
Sumário Introdução Modelo de dados API - Exemplos Blocos Funcionamento Refinamentos Desempenho Conclusão

Oficina de BD:
Bigtable - Um Sistema de Armazenamento

Distribúıdo para Dados Estruturados

Bruno Velasco UFPR

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach Mike Burrows, Tushar Chandra,

Andrew Fikes, Robert E. Gruber Google

Curitiba, 5 de Novembro de 2013

Bruno Velasco bruno.s.velasco@gmail.com Oficina de BD - Bigtable

Sumário Introdução Modelo de dados API - Exemplos Blocos Funcionamento Refinamentos Desempenho Conclusão

1 Introdução
Bigtable

2 Modelo de dados
Linha, Coluna, Timestamp

3 API - Exemplos
4 Blocos

Chubby
SStable
Tablet

5 Funcionamento
Encontrar tablet
Servir tablet
Exemplo

6 Refinamentos
7 Desempenho

Into the Wild
8 Conclusão

Bruno Velasco bruno.s.velasco@gmail.com Oficina de BD - Bigtable

Sumário Introdução Modelo de dados API - Exemplos Blocos Funcionamento Refinamentos Desempenho Conclusão

Introdução

Alternativa a SGBD

Dif́ıcil de escalar

Escalonamento vertical

Alto custo

Dificuldade em dados semi-estruturados

O que é Bigtable?

É um sistema de armazenamento distribúıdo para dados
estruturados

Não dá suporte a operações 100% relacionais

Escalável

Autônomo

Bruno Velasco bruno.s.velasco@gmail.com Oficina de BD - Bigtable

Sumário Introdução Modelo de dados API - Exemplos Blocos Funcionamento Refinamentos Desempenho Conclusão

Bigtable

Utilizado em mais de 60 produtos

Google Analytics

Google Finance

Google Earth

Google ...

Objetivos

Aplicabilidade diversa

Escalabilidade

Alto desempenho

Alta disponibilidade

Bruno Velasco bruno.s.velasco@gmail.com Oficina de BD - Bigtable

Sumário Introdução Modelo de dados API - Exemplos Blocos Funcionamento Refinamentos Desempenho Conclusão

Modelo de dados

"CNN.com""CNN"
"<html>..."

"<html>..."
"<html>..."

t9
t6

t3t5 8t

"anchor:cnnsi.com"

"com.cnn.www"

"anchor:my.look.ca""contents:"

Figure 1: A slice of an example table that stores Web pages. The row name is a reversed URL. The contents column family con-
tains the page contents, and the anchor column family contains the text of any anchors that reference the page. CNN’s home page
is referenced by both the Sports Illustrated and the MY-look home pages, so the row contains columns named anchor:cnnsi.com
and anchor:my.look.ca. Each anchor cell has one version; the contents column has three versions, at timestamps t3, t5, and t6.

We settled on this data model after examining a variety
of potential uses of a Bigtable-like system. As one con-
crete example that drove some of our design decisions,
suppose we want to keep a copy of a large collection of
web pages and related information that could be used by
many different projects; let us call this particular table
the Webtable. In Webtable, we would use URLs as row
keys, various aspects of web pages as column names, and
store the contents of the web pages in the contents: col-
umn under the timestamps when they were fetched, as
illustrated in Figure 1.

Rows

The row keys in a table are arbitrary strings (currently up
to 64KB in size, although 10-100 bytes is a typical size
for most of our users). Every read or write of data under
a single row key is atomic (regardless of the number of
different columns being read or written in the row), a
design decision that makes it easier for clients to reason
about the system’s behavior in the presence of concurrent
updates to the same row.

Bigtable maintains data in lexicographic order by row
key. The row range for a table is dynamically partitioned.
Each row range is called a tablet, which is the unit of dis-
tribution and load balancing. As a result, reads of short
row ranges are efficient and typically require communi-
cation with only a small number of machines. Clients
can exploit this property by selecting their row keys so
that they get good locality for their data accesses. For
example, in Webtable, pages in the same domain are
grouped together into contiguous rows by reversing the
hostname components of the URLs. For example, we
store data for maps.google.com/index.html under the
key com.google.maps/index.html. Storing pages from
the same domain near each other makes some host and
domain analyses more efficient.

Column Families

Column keys are grouped into sets called column fami-
lies, which form the basic unit of access control. All data
stored in a column family is usually of the same type (we
compress data in the same column family together). A
column family must be created before data can be stored
under any column key in that family; after a family has
been created, any column key within the family can be
used. It is our intent that the number of distinct column
families in a table be small (in the hundreds at most), and
that families rarely change during operation. In contrast,
a table may have an unbounded number of columns.
A column key is named using the following syntax:
family:qualifier. Column family names must be print-
able, but qualifiers may be arbitrary strings. An exam-
ple column family for the Webtable is language, which
stores the language in which a web page was written. We
use only one column key in the language family, and it
stores each web page’s language ID. Another useful col-
umn family for this table is anchor; each column key in
this family represents a single anchor, as shown in Fig-
ure 1. The qualifier is the name of the referring site; the
cell contents is the link text.
Access control and both disk and memory account-
ing are performed at the column-family level. In our
Webtable example, these controls allow us to manage
several different types of applications: some that add new
base data, some that read the base data and create derived
column families, and some that are only allowed to view
existing data (and possibly not even to view all of the
existing families for privacy reasons).

Timestamps

Each cell in a Bigtable can contain multiple versions of
the same data; these versions are indexed by timestamp.
Bigtable timestamps are 64-bit integers. They can be as-
signed by Bigtable, in which case they represent “real
time” in microseconds, or be explicitly assigned by client

To appear in OSDI 2006 2

Caracteŕısticas

Bigtable é um mapeamento esparso, distribúıdo, persistente,
multidimensional e ordenado

(row:string, column:string, timestamp:int64) −→ string

Bruno Velasco bruno.s.velasco@gmail.com Oficina de BD - Bigtable

Sumário Introdução Modelo de dados API - Exemplos Blocos Funcionamento Refinamentos Desempenho Conclusão

Linha, Coluna, Timestamp

Modelo de dados

Linha

Atomicidade

Ordem lexográfica

Intervalo conhecido por tablet

Coluna

Unidade básica de controle

Column Families - Grupamento

Poucas CF, muitas colunas

Timestamp

Cada célula possui várias versões

Garbage collector

Bruno Velasco bruno.s.velasco@gmail.com Oficina de BD - Bigtable

Sumário Introdução Modelo de dados API - Exemplos Blocos Funcionamento Refinamentos Desempenho Conclusão

Exemplos

Escrevendo
// Open the table
Table *T = OpenOrDie("/bigtable/web/webtable");

// Write a new anchor and delete an old anchor
RowMutation r1(T, "com.cnn.www");
r1.Set("anchor:www.c-span.org", "CNN");
r1.Delete("anchor:www.abc.com");
Operation op;
Apply(&op, &r1);

Figure 2: Writing to Bigtable.

applications. Applications that need to avoid collisions
must generate unique timestamps themselves. Different
versions of a cell are stored in decreasing timestamp or-
der, so that the most recent versions can be read first.
To make the management of versioned data less oner-
ous, we support two per-column-family settings that tell
Bigtable to garbage-collect cell versions automatically.
The client can specify either that only the last n versions
of a cell be kept, or that only new-enough versions be
kept (e.g., only keep values that were written in the last
seven days).
In our Webtable example, we set the timestamps of
the crawled pages stored in the contents: column to
the times at which these page versions were actually
crawled. The garbage-collection mechanism described
above lets us keep only the most recent three versions of
every page.

3 API

The Bigtable API provides functions for creating and
deleting tables and column families. It also provides
functions for changing cluster, table, and column family
metadata, such as access control rights.
Client applications can write or delete values in
Bigtable, look up values from individual rows, or iter-
ate over a subset of the data in a table. Figure 2 shows
C++ code that uses a RowMutation abstraction to per-
form a series of updates. (Irrelevant details were elided
to keep the example short.) The call to Apply performs
an atomic mutation to the Webtable: it adds one anchor
to www.cnn.com and deletes a different anchor.
Figure 3 shows C++ code that uses a Scanner ab-
straction to iterate over all anchors in a particular row.
Clients can iterate over multiple column families, and
there are several mechanisms for limiting the rows,
columns, and timestamps produced by a scan. For ex-
ample, we could restrict the scan above to only produce
anchors whose columns match the regular expression
anchor:*.cnn.com, or to only produce anchors whose
timestamps fall within ten days of the current time.

Scanner scanner(T);
ScanStream *stream;
stream = scanner.FetchColumnFamily("anchor");
stream->SetReturnAllVersions();
scanner.Lookup("com.cnn.www");
for (; !stream->Done(); stream->Next()) {
printf("%s %s %lld %s\n",

scanner.RowName(),
stream->ColumnName(),
stream->MicroTimestamp(),
stream->Value());

}

Figure 3: Reading from Bigtable.

Bigtable supports several other features that allow the
user to manipulate data in more complex ways. First,
Bigtable supports single-row transactions, which can be
used to perform atomic read-modify-write sequences on
data stored under a single row key. Bigtable does not cur-
rently support general transactions across row keys, al-
though it provides an interface for batching writes across
row keys at the clients. Second, Bigtable allows cells
to be used as integer counters. Finally, Bigtable sup-
ports the execution of client-supplied scripts in the ad-
dress spaces of the servers. The scripts are written in a
language developed at Google for processing data called
Sawzall [28]. At the moment, our Sawzall-based API
does not allow client scripts to write back into Bigtable,
but it does allow various forms of data transformation,
filtering based on arbitrary expressions, and summariza-
tion via a variety of operators.
Bigtable can be used with MapReduce [12], a frame-
work for running large-scale parallel computations de-
veloped at Google. We have written a set of wrappers
that allow a Bigtable to be used both as an input source
and as an output target for MapReduce jobs.

4 Building Blocks

Bigtable is built on several other pieces of Google in-
frastructure. Bigtable uses the distributed Google File
System (GFS) [17] to store log and data files. A Bigtable
cluster typically operates in a shared pool of machines
that run a wide variety of other distributed applications,
and Bigtable processes often share the same machines
with processes from other applications. Bigtable de-
pends on a cluster management system for scheduling
jobs, managing resources on shared machines, dealing
with machine failures, and monitoring machine status.
The Google SSTable file format is used internally to
store Bigtable data. An SSTable provides a persistent,
ordered immutable map from keys to values, where both
keys and values are arbitrary byte strings. Operations are
provided to look up the value associated with a specified

To appear in OSDI 2006 3

Scan

// Open the table
Table *T = OpenOrDie("/bigtable/web/webtable");

// Write a new anchor and delete an old anchor
RowMutation r1(T, "com.cnn.www");
r1.Set("anchor:www.c-span.org", "CNN");
r1.Delete("anchor:www.abc.com");
Operation op;
Apply(&op, &r1);

Figure 2: Writing to Bigtable.

applications. Applications that need to avoid collisions
must generate unique timestamps themselves. Different
versions of a cell are stored in decreasing timestamp or-
der, so that the most recent versions can be read first.
To make the management of versioned data less oner-
ous, we support two per-column-family settings that tell
Bigtable to garbage-collect cell versions automatically.
The client can specify either that only the last n versions
of a cell be kept, or that only new-enough versions be
kept (e.g., only keep values that were written in the last
seven days).
In our Webtable example, we set the timestamps of
the crawled pages stored in the contents: column to
the times at which these page versions were actually
crawled. The garbage-collection mechanism described
above lets us keep only the most recent three versions of
every page.

3 API

The Bigtable API provides functions for creating and
deleting tables and column families. It also provides
functions for changing cluster, table, and column family
metadata, such as access control rights.
Client applications can write or delete values in
Bigtable, look up values from individual rows, or iter-
ate over a subset of the data in a table. Figure 2 shows
C++ code that uses a RowMutation abstraction to per-
form a series of updates. (Irrelevant details were elided
to keep the example short.) The call to Apply performs
an atomic mutation to the Webtable: it adds one anchor
to www.cnn.com and deletes a different anchor.
Figure 3 shows C++ code that uses a Scanner ab-
straction to iterate over all anchors in a particular row.
Clients can iterate over multiple column families, and
there are several mechanisms for limiting the rows,
columns, and timestamps produced by a scan. For ex-
ample, we could restrict the scan above to only produce
anchors whose columns match the regular expression
anchor:*.cnn.com, or to only produce anchors whose
timestamps fall within ten days of the current time.

Scanner scanner(T);
ScanStream *stream;
stream = scanner.FetchColumnFamily("anchor");
stream->SetReturnAllVersions();
scanner.Lookup("com.cnn.www");
for (; !stream->Done(); stream->Next()) {
printf("%s %s %lld %s\n",

scanner.RowName(),
stream->ColumnName(),
stream->MicroTimestamp(),
stream->Value());

}

Figure 3: Reading from Bigtable.

Bigtable supports several other features that allow the
user to manipulate data in more complex ways. First,
Bigtable supports single-row transactions, which can be
used to perform atomic read-modify-write sequences on
data stored under a single row key. Bigtable does not cur-
rently support general transactions across row keys, al-
though it provides an interface for batching writes across
row keys at the clients. Second, Bigtable allows cells
to be used as integer counters. Finally, Bigtable sup-
ports the execution of client-supplied scripts in the ad-
dress spaces of the servers. The scripts are written in a
language developed at Google for processing data called
Sawzall [28]. At the moment, our Sawzall-based API
does not allow client scripts to write back into Bigtable,
but it does allow various forms of data transformation,
filtering based on arbitrary expressions, and summariza-
tion via a variety of operators.
Bigtable can be used with MapReduce [12], a frame-
work for running large-scale parallel computations de-
veloped at Google. We have written a set of wrappers
that allow a Bigtable to be used both as an input source
and as an output target for MapReduce jobs.

4 Building Blocks

Bigtable is built on several other pieces of Google in-
frastructure. Bigtable uses the distributed Google File
System (GFS) [17] to store log and data files. A Bigtable
cluster typically operates in a shared pool of machines
that run a wide variety of other distributed applications,
and Bigtable processes often share the same machines
with processes from other applications. Bigtable de-
pends on a cluster management system for scheduling
jobs, managing resources on shared machines, dealing
with machine failures, and monitoring machine status.
The Google SSTable file format is used internally to
store Bigtable data. An SSTable provides a persistent,
ordered immutable map from keys to values, where both
keys and values are arbitrary byte strings. Operations are
provided to look up the value associated with a specified

To appear in OSDI 2006 3

Bruno Velasco bruno.s.velasco@gmail.com Oficina de BD - Bigtable

Sumário Introdução Modelo de dados API - Exemplos Blocos Funcionamento Refinamentos Desempenho Conclusão

Blocos

Bigtable utiliza alguns serviços Google

GFS - logs e dados

Chubby - controle de réplicas, e lock distribúıdo

SSTable - formato de arquivo

Bruno Velasco bruno.s.velasco@gmail.com Oficina de BD - Bigtable

Sumário Introdução Modelo de dados API - Exemplos Blocos Funcionamento Refinamentos Desempenho Conclusão

Chubby

Chubby

Caracteŕısticas

Serviço de lock distribúıdo

Controle de réplicas (usa Paxos)

Utiliza diretórios e arquivos

Responsável por bootstrap do Bigtable

Completamente responsável pelo Bigtable

Bruno Velasco bruno.s.velasco@gmail.com Oficina de BD - Bigtable

Sumário Introdução Modelo de dados API - Exemplos Blocos Funcionamento Refinamentos Desempenho Conclusão

SStable

SStable

Caracteŕısticas

Formato de arquivo

Chave - valor

Imutável

Bruno Velasco bruno.s.velasco@gmail.com Oficina de BD - Bigtable

Sumário Introdução Modelo de dados API - Exemplos Blocos Funcionamento Refinamentos Desempenho Conclusão

Tablet

Tablet

Caracteŕısticas

Unidade básica de armazenamento

Composto por intervalos bem definidos

Constrúıdo sobre SSTables

Gerenciado por Tablet server

Bruno Velasco bruno.s.velasco@gmail.com Oficina de BD - Bigtable

Sumário Introdução Modelo de dados API - Exemplos Blocos Funcionamento Refinamentos Desempenho Conclusão

Tablet

Tabela

Bruno Velasco bruno.s.velasco@gmail.com Oficina de BD - Bigtable

Sumário Introdução Modelo de dados API - Exemplos Blocos Funcionamento Refinamentos Desempenho Conclusão

Funcionamento

Requisitos

Cliente carrega lib

1 master: responsável por associar tablets a tablet servers. De
10 a 1000. Monitora mudança de esquemas. Balanceamento
de carga

N tablet servers (gerenciamento dinâmico). Clientes se
comunicam diretamente com eles.

Bruno Velasco bruno.s.velasco@gmail.com Oficina de BD - Bigtable

Sumário Introdução Modelo de dados API - Exemplos Blocos Funcionamento Refinamentos Desempenho Conclusão

Encontrar tablet

Encontrando tablet

key, and to iterate over all key/value pairs in a specified
key range. Internally, each SSTable contains a sequence
of blocks (typically each block is 64KB in size, but this
is configurable). A block index (stored at the end of the
SSTable) is used to locate blocks; the index is loaded
into memory when the SSTable is opened. A lookup
can be performed with a single disk seek: we first find
the appropriate block by performing a binary search in
the in-memory index, and then reading the appropriate
block from disk. Optionally, an SSTable can be com-
pletely mapped into memory, which allows us to perform
lookups and scans without touching disk.
Bigtable relies on a highly-available and persistent
distributed lock service called Chubby [8]. A Chubby
service consists of five active replicas, one of which is
elected to be the master and actively serve requests. The
service is live when a majority of the replicas are running
and can communicate with each other. Chubby uses the
Paxos algorithm [9, 23] to keep its replicas consistent in
the face of failure. Chubby provides a namespace that
consists of directories and small files. Each directory or
file can be used as a lock, and reads and writes to a file
are atomic. The Chubby client library provides consis-
tent caching of Chubby files. Each Chubby client main-
tains a session with a Chubby service. A client’s session
expires if it is unable to renew its session lease within the
lease expiration time. When a client’s session expires, it
loses any locks and open handles. Chubby clients can
also register callbacks on Chubby files and directories
for notification of changes or session expiration.
Bigtable uses Chubby for a variety of tasks: to ensure
that there is at most one active master at any time; to
store the bootstrap location of Bigtable data (see Sec-
tion 5.1); to discover tablet servers and finalize tablet
server deaths (see Section 5.2); to store Bigtable schema
information (the column family information for each ta-
ble); and to store access control lists. If Chubby becomes
unavailable for an extended period of time, Bigtable be-
comes unavailable. We recently measured this effect
in 14 Bigtable clusters spanning 11 Chubby instances.
The average percentage of Bigtable server hours during
which some data stored in Bigtable was not available due
to Chubby unavailability (caused by either Chubby out-
ages or network issues) was 0.0047%. The percentage
for the single cluster that was most affected by Chubby
unavailability was 0.0326%.

5 Implementation

The Bigtable implementation has three major compo-
nents: a library that is linked into every client, one mas-
ter server, and many tablet servers. Tablet servers can be

dynamically added (or removed) from a cluster to acco-
modate changes in workloads.
The master is responsible for assigning tablets to tablet
servers, detecting the addition and expiration of tablet
servers, balancing tablet-server load, and garbage col-
lection of files in GFS. In addition, it handles schema
changes such as table and column family creations.
Each tablet server manages a set of tablets (typically
we have somewhere between ten to a thousand tablets per
tablet server). The tablet server handles read and write
requests to the tablets that it has loaded, and also splits
tablets that have grown too large.
As with many single-master distributed storage sys-
tems [17, 21], client data does not move through the mas-
ter: clients communicate directly with tablet servers for
reads and writes. Because Bigtable clients do not rely on
the master for tablet location information, most clients
never communicate with the master. As a result, the mas-
ter is lightly loaded in practice.
A Bigtable cluster stores a number of tables. Each ta-
ble consists of a set of tablets, and each tablet contains
all data associated with a row range. Initially, each table
consists of just one tablet. As a table grows, it is auto-
matically split into multiple tablets, each approximately
100-200 MB in size by default.

5.1 Tablet Location
We use a three-level hierarchy analogous to that of a B+-
tree [10] to store tablet location information (Figure 4).

..

.

...

...

..

.

...

..

.

 tablets
METADATA
 Other

Chubby file
...

UserTable1

UserTableN
...

...

...

...

...
Root tablet

(1st METADATA tablet)

Figure 4: Tablet location hierarchy.

The first level is a file stored in Chubby that contains
the location of the root tablet. The root tablet contains
the location of all tablets in a special METADATA table.
Each METADATA tablet contains the location of a set of
user tablets. The root tablet is just the first tablet in the
METADATA table, but is treated specially—it is never
split—to ensure that the tablet location hierarchy has no
more than three levels.
The METADATA table stores the location of a tablet
under a row key that is an encoding of the tablet’s table

To appear in OSDI 2006 4

Requisitos

Semelhante à arvore B+

Bruno Velasco bruno.s.velasco@gmail.com Oficina de BD - Bigtable

Sumário Introdução Modelo de dados API - Exemplos Blocos Funcionamento Refinamentos Desempenho Conclusão

Servir tablet

Servindo tablet

because the tablet server or the master died), the master
detects the new tablet when it asks a tablet server to load
the tablet that has now split. The tablet server will notify
the master of the split, because the tablet entry it finds in
the METADATA table will specify only a portion of the
tablet that the master asked it to load.

5.3 Tablet Serving
The persistent state of a tablet is stored in GFS, as illus-
trated in Figure 5. Updates are committed to a commit
log that stores redo records. Of these updates, the re-
cently committed ones are stored in memory in a sorted
buffer called amemtable; the older updates are stored in a
sequence of SSTables. To recover a tablet, a tablet server

tablet log

GFS

Memory

Write Op
SSTable Files

memtable Read Op

Figure 5: Tablet Representation

reads its metadata from the METADATA table. This meta-
data contains the list of SSTables that comprise a tablet
and a set of a redo points, which are pointers into any
commit logs that may contain data for the tablet. The
server reads the indices of the SSTables into memory and
reconstructs the memtable by applying all of the updates
that have committed since the redo points.
When a write operation arrives at a tablet server, the
server checks that it is well-formed, and that the sender
is authorized to perform the mutation. Authorization is
performed by reading the list of permitted writers from a
Chubby file (which is almost always a hit in the Chubby
client cache). A valid mutation is written to the commit
log. Group commit is used to improve the throughput of
lots of small mutations [13, 16]. After the write has been
committed, its contents are inserted into the memtable.
When a read operation arrives at a tablet server, it is
similarly checked for well-formedness and proper autho-
rization. A valid read operation is executed on a merged
view of the sequence of SSTables and the memtable.
Since the SSTables and the memtable are lexicograph-
ically sorted data structures, the merged view can be
formed efficiently.
Incoming read and write operations can continue
while tablets are split and merged.

5.4 Compactions
As write operations execute, the size of the memtable in-
creases. When the memtable size reaches a threshold, the
memtable is frozen, a new memtable is created, and the
frozen memtable is converted to an SSTable and written
to GFS. This minor compaction process has two goals:
it shrinks the memory usage of the tablet server, and it
reduces the amount of data that has to be read from the
commit log during recovery if this server dies. Incom-
ing read and write operations can continue while com-
pactions occur.
Everyminor compaction creates a new SSTable. If this
behavior continued unchecked, read operations might
need to merge updates from an arbitrary number of
SSTables. Instead, we bound the number of such files
by periodically executing a merging compaction in the
background. A merging compaction reads the contents
of a few SSTables and the memtable, and writes out a
new SSTable. The input SSTables and memtable can be
discarded as soon as the compaction has finished.
A merging compaction that rewrites all SSTables
into exactly one SSTable is called a major compaction.
SSTables produced by non-major compactions can con-
tain special deletion entries that suppress deleted data in
older SSTables that are still live. A major compaction,
on the other hand, produces an SSTable that contains
no deletion information or deleted data. Bigtable cy-
cles through all of its tablets and regularly applies major
compactions to them. These major compactions allow
Bigtable to reclaim resources used by deleted data, and
also allow it to ensure that deleted data disappears from
the system in a timely fashion, which is important for
services that store sensitive data.

6 Refinements

The implementation described in the previous section
required a number of refinements to achieve the high
performance, availability, and reliability required by our
users. This section describes portions of the implementa-
tion in more detail in order to highlight these refinements.

Locality groups

Clients can group multiple column families together into
a locality group. A separate SSTable is generated for
each locality group in each tablet. Segregating column
families that are not typically accessed together into sep-
arate locality groups enables more efficient reads. For
example, page metadata in Webtable (such as language
and checksums) can be in one locality group, and the
contents of the page can be in a different group: an ap-

To appear in OSDI 2006 6

Caracteŕısticas

memtable é uma cache ordenada

Recém commits vão para memtable

Compactações: pequenas, junções, grandes

Bruno Velasco bruno.s.velasco@gmail.com Oficina de BD - Bigtable

Sumário Introdução Modelo de dados API - Exemplos Blocos Funcionamento Refinamentos Desempenho Conclusão

Exemplo

Exemplo

Bruno Velasco bruno.s.velasco@gmail.com Oficina de BD - Bigtable

Sumário Introdução Modelo de dados API - Exemplos Blocos Funcionamento Refinamentos Desempenho Conclusão

Refinamentos

Grupos de localidade

Agrega column families em um mesmo servidor, permitindo estar
na memória também

Compressão

Cada SSTable pode ser comprimido

Bruno Velasco bruno.s.velasco@gmail.com Oficina de BD - Bigtable

Sumário Introdução Modelo de dados API - Exemplos Blocos Funcionamento Refinamentos Desempenho Conclusão

Experimentos

of Tablet Servers
Experiment 1 50 250 500
random reads 1212 593 479 241
random reads (mem) 10811 8511 8000 6250
random writes 8850 3745 3425 2000
sequential reads 4425 2463 2625 2469
sequential writes 8547 3623 2451 1905
scans 15385 10526 9524 7843 100 200 300 400 500

Number of tablet servers

1M

2M

3M

4M

V
al

ue
s r

ea
d/

w
ri

tte
n

pe
r

se
co

nd scans
random reads (mem)
random writes
sequential reads
sequential writes
random reads

Figure 6: Number of 1000-byte values read/written per second. The table shows the rate per tablet server; the graph shows the
aggregate rate.

signed the next available range to a client as soon as the
client finished processing the previous range assigned to
it. This dynamic assignment helped mitigate the effects
of performance variations caused by other processes run-
ning on the client machines. We wrote a single string un-
der each row key. Each string was generated randomly
and was therefore uncompressible. In addition, strings
under different row key were distinct, so no cross-row
compressionwas possible. The randomwrite benchmark
was similar except that the row key was hashed modulo
R immediately before writing so that the write load was
spread roughly uniformly across the entire row space for
the entire duration of the benchmark.

The sequential read benchmark generated row keys in
exactly the same way as the sequential write benchmark,
but instead of writing under the row key, it read the string
stored under the row key (which was written by an earlier
invocation of the sequential write benchmark). Similarly,
the random read benchmark shadowed the operation of
the random write benchmark.

The scan benchmark is similar to the sequential read
benchmark, but uses support provided by the Bigtable
API for scanning over all values in a row range. Us-
ing a scan reduces the number of RPCs executed by the
benchmark since a single RPC fetches a large sequence
of values from a tablet server.

The random reads (mem) benchmark is similar to the
random read benchmark, but the locality group that con-
tains the benchmark data is marked as in-memory, and
therefore the reads are satisfied from the tablet server’s
memory instead of requiring a GFS read. For just this
benchmark, we reduced the amount of data per tablet
server from 1 GB to 100 MB so that it would fit com-
fortably in the memory available to the tablet server.

Figure 6 shows two views on the performance of our
benchmarks when reading and writing 1000-byte values
to Bigtable. The table shows the number of operations
per second per tablet server; the graph shows the aggre-
gate number of operations per second.

Single tablet-server performance

Let us first consider performance with just one tablet
server. Random reads are slower than all other operations
by an order of magnitude or more. Each random read in-
volves the transfer of a 64 KB SSTable block over the
network from GFS to a tablet server, out of which only a
single 1000-byte value is used. The tablet server executes
approximately 1200 reads per second, which translates
into approximately 75 MB/s of data read from GFS. This
bandwidth is enough to saturate the tablet server CPUs
because of overheads in our networking stack, SSTable
parsing, and Bigtable code, and is also almost enough
to saturate the network links used in our system. Most
Bigtable applications with this type of an access pattern
reduce the block size to a smaller value, typically 8KB.
Random reads from memory are much faster since
each 1000-byte read is satisfied from the tablet server’s
local memory without fetching a large 64 KB block from
GFS.
Random and sequential writes perform better than ran-
dom reads since each tablet server appends all incoming
writes to a single commit log and uses group commit to
stream these writes efficiently to GFS. There is no sig-
nificant difference between the performance of random
writes and sequential writes; in both cases, all writes to
the tablet server are recorded in the same commit log.
Sequential reads perform better than random reads
since every 64 KB SSTable block that is fetched from
GFS is stored into our block cache, where it is used to
serve the next 64 read requests.
Scans are even faster since the tablet server can return
a large number of values in response to a single client
RPC, and therefore RPC overhead is amortized over a
large number of values.

Scaling

Aggregate throughput increases dramatically, by over a
factor of a hundred, as we increase the number of tablet
servers in the system from 1 to 500. For example, the

To appear in OSDI 2006 9

Análises

Escritas melhor devido ao único commit no log

Leitura sequencial melhor pois se beneficia da localidade
espacial

Scan melhor pois não há RCP

Escala em um fator de 100

Bruno Velasco bruno.s.velasco@gmail.com Oficina de BD - Bigtable

Sumário Introdução Modelo de dados API - Exemplos Blocos Funcionamento Refinamentos Desempenho Conclusão

Into the Wild

Into the Wild

Project Table size Compression # Cells # Column # Locality % in Latency-
name (TB) ratio (billions) Families Groups memory sensitive?
Crawl 800 11% 1000 16 8 0% No
Crawl 50 33% 200 2 2 0% No

Google Analytics 20 29% 10 1 1 0% Yes
Google Analytics 200 14% 80 1 1 0% Yes
Google Base 2 31% 10 29 3 15% Yes
Google Earth 0.5 64% 8 7 2 33% Yes
Google Earth 70 – 9 8 3 0% No
Orkut 9 – 0.9 8 5 1% Yes

Personalized Search 4 47% 6 93 11 5% Yes

Table 2: Characteristics of a few tables in production use. Table size (measured before compression) and # Cells indicate approxi-
mate sizes. Compression ratio is not given for tables that have compression disabled.

Each row in the imagery table corresponds to a sin-
gle geographic segment. Rows are named to ensure that
adjacent geographic segments are stored near each other.
The table contains a column family to keep track of the
sources of data for each segment. This column family
has a large number of columns: essentially one for each
raw data image. Since each segment is only built from a
few images, this column family is very sparse.
The preprocessing pipeline relies heavily on MapRe-
duce over Bigtable to transform data. The overall system
processes over 1 MB/sec of data per tablet server during
some of these MapReduce jobs.
The serving system uses one table to index data stored
in GFS. This table is relatively small (˜500 GB), but it
must serve tens of thousands of queries per second per
datacenter with low latency. As a result, this table is
hosted across hundreds of tablet servers and contains in-
memory column families.

8.3 Personalized Search
Personalized Search (www.google.com/psearch) is an
opt-in service that records user queries and clicks across
a variety of Google properties such as web search, im-
ages, and news. Users can browse their search histories
to revisit their old queries and clicks, and they can ask
for personalized search results based on their historical
Google usage patterns.
Personalized Search stores each user’s data in
Bigtable. Each user has a unique userid and is assigned
a row named by that userid. All user actions are stored
in a table. A separate column family is reserved for each
type of action (for example, there is a column family that
stores all web queries). Each data element uses as its
Bigtable timestamp the time at which the corresponding
user action occurred. Personalized Search generates user
profiles using a MapReduce over Bigtable. These user
profiles are used to personalize live search results.

The Personalized Search data is replicated across sev-
eral Bigtable clusters to increase availability and to re-
duce latency due to distance from clients. The Personal-
ized Search team originally built a client-side replication
mechanism on top of Bigtable that ensured eventual con-
sistency of all replicas. The current system now uses a
replication subsystem that is built into the servers.
The design of the Personalized Search storage system
allows other groups to add new per-user information in
their own columns, and the system is now used by many
other Google properties that need to store per-user con-
figuration options and settings. Sharing a table amongst
many groups resulted in an unusually large number of
column families. To help support sharing, we added a
simple quota mechanism to Bigtable to limit the stor-
age consumption by any particular client in shared ta-
bles; this mechanism provides some isolation between
the various product groups using this system for per-user
information storage.

9 Lessons

In the process of designing, implementing, maintaining,
and supporting Bigtable, we gained useful experience
and learned several interesting lessons.
One lesson we learned is that large distributed sys-
tems are vulnerable to many types of failures, not just
the standard network partitions and fail-stop failures as-
sumed in many distributed protocols. For example, we
have seen problems due to all of the following causes:
memory and network corruption, large clock skew, hung
machines, extended and asymmetric network partitions,
bugs in other systems that we are using (Chubby for ex-
ample), overflow of GFS quotas, and planned and un-
planned hardware maintenance. As we have gainedmore
experience with these problems, we have addressed them
by changing various protocols. For example, we added
checksumming to our RPC mechanism. We also handled

To appear in OSDI 2006 11

Bruno Velasco bruno.s.velasco@gmail.com Oficina de BD - Bigtable

Sumário Introdução Modelo de dados API - Exemplos Blocos Funcionamento Refinamentos Desempenho Conclusão

Considerações

Contempla requisitos de alta disponibilidade, desempenho,
escalabilidade e armazenamento

Satisfatoriamente empregado em diversos produtos Google
(mais de 60)

Justifica a importância de um design simples, acima de tudo.
Novas funcionalidade apenas quando bem definidas e
anteriores funcionando corretamente.

Bruno Velasco bruno.s.velasco@gmail.com Oficina de BD - Bigtable

	Sumário
	Introdução
	Bigtable

	Modelo de dados
	Linha, Coluna, Timestamp

	API - Exemplos
	Blocos
	Chubby
	SStable
	Tablet

	Funcionamento
	Encontrar tablet
	Servir tablet
	Exemplo

	Refinamentos
	Desempenho
	Into the Wild

	Conclusão

