integration process comprises two major problems [28]:
entity identification ambiguity and attribute value conflict. Entity identification
refers to the problem of identifying overlapping data in different sources. It has
been the purpose of extensive research on the relational [23], entity-relationship
[24], and XML [27] data models. Attribute value conflict refers to the problem of
two or more sources containing information on the same entity or attribute, but
with conflicting values. The process of combining several representations of one

real world object into a single, consistent and clean representation is the goal of
data fusion [7], which is the focus of this paper.

Data fusion is based on a set of strategies that determine how value conflicts
are solved. A survey of existing approaches for data fusion can be found in [7].
As an example, when integrating several external sources, one can define that
a conflict on a given numerical attribute should be solved by computing the
average from the values provided by the sources. The data resulting from the
fusion process can be stored in a local database for answering queries based on
clean, mediated data. However, if no additional information is kept in the local
database other than the fused value, when one of the data sources updates its
value, all the other sources will have to be accessed again in order to apply
the same fusion strategy. One approach for avoiding this is to keep the data
provenance [11, 12]; that is, copies of the original values provided from the sources
and the strategy applied to obtain the value stored in the database. Following
this approach, the focus of this paper is on provenance-based data fusion.

In our system, provenance information is kept by mapping the application
of fusion strategies to sequences of simple insert-remove-edit-copy operations.
This resembles the works on manually curated data [8, 9], in which the system
keeps a log of operations that the user undertakes in order to clean imported
data. Although we consider a similar set of operations, in our system operations
do not keep track of the user’s actions, but keep the original source values and
coordinate them with the local database. By keeping the original values, we are
able to reliably detect source updates and propagate them to the local database.
The problem of updating a database based on changes to an independently
maintained source has recently been referred to as data coordination [22].

In this paper we propose a fusion system for XML which supports incremen-
tal updates based on provenance information. We assume that external sources
have been previously processed for identifying entities, producing fully keyed
documents. Our fusion approach is based on user-defined rules, which are stored
in a rule base. Moreover, provenance information is kept in an operations repos-
itory that consists of simple operations that coordinate external sources with
the local database. The operations repository along with the rule base allows
incremental updates on the local database and minimizes the amount of user
intervention in future fusion processes.

1.1 A Motivating Example

Consider two sources, s1 and s2, containing data on the same paper, but that
disagree on the values reported for its attributes as depicted in Figures 1(a)
and 1(b). In this example, we identify that paper information provided by s1
and s2 refers to the same publication because they coincide on their values for
title and year. That is, title and year are the keys for paper. In order to
generate a database with fused data, the user provides high-level fusion rules
for deciding how value conflicts should be solved. As an example, the user can
define that conflicts on paper’s author names should be solved as follows: first,
choose the value reported by the majority of the sources; if the conflict cannot

be solved then consider the one reported from the most trustful source. Since
in our example we only have two sources, the first strategy cannot be applied.
Then, considering that we rely more on source s1 than on s2, the value stored
in the database for the paper’s first author is John, and the second author Jack,
based on the values reported by s1. Similarly, we can define that the database
should contain the average number reported for citationQty based on all the
sources. In this case, the resulting value stored in the database is citationQty:
9. The conflict on city is solved by manually choosing the value Philadelphia,
reported by s2. These results are stored in the mediated database, as shown in
Figure 1(d).

When a new version of source s1 or s2 is uploaded, or new sources are inte-
grated to the database, these fusion rules can be automatically reapplied, and
only new conflicts are presented to the user in the fusion process. As an example,
consider that a new version for s1 is uploaded with a value 12 for citationQty.
Given that the average number of citations, considering s1 and s2 is now 10,
the database is updated with this value. Now consider that values from a third
source s3 is integrated to the database. If s3 also contains values for the same
paper, and reports Jack as its first author and John as the second, then the first
strategy defined on the previous fusion process can be applied for updating the
database with the values reported by the majority of the sources. That is, the
name of the first author is updated to Jack, and the second to John, based on
the values reported by s2 and s3.

source s1:venue: ’Int. Conf..’

(c)

 author: order: 1

source s2:
 author: order: 2

source s1:

source s1:name:

name:

’John’
’Jack’

’Jack’
source s2: ’John’

 citationQty: source s1:
source s2:

10
8

 pages:source s2: ’18−29’
(d)

 author: order: 2

 citationQty: 9
 pages: ’18−29’

 author: order: 1
 name: ’John’

 name: ’Jack’

paper title: ’Integration’
 year: 2012

Merged Document

Source s1
paper title: ’Integration’
 year: 2012
 venue: ’Int. Conf..’

Source s2
paper title: ’Integration’
 year: 2012

Mediated DB
paper title: ’Integration’
 year: 2012
 venue: ’Int. Conf..’

city: ’Philadelphia’

source s1:city:

city: ’Philly’

’Philly’
source s2: ’Philadelphia’ city: ’Philadelphia’

 author: order: 1

 author: order: 2

 citationQty: 10

 name: ’John’

 name: ’Jack’

 author: order: 1

 author: order: 2

 citationQty: 8
 pages: ’18−29’

 name: ’Jack’

 name: ’John’

(a) (b)

Fig. 1. Integration of two conflicting sources.

Our fusion system offers all the aforementioned functionality, and also allows
the mediated database to be used as an integrated repository of curated data
according to the users’ decisions.

This paper builds on three previous works from the authors. The first pro-
poses a system for XML data fusion, which allows the definition of data cleaning
rules for solving value conflicts detected during the integration process [14]. The
second presents a model for reapplying user’s decisions in subsequent integration

processes when data is manually curated by insert-remove-edit-copy operations
that are stored in an operations repository [33]. At last, the third work introduces
a data model for XML instance level integration that helps the resolution of value
attribute conflicts by explicitly representing them in a merged document [26].
Here, we consider our previous works in the same setting. However, we focus on
mapping fusion strategies to sequences of simple operations, and reapplying pre-
vious rules for incrementally updating the mediated database when new sources
are uploaded or when sources are updated. The purpose of the system is to
minimize the amount of user input in future fusion processes.

1.2 Organization

The paper is organized as follows. Section 2 describes preliminary definitions.
Section 3 introduces the architecture of our fusion system, followed by the defi-
nition of our data model in Section 4. Section 5 details the modules the compose
the system. Related work are presented in Section 6, and Section 7 concludes
the paper.

2 Preliminary Definitions

Before describing the components of our data fusion system, we present defini-
tions for XML keys (Section 2.1), strategies for data fusion (Section 2.2), and
basic operations (Section 2.3). These notions have been previously proposed in
the literature and we use them as building blocks in our system.

2.1 XML Keys

An XML document is typically modeled as a node-labeled tree T , which can
be depicted in a directory style representation as illustrated in Figures 1(a) and
1(b). We assume that each XML tree has a distinct identifier, such as s1 and
s2, which denotes its source. We refer to attribute and element nodes as objects
throughout the article. Moreover, we say that an object is simple if it corresponds
to a text element or an attribute, and complex otherwise.

Following the syntax proposed in [10], we define an XML key as (context-path,
(target-path, { key-paths})), where the values of the key-paths uniquely identify
nodes reached following a target-path in the context of each subtree defined by
the context-path.

Example 1. Given the XML trees depicted in Figures 1(a) and 1(b), the following
key definitions allow us to uniquely identify a single node in each of the trees.

– k1 : (ǫ, (paper, {title, year})): in the context of the entire document (ǫ de-
notes the root), a paper is identified by its title and year of publication;

– k2 : (paper, (author, {order}): within the context of any subtree rooted at a
paper node, an author is identified by its order;

– k3 : (paper, (citationQty, {})): within the context of any subtree rooted at
a paper node, there exists at most one citationQty element; that is, it
is identified by an empty set of values. Similarly, we can define unique-
ness constraints for venue, city, pages and author name as follows: k4 :
(paper, (venue, {})) and k5 : (paper, (city, {})) and k6 : (paper, (pages, {}))
and k7 : (paper/author, (name, {})).

Observe that based on the key definitions, it is possible to generate a path
expression for obtaining a node using key values as filters. As an example, based
on k1, we can obtain a (single) paper node from the trees in Figures 1(a)
and 1(b) using the expression /paper[title=‘Integration’ and year=‘2012’] and
the first author with the expression /paper[title=‘Integration’ and year=‘2012’]
/author[order=‘1’]. Thus, these path expressions can be considered as the nodes’
keys or object identifiers. We refer to nodes reached by key paths, such as title
and year as key nodes.

2.2 Strategies for Data Fusion

There are a number of strategies proposed in the literature for solving value
conflicts [6, 36, 16, 13, 17]. Here, we consider a set of strategies based on those
proposed in [6]. We describe the ones that are used in this article below. However,
the set of strategies can be much larger, with little impact on our fusion approach,
as discussed in Section 6.

Trust Your Friends (TYF). This strategy is based on a reliability criterion.
The user assigns a confidence rate for each source, and a value conflict is solved
by choosing the one provided by the source with the highest confidence rate.

Meet In The Middle (MIM). This is a strategy to mediate the conflict by
generating a new value that is a compromise among all conflicting values, e.g.,
an average of all conflicting numeric values.

Cry With The Wolves (CWW). This strategy is defined for choosing the value
reported by the majority of sources.

Choose a Value (CAV). In this strategy the user manually chooses one value
among those reported from the sources.

Pass It On (PIO). This is a non-resolving strategy. Although in most cases
the user wants a single value for each data item, for some items she may want
to postpone the decision for a future fusion process.

Observe that there are high-level strategies such as TYF, MIM, and CWW,
and also value-based strategies such as CAV. In our approach, we reapply only
high-level strategies on subsequent fusion processes without any user interven-
tion. As an example, the conflict on citationQty described in Section 1.1 has
been solved by computing the average value from all the ones reported from the
sources (MIM strategy). This strategy can continue to be applied in future fusion
processes, by taking into consideration the value updates and values uploaded
from new sources.

However, this is not the case for value-based strategies. As an example, con-
sider the conflict on city between sources s1 and s2 depicted in Figure 1(a)

and (b). If the user manually chooses the value ‘Philadelphia’ reported by s2
using the CAV strategy, we can assume that she will continue to do so as long as
the sources keep providing the same values. Once one of them, say s1, modifies
its value to ‘Philadelphia, PA’, it is not clear whether the decision of choos-
ing the value reported from s2 over s1 is correct, and thus the strategy cannot
be reapplied. Otherwise, inconsistencies would be introduced in the database
without the user’s consent.

2.3 Basic Operations

There are a number of definitions for basic operations on XML data, but here
we adopt the ones proposed by [33]. Four operations are considered: edit, copy,
insert, and remove. Edit is an unary operation that operates on simple objects
and has the effect of modifying the object by assigning a value either provided by
the user, or generated by the system as the result of an aggregate function. Copy,
on the other hand, takes the value of a simple object provided from one source,
for copying it to a second source. Insert and remove are operations on complex
objects. Insert is a binary operation that creates a new object in one source, based
on an object already stored in another source. In the newly created object, the
identifiers are filled in with values obtained from the keys of the original object.
Finally, remove is an unary operation that deletes an object from a source, based
on its key.

Regarding the integration process, there are several methodologies for data-
base integration. Here, we adopt a binary ladder strategy [2], in which we first
analyze a first source, then analyze a second source by identifying its incon-
sistencies and managing them with regard to the first source, then analyze a
third source by identifying its inconsistencies and managing them with regard
to the first and second sources, and so on. Furthermore, as stated in Section 1,
we assume that external sources have been previously processed for identifying
entities, producing fully keyed documents. We adopt concepts that are similar
to the notion of “insertion-friendly” set of keys defined in [10]. With insertion-
friendly keys, one can unambiguously determine the position in the tree in which
new elements should be inserted.

3 System Architecture

Our approach for tackling the problem of incrementally fusing XML data is
based on keeping a repository of operations reflecting the user’s decisions and
data provenance, along with a rule base. That is, user-defined high-level fusion
rules are stored in a rule base. The application of a strategy on a data item
is mapped to a sequence of basic operations that are stored in the operations
repository.

The architecture of the system is depicted in Figure 2. We consider the ex-
istence of several XML sources s1, . . . sn, that have been previously transformed
to documents that follow the database schema. That is, we assume that any

structural discrepancies among sources have been solved by a schema integrator
prior to the fusion process. Moreover, we use key values as a means for entity
identification. More specifically, whenever two elements from distinct sources are
used to populate the same database element, based on their key values, they are
considered to refer to the same entity in the real world. Thus, whenever their
attribute values differ, we conclude that there is an attribute value conflict that
should be solved.

The system is based on three modules: fusion, validation, and update. Data
from each source is uploaded to the database separately by the update module.
This module is responsible for checking whether imported elements already exist
in the database, and if there are attribute value conflicts among them. If so, these
attribute values are combined into a single representation in a merged document.
In a merged document, data imported from several sources are combined when-
ever they are mapped to an object that coincide on their key values. Moreover,
it explicit represents value conflicts among sources, along with the provenance
for each value.

As an example, consider the source documents depicted in Figures 1(a) and
1(b) and the key definitions in Example 1. In the merged document, paper

elements imported from sources s1 and s2 are combined because their title

and year key elements coincide, revealing value conflicts on their citationQty
and city values. Similarly, they disagree on who are the first and second authors
of the paper. The resulting merged document, in which values of non-key simple
objects are associated with their provenance, is depicted in Figure 1(c).

UPDATE

keys

Source sj
v.2

VALIDATION Rule
Base Repository

Operations Mediated
 Database

user
queries

merged

first
upload

source
update

documentv.1
Source s1

v.1
Source sn

rules
fusion

FUSION

Fig. 2. Incremental fusion based on provenance.

Value conflicts are solved by the fusion module based on user-defined fusion
rules. Fusion rules are stored in a rule base. They may be defined in the context
of a single element or on a larger context involving multiple elements. Thus, if a
newly detected conflict is within the context of an existing rule then the conflict
can be automatically solved without any manual user intervention. As the result
of applying a rule to a conflict, a value is written in the mediated database, which
consists of fused data. That is, there exists at most one value associated with
any element in the database. Since it contains no value conflicts, user queries are
processed based on data stored in the mediated database.

In order to be able to reapply the same decisions in future fusion processes,
applications of the rules are mapped to sequences of basic operations that are
kept in the operations repository. Similar to database log files, these operations
contain not only the new value of the data item, but also the original source
values. As an example, consider the conflict on citationQty depicted in Figure
1(c). As a result of the application of the Meet in the Middle strategy, value 9 for
the paper’s citationQty is written in the mediated database, and the following
sequence of basic operations is stored in the operations repository: (i) edit the
mediated database (db) to 9; (ii) copy from db to s1, modifying its value from
10 to 9; and (iii) copy from db to s2, updating it from 8 to 9.

We use the notion of validation for determining when the effects of the op-
erations in the repository are identical to the ones already executed in previous
fusion processes. Intuitively, we would like to ensure a strict reproduction of the
user’s decisions, guaranteeing that the same rules defined by the user to decide
previous conflicts will be applied to solve conflicts on the same object in the
future. In the example above, if in new versions of s1 and s2 their values for
citationQty remain unchanged, the operations on both sources are considered
valid, since they continue to update 10 to 9 in s1 and 8 to 9 in s2. However, if one
of them updates its value, say s1 updates it to 12, then the operation on s1 that
maps 10 to 9 is invalid since the original value recorded in the operation does
not match the value reported by the new version. As a result, the update mod-
ule includes citationQty and the values reported by s1 and s2 in the merged
document generated as input to a fusion process.

In the new fusion process, for every conflict in the merged document, it
is checked whether there exists a high-level fusion rule already defined for the
object. If this is the case, the conflict is solved, and both the mediated database
and the operations repository are updated. In our running example, the value
for citationQty in the mediated database is updated to 10, and the sequence of
operations in the repository is replaced with new ones that reflect the new value
recorded in the database. On the other hand, if there exists no fusion rules, or the
existing strategy is value-based then a new decision is requested from the user.
Intuitively, if a sequence of operations is valid there is no need for re-executing
them because their effects are already recorded in the system. Invalid operations
indicate source updates, and they can be solved without user intervention if
high-level fusion rules have been defined on the conflicting objects.

4 Data Model

In this section we present the structure of the data involved in our fusion system:
merged document (Section 4.1), rule base (Section 4.2), and operations repos-
itory (Section 4.3). We also define how fusion rules should be mapped to the
operations repository (Section 4.4).

4.1 Merged Document

There are three categories of XML documents in our system: data source, merged
document, and mediated database. They all follow the same schema which sat-
isfies the following constraint: every element in the schema is associated with a
key that determines how the element is identified in the context of its parent,
based solely on its simple components. As an example, the set of keys in Example
1 is insertion-friendly for all the XML documents in Figure 1 given that every
object is either keyed by a set of simple objects, such as paper objects, or they
are unique in the context of their parent, such as citationQty and name.

A merged document differs from the source and mediated database on the
contents of its simple objects. Instead of having text values, the merged docu-
ment contains a set of pairs (sourceId, value) for every non-key simple object.
Intuitively, a merged document combines into a single node all the values ex-
tracted from a set of sources that are identified by the same key. Discrepancies
among these values indicate a conflict that is solved by fusing them into a single
value, which in turn is stored in the mediated database.

Definition 1. Given a set of sources S and a set K of insertion-friendly XML
keys, we define a merged document Tm as an XML tree with a set of nodes V ,
such that a leaf node v ∈ V is either: (a) a key node, which contains a single text
value; or (b) a non-key node containing a set of pairs (sourceId, value), where
sourceId is the identifier of a source s ∈ S and value is extracted from a node in
s that has the same key that identifies v in Tm according to K.

An example of a merged document is illustrated in Figure 1(c). Given a
merged document Tm and a key k, we define a function value(Tm, k) to return
the set of pairs associated with the node v with key k in Tm. We define a similar
function on sources and the mediated database to return the text value associated
with a simple object.

4.2 Rule Base

Given that a merged document explicitly represents value conflicts, we need a
means for defining how these conflicts are solved. In our system, this is accom-
plished by user-defined fusion rules, stored in the rule base.

Definition 2. A fusion rule is a pair 〈σ,Σ〉, where
(1) σ is a path expression representing the context covered by the strategy;
(2) Σ is a non empty list of strategies for handling value conflicts on nodes

reached by the context path σ.

The context of a rule is defined by a path expression σ and therefore it may
cover not only a single element or attribute node, but also a set of nodes reached
by following σ. Furthermore, a rule may define a list of strategies for solving a
conflict. Thus, if the first strategy is not able to single out a value for a given
data item, the following strategies are considered one by one until either the end
of the list is reached or the conflict is solved.

Example 2. Consider the value conflicts on paper’s citationQty and author
names depicted in Figure 1(c). The fusion rules described in Section 1.1 can be
defined as follows.

– 〈/paper[title=‘Integration’ and year=‘2012’]/citationQty, [MIM] 〉
– 〈/paper[title=‘Integration’ and year=‘2012’]/author/name, [CWW, TYF]〉

The first rule determines that conflicts on citationQty for the paper iden-
tified by ‘Integration’ as its title and ‘2012’ as its year, is solved by the
Meet in the Middle (MIM) strategy. That is, the average value is computed,
considering the imported values from all sources. The second rule defines that
for any author of the same paper, name conflicts are solved by first finding the
value reported by the majority of the sources (Cry With the Wolves - CWW

strategy). If the strategy does not single out a value then Trust Your Friends
(TYF) strategy is applied. Assuming that the confidence rate of s1 is higher than
s2, the value reported from s1 is chosen over that from s2.

Observe that rules are defined in a context defined by a path expression.
Thus, if conflicts on citationQty of all papers are to be solved by the MIM strat-
egy, we could define a rule with a larger context as follows: 〈/paper/citationQty,
[MIM]〉. That is, conflicts on any node reached by the path /paper/citationQty
are solved using the same strategy. Besides the notion of rule context, in our
previous work, we introduce the notion of a valid set of rules, based on the
concept of rule overriding. That is, inspired by object-oriented concepts, when
the context of a rule is contained in the context of another, we choose to ap-
ply the one most specific to the node that presents a value conflict. As an ex-
ample, we can define a general rule for solving conflicts on author names as
〈/paper/author/name, [TYF]〉, which can be overrid by a rule that is specific for
2012 papers: 〈/paper[year=‘2012’]/author/name, [CWW]〉.

4.3 Operations Repository

One of the main goals of our proposed system is the ability to reapply user’s
decisions in future fusion processes. Our approach to reach this goal is to map the
application of fusion strategies to sequences of basic operations that are stored
in the operations repository.

Definition 3. An operations repository is a list of records, grouped into
blocks, where each record refers to a basic operation with the following attributes:

– bId: sequential number that identifies a list of records; given two bIds b1
and b2, b1 < b2 if b1 has been executed before b2;

– objId: key value that uniquely identifies an object on which the operation is
executed;

– op: the operation can be an object insertion (in), removal (rm), or a simple
object value edition (ed) or copy (cp);

– origin: source from which the operation obtains an object (or value) to be
inserted (or copied) to another source. It is set to null for removal and edit
operations;

– target: source updated by the operation;
– prevVal: target object value overwritten by operations edit and copy;
– newVal: new target object value.

In the sequence we present an example of a block of operations that results
from the application of a fusion strategy.

Example 3. Consider the rule defined for attribute citationQty in our running
example. Its value is set to 9 in the mediated database when sources s1 and s2
are uploaded based on the MIM strategy. In the operations repository we store
one edit operation in order to modify the mediated database (db) value to 9,
followed by two copy operations from db to s1 and s2, as illustrated in Figure 3.

bId objId op orig target prevVal newVal

14 paper[..]/citationQty ed null db 10 9
14 paper[..]/citationQty cp db s1 10 9
14 paper[..]/citationQty cp db s2 8 9

Fig. 3. A block of operations resulting from the Meet in the Middle strategy

Observe that the operations keep the original value reported by the sources in
the prevVal field. Thus, when new sources are uploaded or if one of the sources
updates the value, the system can continue to compute the average. For instance,
consider the situation described in Section 1.1, in which a new version for s1 is
uploaded with the value 12 for citationQty. If the value uploaded from s2 were
not kept in the operations repository, we would be unable to compute the new
average value of 10.

Observe also that the three operations belong to the same block, indicated by
the same block identifier (bId: 14). This is because in the validation process each
operation involving the uploaded source is analyzed to check whether the value in
the current version matches the value recorded in the operation. Consider again
the update from 10 to 12 on s1’s citationQty and the operations in Figure 3.
The first copy operation from db to s1 is invalid, since the value of prevVal is
10, while the new version reports 12. However, not only this operation should
be considered invalid, but the whole block, since it reflects the application of
a fusion strategy. Moreover, the reapplication of the MIM strategy affects not
only the value of s1, but all the other sources and the db. Thus, a block is
considered invalid if it contains an invalid operation. In other words, validation
is an operation-based process, but once an operation is found invalid, the whole
block in which it is contained is considered invalid.

4.4 Mapping Fusion Rules to Operations

In this section we present details on how the application of a fusion strategy is
recorded as a block of operations in the repository. First, observe that as the
result of a rule application either: (a) a rule successfully singles out a value for an
object that presented a conflict or (b) the user decides to postpone the decision
on how to solve it for future fusion processes (Pass it on - PIO strategy).

In case (a) the block of operations has the following structure. First, an
operation for modifying the value in the mediated database (db) is generated
followed by a sequence of operations to copy this value to each of the sources
that provide values for the same object. Observe that there are basically two
types of strategies for solving a conflict: choose one value among the conflicting
ones, such as strategies TYF, CWW, and CAV, or generate a new value, such as
strategy MIM. An example of a block generated from the application of the MIM

strategy is presented in Figure 3, in which we modify the value of db using an
edit operation. However, when the strategy chooses one of the values provided
from a source si, instead of an edit operation, we generate a copy operation from
si to db. As an example, if the conflict on citationQty described in Example 3
is solved by choosing the value provided by s1 over s2, we generate a block with
two operations: a copy from s1 to db followed by a copy from db to s2.

In case (b), in which the user decides to postpone the fusion decision, we keep
the values provided by the sources in the operations repository, by modifying
them to a null value using an edit operation. Since the actual value remains
unknown, no value is recorded in the mediated database. Consider again the
conflict on citationQty. If the user applies the PIO strategy, two edit operations
are recorded in the repository: from 10 (as prevVal) to null on s1, and from 8
to null on s2.

An algorithm for generating a block of operations is given in Figure 4. Pro-
cedure insBlockOp takes as input five parameters: the strategy that has been
applied to solve the conflict; the key objId of the object with conflicting values;
a set allVal of pairs (sourceId, val) with the values reported from the sources,
which may include a pair (db, val) if the mediated database already contains
a value for the node; the value finalVal that results from the application of the
strategy; and the source identification valSource that provides finalVal. After ob-
taining a new block identification bId (Line 1), the procedure keeps in dbPrevVal
the previous value stored in the mediated database (Lines 2 to 4). Lines 7 to 9
considers the case when the strategy is PIO, generating a block of operations to
edit the value of each source to null. The case when a final value for solving
the conflict has been determined is considered in Lines 11 to 17. A valSource

with null value indicates that a new value, not extracted from the sources have
been generated to solve the conflict. In this case, an edit operation is generated
(Lines 11 and 12); otherwise, we generate a copy operation (Lines 14 and 15).
In the sequence, copy operations from the database to all remaining sources are
recorded in the same block (Lines 16 to 17).

Procedure insBlockOp can be executed in O(|S|) time, where |S| denotes
the number of input sources. To see this, observe that the set allVal is of size

Procedure insBlockOp (strategy, objId, allVal, finalVal, valSource)
Input: strategy applied to solve the value conflict, objId of the node,

allVal: a set of pairs (sourceId, val),
finalVal: the value recorded in the mediated DB,
valSource: the sourceId that provided finalVal

1. bId:= new(block); {generates a new bId}
2. if there exists a pair (db, v′) in allVal then

3. dbPrevVal:= v
′;

4. remove (db, v′) from allVal;
5. else

6. dbPrevVal:= null;
7. if strategy is ‘PIO’ then

8. for each (sourceId, val) in allVal do

9. insOpRep([bId, objId, ‘ed’, null, sourceId, val, null]);
10. else

11. if valSource is null then {the strategy created a new value}
12. insOpRep([bId, objId, ‘ed’, null, ‘db’, dbPrevVal, finalVal]);
13. else {the strategy chose a reported value}
14. insOpRep([bId, objId, ‘cp’, valSource, ‘db’, dbPrevVal, finalVal]);
15. remove (valSource, finalVal) from allVal;
16. for all pairs (sourceId, val) in allVal do

17. insOpRep([bId, objId, ‘cp’, ‘db’, sourceId, val, finalVal]);

Fig. 4. Algorithm for inserting a block of operations

O(|S|) since it contains at most one element for each source. Thus, checking
containment in the set (Line 2) and removal from the set (Lines 4 and 15) takes
O(|S|) time. Lines 8-9 and 16-17 also take O(|S|) time since procedure insOpRep
takes constant time for writing a record at the end of operations repository file.

One advantage of keeping the operations repository is the feedback the system
can give back to the sources. That is, after the fusion process, we can easily
generate a sequence of operations for making any source si consistent with the
mediated database simply by selecting the operations in which the target is
si. Considering again the contents of the operation repository in Figure 3, a
feedback for s1 consists of the first copy operation, while for s2 it contains the
second copy operation.

5 System Modules

Given the data model presented in the previous section, we are now ready to de-
scribe the functionality of the fusion, validate, and update modules that compose
our system.

5.1 Fusion Module

The major goal of the fusion module is to generate a mediated database resulting
from the fusion of data imported from several sources. The input to the fusion

module is a merged document and a set of user-defined fusion rules. Besides
generating the mediated database, rules are stored in the rule base, and the
operations repository is updated in order to reflect to last fusion operations that
produced the values stored in the database.

Figure 5 presents an algorithm for the fusion module. Clean is a recursive
function that traverses a merged document in post-order. Observe that in a
merged document, all value conflicts are in the leaves. Thus, when processing
internal nodes, the algorithm only calls the clean function recursively in order to
collect the set of source identifiers that populate its descendants. This is because
the provenance of the uploaded values in the merged document are recorded only
on the set of pairs (sourceId, val) associated with the leaves. Thus, given obj,
an internal node in a merged document, there exists a correspondent node in a
source if it contributes with at least a value for one of the obj’s descendants. For
each of these sources, we generate an insert operation in the operations repository
by invoking the procedure insObjOpRep (Lines 1 to 7). In this procedure, for
each sourceId in the set, it checks whether an insertion operation for the source
already exists, and if not a new one is recorded.

When processing a simple non-key object, the function first obtains its set
of pairs (sourceId, val) and its set of value providers by calling getValues and
getSourceIds, respectively (Lines 9 and 10). If all sources agree on the reported
value, it is simply stored in the mediated database and a block of operations is
generated in the operations repository (Lines 11 to 14). Otherwise, we first look
if there exists already a fusion rule defined for the node (Line 16) and check
whether the conflict can be solved calling procedure applyRule. Observe that
applyRule only reapplies high-level strategies such as TYF, MIM, and TYF. If
the existing strategy is value-based, such as CAV, then it is removed from the rule
base, without solving the conflict. Thus, if the conflict persists, the definition of
a new rule is requested from the user (Lines 21 to 26), which is stored in the rule
base (Line 23). If after this process, the conflict still persists, we conclude that
the user chooses not the solve it at the moment. Thus, we record a PIO strategy
for the node in the rule base, and remove the node from the database if it exists.
The fusion decision is also recorded in the operations repository by invoking
the insBlockOp procedure (Line 33). It is worth noticing that by allowing the
user to postpone the fusion decision, it is possible to upload several sources to
the system before making any decision on how to solve the conflicts. That is,
although we consider a binary ladder integration approach in which sources are
uploaded to the system one-by-one, the cleansing decisions are not necessarily
made considering one new source at a time. It is also worth noticing that human
input are valuable and should be used whenever possible. Therefore, we designed
our system so that we notify users when previous changes have been invalidated
and allow them to give suggestions on how these changes might be managed.

Algorithm clean can be executed in O(|T |3|R||S|) time, where |T | is the size
of the merged document, |R| is the size of the rule base and |S| is the number
of sources. Observe that each node in the tree is processed once. For internal
nodes, procedure insObjOpRep is invoked to determine whether the collected

Function clean (obj)
Input: obj: an object with key objId in a merged document mergedDoc
Output: setsIds: set of sourceIds that populate an obj’s descendant in mergedDoc

1. if obj is an internal node then

2. setsIds:= {};
3. for all obj’s children c do

4. if c is not a key object then

5. setsIds:= setsIds ∪ clean(c);
6. insObjOpRep(objId, setsIds);

7. return setsIds;
8. else

9. allVal:= getValues(objId); {return set of pairs (sourceId, val)}
10. setsIds:= getSourceIds(allVal);
11. if all sources provide the same value v then

12. updateDB(objId, v);
13. sourceFinalVal:= smallest sourceId in setsIds;
14. insBlockOp(null, objId, allVal, v, sourceFinalVal);
15. else

16. rule:= getRule(objId); {obtain list of strategies [r1, ..., rn] from rule base}
17. solved:= false;
18. while not solved and rule not empty do

19. r:= extractFirst(rule);
20. solved:= applyRule(r, allVal, finalVal, sourceFinalVal);
21. if not solved then {request new rule from the user}
22. newRule:= getNewRule(objId) from user input;
23. storeRuleBase(newRule);
24. while not solved and newRule not empty do

25. r:= extractFirst(newRule);
26. solved:= applyRule(r, allVal, finalVal, sourceFinalVal);
27. if not solved then

28. r:= ‘PIO’;
29. finalVal:= null;
30. remDB(objId);
31. else

32. updateDB(objId, finalVal);
33. insBlockOp(r, objId, allVal, finalVal, sourceFinalVal);
34. return setsIds;

Fig. 5. Algorithm clean

sourceIds have already been inserted in the operations repository. This takes a
single traversal of the operations repository, which is of size O(|T | ∗ |S|), since
each node in the tree may have at most one record for each source in the set
S. For leaves, on the other hand, the execution of getValues, getSourceIds,
and also for checking whether all sources agree on their values take O(|S|) time,
given that each leaf may have at most one value for each source. If all sources
agree, procedures updateDB and insBlockOp procedures are invoked, which takes

O(|T |) and O(|S|) time, respectively. The existence of value conflicts among
sources requires the application of a rule. Function getRule can be executed
in O(|R| ∗ |T |2) time. Each rule is considered once, and the path expression σ
in the rule is evaluated on T to check whether it contains the cleaning node.
This is executed in (|T | ∗ |σ|) time [18] which is O(|T |2). Once the rule to be
applied is singled out, each of its strategies are applied by calling applyRule,
which can be executed in time O(|S|) since the rules require scanning through
the values provided by each source. The execution time for getting a new rule
require the same time as the application of a new rule, in addition to storing it
in the rule base, which takes O(1) given that the rule is written at the end of the
file. Updates on the database in lines 30 and 32 takes O(|T |), while the insertion
of a new block of operations in line 33 is O(|S|). Thus, the entire algorithm is
O(|T | ∗ ((|T | ∗ |S|) + |S|+ (|T |+ |S|) + (|R| ∗ |T |2 + |S|+ |T |+ |S|))), which is
O(|T |3|S||R|).

Example 4. Consider again our running example. Suppose that first, source s1
is uploaded to the mediated database. Observe that for the first uploaded source
s1, the merged document is almost identical to the source, but with the non-key
leaves annotated with the provenance of the single element in the set {(s1, val)}.
Since there are no conflicts, algorithm clean generates a document identical to
s1 in the mediated database and records these operations in the operations
repository. The contents of the operations repository at this point is illustrated
in Figure 6. Observe that the insertion operations (blocks 4, 6, and 8) have been
generated by procedure insObjOpRep, while the remaining blocks are recorded
by insBlockOp.

bId objId op orig target prevVal newVal

1 paper[..]/venue cp s1 db null ‘Int. Conf..’
2 paper[..]/city cp s1 db null ‘Philly’
3 paper[..]/author[order=‘1’]/name cp s1 db null ‘John’
4 paper[..]/author[order=‘1’] in s1 db
5 paper[..]/author[order=‘2’]/name cp s1 db null ‘Jack’
6 paper[..]/author[order=‘2’] in s1 db
7 paper[..]/citationQty cp s1 db null ‘10’
8 paper[title=‘Int..] in s1 db

Fig. 6. Operations repository after upload of source s1

If in the sequence s2 is uploaded, the contents of the operations repository
are modified as presented by Figure 7. New operations are generated for s2’s
internal nodes (blocks 11, 13, and 16) but not for s1, because they have already
been generated during s1’s upload. Since value conflicts have been detected on
city, author names, and citationQty, new blocks reflecting the user’s decisions
are recorded (blocks 9, 10, 12, and 14). Observe also that previously existing

bId objId op orig target prevVal newVal

1 paper[..]/venue cp s1 db null ‘Int. Conf..’
2 paper[..]/city cp s1 db null ‘Philly’
3 paper[..]/author[order=‘1’]/name cp s1 db null ‘John’
4 paper[..]/author[order=‘1’] in s1 db
5 paper[..]/author[order=‘2’]/name cp s1 db null ‘Jack’
6 paper[..]/author[order=‘2’] in s1 db
7 paper[..]/citationQty cp s1 db null ‘10’
8 paper[title=‘Int..] in s1 db
9 paper[..]/city cp s2 db ‘Philly’ ‘Philadelphia’
9 paper[..]/city cp db s1 ‘Philly’ ‘Philadelphia’
10 paper[..]/author[order=‘1’]/name cp s1 db ‘John’ ‘John’
10 paper[..]/author[order=‘1’]/name cp db s2 ‘Jack’ ‘John’
11 paper[..]/author[order=‘1’] in s2 db
12 paper[..]/author[order=‘2’]/name cp s1 db ‘Jack’ ‘Jack’
12 paper[..]/author[order=‘2’]/name cp db s2 ‘John’ ‘Jack’
13 paper[..]/author[order=‘2’] in s2 db
14 paper[..]/citationQty ed null db 10 9
14 paper[..]/citationQty cp db s1 10 9
14 paper[..]/citationQty cp db s2 8 9
15 paper[..]/pages cp s2 db null ‘18-29’
16 paper[title=‘Int..] in s2 db

Fig. 7. Operations repository after upload of source s2

blocks involving these objects are removed from the repository (blocks 2, 3, 5,
and 7). These removals are executed by the update module, which is based on
the validation process, described in the next section.

5.2 Validation Module

The main goal of the validation module is to determine whether the execution of
the operations in the repository have the same effect if executed on new versions
of the sources. That is, if a new version presents no updates then all operations
on the source are valid and thus there is no need for reexecuting them. On
the other hand, an invalid operation indicates a source update which requires
the object to go through a new fusion process. By selecting objects involved in
invalid operations, the validation process can substantially reduce the volume
of data considered in subsequent fusion processes. The validation module is also
responsible for detecting removals and insertions in the source.

An algorithm for the validation module is presented in Figure 8. It takes
as input an XML tree provided by a source identified by sId, and produces
as output three sets, all of them containing objIds: invalidUpdate for invalid
operations due to source value updates, invalidRem for invalid operations due to
removals in the source, and newObjIds for elements inserted in the new version.
First, we initialize the set newObjIds with the keys of all nodes in the document s,

Function validate (s)
Input: s: an XML tree with a new version for data source sId

Output: invalidUpdate: objIds for invalid operations due to updates,
invalidRem: objIds for invalid operations due to removals
newObjIds: objIds of elements inserted in the new version

1. newObjIds:= set of all objIds in s;
2. invalidUpdate:= {};
3. invalidRem:= {};
4. for each block b in the operations repository do

5. for each record r in b do

6. if r.origin == sId or r.target == sId then

7. if r.objId is not in newObjIds then

8. insert r.objId in invalidRem;
9. else

10. remove r.objId from newObjIds;
11. if (r.op == ‘cp’ or r.op == ‘ed’) and

((r.origin == sId and value(s, r.objId) <> r.newVal) or
(r.target == sId and value(s, r.objId) <> r.prevVal)) then

12. insert r.objId in invalidUpdate;
13. return (invalidUpdate, invalidRem, newObjIds);

Fig. 8. Algorithm for validating operations

and the remaining sets as empty (Lines 1 to 3). Then each block in the operations
repository is examined. Observe that blocks consist of operations on the same
object and there exists at most one operation involving each source, but multiple
operations involving the mediated database. Recall that a block is considered
invalid if it contains at least one invalid operation. Thus, when validating a
block, we first check whether there exists an operation involving sId. If so,
either the object continues to be provided by the source or it has been removed.
In the latter case, we consider the operation invalid and insert the objId in the
invalidRem set (Lines 7 and 8). In the former case, since the object has already
been provided in a previous version, we remove it from newObjIds (Line 10).
Moreover, the algorithm checks if the value provided in the new version remains
unchanged. Recall that in an operation record, newValue refers to the value
provided by the origin source to update the target source, while prevValue

refers to the value previously stored in target. Thus, we consider an operation
invalid either if it contains sId as the origin and the value provided by the new
version disagrees with the operation’s newValue attribute or if it contains sId as
the target and the provided value disagrees with the prevValue attribute (Lines
11 and 12). Recall that function value (s, objId) is responsible for extracting
the value associated with the node with key objId in the document s.

Function validate can be executed in O(|T |2|S|) time. To see this, observe
that the number of blocks in the operations repository is the number of nodes in
the database T , and that each block contains at most |S| records, one for each
source. When processing a record in the repository, we have to check whether

the object is in the set newObjIds, which is of size O(|T |) and possibly obtain
its value in the database, which takes O(|T |) time. Thus, the time complexity of
the algorithm is O(|T | ∗ |S| ∗ |T |).

(a)

 author: order: 1
 name: ’Jack’

 citationQty: 12
 pages: ’1−10’

 name: source s2: ’John’
 citationQty: source s1: 12

source s2: 8
 pages: source s1: ’1−10’

source s2: ’18−29’

(b)

 author: order: 2

Mediated DB

(c)

 author: order: 1
 name: ’Jack’

 author: order: 2
 name: ’John’

 citationQty: 10

paper title: ’Integration’
 year: 2012
 venue: ’Int. Conf..’

city: ’Philadelphia’

Source s1 − new version
paper title: ’Integration’
 year: 2012
 venue: ’Int. Conf..’

Merged Document
paper title: ’Integration’
 year: 2012
 author: order: 1

city: ’Philly’

 name:source s1: ’Jack’
source s2: ’Jack’

Fig. 9. Upload of s1’s new version.

Example 5. As an example, consider the new version for source s1 (referred to
as s1.v2) presented in Figure 9(a) and the operations repository in Figure 7.
The operation in the block with bId:1 is valid because s1 is the origin and
the value in newVal coincides with the value in the new version s1.v2. The
insertion operation in block 4 is also valid because there exists a node with
the same key for the author with order:1 in s1.v2. However, the insertion in
block 6 is invalid because there exists no author with order:2 in s1.v2 and
thus this object is inserted in the invalidRem set. The next block containing
an invalid operation is the one with bId:10. The first operation in this block
has s1 as the origin but the value in newVal (‘John’) disagrees with the value
in s1.v2. Thus, the object is inserted in the invalidUpdate set. After processing
all the operations in the repository, the only remaining object in the newOb-
jIds is /paper[..]/pages given that it is the only new object in the new version.
The final contents of the other two sets are: {/paper[..]/author[order=‘1’]/name,
paper[..]/citationQty} for invalidUpdate, and {/paper[..]/author[order=‘2’], /pa-
per[..]/author[order=‘2’]/name} for the set invalidRem.

The sets resulting from the validate module are then given as input to the
update module, which is responsible for generating a merged document with
conflicts involving the updated objects.

5.3 Update Module

The goal of the update module is twofold. First, it generates a merged document
which explicitly represents conflicts involving elements in a new source or in
elements updated in a new version of a source. This document is the input to the

fusion process described in Section 5.1. Second, it removes from the operations
repository blocks containing invalid operations.

An algorithm for the update module is given in Figure 10. Function update

takes as input a new version of a source sId, represented by an XML tree,
and the three sets generated by the validate function and processes each of
them as follows. First, observe that objIds in the invalidUpdate set are always
simple elements since they are the ones that contain associated values. Thus, we
simply remove the block of operations involving the object from the operations
repository, and an element in the merged document is generated substituting
the value associated with sId by the one provided by its new version (Lines 2
to 6). Observe that function extractValues receives a list of operation records,
and returns a set of pairs (sourceId, value), where value consists of the original
value provided by sourceId. That is, if in the operation record sourceId is the
origin then value is extracted from the newValue attribute; otherwise, it is
extracted from prevValue. Moreover, procedure insMerged(mergedDoc, objId,
allVal) inserts an element n identified by objId in mergedDoc and all the elements
in the path from the root to n if they do not exist. The values for n are obtained
from the set of pairs in allVal, except the pair associated with the source ‘db’.
The sets invalidRem and newObjIds are processed similarly (Lines 7 to 18, and
19 to 24, respectively). Observe, however, that when an object is removed from
the new version, we must check if sId was the only source that provided it. If
this is the case, we also have to remove it from the mediated database (Lines 11
and 16).

The update module may be invoked both after a validation process or for
the first upload of a new source. For new sources, function update is called with
both invalidUpdate and invalidRem as empty sets, and newObjIds containing the
set of all objIds in the new document.

Function update can be executed in O(|T |2|S|) time. Observe that each ob-
ject in the source is either in the set invalidUpdate, invalidRem, or newObjIds.
For each of them, the operations repository, of size O(|T | ∗ |S|) is traversed once
in order to be updated, and either the database or the merged document, both
of size |T |, has to be updated. These operations require a single traversal on the
tree. Thus the entire function is O(|T | ∗ (|T ||S|+ |T |), which is O(|T |2|S|).

Example 6. Consider again the contents of the sets of updated objIds in Example
5 and the operations repository in Figure 7. Based on the contents of invalidUp-
date, block 10 (on paper[..]/author[order=‘1’]/name and block 14 (on pa-

per[..]/citationQty are removed from the repository and elements in the
merged document are inserted with the original values provided by source s2 and
the values in the new version of s1, as depicted in Figure 9(b). Similarly, based
on the contents of invalidRem, block 6 (on paper[..]/author[order=‘2’]) is
removed from the repository. Observe that in this case, the corresponding object
is not removed from the database because the repository still contains an inser-
tion operation based on the author list provided by s2. Moreover, block 12 is
removed, with operations on paper[..]/author[order=‘2’]/name, and an el-
ement is generated in the merged document, containing only the value provided

Function update (s, invalidUpdate, invalidRem, newObjIds)
Input: s: an XML tree provided by source sId

invalidUpdate, invalidRem, newObjIds: sets of objIds of updates on s

Output: mergedDoc: updated values in s combined with values from other sources

1. mergedDoc:= ǫ;
2. for each objId in invalidUpdate do

3. newVal:= value(s, objId);
4. extract block b involving objId from the operations repository;
5. allVal:= extractValues(b) − {(sId, _)} ∪ {(sId, newVal)};
6. insMerged(mergedDoc, objId, allVal);
7. for each objId in invalidRem do

8. if objId refers to an internal node then

9. remove [_, objId, ‘in’, sId, ‘db’, null, null] from the operations repository;
10. if there exists no other operation on objId in the operations repository then

11. remDB(objId);

12. else

13. extract block b involving objId from the operations repository;
14. allVal:= extractValues(b) − {(sId, _)};
15. if allVal is empty then

16. remDB(objId);

17. else

18. insMerged(mergedDoc, objId, allVal);
19. for each objId in newObjIds do

20. if object with key objId is a simple object then

21. newVal:= value(s, objId);
22. extract block b involving objId from the operations repository;
23. allVal:= extractValues(b) ∪ {(sId, newVal)};
24. insMerged(mergedDoc, objId, allVal);
25. return mergedDoc;

Fig. 10. Algorithm for the update module

by s2. Given that the set newObjIds contains a single element paper[..]/pages,
block 15 is removed from the repository, and the value provided by s2 extracted
from the operation is combined with the new element inserted in s1. The result-
ing merged document is presented in Figure 9(b). Observe that elements venue
and city, which remained unchanged in the new version are not inserted in the
merged document since their operations remain valid.

Considering only the fusion rules presented in Example 2, value conflicts
on elements citationQty and author name can be solved without any manual
intervention, but not on pages. Thus, the fusion module requests a new rule
from the user. If she decides to postpone the decision then the system sets the
strategy to be PIO. The resulting mediated database is presented in Figure 9(c)
and the final contents of the operations repository is given in Figure 11. Here
we do not show the removed blocks, but only the ones that remained from the
previous snapshot and the new blocks, which are above and below the dashed
line, respectively.

bId objId op orig target prevVal newVal

1 paper[..]/venue cp s1 db null ‘Int. Conf..’
4 paper[..]/author[order=‘1’] in s1 db
8 paper[title=‘Int..] in s1 db
9 paper[..]/city cp s2 db ‘Philly’ ‘Philadelphia’
9 paper[..]/city cp db s1 ‘Philly’ ‘Philadelphia’
11 paper[..]/author[order=‘1’] in s2 db
13 paper[..]/author[order=‘2’] in s2 db
16 paper[title=‘Int..] in s2 db
17 paper[..]/author[order=‘1’]/name cp s1 db ‘John’ ‘Jack’
17 paper[..]/author[order=‘1’]/name cp db s2 ‘Jack’ ‘Jack’
18 paper[..]/author[order=‘2’]/name cp s2 db ‘Jack’ ‘John’
19 paper[..]/citationQty ed null db 9 10
19 paper[..]/citationQty cp db s1 12 10
19 paper[..]/citationQty cp db s2 8 10
20 paper[..]/pages ed null s1 ‘1-10’ null

20 paper[..]/pages ed null s2 ‘18-29’ null

Fig. 11. Operations Repository after upload of s1’s new version

Although the complexity of the algorithms in the paper had been presented
in terms of the input size, the complexity of an incremental algorithm can also
be measured in terms of the size of changes in the input and output, which
represents the updating costs that are inherent to the incremental problem
itself. With this respect, an incremental algorithm is said to be bounded if
its cost can be expressed as a function of the size of changes. Intuitively, the
algorithm is bounded if it processes only the subset of data input and out-
put that change [29]. Recall that the goal of function validate is to deter-
mine which objects have been changed. That is, |changed| = |invalidUpdate|+
|invalidRem| + |newObjIds|. Moreover, these changes affect the value of these
objects in the mediated database and the corresponding records in the oper-
ations repository. Given that the merged document T is built based on these
records, |affected | = |T |. The extraction of these records from the operations
repository and the update of the mediated database can be done in time defined
as a function of |affected | if there exists an appropriate index structure on the
objId both on the operations repository and the mediated database. Similarly,
in order to bound the time complexity of the clear function to |affected | we need
an auxiliary structure to get the fusion rule defined on each object affected by
the changes in the source new version.

6 Related Work

Data integration and cleaning have been studied extensively by the database
community [4, 7]. Most of previous works consider data on relational format, but
recently it has been stressed the need for investigating the problem of solving

conflicts on semi-structured data. XClean [34] is a system that allows declara-
tive and modular specification of a cleaning process. It consists of a declarative
language with operators that cover not only the fusion process, but also entity
identification and combination of values that refer to the same object. The main
goal is to provide a modular system that can be easily extended with new oper-
ators. Potter’s Wheel [30] follow a cleaning strategy based on a set of operations
to transform data, such as format, drop, copy, merge, split, divide, fold and se-
lect. However, instead of storing the result of a data transformation, the sources
are stored along with the definition of the transformation. The transformation
is applied on-the-fly whenever a consistent and clean information is required.
Hummer [5] and Fusionplex [25] are systems that focus on the fusion process.
Hummer proposes an extension for SQL with fusion functions that can be ap-
plied to attributes in the query result. Fusionplex is also a strategy-based system
in which conflicts are solved based both on metadata such as timestamp, cost,
accuracy, and availability, and value-based strategies. However, none of these
systems focus on incremental updates on fused data when sources are updated,
which is the goal of our work.

There are a number of strategies for data fusion proposed in the literature
[6, 36, 16, 13, 17], and a survey can be found in [7]. The strategies we described
in Section 2.2 and used throughout the paper were introduced in [6]. However,
extending our system with new strategies have little impact on our incremental
update approach. First, observe that as a result of the application of a strategy,
one of the following sequence of operations is recorded: (case 1) a copy operation
from a source to the mediated database and several copy operations from the
mediated database to each remaining source; and (case 2) an edit operation in
the mediated database and several copy operations from the mediated database
to each source. In the work described in [36], given a large number of facts that
correspond to conflicting information obtained from several websites, it applies
an iterative method to infer the trustworthiness of websites and to determine
the confidence of facts based on the inferred trustworthiness. Solomon [16] is
a system that can detect copying between sources and measure the quality of
sources based on the intuition that copying may change the sources’ quality. It
applies the results to solve data conflicts and to decide true values of entities. In
[13], it is proposed a model for determining the relative accuracy of attributes.
Based on accuracy rules and an inference system, this work determines whenever
possible a unique entity whose attributes are composed of the most accurate
values from all conflicting attributes from the same real world object. If there
is not enough information to generate a complete entity, the work computes the
top-k candidate entities based on a preference model. Another work that focus on
determining a unique entity whose attributes are consistent and store the most
current value is described in [17]. The conflict resolution is solved by specifying
data currency in terms of a partial currency order and currency constraints, and
by enforcing data consistence with conditional functional dependencies. Based
on the results produced by the aforementioned strategies, the user can solve a
value conflict by choosing the most trustworthy fact, the most appropriate true

value, the most appropriate top-k candidate entity, or by simply agreeing with
the result returned by the strategy. As the value that is chosen to solve a value
conflict is always obtained from a given source, our system can be extended
to consider these strategies recording their results in the operations repository
following case 1.

Regarding provenance-based integration systems that have been proposed in
the literature, the ELIT (Exploration and LIneage Tracing) system [32] focuses
on the lineage tracing problem in mediator-based integration systems. It collects
information related to provenance during query processing in order to use this
information to identify the data in the heterogeneous sources that contributed
to a query answer. In Trio [3, 35], data provenance is used to estimate the quality
of imported data. Similar to our approach, the system stores values of the same
piece of data imported from external sources. However, these value conflicts are
solved by attaching confidence rates to values. But ELIT and Trio differ from our
work on how provenance is applied in the integration process. Differently from
our work, neither ELIT nor Trio store provenance on data transformations, which
in our system are based on fusion rules and, therefore, they cannot be used to
reapply previous fusion decisions.

Two systems that follow the operation-based approach, i.e., keep track of
provenance related to data and transformations based on operations, are CPDB
(Copy-Paste DataBase) [8, 9] and CHIME (Capturing Human Intension Meta-
data with Entities) [1]. The main goal of CPDB is to manage provenance for
manually curated databases, as defined by its authors as follows. “Given a defi-
nition of the complete and correct history of a database as it evolves over time,
the goal of CPDB is to store sufficient provenance information to be able to
answer queries about the history given only the provenance information and the
final database state(s)”. Also, Buneman et al. [8] investigate four techniques for
storing provenance information, named naive provenance, transactional prove-
nance, hierarchical provenance e transactional-hierarchical provenance. These
techniques are aimed to reduce the provenance storage size, by defining different
levels of details, from a higher level of detail (i.e., naive provenance) to a lower
level of detail (i.e., transactional-hierarchical provenance). On the other hand,
in CHIME the user first integrates heterogeneous sources into a single relation
using as a basis a set of operations. These operations are collected automati-
cally and store the data used in the integration, as well as which data is correct.
Then, the user may query this integrated relation to extract information about
the data collected in order to perform data audit. Our model differs from CPDB
and CHIME on its purpose. We aim at reapplying fusion decisions in subse-
quent source uploads, while this feature is not supported neither by CPDB nor
CHIME.

Orchestra [21] is a system for sharing structured data that is collabora-
tively authored by a large community of users. It models the exchange of data
among sites as update exchange among peers, which is subject to transforma-
tions through schema mappings. Also, it employs data provenance for enforcing
trust policies that are used to solve conflicts and for performing update exchange

incrementally. Panda [19, 20] is a generic framework for selectively update the
output of a data-oriented workflow. That is, the user selects the data items she
wants to update, and the system traces back their origin in the workflow in order
to recompute their current values. The application of a fusion rule can be consid-
ered a data transformation in the Panda setting. However, Orchestra and Panda
are based on specific characteristics that differs them from our work. Orchestra
requires that each source provides its updates (delta) since the last integration
process, while our approach does not require delta files, and has a much richer
set of conflict solving rules. Panda is generic for any data transformation, and
although one of its goals is similar to the idea of reapplying previous decisions
(defined as workflows) in subsequent ones, it does not provide details on how
the reapplication can be applied for data fusion processes, which is the focus of
this paper.

Data provenance has also been used in the literature to support Extract-
Transform-Load (ETL) processes in data warehousing environments (e.g., [15,
31]). However, the use of provenance is typically to store metadata that allows
one to trace the data origin and transformations, and not at incremental appli-
cation of the transformations.

Finally, incremental updates on a database based on source updates has been
recently referred to as data coordination [22]. However, the approach proposed
in [22] differs from ours on how updates on the sources are detected. While we
rely on the operations validation process, [22] proposes a materialization of the
source data followed by an algorithm for detecting the differences with a new
version. To the best of our knowledge, our approach is the first to apply an
operation-based provenance model in the context of data fusion processes.

7 Conclusion

In this paper we presented a system that tackles the problem of incrementally
updating a database populated with fused data provided by external sources.
The approach is based on storing the data provenance in an operations reposi-
tory that consists of records that contain both the original and new values. Since
the operations coordinate the database with the sources, they can be used to
provide feedback to the sources with the results of the fusion process. We pro-
posed a validation process, which reliably determines whether a source updated
an object provided in previous processes. When an update is identified, the value
is combined with the values provided from other sources, extracted from the op-
erations repository, in order to go through a new fusion process. By filtering out
the objects that remained unchanged in new versions, and reapplying previously
defined fusion rules, we can substantially minimize the need for manual user
intervention in future fusion processes.

We intend to extend the XFusion [14] tool with the functionality presented
in this paper and run some experiments in order to determine the efficacy of
the proposed approach. Efficient storage and index structures to support the
operations repository is also a topic for future investigation. In this paper, we

adopt the where-provenance model [12], by keeping the origin of each data item
that contributed to a value stored in the database, and the fusion rule that
originated the final value. We can extend the proposed model by keeping all the
source updates, so that it would be possible to obtain historical data by tracing
back what have been the updates since their first upload to the system. Another
line of investigation consists of extending the proposed framework for allowing
update operations directly on the mediated database with operations logged
in the operations repository. That is, the mediated database would combine
imported data with local generated data. We intend to investigate how these
direct operations impact those resulting from the application of fusion rules,
possibly extending previous results [33] with characterizations of transitive and
overlapping operations. We also plan to extend our system with the data fusion
strategies surveyed in Section 6.

References

1. Archer, D.W., Delcambre, L.M.L., Maier, D.: A framework for fine-grained data
integration and curation, with provenance, in a dataspace. In: Proceedings of the
1st Workshop on the Theory and Practice of Provenance. pp. 1–10 (2009)

2. Batini, C., Lenzerini, M., Navathe, S.B.: Comparative analysis of methodologies
for database schema integration. ACM Computing Surveys 18(4) (Dec 1986)

3. Benjelloun, O., Sarma, A.D., Hayworth, C., Widom, J.: An introduction to ULDBs
and the Trio system. IEEE Data Engineering Bulletin 29(1), 5–16 (2006)

4. Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. IEEE
Data Engineering Bulletin 29(2), 4–12 (2006)

5. Bilke, A., Bleiholder, J., Naumann, F., Böhm, C., Weis, M.: Automatic data fusion
with hummer. In: Proceedings of the 31st VLDB Conference. pp. 1251–1254 (2005)

6. Bleiholder, J., Naumann, F.: Conflict handling strategies in an integrated informa-
tion system. In: Proceedings of the International Workshop on Information Inte-
gration on the Web (IIWeb) (2006)

7. Bleiholder, J., Naumann, F.: Data fusion. ACM Computing Survey 41(1), 1–41
(2008)

8. Buneman, P., Chapman, A., Cheney, J.: Provenance management in curated
databases. In: SIGMOD’06: Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data. pp. 539–550 (2006)

9. Buneman, P., Chapman, A., Cheney, J., Vansummeren, S.: A provenance model for
manually curated data. In: IPAW’06: Proceedings of the International Provenance
and Annotation Workshop. pp. 162–170 (2006)

10. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.C.: Keys for XML. Com-
puter Networks 39(5), 473–487 (Aug 2002)

11. Buneman, P., Khanna, S., Tan, W.C.: Data provenance: Some basic issues. In: FST
TCS 2000: Proceedings of the 20th Conference on Foundations of Software Tech-
nology and Theoretical Computer Science. pp. 87–93. Springer-Verlag, London,
UK (2000)

12. Buneman, P., Khanna, S., Tan, W.C.: Why and where: A characterization of data
provenance. In: ICDT’01: Proceedings of 8th International Conference on Database
Theory. pp. 316–330 (2001)

13. Cao, Y., Fan, W., Yu, W.: Determining the relative accuracy of attributes. In: SIG-
MOD’13: Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data. pp. 565–576 (2013)

14. Cecchin, F., Ciferri, C.D.A., Hara, C.S.: Xml data fusion. In: Proc. of the Inter-
national Conference on Data Warehousing and Knowledge Discovery (DaWaK)
(2010)

15. Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations.
The VLDB Journal 12(1), 41–58 (2003)

16. Dong, X., Berti-Equille, L., Hu, Y., Srivastava, D.: SOLOMON: Seeking the truth
via copying detection. PVLDB 3(2), 1617–1620 (2010)

17. Fan, W., Geerts, F., Tang, N., Yu, W.: Inferring data currency and consistency for
conflict resolution. In: ICDE’13: Proceedings of the IEEE International Conference
on Data Engineering. pp. 470–481 (2013)

18. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing xpath queries.
In: VLDB’2002: Proceedings of the 28th International Conference on Very Large
Data Bases. pp. 95–106 (2002)

19. Ikeda, R., Widom, J.: Panda: A system for provenance and data. IEEE Data En-
gineering Bulletin 33(3), 42–49 (2010)

20. Ikeda, R., Salihoglu, S., Widom, J.: Provenance-based refresh in data-oriented
workflows. In: Proceedings of the 20th ACM international conference on Infor-
mation and knowledge management. pp. 1659–1668. CIKM ’11, ACM, New York,
NY, USA (2011), http://doi.acm.org/10.1145/2063576.2063816

21. Ives, Z.G., Green, T.J., Karvounarakis, G., Taylor, N.E., Tannen, V., Talukdar,
P.P., Jacob, M., Pereira, F.: The Orchestra collaborative data sharing system.
SIGMOD Record 37(3), 26–32 (2008)

22. Lawrence, M., Pottinger, R., Staub-French, S.: Data coordination: Supporting con-
tingent updates. Proceedings of the VLDB Endowment 4(11), 831–842 (2011)

23. Lim, E.P., Srivastava, J., Prabhakar, S., Richardson, J.: Entity identification in
database integration. Information Sciences 89(1) (1996)

24. Menestrina, D., Benjelloun, O., Garcia-Molina, H.: Generic entity resolution with
data confidences. In: Proceedings of the International VLDB Workshop on Clean
Databases. Seoul, Korea (2006)

25. Motro, A., Anokhin, P.: Fusionplex: resolution of data inconsistencies in the in-
tegration of heterogeneous information sources. Information Fusion 7(2), 176–196
(2006)

26. do Nascimento, A.M., Hara, C.S.: A model for XML instance level integration. In:
SBBD’08: Proceedings of the 23rd Brazilian Symposium on Databases. pp. 46–60
(2008)

27. Poggi, A., Abiteboul, S.: XML data integration with identification. In: Interna-
tional Workshop on Database Programming Languages (DBPL) (2005)

28. Prabhakar, S., Richardson, J., Srivastava, J., Lim, E.P.: Instance-level integration
in federated autonomous databases. In: Hawaiian Conference for System Science
(1993)

29. Ramalingam, G., Reps, T.W.: An incremental algorithm for a generalization of the
shortest-path problem. Journal of Algorithms 21(2), 267–305 (1996)

30. Raman, V., Hellerstein, J.M.: Potter’s wheel: An interactive data cleaning system.
In: VLDB ’01: Proceedings of the 27th International Conference on Very Large
Data Bases. pp. 381–390 (2001)

31. Sellis, T.K., Skoutas, D., Simitsis, A., Vassiliadis, P.: Data provenance in ETL
scenarios. In: Proceedings of the 1st Workshop on Principles of Provenance. pp.
1–3 (2007)

32. Shiri, N., Taghizadeh-Azari, A.: Lineage tracing in mediator-based information in-
tegration systems. In: Proceedings of the 5th International School and Symposium
on Advanced Distributed Systems. pp. 267–282 (2005)

33. Tomazela, B., Hara, C.S., Ciferri, R.R., Ciferri, C.D.A.: Empowering integration
processes with data provenance. Data & Knowledge Engineering 86, 102–123 (2013)

34. Weis, M., Manolescu, I.: Declarative XML data cleaning with XClean. In: Interna-
tional Conf. on Advanced Information Systems Engineering (CaiSE). pp. 96–110
(2007)

35. Widom, J.: Trio: A system for data, uncertainty, and lineage. In: C. Aggarwal,
editor, Managing and Mining Uncertain Data, chap. 5. Springer (2009)

36. Yin, X., Han, J., Yu, P.S.: Truth discovery with multiple conflicting information
providers on the web. IEEE Transactions on Knowledge and Data Engineering
20(6), 796–808 (2008)

