
REASONING ABOUT FUNCTIONAL AND KEY

DEPENDENCIES IN HIERARCHICALLY STRUCTURED DATA

CARMEM SATIE HARA

A DISSERTATION

in

COMPUTER AND INFORMATION SCIENCE

Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy.

2004

Susan Davidson

Supervisor of Dissertation

Wenfei Fan

Supervisor of Dissertation

Benjamin Pierce

Graduate Group Chairperson

To my parents.

ii

To Wagner and Pedro.

iii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisors, Susan Davidson and Wenfei Fan

for their guidance and advice. I have no doubt I would not have succeeded in concluding

this dissertation without Susan’s constant reassurance and her enormous generosity. Her

insights, knowledge, and experience were crucial in the definition of goals and directions,

and in the development of the dissertation. Wenfei provided guidance through most of

the theoretical work. I will be forever grateful to him for helping me see beauty in a once

mysterious field of database theory.

My heartfelt thanks go to the committee members for their insightful comments and sug-

gestions: Val Tannen, Peter Buneman, and Insup Lee. I would also like to thank Peter

Buneman, the father of Keys for XML, for introducing me to the concept on which the

main results of the dissertation were developed. Jing Qin did much of the work on the

experimental part described in Chapter 6. I feel privileged for having been a member

of the Penn Database Group within which I had spent the most intellectually challenging

years of my life. Some of my contemporaries in the group, that greatly influenced this

work are: Peter Buneman, Yi Chen, Byron Choi, Jonathan Crabtree, Susan Davidson,

Alin Deutsch, Wenfei Fan, Scott Harker, Kyle Hart, Anthony Kosky, Zoé Lacroix, Hart-

mut Liefke, Rona Machlin, Lucian Popa, Arnaud Sahuguet, Wang-Chiew Tan, Val Tannen,

and Yifeng Zheng.

I would also like to thank the administrative staff of the CIS Department. A very special

thanks go to Mike Felker, the guardian angel of all graduate students, who really looked

over me from my first year at Penn to this day. There are also many people who helped

in making my time at Penn enjoyable, and I cannot refrain from mentioning a few: Karin

Kipper, William Schuler, Emilio Del Moral Hernandez, Siome Goldstein, and Carlos Prolo,

who so kindly offered me a place to stay during my visits to Penn after I moved back to

Brazil.

I would be remiss if I did not mention my gratitude to my mentors during the master

program years at Unicamp, Brazil: Geovane Cayres Magalhães and Tadao Takahashi.

Geovane supervised my master thesis, and Tadao supported my first experience abroad

iv

at UCLA, under the supervision of Gerald Estrin. Professor Estrin gave the Brazilian

troop such a warm welcome that inspired me to pursue the doctorate in the United States.

Pursuing the doctorate abroad would not be possible without the support from CNPq

(Brazilian Council for Scientific and Technological Development) and from UFPR (Federal

University of Parana), for which I am especially grateful. I would also like to thank my

colleagues at UFPR who had given me encouragement and support during my years at

Penn.

Finally, but most importantly of all, I would like to thank my parents, brothers, and sisters

for their love. My parents taught me the value of education, and they wished that all their

children would become “doctors” one day. I am really happy to be the last one to obtain

the title and finally fulfilling their dream. I could not have achieved any of this without

the love, care, and enormous amount of patience of my husband, Wagner Zola. We have

started this journey together, and now we have a third companion, Pedro, who brought

such a joy to our lives, we cannot imagine life without him.

v

ABSTRACT

REASONING ABOUT FUNCTIONAL AND KEY DEPENDENCIES

IN HIERARCHICALLY STRUCTURED DATA

Carmem Satie Hara

Supervisors: Susan Davidson and Wenfei Fan

This dissertation investigates how constraints can be used to check the consistency of data

being exchanged between different sources. Data exchange involves transformations of

data, and therefore the “transformed” data can be seen as a view of its source. Thus,

the problem we investigate is how constraints are propagated to views, when the data

involved is not restricted to relational tables, but may be hierarchically structured in

several levels of nesting. The ability to determine constraint propagation relies on the

ability to determine constraint implication. This is because the validity of a constraint on

the view may not result directly from constraints defined on the source data, but from their

consequences. Therefore, the dissertation starts by investigating two forms of constraints:

nested functional dependencies and keys for XML, and their implication problems. More

specifically, we present a definition of functional dependencies for a nested relational model,

and a sound and complete set of inference rules for determining logical implication for the

case when no empty sets are present. Motivated by the popularity of XML as a data

exchange format, we present a definition of keys for XML that are independent of any

type specification. We study two notions of keys: strong keys, and weak keys, and for

each of them we derive a sound and complete set of inference rules, as well as algorithms

for determining their implication. Capitalizing on the results of XML key implication,

we investigate the problem of propagating XML keys to relational views. That is, the

problem of determining what are the functional dependencies that are guaranteed to hold

in a relational representation of XML data, given that a set of XML keys hold on the XML

document. We provide two algorithms: one is to check whether a functional dependency is

propagated from XML keys, and the other is to compute a minimum cover for all functional

dependencies on a universal relation given certain XML keys. The ability to compute XML

key propagation is a first step toward establishing a connection between XML data and its

relational representation at the semantic level.

vi

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 7

1.3 Organization . 11

2 Functional Dependencies for a Nested Relational Model 14

2.1 Functional Dependencies . 17

2.1.1 Data Model . 17

2.1.2 Path Expressions . 19

2.1.3 Nested Functional Dependencies . 21

2.1.4 NFDs expressed in logic . 24

2.2 Discussion . 26

3 Reasoning about Nested Functional Dependencies 29

3.1 Axiomatization for NFD Implication . 30

3.1.1 Completeness of the NFD-rules . 35

3.2 The Problem of Empty Sets . 47

vii

3.3 Simple NFDs . 50

3.3.1 Join and Multivalued Dependencies (MVDs) 50

3.3.2 Construction of the Flattened Representation of a Nested Relation . 55

3.3.3 Relationship between NFDs and FDs+MVDs 61

3.4 Discussion . 64

4 Keys for XML 67

4.1 Keys . 71

4.1.1 A Tree Model and Value Equality 71

4.1.2 Path Languages . 72

4.1.3 A Key Constraint Language for XML 75

4.1.4 Transitive Set of Keys . 78

4.2 Discussion . 79

4.2.1 XML-Schema . 80

4.2.2 Strong Keys . 81

4.2.3 Keys that Determine Value Equality 83

4.3 Comparison with Nested Functional Dependencies 83

4.4 Functional Dependencies for XML . 87

5 Reasoning about Keys for XML 90

5.1 Decision Problems . 91

5.2 Key Implication . 93

5.2.1 Inclusion of PL Expressions . 94

viii

5.2.2 Axiomatization for Absolute Key Implication 101

5.2.3 Axiomatization for Key Implication 107

5.2.4 Axiomatization for Strong Key Implication 122

5.3 Discussion . 126

6 Propagating XML Constraints to Relations 128

6.1 Transformations from XML to Relations . 132

6.2 Problem Statement and Limitations . 136

6.2.1 Key propagation . 136

6.2.2 Minimum cover . 139

6.2.3 Propagation of other XML constraints 140

6.3 Checking Key Propagation . 143

6.3.1 Propagation Algorithm . 144

6.3.2 The Correctness of the Propagation Algorithm 150

6.4 Computing Minimum Cover . 161

6.4.1 A Naive Algorithm . 161

6.4.2 A Polynomial-Time Algorithm . 162

6.4.3 The Correctness of the Minimum Cover Algorithm 175

6.5 Experimental Study . 188

6.5.1 Experimental Testbed . 189

6.5.2 Experimental Results . 189

6.6 Discussion . 194

ix

7 Conclusion 196

7.1 Contributions . 196

7.2 Further Work . 200

x

List of Tables

3.1 Armstrong Axioms for FD implication . 30

3.2 Rules for NFD implication . 31

3.3 Rules for FD+MVD implication . 52

5.1 Ip: Rules for PL expression inclusion . 95

5.2 Iabs: Rules for absolute key implication . 102

5.3 I: Rules for key implication . 106

5.4 Iatt: Rules for strong key implication . 123

xi

List of Figures

1.1 XML data represented as a tree . 9

2.1 An instance that violates R[B : C → E : F]. 24

3.1 Algorithm for building an instance I of Sc(R) 38

3.2 A relation that satisfies 1 [AB,AC,BD]. 51

3.3 A tableau query (Tσ , t), where σ =1 [AB,AC,BD]. 53

3.4 Application of a jd-rule . 54

3.5 A schema tree and its extension with set-identifier attributes 55

3.6 A nested relation extended with set-identifier attributes 57

3.7 Flattened representation of a nested relation 57

3.8 Relation that satisfies Idx � y1, yk, Idx → y1, Idx → yk, but not y1, yk → Idx 63

4.1 Example of some XML data and its representation as a tree 69

4.2 Illustration of a key (Q, (Q′, {P1, . . . , Pk})) 76

4.3 Data represented as a nested relation and as an XML tree 84

4.4 DTD of the document in Figure 4.3 . 85

4.5 Interaction between DTDs and XML keys 86

4.6 Enrollment document . 88

xii

5.1 NFA for the PL expression a//a/c//b . 96

5.2 Algorithm for testing inclusion of PL expressions 100

5.3 Finite implication of absolute keys . 103

5.4 Abstract trees constructed in the proof of Lemma 5.6 114

5.5 Finite implication of K constraints . 120

5.6 Finite implication of Katt constraints . 125

6.1 Tree representation of XML data . 129

6.2 Sample relational instances . 130

6.3 Table trees . 134

6.4 Instances generated by the transformation of Example 6.1 135

6.5 Table trees . 141

6.6 Table trees to illustrate key propagation . 146

6.7 An algorithm for checking XML key propagation 148

6.8 A naive algorithm for finding a minimum cover 162

6.9 Trees representing universal relations . 163

6.10 Computing minimum cover . 167

6.11 Procedure computeKeys . 168

6.12 Minimization of FDs . 169

6.13 Procedure genFDs . 171

6.14 Time for computing minimum cover in seconds 190

6.15 Effect of depth of the table tree on the time for computing XML key prop-

agation . 192

xiii

6.16 Effect of number of keys on the time for computing XML key propagation . 193

xiv

Chapter 1

Introduction

This dissertation investigates key and functional dependencies in hierarchically structured

data and their implication problems. More specifically, we will present a definition of

functional dependencies for a nested relational model, and a definition of keys for XML,

and show that they are finitely satisfiable and moreover, that there exists a sound and

complete set of inference rules for determining their implication.

There is a natural analogy between this work and the theory of functional dependencies for

the relational model. The theory of functional dependencies constitutes an important part

of the relational database theory. It forms the basis of the normalization theory for the

relational model, and it is also useful for query optimization and to study how dependencies

are carried from a database to a view. In all these applications, it is important to be able

to reason about functional dependencies. If we are to achieve the same functionality for

both the nested relational model, and for XML, it is important to study the implication

problem of dependencies in these new settings.

In fact, capitalizing on the results of XML key implication, we investigate the problem of

propagating XML keys to relational views of XML data. That is, the problem of deter-

mining what are the functional dependencies that are guaranteed to hold in a relational

representation of XML data, given that a set of XML keys hold on the XML document.

In the dissertation, we provide two algorithms for computing XML key propagation. One

1

algorithm is to check whether a functional dependency is propagated from XML keys via

a predefined view, and the other is to compute a minimum cover for all functional depen-

dencies on a universal relation given certain XML keys.

1.1 Motivation

The main motivation for studying data dependencies is to incorporate more semantics

into data models, including those with richer constructs than the relational model, and

that allow data to be deeply nested. One of the contexts in which data dependencies

play an important role is when data is being exchanged between different sources. A

common paradigm in many application areas is for a data provider to export its data using

a data exchange format; on the other end, the data consumer imports some or all of the

data and stores it using database technology. Clearly, the mapping must be guided by

an understanding of the semantics of the data. The problem arises when exporters and

importers have different such understandings, and when the semantics cannot be captured

by the schema definition alone. This makes it very difficult to write the transformations

and to reason about their correctness.

It would be helpful if tools existed to facilitate the general problem of mapping between dif-

ferent data formats, taking the semantics of data into account. To facilitate such mapping,

we need a language in which to express transformations and constraints, and the ability

to reason about the correctness of the transformations with respect to the constraints.

Over the past five years, XML has become enormously popular as a data exchange for-

mat. The appeal of XML is that it is a way of serving data in a uniform, flexible, and

easily parsable form. Data is self-describing and hence easier to understand, and there

are many freely available parsers and other tools for XML. Moreover, XML data does not

require the existence of any type specification, in the form of a DTD[Lay98a] or XML

Schema[TBMM01]. Even if a type specification exists, it does not solve the data exchange

problem by itself. Exporters must map their data into the exchange format, and importers

of data must again map from the exchange format into their local format. Thus data

2

exchange is inextricably tied up with writing mappings (or transformations) between data

formats. In fact, over the past fifteen years, much attention has been paid to the problem

of developing query and transformation languages for complex and object-oriented data

sources [DK97, BLS+94, DHP97, LDB97, DCB+01].

In bioinformatics, one scenario in which these problems arises is in the context of the Mi-

croarray Gene Expression (MAGE) standard[ER01]. The semantics of MAGE is specified

using the Universal Modeling Language (UML) (the “object model”, MAGE-OM). This

standard is then expressed as an XML DTD for data exchange (MAGE-ML). Prior to the

MAGE effort, a relational database called the RNA Abundance Database (RAD) had been

developed at the Penn Center for Bioinformatics to store gene expression data as well as

its associated sample annotation data. Given the MAGE-ML standard, data is imported

from collaborators and exported from RAD using this format. However, each of these data

representations – RAD and MAGE-OM/ML – have been developed independently. Each

of the data representations has an extensive schema, in which tables/entities have keys and

possibly foreign keys, relationships have multiplicity and may be required, and attributes

may have enumerated types. Data exchange between RAD and MAGE-ML will have to be

validated as correct, not only in its mapping but with respect to the constraints expressed

on the data in each representation. Two simple examples of the difficulties entailed are

illustrated below:

1. The data exported by RAD into MAGE-ML through some transformation may fail

to validate against the constraints of MAGE-OM. To provide compliant data, either

data cleansing will have to be performed as the data is being exported into MAGE-

ML, or RAD will have to be redesigned.

Example 1: In MAGE-ML the experimental samples from the laboratory for gene

expression annotation are termed BioMaterials, and they can be of three types:

BioSource, BioSample, and LabeledExtract. The BioSource is used to designate

the innate (or starting) properties of a sample. BioSamples are derived from one

or more BioSources (and/or BioSamples) through Treatment events, and the final

BioMaterial, resulting from a sequence of Treatments, is the LabeledExtract [ea02].

3

This sequence of Treatments is represented in MAGE-ML as a directed acyclic graph,

which starts from BioSources and ends with LabeledExtracts. In RADv2, the anno-

tation interface required only information about the end result of the sample prepa-

ration, with an (optional) free-text description of the process. Since in MAGE-ML

a BioSample and LabeledExtract can only exist if the BioSource is present, the data

on experimental samples in RADv2 was inconsistent with MAGE-ML. RAD was

therefore modified by extending the database schema. A new annotation interface

was also developed to force the sample preparation process to be captured, and the

required information to be stored.

2. The data imported by RAD through some transformation from MAGE-ML may

violate integrity constraints in RAD. If the MAGE-ML data is consistent with respect

to the constraints of MAGE-OM, then there must be some inconsistency between

MAGE-OM and the constraints expressed in RAD. Thus, either RAD’s schema will

have to be re-designed to be consistent with MAGE-ML, or integrity checking will

have to be turned off when data is imported.

Example 2: In the Experiment package of MAGE-ML, an Experiment represents the

collection of results for one or more BioAssays. Each Experiment has a unique Iden-

tifier, a Name, and a ExperimentDesign, which can have many associated Types (e.g.

“time course” and “normal vs. diseased”), and a single Description. In RADv2, there

is a single relation Groups(Group ID, Group Name, Group Type, Group Desc)which

corresponds to the Experiment class. The Group Id is the key of the Groups rela-

tion, and is taken from the Identifier of the Experiment object. The Group Name

corresponds to the Experiment Name while Group Type and Group Desc correspond

to the Type and Description of the ExperimentDesign, respectively. However, this is

incorrect since there could be many different types associated with an Experiment

rather than the single one implied by the key constraint in the relational design.

Therefore, RADv2 had to be re-designed to correct this inconsistency.

The examples above identify two situations that have caused a re-design of RAD. They were

caught by the programmer in charge of specifying the mapping from RAD to MAGE-ML.

However are these the only problems that will be encountered as the process is completed?

4

The schemas involved are both extremely large, involving hundreds of attributes, making

it very difficult to catch inconsistencies. Rather than recognizing inconsistencies through

an ad-hoc process and laboriously going through successive redesigns of RAD to deal with

them, it would be extremely helpful to have a framework in which, given a desired mapping

of data and given existing constraints, all ensuing inconsistencies could be automatically

exposed and corrections suggested.

Another scenario is that a group may wish to design a database to store data based on

an XML exchange standard so that it can be easily exchanged. In this case, it would

be very helpful to be able to specify the mapping between the exchange standard and

some initial design of the database, have constraints on the database automatically be

generated from the exchange standard via the mapping, and thus generate the database

design automatically.

Even though XML has become a popular format for data exchange, a recognized problem

with XML is that it is only syntax and does not carry the semantics of the data. To address

this problem, a number of constraint specifications have recently been proposed for XML

which include a notion of keys. A natural question to ask, therefore, is how information

about constraints can be used to determine when an existing consumer database design

is incompatible with the data being imported, or to generate de-novo a good consumer

database. In this dissertation we present a framework for determining the set of functional

dependencies that are guaranteed to hold on a relational representation of XML data, given

that the XML document satisfies a set of keys. The ability to computing this set is a first

step toward establishing a connection between XML data and its relational representation

at the semantic level.

Revisiting Example 2, table Groups is populated from the XML data as follows: For

each Experiment element, a tuple is created in the Groups relation containing the value

of the identifier attribute for Group ID, the value of Name for Group Name, and from

the ExperimentDesign subelement, the type value is extracted for Group Type, and the

description value is extracted for Group Desc. The key of the Groups table has been

specified as Group ID.

5

It turns out that given the following keys on the XML data, the designers of RADv2 could

prove that in the Groups relation it is indeed the case that Group ID → Group Desc,

Group Name, but not Group ID → Group Type, identifying therefore, a potential source of

conflict:

1. identifier uniquely identifies a Experiment element.

2. Each experiment has a unique name, and a unique ExperimentDesign.

3. Within each ExperimentDesign, there exists a single description.

That is, if these XML keys hold on the data being imported, then Group ID→ Group desc,

Group name is a functional dependency (FD) that is guaranteed to hold on the Groups

relation generated. We refer to the FD as one that is propagated from these XML keys.

The problem of determining whether an FD is propagated from a set of XML keys is

closely related to the problem of determining view dependencies. If the underlying data

model used is relational and the constraints considered are functional and multivalued

dependencies, the problem has been well studied. That is, it is possible to derive the set

of projected dependencies on a relational view computed using relational algebra, given

dependencies on the base relations (see [Klu80, KP82, MMS79]. However, it is not even

clear what “constraints” mean in a hierarchically structured model, and less clear as to

what the inference rules are for reasoning about constraints. Reasoning about constraints

is essential for determining view propagation, since a constraint defined on a view may not

be determined directly by constraints defined on the base data, but by their consequences.

In this dissertation, therefore, we start by studying two forms of dependencies: functional

dependencies for a nested relational model, and keys for XML. Then, capitalizing on the

ability to reason about these dependencies efficiently, we will present algorithms to de-

termine whether a set of functional dependencies are guaranteed to hold on a relational

representation of XML data, given that the XML document satisfies a set of XML keys.

6

1.2 Contributions

This section gives an overview of the dissertation’s contents and summarizes our main

contributions.

Nested Functional Dependencies In the nested relational model we adopt, record

and set constructs can be nested by alternating. To illustrate this, consider the following

nested relation schema Course, defined as a set of records with attributes cnum, time,

and students, where students is a set of records with labels sid, age, and grade.

Course : {< cnum, time,

students : {<sid, age, grade>}>}.

Some functional dependencies that we would like to be able to express for Course are:

1. cnum is a key.

2. In a given course, each student gets a single grade.

3. The assignment of age to a given student must be consistent throughout the Course

relation.

4. A student cannot be enrolled in courses that overlap on time.

There are “local” dependencies, as dependency 2, where a student can have only one

grade for a given course, but a different grade for distinct courses. There are also “global”

dependencies as dependency 3, where the assignment of age to sid should be consistent

throughout the Course relation. Dependency 4 illustrates how an attribute from an outer

level of nesting is determined by attributes in a deeper level of nesting. Note that even if

every level of nesting presents a “key”, as suggested in [AB86], this type of dependency is

not captured by the structure of the data.

We introduce the notion of nested functional dependencies (NFDs), which are capable of

expressing all these dependencies. NFDs are functional dependencies extended to allow

simple path expressions. As an example, dependencies 2 and 3 above are expressed as:

7

Course : [students : sid→ students : age]

Course : students : [sid→ grade]

Having defined nested functional dependencies, we then turn our attention to the implica-

tion problem, that is, deciding if a given dependency is logically implied by a given set of

dependencies. In the relational model, a sound and complete set of three axioms known as

“Armstrong’s Axioms” suffice for this problem. Although reasoning with nested functional

dependencies is strikingly more complicated, we have derived a sound and complete set of

eight inference rules in the case that empty sets are known not to occur anywhere. Empty

sets cause tremendous difficulties in reasoning since formulas such as

∀x ∈ R.P (x)

are trivially true when R is empty. The additional complexity of dealing with empty sets

has also been recognized in the context of query containment in [PT99] and [LS97].

Keys for XML

Several definitions of functional dependencies for XML (XFDs) have recently been proposed

[CDHZ03, VLL04, AL04]. Although it would be tempting to study the implication of FDs

for XML, we restrict our attention to keys, given the difficulties in reasoning about FDs.

In fact, in [AL04], it is proven that their definition of XFDs is not finitely axiomatizable,

and although a sound set of inference rules is presented for both the definitions proposed

in [VLL04] and [CDHZ03], they are not proven to be complete. In contrast, our definition

of keys for XML, which is an important special case of functional dependencies, can be

reasoned about efficiently. Moreover, there exists a set of inference rules that are sound

and complete for determining their implication.

To illustrate the type of dependencies that we would like to express, consider the XML

document on the domain of books represented as a tree in Figure 1.1.

Some keys for this data might include:

1. A book node is identified by @isbn;

8

E

E E

A A

E E EEA

E

E E

E E EE E

EE

E E E E

A A

A

S SS

"Tim"

first−name

SS

last−name

"Bray"

S

first−name first−name

"Tim"

last−namelast−name

"Bray" "Jean" "Paoli"

SS SS

S

@number

"1"

S

"text"@number

"12""XML"

authorauthor chapterchapter . . .title

name name

"text"

db

book book

"HTML"

@isbn author chapterchapter

"text"@number@number "text"
"10""1"

. . .
"123"

name

title

@isbn

"234"

Figure 1.1: XML data represented as a tree

2. An author node is identified by name, no matter where the author node appears;

and

3. Within any subtree rooted at book, a chapter node is identified by @number.

These keys are defined independently of any type specification. The first two are examples

of “global” keys since they must hold globally throughout the tree. We denote them as

absolute keys. Observe that name has a complex structure. As a consequence, checking

whether two authors violate this constraint involves testing value-equality on the subtrees

rooted at their name nodes. The last one is an example of a “local” (relative) key since

it holds locally within each subtree rooted at a book. It should be noted that a chapter

@number is not a key for the set of all chapter nodes in the document since two different

books have chapters with @number = 1.

Key specifications for XML have been proposed in the XML standard [BPSM98], XML

Data [Lay98b], and XML Schema [TBMM01]. However, existing proposals cannot handle

one or more of the above situations. In particular, they are not capable of expressing the

second and third constraints. To overcome these limitations, we propose[BDF+02] a new

definition of keys for XML. As an example, dependencies 1 and 3 above are expressed as:

(book, {@isbn}) (book, (chapter, {@number})).

9

Given the definition of keys for XML, we then turn our attention to their decision problems.

We show that these keys are always (finitely) satisfiable, that is, given a set of keys, there

exists a (finite) XML tree that satisfies the set. Moreover, there exists a set of inference

rules that are sound and complete to determine their implication. Based on the rules, we

provide a polynomial time algorithm for determining XML keys implication.

Propagation of XML constraints

Having determined that XML keys can be reasoned about efficiently, we present a frame-

work for determining the set of FDs that are guaranteed to hold on a relational repre-

sentation of XML data, given that the XML document satisfies a set of keys. It is worth

remarking that the ability to compute such FDs depend on the ability to reason about

XML keys. This is because some FDs may not be directly derivable from the XML keys

defined on an XML document, but from their consequences.

As exemplified in the previous Section, this framework can be used for improving consumer

relational database design. Our approach is based on inferring functional dependencies

from XML keys through a given mapping (transformation) of XML data to relations.

More specifically, we make the following contributions:

• A simple language that is capable of specifying transformations from XML data to

relations of any predefined schema, and is independent of DTDs and other schema

information for XML.

• A polynomial time algorithm for checking whether an FD on a predefined relational

database is propagated from a set of XML keys via a transformation.

• A polynomial-time algorithm that, given a universal relation specified by a trans-

formation rule and a set of XML keys, finds a minimum cover for all the functional

dependencies mapped from XML keys.

• Undecidability results that show the difficulty of XML constraint propagation.

• Experimental results which show that the algorithms are efficient in practice.

Note that the polynomial-time algorithm for finding a minimal cover from a set of XML

keys is rather surprising, since it is known that a related problem in the relational context

10

– finding a minimum cover for functional dependencies embedded in a subset of a relation

schema – is inherently exponential [Got87].

The undecidability results give practical motivation for the restrictions adopted in our

framework. In particular, one result shows that it is impossible to effectively propagate

all forms of XML constraints supported by XML Schema, which include keys and foreign

keys, even when the transformations are trivial. This motivates our restriction of con-

straints to a simple form of XML keys. Another undecidability result shows that when the

transformation language is too rich, XML constraint propagation is also not feasible, even

when only keys are considered. Since XML to relational transformations are subsumed

by XML to XML transformations expressible in query languages such as XQuery [Cha01],

this negative result applies to most popular XML query languages.

Although a number of relational storage techniques have been developed for XML [STZ+99,

Sha01, Ora01, SKWW00, MFK+00, LC01], to the best of our knowledge, our framework

and algorithms are the first results on mapping XML constraints through relational views.

Being able to reason about constraints on views not only plays an important role in the

design of relational storage of XML data, but is also useful for query optimization and

data integration.

1.3 Organization

The remainder of this dissertation is organized as follows: Chapter 2 presents the definition

of nested functional dependencies (NFDs). It naturally extends the definition of such

dependencies for the relational model by using path expressions instead of attribute names.

The meaning of NFDs is given by defining their translation to logic. We show that NFDs

allow the definition of both local and global functional dependencies (intra and inter-set

dependencies). They can also express some properties of sets. For example, it is possible to

express that a given set is a singleton, and that sets do not share elements. We also discuss

an alternative definition of NFDs, that we call simple NFDs. Simple NFDs have the same

expressive power as NFDs. Although simpler in form, they are less intuitive because local

11

and global dependencies cannot be distinguished syntactically.

The inference rules for NFDs are the subject of Chapter 3. We present a set of eight rules

that are sound and complete for the case where no empty sets are present. Conceptually,

the rules can be broken up into three categories: three that mirror Armstrong’s axioms,

two that transform between NFDs and simple NFDs, and three that allow inferences based

solely on the nested form of the data. The effects of the presence of empty sets on the

definition of NFDs and the inference rules are also discussed. Moreover, we show that the

set of inference rules for NFDs is not equivalent to the set of inference rules for functional

and multi-valued dependencies applied to a flattened representation of a nested relation.

An abstract of Chapters 2 and 3 was published in [HD99].

Chapter 4 presents the definition of keys for XML. Similar to the notion of NFDs, our

definition of keys allows the definition of both local (relative) and global (absolute) keys,

and it can also express that a given element can contain at most one value, that is, it is

a singleton. Since a single relative key may not be able to uniquely identify a node in a

XML tree, we introduce the notion of a transitive set of keys. That is, a set of keys that

allows one to uniquely identify a node in the tree. We also discuss alternative forms of key

definitions for XML. In particular, we present the notions of strong keys and weak keys.

For strong keys, key values must exist and be unique, along the same lines as the definition

of keys in the relational model. On the other hand, for weak keys, key values may not

exist and may not be unique, that is, they may define a set of values. The motivation for

this is to cope with the semi-structured nature of XML. A discussion on the similarities

and differences between these keys and NFDs is also presented. Most of the material in

this Chapter has been published in [BDF+02].

The decision problems of keys for XML are the subject of Chapter 5. We first show that

any set of XML keys is always finitely satisfiable; that is, there exists a finite XML tree

that satisfies the set. Then we turn our attention to the implication problem. Since key

implication rely on path containment, we first present a sound and complete set of five

inference rules for determining containment of our path language, and provide a quadratic

time algorithm for testing inclusion of path expressions. We then provide a sound and

12

complete set of inference rules and a polynomial time algorithm for determining implication

of three classes of key languages: weak absolute keys, weak absolute and relative keys

considered together, and strong keys. The results on weak keys have been published in

[BDF+03].

The propagation of XML keys to relations is considered in Chapter 6. First, a language for

specifying transformations from XML to relations is presented. Despite its simplicity, it

forms a core of many common transformations found in the literature. We then present two

undecidability results that motivated our choices of transformation language and type of

constraints considered: the first is that determining XML key propagation is undecidable

when the transformation language can express all relational algebra operators; the second is

that the propagation problem of keys and foreign keys is undecidable for any transformation

language that can express identity mapping, which includes our language. Thus, we restrict

our attention to the propagation of XML keys. We provide two algorithms: one is to check

whether an FD is propagated from a set of XML keys via a predefined view, and the other

is to compute a minimum cover of all FDs propagated from a set of XML keys. We then

present our experimental results which show that these algorithms are efficient in practice.

This Chapter is an extended version of [DFHQ03].

Chapter 7 concludes the dissertation by presenting a summary of our contributions and

future work.

13

Chapter 2

Functional Dependencies for a

Nested Relational Model

Data dependencies add semantics to a database schema and are useful for studying various

problems such as database design, query optimization and how dependencies are carried

into a view. In the context of the relational model, a wide variety of dependencies have

been studied, such as functional, multivalued, join and inclusion dependencies (see [Mai83,

AHV95] for overviews of this work). However, apart from notions of key constraints and

inclusion dependencies [BFW98, PT99], dependencies in richer models than the relational

model have not been as thoroughly studied. The functional dependency is one of the first

and simplest form of dependencies identified. It states that if in a relation R two rows

agree on the value of a set of attributes X then they must agree on the value of a set

of attributes Y . In other words, in R, X determines Y . The dependency is written as

X → Y .

In the nested relational model, where the attributes of a relation may be sets rather than

atomic types, we would like to be able to express dependencies that traverse into various

levels of nesting. This motivated us to introduce a new form of functional dependencies,

called nested functional dependencies (NFDs).

Nested functional dependencies can express a number of natural dependencies that arise

14

in a nested relational model. As an example of what we would like to be able to express,

consider a type named Course defined as a set of records with attributes cnum, time,

students, and books, where students is a set of records with labels sid, age, and grade,

and books is a set of records with labels isbn, and title:

Course : {< cnum, time,

students : {<sid, age, grade>},

books : {<isbn, title>}>}.

Some nested functional dependencies that we would like to be able to express for Course

are:

1. cnum is a key.

2. Every Course instance is consistent on their assignment of title to a given isbn.

3. In a given course, each student gets a single grade.

4. The assignment of age to a given student must be consistent throughout the Course

relation.

5. A student cannot be enrolled in courses that overlap on time.

Notice that there are “local” dependencies, as dependency 3, where a student can have

only one grade for a given course, but a different grade for distinct courses. There are

also “global” dependencies as dependencies 2 and 4, where the assignment of title to an

isbn, and age to sid should be consistent throughout the Course relation. Dependency 5

illustrates how an attribute from an outer level of nesting is determined by attributes in

a deeper level of nesting. Notice that even if every level of nesting presents a “key”, as

suggested in [AB86], this type of dependency is not captured by the structure of the data.

As another example, consider the following example of a Country database, where a

country can be composed either by states, as the U.S.A, or by a set of cities, as European

countries.

15

Country : {< name : {string},

continent : {string},

capital : {string},

states : {< sname : {string},

scities : {< cname : {string},

location : {< latitude : {int},

longitude : {int}>}>}>},

cities : {< cname : {string},

population : {int}>}>}

Although this might look like a very badly designed database, it might be the approach

used to model “sparse” data. In applications such as biological databases, due to the fact

that the database is sparsely populated and evolves over time, most of the attributes are

optional. By defining every attribute as a set, we can use empty sets as the value when

the attribute is absent or undefined. The data model AceDB [TMD92], which is very

popular among biologists, was developed with these properties in mind. Notice also that

this example uses the fact that sets can be empty to express that a country can be either a

set of states or a set of cities. Although this may not be the ideal way to express optional

attributes, in cases where the data model does not support variants (as in this nested

relational model), modeling optional attributes using empty sets is a feasible alternative.

Some dependencies that we would like to express in this example are:

• If a country is a set of states, then the country’s name, the state’s sname and the

city’s cname determine the city’s latitude and longitude.

• If a country is a set of cities, then the country’s name, and the city’s cname determine

the city’s population.

The main idea behind all these dependencies is that they follow paths. Using paths instead

of attributes is a natural extension of the definition of functional dependencies in the

relational model to a model where arbitrary levels of nesting are allowed.

16

This chapter is organized as follows. Section 2.1 formally defines nested functional depen-

dencies. First, we introduce the nested relational model in Section 2.1.1, and our notion of

path expressions in Section 2.1.2. We then define nested functional dependencies (NFDs)

in Section 2.1.3 and present a translation of NFDs to logic in Section 2.1.4.

2.1 Functional Dependencies

The natural extension of a functional dependency X −→ A for the nested relational model

is to allow path expressions in X and A instead of attributes. That is, X is a set of paths

and A is a single path. As an example, the requirement that a student’s age in Course

be consistent throughout the database could be written as Course : [students : sid →

students : age], where “:” indicates traversal inside a set. Note that we have enclosed the

dependency in square brackets“[]” and appended the name of the nested relation, Course.

We need to do two things prior to formally defining nested functional dependencies: The

first is to give a definition of the nested relational model; The second is to describe a path

language used to denote attributes in arbitrary levels of nesting.

2.1.1 Data Model

The nested relational model has been well studied (see [AHV95] for an overview). It

extends the relational model by allowing the type of an attribute to be a set of records or a

base type, rather than requiring it to be a base type (First Normal Form). For simplicity,

we use the strict definition of the nested model and require that set and tuple constructors

alternate, i.e. there are no sets of sets or tuples with a tuple component, although allowing

nested records or sets does not substantially change the results established. For ease of

presentation, we also assume that there are no repeated labels in a type, i.e., <A : int,B :

{<A : int>}> is not allowed.

An example of a nested relation was given by Course in the previous section.

More formally, a nested relational database R is a finite set of relation names, ranged over

17

by R1, R2, A is a countable set of labels, ranged over by A1, A2, . . ., B is a fixed finite

set of base types, ranged over by b, . . .

We introduce the data types Types as follows:

τ ::= b | {τ} | <A1 : τ1, . . . , An : τn>

Here, b are base types, like integers, and strings. The notation {ω} represents a set with

elements of type ω, where ω must be a record type. <A1 : τ1, . . . , An : τn> represents a

record type with fields A1, . . . , An of types τ1, . . . , τn, respectively. Each τi must either be

a base or a set type.

Definition 2.1 A database schema is a pair (R,S), where

• R is a finite set of relation names

• S is a schema mapping S : R → Types, such that for any R ∈ R, R
S
7→ τR where

τR is a set of records in its outermost level.

Denotations of types. Let us denote by Db the domain of the base type b, for any b.

The domain of our model D is defined as the least set satisfying the equation:

D ≡
⋃

b

Db ∪A
∼
→ D ∪ Pfin(D)

where A
∼
→ B denotes the set of partial functions from A to B, and Pfin(A) denotes the

finite powerset of A.

Given a schema (R,S), the interpretation of each type τ in Types, [[τ]], is defined by

[[b]] ≡ Db

[[{τ}]] ≡ Pfin([[τ]])

[[<A1 : τ1, . . . , An : τn>]] ≡ {f ∈ A
∼
→ D | dom(f) = {A1, . . . , An}

and f(Ai) ∈ [[τi]], i = 1, . . . , n}

18

Definition 2.2 A database instance of a database schema (R,S) is a record I with labels

in R such that πRI is in [[S(R)]] for each R ∈ R.

We denote by ISc the set of all instances of schema Sc.

As an example, let ({Course},S) be a schema where

S(Course) = {<cnum : string, time : int, students : {<sid : int, grade : string>}>}.

Then the following is an example of an instance of this schema:

<Course 7→

{ <cnum 7→ ”cis550”, time 7→ 10, students 7→ { <sid 7→ 1001, grade 7→ ”A”>,

<sid 7→ 2002, grade 7→ ”B”>}>,

<cnum 7→ ”cis500”, time 7→ 12, students 7→ {<sid 7→ 1001, grade 7→ ”A”>}>}>

2.1.2 Path Expressions

We start by giving a very general definition of path expressions, and narrow them to be

well-defined by a given type.

Definition 2.3 Let A = A1, A2, . . . be a set of labels. A path expression is a string over

the alphabet A
⋃

{:}. ε denotes the empty path.

Definition 2.4 A path expression p is well-typed with respect to type τ if

• p = ε, or

• p = Ap′ and τ is a record type <A : τ ′, . . . > and p′ is well-typed with respect to τ ′, or

• p = : p′ and τ is a set type {τ ′} and p′ is well-typed with respect to τ ′.

As an example, A : B is well-typed with respect to the type <A : {<B : int, C : int>}>, but

not with respect to the type <A : int>.

Given an object e, the semantics of path expressions is given by:

19

[[ε e]] ≡ [[e]]

[[A e]] ≡ [[e]](A)

[[: e]] ≡







undefined, if [[e]] = {}

[[e1]], otherwise, where [[e1]] is an element of [[e]]

Note that the value of a path expression that traverses into an empty set is undefined, i.e.,

it does not yield a value in the database domain. We say that a path expression p is well

defined on v if it always yields a value in the database domain.

As an example, if

v = <A 7→ { <B 7→ 10, C 7→ 20>, <B 7→ 15, C 7→ 21>}>

then

• A(v) = {<B 7→ 10, C 7→ 20>, <B 7→ 15, C 7→ 21>}

• A : B(v) = 10 or A : B(v) = 15

Observe that we could have adopted an alternative set semantics for path expressions of the

form A : B(v) in the previous example. That is, we could have defined the path expression

to yield the set of all B attribute values of a set-valued attribute A – A : B(v) = {10, 15}.

Consider now a second value v′ = <A 7→ {<B 7→ 10, C 7→ 30>}>. Using this set semantics,

an equality test of the form A : B(v) = A : B(v′) would be interpreted as A : B(v) ∩ A :

B(v′) 6= ∅, while in our interpretation the equality test returns true when A : B(v) = 10,

and false otherwise. The motivation for adopting this interpretation is to be able to identify

the <B,C> tuple in which the values of the B attribute coincide, which is important for

defining the semantics for NFDs.

To help define nested functional dependencies, we introduce the notions of path prefix and

size of a path expression.

20

Definition 2.5 Path expression p1 is a prefix of p2 if p2 = p1p
′
2. Path p1 is a proper

prefix of p2 if p1 is a prefix of p2 and p1 6= p2.

Definition 2.6 The size of a path expression of the form p = A1 : . . . : Ak, denoted as |p|,

is k, the number of labels in p.

2.1.3 Nested Functional Dependencies

With the notion of path expressions, we are now in a position to define nested functional

dependencies (NFDs), and how an instance is said to satisfy an NFD.

Definition 2.7 Let Sc = (R,S) be a schema. A nested functional dependency (NFD)

over Sc is an expression of the form x0 : [x1, . . . , xm−1 → xm], m ≥ 1, such that all xi,

0 ≤ i ≤ m, are path expressions of the form Ai
1 : . . . : Ai

ki
, ki ≥ 1, where x0 = Ry, R ∈ R,

and y : xi, 1 ≤ i ≤ m, are well-typed path expressions with respect to τR.

In general, the base path x0 can be an arbitrary path rather than just a relation name. For

the degenerate case where m = 1, i.e. the NFD is of form x0 : [∅ → xm], then in any value

of x0, : xm must be a constant.

Definition 2.8 Let f = x0 : [x1, . . . , xm−1 → xm] be an NFD over schema Sc, I an

instance of Sc, and v1, v2 two values of x0 : (I) in the database domain. I satisfies f ,

denoted I |= f , if for all v1, v2, whenever

1. xi(v1) = xi(v2) for all i, 1 ≤ i < m

2. for every path x which is a common prefix of xi, xj , 1 ≤ i, j ≤ m, x(v1) coincide in

xi(v1) and xj(v1) and x(v2) coincide in xi(v2) and xj(v2) (i.e. xi and xj follow the

same path up to x in v1 and in v2)

then

xm(v1) = xm(v2)

21

If for some xi, 1 ≤ i ≤ m, xi(v1), or xi(v2) is undefined, we say f is trivially true.

In the next section, we give a translation of NFD to logic to precisely define its semantics.

This definition of NFDs is very broad, and captures many natural constraints. As an

example, we can precisely state the constraints on Course described in the introduction

of the chapter.

Example 2.1 In Course, cnum is a key.

Course : [cnum→ time]

Course : [cnum→ students]

Course : [cnum→ books] 2

Example 2.2 For any two instances in Course, if they agree on isbn for some element of

books then they must also agree on title for that element of books.

Course : [books : isbn→ books : title] 2

Example 2.3 In a given course, each student gets a single grade.

Course : students : [sid→ grade] 2

Note that in this example, sid is a “local” key to grade; this illustrates the use of a path

rather than just a relation name outside the “[]”. Contrast this to the previous example,

where the NFD requires that isbn and title should be consistent throughout the database.

Example 2.4 Every Course instance is consistent on their assignment of age to sid.

Course : [students : sid→ students : age] 2

Example 2.5 A student cannot be enrolled in courses that overlap on time.

Course : [time, students : sid→ cnum] 2

Some interesting properties of sets can also be expressed by NFDs. For example, if an

instance I satisfies an NFD of the form x0 : [x1 : x2 → x1], then given two values v1, v2 of

x0 : x1(I), either v1 = v2, or v1
⋂

v2 = ∅1.

1Note that values of x0 : x1(I) must be of set type.

22

As an example, suppose that a university’s courses database is defined as Courses :

{<school, scourses : {<cnum, time>}>}, and it satisfies the NFD Courses : [scourses :

cnum → school]. We can conclude that schools in the university do not share course

numbers, because the existence of the same cnum in different schools would violate the

NFD.

NFDs can also express the fact that if a set is not empty then it must be a singleton. I.e.,

if an instance I satisfies an NFD of the form x0 : [x1, . . . , xm → xn : A], where xn is not a

proper prefix of any xi, 1 ≤ i ≤ m, then for any value v of x0 : (I) in which paths x1 . . . xm

are well-defined, all elements e of xn(v) have the same value for A(e).

For example, let R be a relation with schema {<A : {<B : int, C : int>},D : int>}. If

R : [D → A : B], and R : [D → A : C], then it must be the case that A is either empty,

or a singleton set, since for every value of A all elements agree on the values of B and C.

Since these are the only attributes in A, then A has a single element.

It should be noted that our definition also allows some unintuitive NFDs. For example,

assume R : {<A : int,B : {<C : int,D : int>}, E : {<F : int,G : int>}>}. Then the NFD

R : [B : C → E : F] implies that:

• all tuples <F,G> in E have the same value for F when B is not empty, and

• if any tuple <C,D> in B agrees on the value of C, then the elements <F,G> in E

must have the same value for F .

Figure 2.1 shows an instance of R that does not satisfy R : [B : C → E : F]. If we only

consider the first tuple in the relation, the NFD is satisfied since all values of attribute F

coincide, i.e. B : C = 1 determines E : F = 5. The existence of more than one value for

F automatically invalidates the constraint because a single value in C would be related

to distinct values in F as in the second tuple. This tuple also violates the dependency

because it has a value in B : C that also appears in the first tuple, but has a different value

for E : F .

23

A B E
C D F G

1 1 3 5 6
5 7

C D F G
2 2 2 3 4

1 3 4 4

Figure 2.1: An instance that violates R[B : C → E : F].

2.1.4 NFDs expressed in logic

In the relational model, a functional dependency Course : [cnum → time, students] can

be understood as the following formula:

∀c1 ∈ Course ∀c2 ∈ Course

(c1.cnum = c2.cnum)→ (c1.time = c2.time ∧ c1.students = c2.students)

There is also a precise translation of NFDs to logic. Intuitively, given an NFD R :

[x1 . . . xm−1 → xm], we introduce two universally quantified variables for R and for each

set-valued attribute in x1 . . . xm
2. The body of the formula is an implication where the

antecedent is the conjunction of equalities of the last attributes in x1 . . . xm−1 and the

consequence is an equality of the last attribute in xm.

As an example, Course : [students : sid → students : age] can be translated to the

following formula:

∀c1∈ Course ∀c2 ∈ Course ∀s1 ∈ c1.students ∀s2 ∈ c2.students.

(s1.sid = s2.sid→ s1.age = s2.age)

To formalize this translation, we define functions var and parent. Let Sc = (R,S) be a

schema, and f = x0 : [x1, . . . , xm−1 → xm] be an NFD defined over Sc, where xi = Ai
1 :

2It is a little more complicated for the general case where the base path can be an arbitrary path rather
than R.

24

. . . : Ai
ki

, 0 ≤ i ≤ m, and A0
1 = R, R ∈ R.

Define var as a function that maps labels to variable names as follows:

• for each label A in τR that appears in some path xi, 0 ≤ i ≤ n, var(A) = vA. Recall

that we assume labels cannot be repeated.

The function parent maps a label to the variable defined for its parent as follows:

• for all Ai
1, 1 ≤ i ≤ m, parent(Ai

1) = var(A0
k0

), i.e., the parent of the first labels in

paths x1 . . . xm is the variable associated with the last label in path x0.

• parent(Ai
j+1) = var(Ai

j). Let {A∗
1 . . . A

∗
q} be the set of such Aj labels, i.e., the set of

labels that have some descendent in a path expression.

Also, let parent(A0
1).A

0
1 = R. Then f is equivalent to the following logic formula:

∀vAO
1

∈ parent(A0

1
).A0

1
. . . ∀vA0

k0−1

∈ parent(A0

k0−1
).A0

k0−1

∀v1

A0

k0

∈ parent(A0

k0
).A0

k0
∀v2

A0

k0

∈ parent(A0

k0
).A0

k0

∀v1

A∗

1

∈ parent(A∗

1
)1.A∗

1
∀v2

A∗

1

∈ parent(A∗

1
)2.A∗

1
. . .

∀v1

A∗

q
∈ parent(A∗

q)
1.A∗

q ∀v
2

A∗

q
∈ parent(A∗

q)
2.A∗

q

((true ∧

parent(A1

k1
)1.A1

k1
= parent(A1

k1
)2.A1

k1
∧ . . .∧

parent(Am−1

km−1
)1.Am−1

km−1
= parent(Am−1

km−1
)2.Am−1

km−1
)

→

(parent(Am
km

)1.Am
km

= parent(Am
km

)2.Am
km

))

Note that only one variable is mapped to each label in A0
1, . . . , A

0
k0−1, whereas two variables

are used elsewhere.

Using this translation, Examples 2.1.3 and 2.1.3 can be expressed as:

• Course : [books : isbn→ books : title]

∀c1 ∈ Course ∀c2 ∈ Course ∀b1 ∈ c1.books ∀b2 ∈ c2.books.

(b1.isbn = b2.isbn→ b1.title = b2.title)

25

Note that books is referred to twice in the dependency, and two variables for books

are introduced in the logical form.

• Course : students : [sid→ grade]

∀c ∈ Course ∀s1 ∈ c.students ∀s2 ∈ c.students

(s1.sid = s2.sid→ s1.grade = s2.grade)

Note that only one variable is introduced for Course, and two variables are introduced

for students, the last label in x0.

2.2 Discussion

In the definition of NFDs, the base path can be an arbitrary path rather than just a relation

name. The motivation for allowing this is to syntactically differentiate between local and

global functional dependencies: R : A : [B → C] is a local functional dependency in A,

while R : [A : B → A : C] defines a global dependency between B and C. However, the local

dependency is provably equivalent3 to the dependency R : [A, A : B → A : C]. Intuitively,

by requiring equality on A (as a set), the dependency between B and C becomes local to

the set. Therefore, the expressive power of NFDs with arbitrary paths and relation names

as base paths are the same. However, we believe that the first form is more intuitive.

Most of the early work on functional dependencies (FDs) adopted a more restrictive nested

relational model than the one presented in Section 2.1.1. In [AB86] every level of nesting

is required to have at least one atomic attribute, while in [OY87] and [MNE96] relations

are required to be in partition normal form[RKS88]. That is, the atomic attributes in each

level of nesting form a key. In these earlier work, the definition of FDs is either the one

given for the relational model [OY87] and are defined on atomic attributes, or extends it

by allowing equality on sets [Mak77]. Our definition clearly subsumes these definitions.

Moreover, with a single notation, our definition of NFDs can express both the notions of

functional dependencies and multi-valued dependencies on nested relations. That is, an

NFD R : [X → y] corresponds to a functional dependency if the type of y is atomic, and

3The equivalence of these two forms is proved in Chapter 3.

26

to a multi-valued dependency otherwise. A detailed discussion on the correspondence of

NFDs and functional dependencies and multi-valued dependencies is presented in the next

Chapter.

The idea of extending functional dependencies to allow path expressions instead of simple

attribute names have been investigated by Weddell [Wed92] and also by Tari et al. [TSS97]

in the context of an object-oriented data model. While Weddell’s work supports a data

model of classes, where each class is associated with a simple type (a flat record type), our

model supports a nested relational model with arbitrary levels of nesting. In [Wed92],

following a path entails an implicit “dereference” operation, while in NFDs following a

path means traversal into an element of a nested set. They present a set of inference rules

and prove they are complete. We believe this work and ours are complementary and that

it would be interesting to investigate how the two approaches could be combined into a

single framework.

In [TSS97], more general forms of functional dependencies for the object-oriented model

are proposed. Their model supports nested sets, and classes of objects, and the depen-

dencies allow inter- and intra-set dependencies, and also dependencies between objects

without specifying an specific path. For example, it is possible to express that any path

between two objects should lead to the same value. But, as opposed to our model, they

assume that every level of nesting presents a key or an object ID. Inference rules for the

proposed forms of functional dependencies are presented, but they do not claim or prove

their completeness.

We believe our definition of NFDs naturally extends the definition of functional dependen-

cies for the relational model by using path expressions instead of attribute names. The

meaning of NFDs was given by defining their translation to logic. NFDs allow the defini-

tion of both local and global functional dependencies (intra and inter-set dependencies).

They can also express some properties of sets. For example, it is possible to express that

sets do not share some values, and that a given set is a singleton, as exemplified in the pre-

vious section. The importance of singleton sets is evident in [FSTG85], which investigates

when functional dependencies are maintained or destroyed when relations are nested and

27

unnested. In most cases, this relies on knowing whether a set is a singleton or multivalued.

More recently, a number of definitions of functional dependencies for XML has been pro-

posed [CDHZ03, LVL03, VL03, AL04]. As we will show in more detail in Chapter 4, an

XML document can be seen as a node-labeled tree with values on the leaves. These notions

of FDs also involve paths, but as opposed to NFDs, FDs for XML involve not only value

equality, but also node identity. A detailed discussion on FDs for XML will be presented

in Chapter 4, after defining of our notion of keys for XML.

28

Chapter 3

Reasoning about Nested

Functional Dependencies

One of the most interesting questions involving NFDs is that of logical implication, i.e.,

deciding if a new dependency holds given a set of existing dependencies. This problem

can be addressed from two perspectives: One is to develop algorithms to decide logical

implication, for example, tableau chase techniques (see [MMS79] for the relational model,

and more recently [PT99, PDST00] for a complex object model, and [DT03b] for XML).

The other is to develop inference rules that allow us to derive new dependencies from the

given ones.

The development of inference rules is important for many reasons [BV84a]: First, it helps

us gain insight into the dependencies. Second, it may help in discovering efficient decision

procedures for the implication problem. Third, it provides tools to operate on dependen-

cies. For example, in the relational model, it provided the basis for testing equivalence

preserving transformations, such as lossless-join decomposition, and dependency preserv-

ing decomposition, which lead to the definition of normal forms of relations, a somewhat

more mechanical way to produce a database design [Ull83].

29

Y ⊆ X
R : [X → Y]

(reflexivity)

R : [X → Y]

R : [XZ → Y Z]
(augmentation)

R : [X → Y] R : [Y → Z]

R : [X → Z]
(transitivity)

Table 3.1: Armstrong Axioms for FD implication

3.1 Axiomatization for NFD Implication

In the relational model, a simple set of three rules – called Armstrong’s Axioms – are

sound and complete for functional dependencies (FDs). They are presented in Table 3.1,

using our notation, where “paths” are single attributes, and X, Y , and Z denote sets of

attributes.

The logical implication problem for these rules is formally defined as:

Definition 3.1 Let Sc be a schema, Σ be a set of FDs over Sc, and σ an FD over Sc. Σ

logically implies σ under Sc, denoted Σ |=Sc σ if for all instances I of Sc, I |= Σ implies

I |= σ.

The implication problem for NFDs that we will consider is slightly changed from that

for FDs: no instances are allowed to contain empty sets. Empty sets cause tremendous

difficulties in reasoning since formulas such as

∀x ∈ R. P (x)

are trivially true when R is empty. These problems are discussed in detail in Section

3.2. For completeness, we state below the implication problem that we are considering for

NFDs.

Definition 3.2 Let Sc be a schema, Σ be a set of NFDs over Sc, and σ an NFD over

Sc. Σ logically implies σ under Sc, denoted Σ |=Sc σ if for all instances I of Sc with no

empty sets, I |= Σ implies I |= σ.

30

x ∈ X
x0 : [X → x]

(reflexivity)

x0 : [X → z]

x0 : [XY → z]
(augmentation)

x0 : [X → xi], i ∈ [1, n], x0 : [x1, . . . , xn → y]

x0 : [X → y]
(transitivity)

x0 : y : [X → z]

x0 : [y, y : X → y : z]
(push-in)

x0 : [y, y : X → y : z]

x0 : y : [X → z]
(pull-out)

x0 : [A : X, B1, . . . , Bk → A : z]

x0 : A : [X → z]
(locality)

x0 : [x1 : A, x2, . . . , xk → y], |x1| ≥ 1, x1 is not prefix of y

x0 : [x1, x2, . . . , xk → y]
(prefix)

x0 : [x→ x : A1], . . . , x0 : [x→ x : An], type of x is {<A1, . . . An>}
x0 : [x : A1, . . . , x : An → x]

(singleton)

Table 3.2: Rules for NFD implication

In this section, we present a sound and complete set of inference rules for NFDs in the

restricted case in which no empty sets are present in any instance. The extension to allow

empty sets in instances is discussed in detail in Section 3.2. Conceptually, the rules can be

broken up into three categories: The first three mirror Armstrong’s axioms – reflexivity,

augmentation and transitivity. The next two transform between alternate forms of NFDs

discussed at the end of the last chapter – push-in and pull-out.1 The last three allow

inferences based solely on the nested form of the data – locality, prefix, and singleton.

In the following, x, y, z, x0, x1, . . . are path expressions, and A1, A2, . . . , B1, B2, . . . are at-

tribute labels. XY denotes X ∪ Y , where X,Y are sets of path expressions, and x : X

denotes the set {x : x1, . . . x : xk}, where X = {x1, . . . , xk}.

The NFD-rules are presented in Table 3.2.

1A discussion of why we don’t just adopt a simpler form for NFDs which would eliminate these two
rules is deferred to section 3.3.

31

Example 3.1 Let R be a relation with schema {<A : {<B : {<C>}, E : {<F,G>}>},D>},

on which the following NFDs are defined:

(nfd1) R : [A : B : C, D → A : E : F]

(nfd2) R : A : [B → E : G]

We claim that R : A : [B → E]. The proof using the NFD-rules follows.

1. R : A : [B : C → E : F] by locality of nfd1.

The locality rule allows us to derive a local NFD from a global one, by dismissing the

attributes outside the level of nesting of the local NFD. In the example above, notice

that for any element in R, given a value of A there exists a unique value of D, since

they are labels in a record type. Therefore, locally for any value of A, B : C → E : F .

2. R : A : [B → E : F] by prefix rule on (1).

(1) states that whenever two tuples in R have a common value for C in the set B,

then the value of E : F must also agree. In particular, if two tuples agree on the

value of B then they present a common element, since we assumed that there are no

empty sets in instances of R.

3. R : A : E : [∅ → F] by locality of (2).

If in any tuple in R : A, the value of B determines the value of E : F then every

element in E have to agree on the value of F , otherwise (2) would be violated.

Therefore, locally in any A : E the value of F is constant.

4. R : A : [E → E : F] by push-in.

If the value of F is constant inside any value of A : E , for any given value of A : E

there exists a unique value of F . Therefore, the whole set determines the value of F .

5. R : A : E : [∅ → G] by locality of nfd2.

6. R : A : [E → E : G] by push-in.

7. R : A : [E : F, E : G→ E] by singleton with (4) and (6).

32

Since the value of the set E determines the value of each of its attributes, then E

must be a singleton. Therefore, the values of its unique element determines the value

of the set.

8. R : A : [B → E] by transitivity with (7), (2), and nfd2. 2

Lemma 3.1 Let Sc be a schema. The NFD-rules are sound for logical implication of

NFDs under Sc for the case when no empty sets are present in a instance.

Proof.

1. reflexivity: Suppose f ≡ x0 : [X → x] is not satisfied for some x ∈ X. Let v1, v2 be

two arbitrary values of x0 : (I). If for some y ∈ X, y(v1) 6= y(v2), then v1, v2 can not

violate f . If for all y ∈ X y(v1) = y(v2), and x(v1) 6= x(v2), v1, v2 violates f . But

x ∈ X, therefore x(v1) = x(v2).

2. augmentation: Suppose I satisfies f1 ≡ x0 : [X → z], but not f2 ≡ x0 : [XY → z].

Let v1, v2 be two arbitrary values of x0 : (I). Suppose for all y ∈ Y , y(v1) = y(v2),

and for all x ∈ X, x(v1) = x(v2), yet z(v1) 6= z(v2). But since f1 is satisfied and for

all x ∈ X, x(v1) = x(v2), z(v1) = z(v2), a contradiction.

3. transitivity: Suppose I satisfies f1 ≡ x0 : [X → x1], . . . , fn ≡ x0 : [X → xn], fy ≡

x0 : [x1, . . . , xn → y]. Yet, I does not satisfy f ≡ x0 : [X → y]. Let v1, v2 be two

arbitrary values of x0 : (I). Suppose p(v1) = p(v2) for all p ∈ X. Since I satisfies fi

xi(v1) = xi(v2) for all xi, 1 ≤ i ≤ n. But I also satisfies fy, therefore y(v1) = y(v2),

and I satisfies f .

4. push-in: Suppose I satisfies f1 ≡ x0 : y : [X → z], but not f2 ≡ x0 : [y, y :

X → y : z]. Let v1, v2 be two arbitrary values of x0 : (I), such that y(v1) = y(v2),

and e1, e2 be elements in y(v1), and in y(v2), respectively, such that for all x ∈ X,

x(e1) = x(e2), and z(e1) 6= z(e2). But {e1, e2} ⊆ y(v1) = y(v2), and since I satisfies

f1, z(e1) = z(e2).

33

5. pull-out: Suppose I satisfies f1 ≡ x0 : [y, y : X → y : z], but not f2 ≡ x0 : y : [X →

z]. Let v1 be an arbitrary value of x0 : (I), and e1, e2 two elements in y(v1) such that

for all x ∈ X, x(e1) = x(e2), and z(e1) 6= z(e2). But from f1 if y(v1) = y(v1) and

x(e1) = x(e2) for all x ∈ X then z(e1) = z(e2), a contradiction.

6. locality: Suppose I satisfies f1 ≡ x0 : [A : x1, . . . , A : xm, B1, . . . , Bk → A : xn], but

not f2 ≡ x0 : A : [x1, . . . , xm → xn]. Let r be an arbitrary value of x0 : (I), and

v1, v2 arbitrary values of A : (r). Suppose xi(v1) = xi(v2) for all xi, 1 ≤ i ≤ m, yet

xn(v1) 6= xn(v2). But xi(v1), xi(v2) are values of A : xi(r), and since r is a record

with labels A,B1, . . . , Bk there is only one value for all Bi, 1 ≤ i ≤ k. Since I satisfies

f1, xn(v1) = xn(v2).

7. prefix: Suppose I satisfies f1 ≡ x0 : [x1 : A, x2, . . . , xk → y], |x1| ≥ 1, but I

does not satisfy f2 ≡ x0 : [x1, x2, . . . , xk → y]. Let v1, v2 be two arbitrary value of

x0 : (I). Suppose for all xi, 1 ≤ i ≤ k, xi(v1) = xi(v2), but y(v1) 6= y(v2). Since

x1(v1) = x1(v2), for every element e1 ∈ x1(v1) there exists an element e2 ∈ x1(v2)

such that x1 : A(v1) = x1 : A(v2). The value of y(v1), y(v2) does not depend

on the elements e1, e2 chosen because x1 is not prefix of y by assumption. Given

that I satisfies f1, y(v1) = y(v2), which contradicts our initial assumption. Hence,

x0 : [x1 . . . xk → y].

8. singleton: Note first that if the value of a set x is proven to be a singleton, then

the unique element of the set determines the value of the set. In particular, if the

element of the set is a record then the set of attributes of the record, {A1, . . . , An},

determines the value of the set, i.e., x0 : [x : A1, . . . , x : An → x]. Suppose I

satisfies f1 ≡ x0 : [x → x : A1], . . . , fn ≡ x0 : [x → x : An]. Yet, I does not satisfy

f ≡ x0 : [x : A1, . . . , x : An → x]. We’ll show that under the assumptions x is a

singleton. Suppose not. Let v1 be an arbitrary value of x0 : x(I), and let e1, e2 be

two elements in v1. There must exist some Ai such that Ai(e1) 6= Ai(e2). But for

all i, 1 ≤ i ≤ n, I satisfies x0 : [x → x : Ai], and therefore Ai(e1) = Ai(e2). As a

consequence e1 = e2, and x is a singleton. 2

There are several rules that are consequences of the rules defined above. Here we give just

34

one that will be useful in later discussions.

• full-locality:

if

1. x0 : [x : X, Y → x : z]

2. x is not a proper prefix of any y ∈ Y

then x0 : [x, x : X → x : z].

Proof. Let x = A1 : . . . : Ak, i.e., we can rewrite the NFD as x0 : [Y, A1 : . . . : Ak : X →

A1 :, wts : Ak : z]. Applying the prefix rule multiple times on paths in Y . We get x0 :

[B1, . . . , Bm, A1 : Y1, . . . , A1 : . . . : Ak−1 : Yk−1, A1 : . . . : Ak : X → A1 : . . . : Ak : z],

where for all y ∈ Yi, 1 ≤ i < k, |y| = 1, and for all p ∈ {B1, . . . Bm} ∪ A1 : Y1 ∪ . . . ∪ A1 :

. . . : Ak−1 : Yk−1 there exists a q ∈ Y such that q = pq′. We can then apply the locality

rule and get x0 : A1 : [Y1, . . . , A2 : . . . : Ak−1 : Yk−1, A2 : . . . : Ak : X → A2 : . . . : Ak : z].

Applying locality rule k − 1 more times we get x0 : A1 : . . . : Ak : [X → z]. Then by

push-in we finally obtain x0 : [x, x : X → x : z] 2

3.1.1 Completeness of the NFD-rules

In order to prove completeness, we need to define the set of paths in a schema, and the

closure of a set of paths.

Definition 3.3 Let Sc = (R,S) be a schema. Then the paths of Sc, denoted as Paths(Sc),

is the set of all path expressions p ≡ Rp′, such that R ∈ R, and p′ is well-typed with respect

to τR. Similarly, the paths of R, R ∈ R, denoted as PathsSc(R), is the set of paths p such

that p ∈ Paths(Sc), and p ≡ Rp′.

Definition 3.4 Let Sc be a schema, Σ a set of NFDs over Sc, x0 a path expression, and

X = {x1, . . . , xn} a set of path expressions such that {x0, x0 : x1, . . . , x0 : xn} ⊆ Paths(Sc).

The closure of X under x0, and Σ, denoted (x0,X,Σ)∗,Sc (or (x0,X)∗ when Σ and Sc are

35

understood) is the set of paths x0 : q such that x0 : q ∈ Paths(Sc), and x0 : [X → q] can

be derived from the NFD-rules.

Let Sc = (R,S) be a schema, Σ a set of NFDs over Sc, and X ∪ {x0, x} a set of paths

in Paths(R), where R ∈ R. The completeness proof is based on the construction of an

instance I of R such that I |= Σ, but I 6|= x0 : [X → x] if x 6∈ (x0,X,Σ)∗,Sc. In the

following we describe the construction of I.

The main idea in building I is to create a pair of tuples in each level of the hierarchy that

agree on the attributes that are in the closure (x0,X,Σ)∗,Sc, and disagree on all others.

When the type of the attribute is either a base type, or a set of a base type, it is sufficient

to pick values or singleton sets containing values that coincide or not, depending on its

membership in the closure. But for attributes that are of type set of tuples, it is not

so simple. Our strategy for this problem is to pre-compute the value of all attributes in

the closure and use them to populate the instance I whenever their values must coincide.

The pre-computed value for an attribute of a base type is an arbitrary value, and for an

attribute that is of type set of a base type, it is a singleton set containing an arbitrary

value. When the type of the attribute is a set of records, the computed value contain tuples

that disagree on the value of attributes that are not in the closure. More specifically, let

A be an attribute of type {<A1, . . . , Ak>}, where A is in the closure. The pre-computed

value of A will be a singleton set if for all Ai, 1 ≤ i ≤ k, Ai is in the closure. If there exists

an Ai not in the closure, A will be composed of two tuples that coincide on the values of

the Ai’s in the closure, and disagree on all others.

Given that all attributes in the closure have a pre-computed value, the initial idea of

creating a pair of tuples for each level of the hierarchy can be applied: whenever an

attribute is in the closure, it is populated with its pre-computed value; otherwise, a fresh

new value is created. Yet, there is a situation when the technique fails: when an attribute

A of type set of records is not in the closure, but all the element attributes are part of the

closure. In this case, if the strategy above is used to create two values for attribute A in

different tuples, they would be value equal, since all its element attributes are in the closure.

But since A is not in the closure they should not be equal. To overcome this problem, the

36

value of A contains an additional tuple with fresh new values. The only detail that must

be observed is that some of the attributes may be required to be constants in A. This is

true when for an attribute Ai of A the set of constraints Σ implies that x0 : ... : A[∅ → Ai].

In this case, the pre-computed value should be assigned to Ai in the new tuple, so that it

agrees with the value of Ai in the first tuple.

The algorithm for constructing I is shown in Figure 3.1. We assume that the domain of

all base types are infinite, and to make the exposition simpler, we consider a unique base

type b. The pre-computed values for paths p in the closure are stored in global variables

named value(p). Note that if p is of type set of records and in its construction value(p′) is

used (this happens when p is prefix of p′) then value(p′) should be thought as a placeholder

until its value is evaluated. newV alue() is a function that returns a fresh new value in the

domain of b, and typeSc(p) is a function that returns the type of the attribute reached by

following p in a schema Sc. We say that typeSc(p) is the type of path expression p under

Sc.

The algorithm starts by computing the pre-computed values for every path in the closure

based on a single value val, and using function assignV al. If the path is of type set of

records, function assignV al returns a set of two tuples {r1, r2} that coincide in the values

of attributes in the closure. Note that if all element attributes of p are in the closure,

r1 = r2, and therefore the function returns a singleton set. The construction of instance I

starts by calling function buildX0, which assigns single fresh values to every path that is

not prefix of the base path x0, and then calls function assignV al to create a pair of tuples

for the base path x0. Creating fresh new values for paths that are not in the closure is the

purpose of function computeNew. Observe that whenever a path p of type {<A1, . . . , Ak>}

is not in the closure but all the Ai are part of the closure, the function newRow is called

to create a new tuple so that no two values of x0 : p(I) coincide.

To illustrate the algorithm described, consider the following examples.

Example 3.2 Let R be a relation with schema {< A,B : {< C >}, D,E : {< F,G >}, H : {<

J,L >}, I,M : {< N,O >} >}. The set Σ of NFDs defined for R are:

R : [A→ B : C]

37

Algorithm buildInstance (Σ, x0, X)
Input: Σ, a set of NFDs; x0, a base path; X , a set of paths.
Output: an instance I such that I |= Σ and I 6|= x0 : [X → q] if x0 : q 6∈ (x0, X,Σ)∗

closure := (x0, X,Σ)∗; /* pick a new value and pre-compute values for paths in closure*/
val := newV alue();
for all p ∈ closure do value(p) := assignV al(val, p);
return (buildX0(R)); /* build a pair of tuples for x0 */

function buildX0 (p)
Input: p, a path expression of type {<A1, . . . An>}.
Output: an instance I up to the base path x0.

if p = x0 then return assignV al(0, x0);
for all Ai, 1 ≤ i ≤ n, do

if p : Ai is prefix of x0 then r.Ai := buildX0(p : Ai); else r.Ai := computeNew(p : Ai);
return {r};

function assignVal (val, p)
Input: val, a value to be assigned to p; p, a path expression.
Output: a value for p, according to its type.

case typeSc(p) of
b: return val;
{b}: return {val};
{<A1, . . . , An>}: for all Ai, 1 ≤ i ≤ n, do

if p : Ai ∈ closure
then r1.Ai := value(p : Ai); r2.Ai := value(p : Ai);
else r1.Ai := computeNew(p : Ai); r2.Ai := computeNew(p : Ai);

return {r1, r2};

function computeNew (p)
Input: p, a path expression.
Output: a fresh new value for p according to its type.

case typeSc(p) of
b: return newV alue();
{b}: return {newV alue()};
{<A1, . . . , An>}: for all Ai, 1 ≤ i ≤ n, do

if p : Ai ∈ closure then r.Ai := value(p : Ai);
else r.Ai := computeNew(p : Ai);

if {p : A1, . . . , p : An} ⊆ closure then return {r, newRow(p, (p, ∅)∗)};
else return {r};

function newRow (p, constantAtt)
Input: p, path expression of type {<A1, . . . An>};

constantAtt, a set of paths that have constant values in p.
Output: a tuple r with pre-computed values for attributes in constantAtt.

for all Ai, 1 ≤ i ≤ n, do
if p : Ai ∈ constantAtt then r.Ai := value(p : Ai);
else case typeSC(p : Ai) of

b: r.Ai := newV alue();
{b}: r.Ai := {newV alue()};
{<B1, . . . , Bk>}: r.Ai := {newRow(p : Ai, constantAtt)};

return r;

Figure 3.1: Algorithm for building an instance I of Sc(R)

38

R : [B : C → D]

R : [D → E : F]

R : [A→ E : G]

R : [B : C → H]

R : [I → H : J]

Then, using the NFD-rules, the computed closure (R, {B},Σ)∗ is the set {R : B,R : B :

C,R : D,R : E : F,R : H,R : H : J}, and the following instance is constructed using

algorithm buildInstance, where attributes in the closure are shown in boldface.

A B D E H I M

C F G J L N O

3 0 0 0 5 0 1 {7} 9 10

0 2

C F G J L N O

4 0 0 0 6 0 1 {8} 11 12

0 2

Observe that in this example, every value of R : B : C(I) is a singleton set, since both

R : B, and R : B : C are in the closure; on the other hand, R : H(I) contains two tuples

because there exists an attribute element R : H : L that is not in the closure. 2

Example 3.3 LetR be a relation with schema {<A : {<B : {<C,D,E : {<F,G>}>}>},H>}.

The set Σ of NFDs defined for R are:

R : [A : B : C → A : B]

R : [A : B : C → A : B : E : F]

R : [H → A : B : D]

Then, (R, {A : B : C},Σ)∗ = {R : A : B : C,R : A : B,R : A : B : D,R : A : B : E : F}.

The following instance is constructed using the algorithm presented.

39

A H

B

C D E

F G

0 0 0 1

F G

0 0 0 2 11

B

C D E

F G

3 0 5 6

B

C D E

F G

0 0 0 1

F G

0 0 0 2 12

B

C D E

F G

7 0 9 10

This example illustrates the construction of I when a set-valued attribute A is not in the

the closure, but all its elements, in this case only A : B is part of the closure. Each value of

A(I) contains two values for element attribute B: one containing its pre-computed value,

and the other containing a fresh set value. 2

Given that the completeness proof is based on the construction of an instance I such that

I |= Σ, we can say that for any finite set Σ of NFDs, one can always find a finite instance

of the schema that satisfies Σ. This is referred to as the finite satisfiability property.

Observation. Any finite set of NFDs is finitely satisfiable.

40

In order to simplify the completeness proof, we first make a number of observations about

the properties of an instance I constructed as a result of the algorithm in Figure 3.1.

Observations that are direct consequences from the construction of I are stated without a

proof.

Observation 3.1 For any path p, if x0 is not a prefix of p then there is a unique value of

p(I).

Observation 3.2 Let p be a path of type set of records. If p is in closure or p = x0 then

p(I) is a singleton set if all its attributes are also in closure; otherwise, it contains two

elements. If p is not in closure then p(I) contains two elements if all its attributes are in

closure; otherwise, it is a singleton set.

Observation 3.3 Let p be a path. If p is in closure then p(I) is either built by func-

tion assignV al or newRow. If p is not in closure then p(I) is either built by function

computeNew or newRow.

Observation 3.4 If pq 6∈ (p, ∅)∗ then values resulting from newRow(pq, (p, ∅)∗) are dis-

tinct from each other. As a consequence, values returned by computeNew(p) are also

distinct.

Proof. By induction on the structure of pq.

Base Case: If type of pq is a base type or a set of base types and pq 6∈ (p, ∅)∗, then the

value returned by newRow is given by newV alue(), which is a value distinct from any

other in I.

Inductive Step: Let type of p : q be {<A1, . . . , An>}. Suppose, by contradiction, that the

resulting value is not unique. This can only happen if the value assigned to all element

attributes Ai is value(p : q : Ai). That is, for all Ai, 1 ≤ i ≤ n, p : q : Ai ∈ (p, ∅)∗. Let

p ≡ x0 : p′. By the full-locality rule, x0 : [p′ : q → p′ : q : Ai] for all Ai, 1 ≤ i ≤ n. Then

by singleton, x0 : [p′ : q : A1, . . . , p
′ : q : An → p′ : q]. By transitivity, x0 : [p′ → p′ : q],

and by pull-out x0 : p′[∅ → q]. That is, p : q ∈ (p, ∅)∗, which contradicts our assumption.

41

Therefore, there exists at least one Ai, 1 ≤ i ≤ n, such that p : q : Ai 6∈ (p, ∅)∗. By

inductive hypothesis the values of p : q : Ai are distinct and therefore the value of p : q is

distinct. 2

Observation 3.5 Let p, pq be paths, and v a value returned by newRow(p, (p′, ∅)∗), where

p′ is a prefix of p. If q(v) is not a value distinct from any other value in I then there exists

a prefix q′ of q such that p : q′ ∈ (p′, ∅)∗.

Proof. It is a direct consequence of Observation 3.4. 2

Observation 3.6 Let p, p : q be paths such that p 6∈ closure, type of p is {<A1, . . . , Ak>},

and for all Ai, 1 ≤ i ≤ k, p : Ai ∈ closure. If p : q ∈ (p, ∅)∗ then p : q ∈ closure.

Proof. Let p ≡ x0 : p′. If |q| = 1 then it is direct because by assumption for all Ai,

x0 : [X → p′ : Ai]. Suppose |q| > 1, i.e., q = Ai
1 : q′, where, |q′| ≥ 1. By assumption, x0 :

p′[∅ → q]. Then by push-in x0[p
′ → p′ : Ai

1 : q′]. By full-locality, x0[p
′ : Ai

1 → p′ : Ai
1 : q′],

and then by transitivity, x0[X → p′ : Ai
1 : q′]. Therefore, p : q ∈ closure. 2

Observation 3.7 Let p, p : q be paths, v a value of p(I), and v1, v2 two elements in v such

that v1 6= v2. If q(v1) = q(v2) then there exists a prefix q′ of q such that p : q′ ∈ closure.

Proof. Let q ≡ A1 : . . . : Ak. Suppose, by contradiction, that for all prefix q′′ of q,

p : q′′ 6∈ closure. By Observation 3.2, if v has at has two distinct elements then either:

1. p is not in closure and A1 ∈ closure: in this case, there exists a prefix, namely A1, such

that p : A1 is in closure;

2. p ≡ x0, or p ∈ closure: x0 is always built by assignV al, and by Observation 3.3 v was

built either by newRow, or assignV al. By construction, v cannot be built by newRow,

because this function always returns a singleton set. Therefore, v was built by assignV al.

If there is no prefix q′′ of q such that p : q′′ is in closure, q′′(v1) and q′′(v2) were built

by computeNew. But by Observation 3.4 these values are distinct, which contradicts

our assumption that q(v1) = q(v2). Therefore, there exists a prefix q′ of q such that

p : q′ ∈ closure. 2

42

Now, we’re ready to prove the completeness of the inference rules.

Lemma 3.2 The NFD-rules are complete for all instances that contain no empty sets.

Proof. From the definition of closure, x0 : [X → y] follows from a given set of NFDs Σ

using the NFD-rules if and only if x0 : y ∈ (x0,X,Σ)(∗,SC).

We have to show that considering the instance I constructed by the algorithm in Figure

3.1:

1. I |= Σ

2. I 6|= x0 : [X → y] if x0 : y 6∈ (x0,X,Σ)∗,SC .

1) I |= Σ

We will show that for any f ≡ u0 : [U → z] ∈ Σ, I |= f . Suppose otherwise, that I 6|= f .

If x0 is not prefix of u0 : z then there exists a single value for u0 : z(I) and therefore I

cannot violate f . Therefore, if I 6|= f then x0 is a prefix of u0 : z.

Suppose |u0| < |x0|, i.e., x0 = u0 : u′0. Let f ≡ u0 : [B1u1, . . . , Blul, u
′
0 : ul+1, . . . , u

′
0 : uk →

u′0 : z], where u′0 is not a prefix of any Biui, 1 ≤ i ≤ l. Applying the prefix rule multiple

times we have u0 : [B1, . . . , Bl, u
′
0 : ul+1, . . . , u

′
0 : uk → u′0 : z]. Applying the locality, and

pull-out rules, we get f ′ ≡ u0 : u′0 : [ul+1, . . . , uk → z]. Since there exists a unique value

for all u0 : Biui(I), 1 ≤ i ≤ l, if I |= f ′ then I |= f .

Therefore, we can assume that |u0| ≥ |x0|, i.e. u0 ≡ x0 : u′0. Let w be the largest common

prefix between z and any u ∈ U . We will show that I |= f by induction on |w|.

Base Case: |w| = 0

Let f ≡ u0 : [u1, . . . , um → z], and v an arbitrary value of u0(I). Suppose that u0 : z ∈

closure. If I 6|= f , there must exist two distinct values of : z(v). Therefore, there exists a

prefix z′ of z not in closure, such that u0z
′ was built by newRow, and u0 : z 6∈ (u0z

′, ∅)∗.

Since |w| = 0, by full-locality rule, for all prefix z′ of z u0 : [z′ → z]. Let z ≡ z′z′′. By

43

pull-out rule, u0 : z′[∅ → z′′] for all prefix z′ of z. That is, there is no prefix z′ of z such

that u0 : z 6∈ (u0z
′, ∅)∗. Therefore if u0 : z ∈ closure then all elements in v agree on their

values of z(v), and I |= f .

Now consider that u0 : z 6∈ closure. We will first show that if u0 : z 6∈ closure then

for any element e ∈ v there exists a single value of z(e). Given this, we will show that

these values are distinct. Suppose, by contradiction, that z(e) contains more than one

value. If for all prefix p of z, u0 : p 6∈ closure then, by their construction using function

computeNew, there exists a unique value of z(e). Therefore, if there exists two different

values of z(e) then there exists a prefix z′ of z such that u0 : z′ ∈ closure. Let z ≡ z′ : z′′,

and u0 ≡ x0 : u′0. Since there is no common prefix between z and any ui ∈ U , by the

full-locality rule x0 : u′0[z
′ → z′ : z′′], by pull-out, x0 : u′0 : z′[∅ → z′′], and by push-in

x0 : [u′0 : z′ → u′0 : z′ : z′′]. Then, by transitivity, u0 : z ∈ closure, which contradicts our

assumption. Therefore, if u0 : z 6∈ closure then there exists no prefix z′ of z such that

u0 : z′ ∈ closure and for any element e ∈ u0(I) there exists a single value of z(e).

Now we have to show that there are no two distinct elements v1, v2 in u0(I) such that

for all ui ∈ U ui(v1) = ui(v2), and z(v1) 6= z(v2). Suppose, by contradiction, that such

elements exist. By construction, either u0 6∈ closure and for all element attributes u0 : A

of u0, u0 : A ∈ closure, or u0 ∈ closure (or u0 ≡ x0) and there exists an attribute

u0 : A 6∈ closure. Consider the first case. Observe that there exists an element attribute

A of u0 such that A is a prefix of z. But we have shown that for all prefix z′ of z,

u0 : z′ 6∈ closure. Therefore, if u0(I) has two elements it must be the case that u0 ∈ closure

or u0 ≡ x0. By Observation 3.7, if for all ui ∈ U , ui(v1) = ui(v2) then for all ui there

exists a prefix u′i such that u′i ∈ closure. Since there is no common prefix between any

ui ∈ U and z, applying the prefix rule we get x0 : u′0 : [u′1, . . . , u
′
n → z], and by push-in, we

get x0 : [u′0, u
′
0 : u′1, . . . , u

′
0 : u′n → u′0 : z]. Since u0 ∈ closure or u0 ≡ x0, by transitivity,

u0 : z ∈ closure, a contradiction. Therefore, there are no two elements v1, v2 that agree

on all the ui’s and disagree on z.

Inductive Step: |w| > 0.

Let w ≡ A : w′, and f ≡ u0 : [A : u1, . . . , A : uk, uk+1, . . . , um → A : z], where A is not

44

prefix of any ui, k < i ≤ m. By the locality rule, u0 : A[u1 . . . uk → z]. By inductive

hypothesis, this NFD is satisfied. Therefore, if for every value v of u0(I) all elements agree

on the value of A, then I cannot violate f . So, there exists a value v of u0(I) such that v

has at least two elements, v1, v2, and A(v1) 6= A(v2).

We will first show that if there exist two elements v1, v2 ∈ u0(I) such that A(v1) 6= A(v2)

and for all ui, 1 ≤ i ≤ m, ui(v1) = ui(v2) then u0 : z ∈ closure. Given this, we will show

that z(v1) = z(v2).

Let f ≡ u0[u1, . . . , um → z], where z ≡ A : z′, and u0 ≡ x0 : u′0. By Observation 3.7,

if ui(v1) = ui(v2) for all ui, 1 ≤ i ≤ m, then there exists a prefix u′i of ui, such that

u0 : u′i ∈ closure. Let u′i be the longest prefix of ui such that u0 : u′i ∈ closure. We will

consider two cases:

Case 1: For all ui, u
′
i is not a prefix of z.

In this case, we can apply the prefix rule multiple times and get u0 : [u′1, . . . , u
′
m → z]. By

push-in we get f ′ ≡ x0 : [u′0, u
′
0 : u′1, . . . , u

′
0 : u′m → u′0 : z].

The case when x0 : u′0 ∈ closure or u0 ≡ x0 is direct: by transitivity with f ′, u0 :

z ∈ closure. Consider the case when u0 6∈ closure. Since v = u0(I) is not a singleton

set, by construction, u0 : A ∈ closure, v = {v1, v2}, and either v1 or v2 was built by

newRow(u0, (u0, ∅)
∗). Moreover, since A(v1) 6= A(v2), u0 : A 6∈ (u0, ∅)

∗. Since for all ui,

1 ≤ i ≤ m, ui(v1) = ui(v2), by Observation 3.5 for all ui there exists a prefix u′i, such

that u0 : u′i ∈ (u0, ∅)
∗. Then by transitivity, u0 : z ∈ (u0, ∅)

∗. That is, x0 : u′0[∅ → z].

By push-in rule x0 : [u′0 → u′0 : z]. Recall that z ≡ A : z′. Then by full-locality rule

x0 : [u′0 : A→ u′0 : A : z′]. Since u0 : A ∈ closure, by transitivity, u0 : z ∈ closure.

Case 2: There exists a ui such that u′i is a prefix of z.

If there exists a u′i ∈ closure such that u′i = z, then by the reflexivity rule u0 : z ∈ closure.

Let p′ be the largest prefix among the u′is such that |p′| < |z|. That is, f ≡ x0 : u′0 : [p′ :

p1, . . . , p
′ : pk, pk+1, . . . , pm → p′ : z′], where for all pi, k < i ≤ m, p′ is not a prefix of pi,

By Observation 3.7, since v1 6= v2, for each pi, 1 ≤ i ≤ k, there exists a prefix p′i of pi such

that u0 : p′ : p′i ∈ closure. Then by locality, we can get x0 : u′0 : p′ : [p1, . . . , pk → z′], and

45

by prefix, x0 : u′0 : p′ : [p′1, . . . , p
′
k → z′]. By push-in, x0 : [u′0 : p′, u′0 : p′ : p′1, . . . , u

′
0 : p′ :

p′k → u′0 : p′ : z′]. Therefore, we can conclude that x0 : u′0 : p′ : z′ ≡ u0 : z ∈ closure.

Now, we will show that if u0 : z ∈ closure then z(v1) = z(v2). Suppose not. Recall that

f ≡ u0 : [u1, . . . , um → z], and w is the largest common prefix between z and any ui. Let

w ≡ A : w′, v be a value of u0(I), and v1, v2 two elements in v such that v1(A) 6= v2(A),

and for all ui, 1 ≤ i ≤ m, ui(v1) = ui(v2), but z(v1) 6= z(v2).

Since z(v1) 6= z(v2), and u0 : z ∈ closure, it must be the case that either z(v1), or z(v2),

or both were built by newRow(u0 : z, (p, ∅)∗). We will first argue that |p| ≥ |u0|. Suppose

not. Then u0 ≡ p : p′, and z(v1) was built by newRow(p : p′ : z, (p, ∅)∗). By construction,

p : p′ was also built by newRow(p : p′, (p, ∅)∗), and since |p′| ≥ 1, p : p′(I) ≡ u0(I) is a

singleton set, a contradiction. Therefore, |p| ≥ |u0|.

Let u0 : z ≡ p : z′. Consider the case when |p| > |w|. Then by full-locality and pull-out

rules, p[∅ → z′], and u0 : z ∈ (p, ∅)∗. By construction, z(v1) = z(v2) = value(z).

Therefore, if z(v1) 6= z(v2) it must be the case that |u0| ≤ |p| ≤ |w|. Let p ≡ u0 : p′,

w ≡ p′ : w′, and f ≡ u0 : [p′ : u1, . . . , p
′ : uk, uk+1, . . . , um → p′ : z′]. By full-locality and

pull-out rules, p : [u1, . . . , uk → z′]. Since for all ui, 1 ≤ i ≤ k, p′ : ui(v1) = p′ : ui(v2),

by Observation 3.5, there exists a prefix u′ of ui such that p : u′i ∈ (p, ∅)∗. If p′ : z′(v1)

was built by newRow(p : z′, (p, ∅)∗) then for all prefix z′′ of z′, p : z′′ 6∈ (p, ∅)∗. But

since p : u′i is not a prefix of p : z′, we can apply the prefix rule multiple times to get

p : [u′1, . . . , u
′
k → z′]. By transitivity, p : z′ ∈ (p, ∅)∗, a contradiction. Therefore, z(v1) (and

z(v2)) could not be built by newRow and z(v1) = z(v2) = value(u0 : z).

2) I 6|= x0 : [X → y] if x0 : y 6∈ (x0,X,Σ)∗,SC

First, we will show that there exists a prefix p of x0 : y such that |p| ≥ |x0|, and p(I) has

two elements, v1, and v2. We will then establish that v1 and v2 coincide in all attributes

in X but not in y if y 6∈ closure.

Suppose, by contradiction, that in I, the value of all prefix p of y is a singleton set. Start

by considering p = ε. Then p = x0, and by construction, x0(I) was built by assignV al. If

it contains a single element then for all element attributes A of x0, x0 : A ∈ closure, and

46

the value of x0 : A is given by assignV al(x0 : A). The same argument can be used for the

value of each attribute x0 : A built by assignV al(x0 : A): it has only one element if all

element attributes of x0 : A are in closure, and built by assignV al. But, by assumption,

x0 : y 6∈ closure. Therefore, there exists a prefix p of y such that x0 : p(I) was built by

assignV al and contains two elements.

Let p be the largest prefix of y that satisfies this condition, and f = x0 : [p : u1, . . . p :

uk, uk+1, . . . um → p : y′]. We claim that if I 6|= x0 : p : [u1, . . . , uk → y′], then I 6|= f . If

I 6|= x0 : p : [u1, . . . , uk → y′] then there exists a value v′ of x0(I), and v of : p(v′), with

two elements v1, v2 such that ui(v1) = ui(v2) for all i, 1 ≤ i ≤ k, and y′(v1) 6= y′(v2). Since

for all ui, k < i ≤ m, p is not a prefix of ui, there exist values of ui(v
′) that coincide.

Therefore, v′ is a witness that I 6|= f .

We only have to show that such x0 : p(I) = v = {v1, v2} exists. By the reflexivity rule, all

x0 : p : ui, 1 ≤ i ≤ k, are in closure. Recall that v was built by assignV al. Therefore,

all element attributes of x0 : p were either built by assignV al or computeNew, and both

functions assign value(p′) to an attribute whenever p′ ∈ closure. Hence, there exist values

of ui(v1), ui(v2), such that ui(v1) = ui(v2) = value(x0 : p : ui). Now we have to show

that y′(v1) 6= y′(v2). Let y′ ≡ A1 : . . . : An. Since p is the largest prefix of x0 : y built

by assignV al, for all Ai, 1 ≤ i ≤ n, A1 : . . . : Ai 6∈ closure, and A1 : . . . : Ai(v1),

A1 : . . . : Ai(v2) were built by computeNew. Given that computeNew never returns the

same value for a given attribute, y′(v1) 6= y′(v2). 2

3.2 The Problem of Empty Sets

As mentioned earlier, the presence of empty sets causes difficulties in reasoning since

formulas such as ∀x ∈ R. P (x) are trivially true when R is empty. In particular, the

transitivity rule is no longer sound in the presence of empty sets, as illustrated below.

Example 3.4 The instance of R below satisfies R : [A → B : C], R : [B : C → D], but

not R : [A→ D].

47

A B D E

1 ∅ 2 3

1 ∅ 3 4

2 {<C : 3>} 4 5
2

One reasonable solution to this problem is to disallow empty sets only in certain portions of

the schema; this is analogous to specifying NON-NULL for certain attributes in a relational

schema. We use p 6= ∅ to denote that p is a path where empty sets are known not to occur.

The inference rules can then be modified to make use of this information.

Before presenting a new transitivity rule, we introduce a new relation follow between paths.

Definition 3.5 Let p1 ≡ p′1A be a path expression. We say that p1 follows p2 if p′1 is a

proper prefix of p2.

Intuitively, p1 follows p2 if p1 only traverses the set-valued attributes traversed by p2. That

is, if p1 ≡ A1 : . . . : An−1 : An, all labels Ai, except the last, denote set-valued attributes.

Therefore, if p2 ≡ A1 : . . . : An−1 : p′2 then all set-valued attributes traversed by p1 are

also traversed by p2. For example, path A : B follows A : C, A : C : D, but not A, E, and

F : G. In particular, a path A follows any path p with |p| ≥ 1, since A ≡ εA, and ε is a

proper prefix of any path containing at least one label.

The new transitivity rule is then defined as:

x0 : [X → x1], . . . , x0 : [X → xn], x0 : [x1, . . . , xn → yA],

∀p ∈ {x1, . . . , xn} −X, p does not follow y ⇒ p 6= ∅

x0 : [X → y]

(transitivity-with-empty-sets)

The fact that transitivity does not generally hold in the presence of empty sets has also

influenced our definition of NFDs to allow only single paths on the right-hand side rather

than a set of paths.

48

Recall that in the relational model, a functional dependency (FD) X → Y , where X,Y

are sets of attributes, can be decomposed into a set of FDs with single attributes on the

right-hand side of the implication. Unfortunately, the decomposition rule follows from

reflexivity and transitivity and cannot therefore be uniformly applied with NFDs in the

presence of empty sets, as illustrated by the next example.

Example 3.5 The instance I of R below satisfy R[A → B : C, E : F], but not R[A →

E : F]

A B E

C D F G

1 2 3 4 5

F G

1 ∅ 3 4

2

This motivates us to define NFDs with a single consequence instead of the more general

form, which can be counter-intuitive in the presence of empty sets.

The presence of empty sets also affects the prefix rule. Consider the instance I presented

in Example 3.2. Notice that I satisfies R : [B : C → E], but not R : [B → E]. A modified

prefix rule to take this into account is:

x0 : [x1 : A, x2, . . . , xk → y],

x1 has one or more labels, x1 is not prefix of y, x1 6= ∅

x0 : [x1, x2, . . . , xk → y]

(prefix-with-empty-sets)

Generalize the inference rules for NFDs to the case where the user defines which set-valued

paths are known to have at least one element would allow us to reason about constraints

for a larger family of instances. We believe this is natural requirement to make, since

definition of cardinality has long been recognized as integral part of schema design[Che76].

49

3.3 Simple NFDs

Notice that push-in and pull-out rules simply change between equivalent forms of NFDs.

I.e., NFDs of the form R : y : [x1, . . . , xk → z] are equivalent to R : [y, y : x1, . . . , y : xk →

y : z]. Therefore, we could change the definition of NFDs to allow only relation names as

base paths (x0), without changing its expressive power.

In this simpler form of NFDs it can be shown that there are only 6 inference rules: push-in

and pull-out are unnecessary. Of the remaining rules, only the locality must be modified

to that of full-locality:

x0 : [x : X, Y → x : z], x is not a proper prefix of any y ∈ Y

x0 : [x, x : X → x : z]
(full-locality)

Note that full-locality “combines” the locality and push-in rules. Since this simple form

of NFDs appears to closely resemble the definition of functional dependencies for the

relational model, the natural question that arises is: Can we infer all the simple NFDs

using only the Armstrong axioms and the inference rules for multivalued dependencies?

The answer to this question is no. In order to establish this result, we will first define join

and multivalued dependencies (MVDs), along with a decision procedure for determining

logical implication based on tableaux. Then, the construction of a flattened representation

of a nested relation based on successive unnest operations is presented. This representation

is lossless in the sense that the nested relation can always be reconstructed by a sequence

of nest operations. It also satisfies a set of multivalued dependencies. Given that NFDs

can also be mapped to FDs defined on the flattened relation, we can then show that some

NFDs cannot be inferred using only rules for FDs+MVDs.

3.3.1 Join and Multivalued Dependencies (MVDs)

Before2 defining a join dependency, let us recall the definition of natural join. Given a

relation schema S(R) with set of attributes A(R), sets X1, . . . ,Xn ⊆ A(R), and instances

2This section is based on [AHV95].

50

A B C D

1 2 5 7
1 2 6 7
1 2 5 8
1 2 6 8
1 3 5 4
1 3 6 4

=

A B

1 2
1 3

1

A C

1 5
1 6

1

B D

2 7
2 8
3 4

Figure 3.2: A relation that satisfies 1 [AB,AC,BD].

Ij over Xj , j ∈ [1, n], the natural join of the Ij’s is the set of tuples s defined on the set of

attributes X1 ∪ . . . ∪Xn, generated by concatenating tuples in the Ij relations that agree

on the common attributes. Formally,

1
n
j=1 Ij = {s over ∪Xj | ΠXj

(s) ∈ Ij for each j ∈ [1, n]}.

A join dependency over a set of attribute sets is satisfied by a relation r if it is equal to

the join of the projections of subsets of its attributes.

Definition 3.6 A join dependency (JD) over attribute set A(R) is an expression of the

form 1 [X1, . . . ,Xn], where X1, . . . ,Xn ⊆ A(R) and ∪n
i=1Xi = A(R). A relation r over

S(R) satisfies 1 [X1, . . . ,Xn] if r =1
n
j=1 ΠXj

(r).

As an example, the relation r in Figure 3.2 satisfies the JD 1 [AB,AC,BD], since r =

ΠAB(r) 1 ΠAC(r) 1 ΠBD(r).

A multivalued dependency is a special case of a join dependency when the number of

attribute sets involved in the JD is two.

Definition 3.7 A multivalued dependency (MVD) over S(R) is an expression of the form

R : [X � Y], where X,Y ⊆ A(R). A relation r over S(R) satisfies R : [X � Y] if r

satisfies the join dependency 1 [XY,X(A(R) − Y)].

Intuitively, a multivalued dependency, R : [X � Y] states that given a value for the

51

R : [X � Y]

R : [X � (A(R)−X − Y)]
(complementation)

R : [X � Y], V ⊆W
R : [WX � V Y]

(augmentation for MVDs)

R : [X � Y], R : [Y � Z]

R : [X � (Z − Y)]
(transitivity for MVDs)

R : [X → Y]

R : [X � Y]
(conversion)

R : [X � Y], Z ⊆ Y,
for some W disjoint from Y R : [W → Z]

R : [X → Z]

(interaction)

Table 3.3: Rules for FD+MVD implication

attributes of X there is a set of zero or more associated values for the attributes of Y , and

this set of Y -values is not connected in any way to values of the attributes in A(R)−X−Y .

The inference rules for functional and multivalued dependencies considered together consist

of the Armstrong Axioms combined with the inference rules illustrated in Table 3.3.

Although there exists a set of inference rules for MVDs and FDs considered together

that are proven to be sound and complete, there is no axiomatization for JDs [AHV95].

However, there exists a decision procedure for determining logical implication of JDs based

on tableaux, as we present next.

A tableau3 over a relation schema S(R) is a set of rows, pictured as a matrix, with one

column for each attribute in the attribute set A(R). The rows of the matrix are composed

of variables. A tableau query is a pair (T, u), where T is a tableau and u is a free tuple

called the summary of the tableau query. Variables in u that also occur in T , are called

distinguished variables, denoted by subscripted a’s. Remaining variables in T are called

nondistinguished variables, denoted by subscripted b’s. The summary tuple u represents

the tuples included in the answer to the query.

Definition 3.8 Let σ =1 [X1, . . . ,Xn] be a JD. The tableau query for σ is (Tσ, t), where

3This discussion on tableaux is based on [AHV95] and [MMS79].

52

A B C D
t1 a1 a2 b1 b2

Tσ t2 a1 b3 a3 b4
t3 b5 a2 b6 a4

t a1 a2 a3 a4

Figure 3.3: A tableau query (Tσ, t), where σ =1 [AB,AC,BD].

for some t1, . . . , tn:

• t is a free tuple over R with a distinct variable for each attribute,

• Tσ = {t1, . . . , tn}

• πXi
(ti) = πXi

(t) for i ∈ [1, n], and

• the other attributes of the ti’s hold distinct variables.

As an example, the tableau query (Tσ, t), where σ =1 [AB,AC,BD], is illustrated in

Figure 3.3.

Given a set of dependencies Σ, the chase is a general technique that can be used to

transform a tableau query q into a query q′ such that q and q′ are equivalent with respect

to Σ. That is, given any instance I such that I satisfies Σ, the results of applying q and q′

into I are the same.

Let (T, t) be a tableau query over relation schema S(R). If Σ is a set of JDs, the chase is

based on the successive application of the following rule:

jd-rule: Let τ =1 [X1, . . . ,Xn] be a JD over S(R), and let u be a free tuple over S(R) not

in T , and suppose u1, . . . , un ∈ T satisfy πXi
(ui) = πXi

(u) for i ∈ [1, n]. Then the result of

applying the JD τ to (u1, . . . , un) in (T, t) is the tableau query (T ∪ u, t).

As an example, let τ =1 [AB,BCD]. Then applying τ to (t1, t3) in the tableau of Fig-

ure 3.3 results in the tableau illustrated in Figure 3.4(a).

53

A B C D
t1 a1 a2 b1 b2

Tσ t2 a1 b3 a3 b4
t3 b5 a2 b6 a4

t4 a1 a2 b6 a4

t a1 a2 a3 a4

(a) Result of applying 1 [AB,BCD] to
(t1, t3).

A B C D
t1 a1 a2 b1 b2

Tσ t2 a1 b3 a3 b4
t3 b5 a2 b6 a4

t4 a1 a2 b6 a4

t5 a1 a2 a3 a4

t a1 a2 a3 a4

(b) Result of applying 1 [ABD,AC] to
(t4, t2).

Figure 3.4: Application of a jd-rule

Let Σ be a set of JDs. A chasing sequence of (T, t) by Σ is a sequence

(T, t) = (T0, t0), . . . , (Tn, tn)

such that for each i ≥ 0, (Ti+1, ti+1) is the result of applying some JD in Σ to (Ti, ti). The

sequence is terminal if it is finite and no dependency in Σ can be applied to it. The last

element of the terminal sequence is denoted as chase(T, t,Σ). The length of the chasing

sequence is the number of tableaux in the sequence, that is, the number of times a jd-rule

has been applied.

It has been shown that chasing the tableau representation of a JD is an effective way for

determining their logical implication, as the following theorem states.

Theorem 3.1 [AHV95] Let Σ and {σ} be sets of JDs over relation schema S(R), and

let (Tσ, tσ) be the tableau query of σ, and T be the tableau in chase(Tσ , tσ,Σ). Then Σ

logically implies σ if and only if tσ ∈ T .

That is, if by chasing (Tσ, tσ) using Σ, a line composed of only distinguished variables

is produced, then Σ implies σ. In the example illustrated in Figure 3.4, it is true that

{1 [AB,BCD],1 [ABD,AC]} logically implies σ =1 [AB,AC,BD], since a line (A :

a1, B : a2, C : a3,D : a4) is produced by chasing (Tσ, tσ).

The results presented in this section will be useful in proving some properties of the flat-

tened representation of a nested relation, that will be discussed in the next section.

54

root(R)

A I

C E

D

B

GF

H

A

C E

D

B

F

H

G

IdE

I IdA IdD

root(R)

(b)(a)

Figure 3.5: A schema tree and its extension with set-identifier attributes

3.3.2 Construction of the Flattened Representation of a Nested Relation

Having defined join and multi-valued dependencies, we are now going to present how a

lossless flattened representation of a nested relation can be built, and how the hierarchical

structure of the nested relation can be captured by a join dependency or a set of multi-

valued dependencies. The approach for flattening a nested relation is similar to the one

described in [LS97], in which every set-valued attribute is replaced with a fresh atomic

value, that we call an identifier.

The schema of a nested relation S(R) can be represented as a tree, called the schema

tree of R and denoted as Tree(R). In a schema tree, leaf nodes correspond to base type

attributes in S(R). We denote this set of nodes as Leaves(R). The set of internal nodes,

excluding the root node, correspond to attributes of set type, denoted as IntNodes(R).

Given a node n in the tree, we denote by Child(n) the set of attributes that are children

of n in Tree(R).

As an example, let S(R) = {<A : {<B,C>},D : {<E : {F,G},H>}, I>}. The schema

tree Tree(R) is illustrated in Figure 3.5(a). In Tree(R), Leaves(R) = {B,C,F,G,H, I},

IntNodes(R) = {A,D,E}, and Child(D) = {E,H}.

The construction of the flattened representation of a nested relation involves the operations

nest and unnest presented next. Let r be a nested relation of schema S(R).

Definition 3.9 Let r′ be the result of the nest operation nestA=X(r). The schema of r′,

represented as a tree Tree(R′), is obtained from Tree(R), by inserting a new child A under

55

the root node, root(R′), and making all attributes in X children of A in Tree(R′). A tuple

t′ is in r′ if and only if there exists a tuple t ∈ r such that:

1. for all a ∈ (Child(root(R)) −X), t.a = t′.a

2. t′.A = ΠX({v ∈ r | for all a ∈ (Child(root(R)) −X), v.a = t′.a})

where t.a denotes the value of attribute a in a tuple t.

Definition 3.10 Let r′ be the result of the unnest operation unnestA(r). The schema of

r′, represented as a tree Tree(R′), is obtained from Tree(R) by removing the node A, and

connecting all the children of A to the root node. A tuple t′ is in r′ if and only if there

exists t ∈ r such that:

1. for all a ∈ Child(root(R)− {A}), t′.a = t.a

2. there exists v ∈ t.A such that for all a ∈ Child(A), t′.a = v.a

Given this, we are ready to define how a flattened representation of a nested relation can

be built. The construction involves two steps: first, the relation is extended to associate an

identifier to each set-valued attribute, and then a sequence of unnest operations is applied

to the resulting relation. The presence of set-identifiers in the flattened relation guarantees

that the nested relation can be recreated from its flattened representation. The two steps

are now presented in detail.

Let r be a nested relation of schema S(R), and SetId a Skolem-function that generates an

identifier for every distinct set value. First, we construct a relation r′ from r by creating

for each set-valued attribute A in S(R), a corresponding identifier attribute IdA. More

precisely, if A in IntNodes(R), and A ∈ Child(A′), then a new child IdA is inserted

under A′. In the relation r′, distinct values are assigned for each set value, using function

SetId. Then, if in the resulting relation R′ : PIdA
, and R′ : PA are path expressions

corresponding to attributes IdA, and A, respectively, and v1, and v2 are two tuples in r′,

R′ : PIdA
(v1) = R′ : PIdA

(v2) if and only if R′ : PA(v1) = R′ : PA(v2).

56

A D I

E H

B C F G

1 2 3 4 7
5 6 9

F G

3 4 8

B C E H

1 2 F G

3 4 3 4 8 10

(a)

A D I IdA IdD

E H IdE

B C F G

1 2 3 4 7 i5 9 i1 i2

5 6

F G 8 i6

3 4

B C E H IdE

1 2 F G 10 i3 i4

3 4 3 4 8 i6

(b)

Figure 3.6: A nested relation extended with set-identifier attributes

IdA B C IdD IdE F G H I

i1 1 2 i2 i5 3 4 7 9
i1 1 2 i2 i5 5 6 7 9
i1 1 2 i2 i6 3 4 8 9
i3 1 2 i4 i6 3 4 8 10
i3 3 4 i4 i6 3 4 8 10

Figure 3.7: Flattened representation of a nested relation

As an example, Figure 3.5(b) illustrates the tree schema of Figure 3.5(a) extended with

identifier attributes, and Figure 3.6 illustrates an instance r and its extension with values

for the identifier attributes.

A flattened representation of r′ can then be obtained by a sequence of unnest operations.

Since the unnest operation is commutative [JS82], the only restriction on the order of the

application of these operations is that we may not unnest an attribute unless higher-level

nestings over that attribute have been unnested. In the example of Figure 3.5 it is not

legal to unnest E before unnesting D, but the order of unnesting A and D is irrelevant.

Following the example in Figure 3.6, the result of the unnesting sequence

unnestA(unnestE(unnestD(r′)))

is illustrated in Figure 3.7.

This flattened representation of a nested relation is lossless in the sense that the nested

57

relation can always be reconstructed from it by a sequence of nest operations. In order to

reach a nested schema S(R), represented as a tree Tree(R), the nesting sequence should

move bottom-up. That is, we may only create an attribute A by nesting a set of attributes

X either if all attributes inX are of base type or have been created by prior nest operations.

Moreover, after performing a nest operation nestA=X(r′), the identifier attribute idA should

be projected out from the result before the next nest operation.

As an example, the original relation r can be reconstructed from the flattened relation r′

illustrated in Figure 3.7 by the following sequence of operations. Here, Π\(IdA)(r) denotes

the projection over r of all attributes except IdA.

Π\(IdA)(nestA={BC}(Π\(IdD)(nestD={EH}(Π\(IdE)(nestE={FG}(r
′))))))

Let flat(r) denote the flattened representation of r of schema S(R). Recall that for any

node n in a tree representation of a schema Tree(R), Child(n) denotes the set of children

of node n. It can be shown that the following join dependency, denoted as jd(R), holds in

flat(r):

1 [attName(Child(root(R))), {attName(A ∪ Child(A) | A ∈ IntNodes(R)}]

where attName is a function that given a set of attribute names in S(R), returns the set

of corresponding attribute names in its flattened representation. That is, if A is of set type

then attName({A}) = {IdA}; otherwise, attName({A}) = {A}. In the running example,

the join dependency satisfied by r′ is

1 [{IdA, IdD, I}, {IdA, B,C}, {IdD, IdE ,H}, {IdE , F,G}]

In the sequence, assume that jd(R) =1 [X1,X2, . . . ,Xn], where X1 = attName(Child

(root(R)), and Xi = attName(Ai ∪ Child(Ai)), for 2 ≤ i ≤ n. That is, each Xi, i ≥ 2, is

composed of a set-identifier attribute IdAi
, denoted as setAtt(Xi), and the attributes in

the flattened relation that correspond to the elements of Ai in the original relation. We

denote this set as elemAtt(Xi). We will now show that the flattened representation of a

nested relation built as described satisfies jd(R).

58

Lemma 3.3 Let r be a nested relation over schema S(R). Then flat(r) satisfies jd(R).

Proof. Let setV alue be the inverse function of SetId. That is, setV alue(i) = s if and

only if SetId(s) = i. Define a function value that given a tuple (v1, . . . , vm) returns a

tuple (v′1, . . . , v
′
m), where for each vi, v

′
i = setV alue(vi) if vi is a set identifier, and v′i = vi,

otherwise. Let r be a nested relation over S(R). Suppose, by contradiction, that flat(r)

does not satisfy jd(R). Then, there exists a tuple t not in flat(r) such that for every Xi,

1 ≤ i ≤ n, t[Xi] = ti[Xi] for some tuple ti in flat(r). Here, t[X] represents the restriction

of tuple t over attributes X.

Since tuples ti, 1 ≤ i ≤ n exist in flat(r), from the construction of flat(r), it must be the

case that for all i, i ≥ 2, value(ti[elemAtt(Xi)]) ∈ setV alue(ti[setAtt(Xi)]). In particular,

value(t1[X1]) must be a tuple in the original nested relation.

Since t[Xi] = ti[Xi] for every i, 1 ≤ i ≤ n, all tuples ti must agree on all common

attributes. Recall that for simplicity we have assumed that all attributes in the original

nested relational schema have distinct names. Therefore, the only common attributes

among the X ′
is are the set-identifier attributes. From the hierarchical structure of the

nested schema and the definition of jd(R), it is true that for every set-identifier attribute

IdA in the schema of flat(r), there exists Xi, i ≥ 2 such that IdA = setAtt(Xi); moreover,

either IdA is in X1 or IdA is in some elemAtt(Xj), j ≥ 2, and j 6= i. Since every value

ti must be pairwise consistent, and must exist in some level of nesting of r, t must be in

flat(r), which contradicts our initial assumption. Therefore, flat(r) satisfies jd(R). 2

From the construction of flat(r) it can also be verified that the following set of multivalued

dependencies, denoted as mvds(R) holds in flat(r):

{attName(A) � attName(Child(A)) | A ∈ IntNodes(R)}}

In fact, a join dependency of the form of jd(R) is a special case of a class of dependencies

called acyclic join dependencies. It has been shown [BFMY83] that a join dependency is

acyclic if and only if it is equivalent to a set of multivalued dependencies.

Next, we will show that jd(R) and mvds(R) are equivalent.

59

Lemma 3.4 Let r be a nested relation of schema S(R), and S(R′) the schema of flat(r).

Then the set of MVDs mvds(R) defined on R′ is equivalent to the join dependency jd(R)

defined on R′.

Proof. Let jd(R) =1 [X1,X2, . . . ,Xn]. We will show that for any relation r o S(R),

r |= mvds(R) if and only if r |= jd(R). That is, using the chase technique, we will show

that mvds(R) |= jd(R), and jd(R) |= mvds(R).

mvds(R) |= jd(R): Assume that sets Xi are partially ordered such that if setAtt(Xi) ∈

elemAtt(Xj) then i > j. In other words, in the schema tree of R, if Ai is a child of Aj ,

and they correspond to setAtt(Xi), and setAtt(Xj), respectively, then i > j.

Let (Tjd(R), tjd(R)) be the tableau query for jd(R). We will show by induction on n, the

number of attribute sets in jd(R), that there exists a chase sequence using mvds(R) that

produces tuples s1, . . . , sn such that for all i, si[Wi] = tjd(R)[Wi], whereWi = ∪i
j=1Xj . That

is, in si all attributes in X1, . . . ,Xi contain distinguished variables. The base case, i = 1 is

direct, since X1 = attName(Child(root(R)), and there exists a line in (Tjd(R), tjd(R)) with

distinguished variables for attName(Child(root(R)). Assume that the statement holds for

i < k. We shall show that it also holds for i = k. From the construction of mvds(R),

if Xk = {Ak} ∪ Child(Ak), then there exists an mvdk = Ak � Child(Ak) in mvds(R).

By induction hypothesis, there exists a line sk−1 in the chase sequence of (Tjd(R), tjd(R))

with all distinguished variables for X1, . . . ,Xk−1. Since the Xi’s are partially ordered,

Ak ∈ X1 ∪ . . . ∪Xk−1, and therefore sk−1[Ak] = ak, where ak is a distinguished variable.

By construction, there exists a line lk, where lk[Ak] = ak, and all attributes in Child(Ak)

also contain distinguished variables. Since lk[Ak] = sk−1[Ak] = ak, the application of the

jd-rule on lk, and sk−1 will produce a line sk in which all attributes in X1 ∪ . . . ∪Xk have

distinguished variables.

From the discussion above, we can conclude that there exists a chase sequence of length n

resulting in T such that tjd(R) ∈ T . Therefore, by Theorem 3.1, mvds(R) |= jd(R).

jd(R) |= mvds(R): Let jd(R) = [X1, . . . ,Xn]. Recall that by construction, for each i,

1 < i ≤ n there exists a MVD mvdi = Ai � Child(Ai) in mvds(R). Let mvdk be one

60

such arbitrary MVD, and (Tmvdk
, tmvdk

) be the tableau query for mvdk. Recall that Tmvdk

contains two lines, l1, l2, where in l1 only attributes Ak and Child(Ak) have distinguished

variables, and in l2, attributes in Y = ∪n
i=1(Xi) − Xk contain distinguished variables.

By the construction of jd(R), Ak ∈ Y . Therefore, applying the jd-rule using jd(R) will

produce a line with all attributes with distinguished variables. Therefore, jd(R) |= mvdk.

2

The previous lemmas show that mvds(R) captures the hierarchical structure of the nested

relation. In the next section, we will use this result in showing that the set of inference

rules for FDs+MVDs is not equivalent to the set of rules for NFDs.

3.3.3 Relationship between NFDs and FDs+MVDs

In this section, we will first present a simple translation of NFDs to FDs on the flattened

schema. We will then show that there are NFDs that can be inferred using the NFD-rules,

but cannot be inferred from the FDs and the MVDs defined as described in the previous

section.

By defining a function attPath for mapping path expressions in S(R) to attribute names

in the flattened schema S(R′), NFDs can be easily translated to FDs defined on S(R′).

Given that there is a one-to-one correspondence between values in r and flat(r), it is easy

to see that given a simple NFD nfd = R : [x1, . . . , xm−1 → xm], r satisfies nfd if and only

if flat(r) satisfies the FD attPath(x1), . . . , attPath(xm−1)→ attPath(xm).

Given this, we are ready to show that the set of inference rules for NFDs is not equivalent

to the set of inference rules for FDs + MVDs.

Theorem 3.2 Let r be a nested relation of schema S(R), and S(R′) the schema of flat(r).

The set of inference rules for NFDs defined on R is not equivalent to the set of inference

rules for FDs + MVDs defined on R′.

Proof. From the eight inference rules for NFDs, three mirror Armstrong Axioms, and two

exchange between equivalent forms of NFDs. Therefore, we will focus on the remaining

61

three: prefix, full-locality, and singleton. In particular, we will show that the prefix and

full-locality rules can be captured by the rules for FDs+MVDs, but the singleton rule

cannot.

Without loss of generality, suppose S(R) = {<x : {<y1, . . . , yk>}, z1, . . . , zn>}, with a cor-

responding flattened schema S(R′) = {idx, y1, . . . , yk, z1, . . . , zn}. According to the discus-

sion in Section 3.3.2, the following MVD can be defined on S(R′):

mvd1: idx � y1, . . . , yk

full-locality: The full-locality rule states that:

if R : [x : ya, . . . , x : yb, zl, . . . , zm → x : yc] and x is not a prefix of any zi, i ∈ [1, n]

then R : [x, x : ya, . . . , x : yb → x : yc],

where {ya, . . . , yb} ⊆ {y1, . . . , yk} and {zl, . . . , zm} ⊆ {z1, . . . , zn}.

For any relation r of S(R), r satisfies the premise if and only if flat(r) satisfies the following

FD:

fd1: ya, . . . , yb, zl, . . . , zm → yc.

We can prove that in R′, idx, ya, . . . , yb → yc is a consequence of mvd1, and fd1 as follows.

1. idx � z1, . . . , zn by complementation of mvd1.

2. idx, ya, . . . , yb � ya, . . . , yb, z1, . . . , zn by MVD-augmentation of 1.

3. ya, . . . , yb, z1, . . . , zn → yc by FD-augmentation of fd1.

4. ya, . . . , yb, z1, . . . , zn � yc by conversion of 3.

5. idx, ya, . . . , yb � yc by MVD-transitivity of 2 and 4.

6. idx, ya, . . . , yb → yc by interaction of 5 and fd1.

prefix: The prefix rule states that:

if R : [x : ya, . . . , x : yb, zl, . . . , zm → zc] then R : [x, zl, . . . , zm → zc], where {ya, . . . , yb} ⊆

{y1, . . . , yk} and {zl, . . . , zm, zc} ⊆ {z1, . . . , zn}.

For any relation r of S(R), r satisfies the premise if and only if flat(r) satisfies the following

FD:

fd2: ya, . . . , yb, zl, . . . , zm → zc.

62

Idx y1 yk z1 zn
i1 1 2 b c
i2 1 2 d e

Figure 3.8: Relation that satisfies Idx � y1, yk, Idx → y1, Idx → yk, but not y1, yk → Idx

We can prove that idx, zl, . . . , zm → zc is a consequence of mvd1 and fd2 as follows.

1. idx, zl, . . . , zm � y1, . . . , yk, zl, . . . , zm by MVD-augmentation of mvd1.

2. ya, . . . , yb, zl, . . . , zm � zc by conversion of fd2.

3. y1, . . . , yk, zl, . . . , zm � Y, zc, where Y = {y1, . . . , yk}−{ya, . . . , yb}, by MVD-augmentation

of 2.

4. idx, zl, . . . , zm � zc by MVD-transitivity of 1 and 3.

5. idx, zl, . . . , zm → zc by interaction of fd2 and 4.

singleton: The singleton rule states that:

if R : [x→ x : y1], . . . , R : [x→ x : yk] then R : [x : y1, . . . , x : yk → x].

For any relation r of S(R), r satisfies the premise if and only if flat(r) satisfies the following

set of FDs:

fd3: idx → yi, for i ∈ [1, k].

We would have to show that fd4: y1, . . . , yk → idx is a consequence of fd3 and mvd1.

But we can find an instance of S(R′), illustrated in Figure 3.8, that satisfies both fd3 and

mvd1, but not fd4. Therefore, the implication cannot be proved using the inference rules

for FDs+MVDs. 2

Intuitively, although expressing levels of nesting using MVDs defined on the flattened

relation captures set membership, they do not capture the extensionality property of sets,

i.e., that the identity of a set is defined by its elements.

63

3.4 Discussion

We have presented a definition of functional dependencies (NFD) for the nested relation

model. NFDs naturally extend the definition of functional dependencies for the relational

model by using path expressions instead of attribute names. The meaning of NFDs was

given by defining their translation to logic.

NFDs provide a framework for expressing a natural class of dependencies in complex data

structures. Moreover, they can be used to reason about constraints on data integration

applications, where both sources and target databases support complex types.

We presented a set of inference rules for NFDs that are sound and complete for the case

when no empty sets are present. Although for simplicity we have adopted the nested

relational model, and the syntax of NFDs is closely related to this model, allowing nested

records or sets would not change the inference rules presented significantly. However, new

rules would have to be added to consider path expressions of record types as the current

syntax only allows path expressions of set and base types. As an example, we would need a

rule that states that if in R, x is a path of type <A1, . . . , An>, then R : [x.A1 . . . x.An → x],

where “.” indicates record projection.

Our definition of nested functional dependencies can express both functional dependencies

and multi-valued dependencies that capture the hierarchical structure of a nested relation.

We believe that the inference rules presented in Section 3.1 are simpler and more intuitive

than those for FDs and MVDs considered together. These form of dependencies were

adopted for the nested relational model in earlier work ([OY87], [MNE96], [RKS88]) to

define normal forms for the nested relational model. In particular, in [MNE96], an entire

Section is dedicated to the problem of preventing singleton buckets or (singleton sets) in

a nested normal form. Since our notion of NFDs can naturally express both FDs, MVDs,

and the fact that a set is a singleton, it can therefore form the basis for developing a theory

of normal forms for the nested relational model.

In [FSTG85], Fischer, Saxton, Thomas and Van Gucht investigate how nesting defined on

a normalized relation destroys or preserves functional and multivalued dependencies; they

64

also present results on the interaction of inter- and intra-set dependencies. Their results

are based on case studies of the cardinality of relations, and of the containment relation

between the set of attributes over which the nesting is defined and the set of attributes

involved in the dependency. Many results depend on the fact that a nested relation is a

singleton set. In our definition of NFDs, both inter- and intra-set dependencies can be

expressed. NFDs can also express that a given set is expected to be a singleton. As a

result, our work generalizes their results by providing a general framework to reason about

interactions between nesting and functional dependencies.

In Section 3.3, we have shown that not all NFDs can be inferred using only inference rules

of the relational model for functional and multivalued dependencies. In particular, the

singleton rule for NFDs, which states that whenever a set is a singleton, the values of its

elements determine the value of the set, has no counterpart in the relational model. The

previous discussion showed that singleton sets play an important role in the normalization

theory and for reasoning about the preservation of FDs under nest and unnest operations.

In the context of semi-structured models, such as AceDB[TMD92] and XML[Lay98a], being

able to define sets to be singletons is also important. In AceDB [TMD92], a very popular

data model among biologists, every label is defined as a set by default. But one can define

that a set can contain at most one element. Such a constraint affects the interpretation of

update operations. Suppose, for example, that a label A is defined to be a singleton. In

this case, an update operation on A to contain value 1 is interpreted as A having a new

value of {1}, no matter what its previous value was. In contrast, if A is not defined to be

a singleton, the same operation would have the effect of assigning to A its previous value

unioned with {1}.

In Chapter 6, we will develop a framework to check whether a given FD is guaranteed to

hold on a relational schema designed to store XML data, given that certain constraints

are valid in the XML document. One of the key parts of the checking algorithm is to

determine whether a given element in the document is guaranteed to be unique. For XML

documents with no schema information, the constraint language should be able to express

that a given element is a singleton. Recently, a number of definitions of FDs for XML

has been proposed in the literature [CDHZ03, VLL04, AL04], as well as of MVDs for

65

XML[ST04]. Some definitions for FDs consider XML documents with a schema, as in

[AL04], while others do not assume the existence of one [CDHZ03, LVL03]. But none of

them present a complete set of inference rules for their definitions. In particular, [LVL03]

presents a set of inference rules and prove that they are complete if FDs are restricted

to have a single element on the left-hand side of the FD. In [AL04], it is proved that

their definition of FDs is not finitely axiomatizable, and the implication problem is coNP-

complete in the general case. Given the difficulties in reasoning about FDs for XML, in

the next Chapter we restrict our attention to keys for XML, which is a important special

case of FDs.

66

Chapter 4

Keys for XML

Keys are of fundamental importance in databases. They provide a means for locating a

specific object within the database and for referencing one object from another. Keys also

constitute an important class of constraints on the validity of data. In particular, keys

– as opposed to addresses or internal object identifiers – provide an invariant connection

between an object in the real world and its representation in the database. This connection

is crucial in modifying the database as the world that it models changes.

As XML is increasingly used in data management, it is natural to require a value-based

method of locating an element in an XML document. Key specifications for XML have

been proposed in the XML standard [BPSM98], XML Data [Lay98b], and XML Schema

[TBMM01]. However, existing proposals cannot handle one or more of the following sit-

uations. First, as in databases, one may want to define keys with compound structure.

For example, the name subelement of a person element could be a natural key, but may

itself have first-name and last-name subelements. Keys should not be constrained to

be character strings (attribute values). Second, in hierarchically structured data, one may

want to identify elements within the scope of a sub-document. For example, the number

subelement of a chapter element may be a key for chapters of a specific book, but would

not be unique among chapters of different books. We will call a key such as number a

relative key of chapter since it is a key in the context of a given book element, i.e., it is

67

to hold on the sub-document rooted at the book element. If the context element is the

root of the document, the key is to hold on the entire document, and is referred to as an

absolute key .

The idea of keys having a scope is not new. In relational databases, scoped keys exist in

the form of weak entities. Using the same example, chapter is a weak entity of book.

A chapter number would only make sense in the context of a certain book. Similarly,

in the context of the nested relational model, a notion of functional dependencies was

introduced in Chapter 2, that can express keys that are local to some levels of nesting.

Third, since XML is not required to conform to a DTD or schema definition, it is useful to

have a definition of keys that is independent of any specification (such as a DTD or XML

Schema) of the type of an XML document.

To overcome these limitations, we propose[BDF+02] a new definition of keys for XML which

appears to be applicable – among other things – to a wide variety of hierarchical scientific

data sets. We understand [Tho02] that these definitions and results have significantly

influenced the design of keys in the current version of XML Schema [TBMM01].

In developing this notion of keys for XML, we start with a tree model of data as used

in DOM [App98], XSL [Cla99, Wad00], XQL [RLS98] and XML Schema [TBMM01]. An

example of this representation is shown in Figure 4.1. Nodes are annotated by their type:

E for element, A for attribute, and S for string (or PCDATA). Some keys for this data

might include:

1. A book node is identified by @isbn;

2. An author node is identified by name, no matter where the author node appears;

and

3. Within any subtree rooted at book, a chapter node is identified by @number.

These keys are defined independently of any type specification. The first two are examples

of absolute keys since they must hold globally throughout the tree. Observe that name has a

complex structure. As a consequence, checking whether two authors violate this constraint

68

〈db〉
〈book isbn=123〉

〈title〉 HTML 〈/title〉
〈author〉 〈name〉

〈first-name〉 Tim 〈/first-name〉
〈last-name〉 Bray 〈/last-name〉

〈/name〉 〈/author〉
〈chapter number=1〉 text 〈/chapter〉
. . .

〈chapter number=10〉 text 〈/chapter〉
〈/book〉
〈book isbn=234〉

〈title〉 XML 〈/title〉
〈author〉 〈name〉

〈first-name〉 Tim 〈/first-name〉
〈last-name〉 Bray 〈/last-name〉

〈/name〉 〈/author〉
〈author〉 〈name〉

〈first-name〉 Jean 〈/first-name〉
〈last-name〉 Paoli 〈/last-name〉

〈/name〉 〈/author〉
〈chapter number=1〉 text 〈/chapter〉
. . .

〈chapter number=12〉 text 〈/chapter〉
〈/book〉

〈/db〉

E

E E

A A

E E EEA

E

E E

E E EE E

EE

E E E E

A A

A

S SS

"Tim"

first−name

SS

last−name

"Bray"

S

first−name first−name

"Tim"

last−namelast−name

"Bray" "Jean" "Paoli"

SS SS

S

@number

"1"

S

"text"@number

"12""XML"

authorauthor chapterchapter . . .title

name name

"text"

db

book book

"HTML"

@isbn author chapterchapter

"text"@number@number "text"
"10""1"

. . .
"123"

name

title

@isbn

"234"

Figure 4.1: Example of some XML data and its representation as a tree

69

involves testing value-equality on the subtrees rooted at their name nodes. The last one is

an example of a relative key since it holds locally within each subtree rooted at a book. It

should be noted that a chapter @number is not a key for the set of all chapter nodes in

the document since two different books have chapters with @number = 1. We remark that

prior proposals were not capable of expressing the second and third constraints.

The notion of relative keys is particularly natural for hierarchically structured data, and is

motivated in part by our experience with scientific data formats. Many scientific databases

represent and transmit their data in one of a variety of data formats. Some of these

data formats are general purpose, e.g. ASN.1, which is used in GenBank [Ben00] and

AceDB [TMD92]; Others, such as EMBL, which is used in SwissProt [Bak00], are domain-

specific. All of these specifications have a hierarchical structure. As a typical example,

SwissProt [BA00] at the top level consists of a large set of entries, each of which is identified

by an accession number. Within each entry there is a sequence of citations, each of which

is identified by a number 1,2,3... within the entry. Thus, to identify a citation fully, we

need to provide both an accession number for the entry and the number of the citation

within the entry. Note that the same number for a citation (e.g. 3) may occur within

many different entries, thus the citation number is a relative key within each entry. All the

non-XML data formats mentioned above have an easy conversion to XML. We have also

found that the data sets in these formats have a natural key structure. However, in many

applications XML data does not come with a DTD or schema. This observation supports

our claim that, in some applications, keys should be treated independently of any other

type constraints.

The remainder of this chapter is organized as follows. Section 4.1 formally defines XML

trees, value equality, and (absolute and relative) keys for XML. Section 4.2 describes

alternative forms of keys. In Section 4.3 a comparative analysis between keys for XML

and Nested Functional Dependencies, discussed in Chapter 2, is presented.

70

4.1 Keys

Our notion of keys is based on a tree model of XML data, as illustrated in Figure 4.1.

Although the model is quite simple, we need to do two things prior to defining keys:

The first is to give a precise definition of value equality for XML keys; The second is to

describe a path language that will be used to locate sets of nodes in an XML document.

We therefore introduce a class of regular path expressions, and define keys in terms of this

path language.

4.1.1 A Tree Model and Value Equality

An XML document is typically modeled as a node-labeled tree. We assume three pairwise

disjoint sets of labels: E of element tags, A of attribute names, and a singleton set {S}

denoting text (PCDATA).

Definition 4.1 An XML tree is defined to be T = (V, lab, ele, att, val, r), where

(1) V is a set of nodes;

(2) lab is a mapping V → E ∪A ∪ {S} which assigns a label to each node in V ; a node

v in V is called an element (E node) if lab(v) ∈ E, an attribute (A node) if lab(v) ∈ A,

and a text node (S node) if lab(v) = S;

(3) ele and att are partial mappings that define the edge relation of T . For any node v ∈ V :

• if v is an element then ele(v) is a list of elements and text nodes in V and att(v) is

a set of attributes in V ; for each v′ in ele(v) or att(v), v′ is called a child of v and

we say that there is a (directed) edge from v to v′;

• if v is an attribute or a text node then ele(v) and att(v) are undefined;

(4) val is a partial mapping that assigns a string to each attribute and text node. For

any node v in V , if v is an A or S node then val(v) is a string, and val(v) is undefined

otherwise;

(5) r is the unique and distinguished root node.

71

An XML tree has a tree structure, i.e., for each v ∈ V , there is a unique path of edges from

root r to v. An XML tree is said to be finite if V is finite.

For example, Figure 4.1 depicts an XML tree that represents an XML document.

With this, we are ready to define value equality on XML trees. Let T =(V, lab, ele, att, val, r)

be an XML tree, and n1, n2 be two nodes in V . Informally, n1, n2 are value equal if they

have the same label and, in addition, either they have the same string value, when they are

S or A nodes, or their children are pairwise value equal, when they are E nodes. Formally:

Definition 4.2 Two nodes n1 and n2 are value equal, written n1 =v n2, iff the following

conditions are satisfied:

• lab(n1) = lab(n2);

• if n1, n2 are A or S nodes then val(n1) = val(n2);

• if n1, n2 are E nodes, then

1) if att(n1) = {a1, . . . , am} then att(n2) = {a′1, . . . , a
′
m} and for all ai there exists

a′j, i, j ∈ [1,m], such that ai =v a
′
j; and

2) if ele(n1) = [v1, . . . , vk], then ele(n2) = [v′1, . . . , v
′
k] and for all i ∈ [1, k], vi =v v

′
i.

Here, [v1, . . . , vk] denotes a list of nodes v1, . . . , vk.

That is, n1 =v n2 iff their subtrees are isomorphic by an isomorphism that is the identity

on string values.

As an example, in Figure 4.1, the author subelement of the first book and the first author

subelement of the second book are value equal.

4.1.2 Path Languages

There are many options for a path language, ranging from very simple ones, involving

just labels, to more expressive ones, such as regular languages or XPath. However, to

72

develop inference rules for keys, we need to be able to reason about inclusion of path

expressions, the so called containment problem. It is well known that for regular languages,

the containment problem is not finitely axiomatizable [IRS76]; and for XPath, preliminary

work [BFK03] has shown that it is not much easier. We therefore restrict our attention

to the path language PL, which is expressive enough to capture most practical cases, yet

simple enough to be reasoned about efficiently. We will also use a simpler language (PLs)

in defining keys, and therefore show both languages in the table below.

Path Language Syntax

PLs ρ ::= ε | l/ρ

PL q ::= ε | l | q/q | //

In PLs, a path is a (possibly empty) list of node labels. Here, ε represents the empty

path, node label l ∈ E ∪ A ∪ {S}, and “/” is a binary operator that concatenates two

path expressions. The language PLs describes the class of finite lists of node labels. The

language PL is a generalization of PLs that allows the symbol “//”, a combination of

wildcard and Kleene closure. This symbol represents any (possibly empty) finite list of

node labels. To avoid confusion we write P//Q for the concatenation of P , //, and Q. It

should be noted that for any path expression p in any of the path languages, the following

equality holds: p/ε = ε/p = p. These path languages are fragments of regular expressions

[HU79], with PLs contained in PL.

A path in PLs or in PL is used to describe a set of paths in an XML tree T . Recall that

an attribute node or a text node is a leaf in T and it does not have any child. Thus, a

path ρ in PLs is said to be valid if for any label l in ρ, if l ∈ A or l = S, then l is the last

symbol in ρ. Similarly, we define valid path expressions of PL. In what follows, we only

consider valid paths and we assume that the regular language defined by a path expression

of PL contains only valid paths. For example, book/author/name is a valid path in PLs

and PL, while //author is a valid path expression in PL but it is not in PLs.

We now give some definitions that will be used throughout the rest of the Chapter.

73

Definition 4.3 The length of a path ρ in PLs, denoted by |ρ|, is the number of labels in

ρ, where the empty path has length 0. By treating “//” as a special label, we also define

the length of PL expression P , denoted by |P |, to be the number of labels in P .

Definition 4.4 Let ρ be a path in PLs, and P a path expression in PL. The notation

ρ ∈ P denotes that ρ is in the regular language defined by path expression P .

For example, book/author/name ∈ book/author/name and book/author/name ∈ //name.

Definition 4.5 Let n1, n2 be nodes in an XML tree T . We say that n2 is reachable from

n1 by following path ρ, denoted by T |= ρ(n1, n2), iff (1) n1 = n2 if ρ = ε, and (2) if

ρ = ρ′/l then there exists node n in T such that T |= ρ′(n1, n) and n2 is a child of n with

label l.

We say that node n2 is reachable from n1 by following path expression P , denoted by

T |= P (n1, n2), iff there is a path ρ ∈ P such that T |= ρ(n1, n2).

For example, if T is the XML tree in Figure 4.1, then all the name nodes are reachable

from the root by following book/author/name; They are also reachable by following //.

Definition 4.6 Let n be a node in an XML tree T . We use the notation n[[P]] to denote

the set of nodes in T that are reachable from n by following path expression P . That is,

n[[P]] = {n′ | T |= P (n, n′)}. We shall use [[P]] as an abbreviation for r[[P]], where r is

the root node of T .

For example, let n be the first book element in Figure 4.1. Then n[[chapter]] is the set of

all chapter elements of the first book and [[//chapter]] is the set of all chapter elements

in the entire document.

Definition 4.7 The value intersection of n1[[P]] and n2[[P]], denoted by n1[[P]] ∩v n2[[P]],

is defined by:

n1[[P]] ∩v n2[[P]] = {(z, z′) | z ∈ n1[[P]], z′ ∈ n2[[P]], z =v z
′}

74

Thus n1[[P]] ∩v n2[[P]] consists of node pairs that are value equal and are reachable by

following path expression P starting from n1 and n2, respectively. For example, let n1 and

n2 be the first and second book elements in Figure 4.1, respectively. Then n1[[author]] ∩v

n2[[author]] is a set consisting of a single pair (x, y), where x is the author subelement of

the first book and y is the first author subelement of the second book.

4.1.3 A Key Constraint Language for XML

We are now in a position to define keys for XML and what it means for an XML document

to satisfy a key constraint.

Definition 4.8 A key constraint ϕ for XML is an expression of the form

(Q, (Q′, {P1, . . . , Pk})),

where Q, Q′ and Pi are PL expressions such that for all i ∈ [1, k], Q/Q′/Pi is a valid path

expression. The path Q is called the context path, Q′ is called the target path, and P1, ...,

Pk are called the key paths of ϕ.

When Q = ε, we call ϕ an absolute key, and abbreviate the key to (Q′, {P1, . . . , Pk});

otherwise ϕ is called a relative key. We use K to denote the language of keys, and Kabs to

denote the set of absolute keys in K.

As illustrated in Figure 4.2, a key ϕ = (Q, (Q′, {P1, . . . , Pk})) specifies the following:

• the context path Q, starting from the root of an XML tree T , identifies a set of nodes

[[Q]];

• for each node n ∈ [[Q]], ϕ defines an absolute key (Q′, {P1, . . . , Pk}) on the subtree

rooted at n; specifically,

– the target path Q′ identifies a set of nodes n[[Q′]] in the subtree, referred to as

the target set ,

75

n

n’

Q’

P1 Pk

r

Q

T

Q’ Q’

.

. . .

Figure 4.2: Illustration of a key (Q, (Q′, {P1, . . . , Pk}))

– the key paths P1, . . . , Pk identify nodes in the target set. That is, for each

n′ ∈ n[[Q′]] the values of the nodes reached by following the key paths from n′

uniquely identify n′ in the target set.

For example, the keys on Figure 4.1 mentioned in the beginning of the chapter can be

written as follows:

1. @isbn is a key of book nodes: (book, {@isbn});

2. name is a key of author nodes no matter where they are: (//author, {name});

3. within each subtree rooted at a book, @number is a key of chapter:

(book, (chapter, {@number})).

The first two are absolute keys of Kabs and the last one is a relative key of K.

Definition 4.9 Let ϕ = (Q, (Q′, {P1, . . . , Pk})) be a key of K. An XML tree T satisfies

ϕ, denoted by T |= ϕ, iff for any n in [[Q]] and any n1, n2 in n[[Q′]], if for all i ∈ [1, k] there

exist nodes x ∈ n1[[Pi]], y ∈ n2[[Pi]] such that x =v y, then n1 = n2. That is,

∀n ∈ [[Q]] ∀n1 n2 ∈ n[[Q′]] ((
∧

1≤i≤k

n1[[Pi]] ∩v n2[[Pi]] 6= ∅)→ n1 = n2).

As mentioned earlier, the key ϕ defines an absolute key on the subtree rooted at each node

n in [[Q]]. That is, if two nodes in n[[Q′]] are distinct, then the two sets of nodes reached

on some Pi must be disjoint (by value equality.) More specifically, for any n ∈ [[Q]] and for

76

any distinct nodes n1, n2 in n[[Q′]], there must exist some Pi, 1 ≤ i ≤ k, such that for all x

in n1[[Pi]] and y in n2[[Pi]], x 6=v y.

Observe that when Q = ε, i.e., when ϕ is an absolute key, the set [[Q]] consists of a unique

node, namely, the root of the tree. In this case T |= ϕ iff

∀n1 n2 ∈ [[Q′]] ((
∧

1≤i≤k

n1[[Pi]] ∩v n2[[Pi]] 6= ∅)→ n1 = n2).

As an example, let us consider the keys defined earlier on the XML tree T in Figure 4.1.

1) T |= (book, {@isbn}) because the @isbn attributes of the two book nodes in T have

different string values. For the same reason, T |= (book, {@isbn, author}). However,

T 6|= (book, {author}) because the two books agree on the values of their first author.

Observe that the second book node has two author subelements, and the key requires that

none of these author nodes is value equal to the author of the first book.

2) T 6|= (//author, {name}) because the author of the first book and the first author of the

second book agree on their names but they are distinct nodes. Note that all author nodes

are reachable from the root by following //author. However, T |= (book, (author, {name}))

because under each book node, the same author does not appear twice.

3) T |= (book, (chapter, {@number})) because in the subtree rooted at each book node,

the @number attribute of each chapter has a distinct value. However, observe that T 6|=

(book/chapter, {@number}) since both book nodes have a chapter with @number = 1 but

the two chapter’s are distinct.

Several subtleties are worth pointing out. First, observe that each key path can specify

a set of values. For example, consider again ψ = (book, {@isbn, author}) on the XML

tree T in Figure 4.1, and note that the key path author reaches two author subelements

from the second book node. In contrast, this is not allowed in most proposals for XML

keys, e.g., XML Schema. The reason that we allow a key path to reach multiple nodes is

to cope with the semistructured nature of XML data. Second, the key has no impact on

those nodes at which some key path is missing. Observe that for any n ∈ [[Q]] and n1, n2 in

n[[Q′]], if Pi is missing at either n1 or n2 then n1[[Pi]] and n2[[Pi]] are by definition disjoint.

77

This is similar to unique constraints introduced in XML Schema. In contrast to unique

constraints, however, our notion of keys is capable of comparing nodes at which a key path

may have multiple values. Third, it should be noted that two notions of equality are used

to define keys: value equality (=v) when comparing nodes reached by following key paths,

and node identity (=) when comparing two nodes in the target set. This is a departure

from keys in relational databases, in which only value equality is considered.

4.1.4 Transitive Set of Keys

The purpose of keys is to specify uniquely certain components of a document. Obviously,

a relative key such as (book, (chapter, {@number})) alone does not uniquely identify a

particular chapter in the document. However we believe that if we give a book isbn, and a

chapter number, we have specified a chapter. It is this intuition that we need to formalize.

First, we will introduce the immediately precedes relation, and then define the notion of a

transitive set of keys.

Definition 4.10 A key (Q1, (Q
′
1, S1)) immediately precedes (Q2, (Q

′
2, S2)) if Q2 = Q1.Q

′
1.

Any relative key immediately precedes itself. The precedes relation is the transitive closure

of the immediately precedes relation.

Definition 4.11 A set Σ of relative keys is transitive if for any relative key (Q1, (Q
′
1, S1)) ∈

Σ there is a key (ε, (Q′
2, S2)) ∈ Σ which precedes (Q1, (Q

′
1, S1)).

Example 4.1 The following set of keys is transitive:

(ε, (book, {@isbn}))

(book, (chapter, {@number}))

(book/chapter, (section, {@number}))

This set is not:

78

(ε, (book, {@isbn}))

(book/chapter, (section, {@number}))

2

Observe that any transitive set of keys must contain an absolute key.

In the next Chapter, we will present a set of inference rules and an algorithm for deter-

mining if we can infer some keys in the presence of others. As an example, similar to the

relational model, the notion of a “superkey” still holds for XML keys: If (Q, (Q′, S) is a

key, and S ⊆ S′, then so is (Q, (Q′, S′). Given the ability to determine whether a key can

be inferred from others, next we introduce the notion of a minimum transitive set of keys.

Definition 4.12 Let Σ be a set of XML keys. A transitive set of XML keys Θ = {κ1, . . . , κn}

is minimum with respect to Σ if for all κi = (Q, (Q′, S)), there exists no S′ ⊂ S such

that (Q, (Q′, S′)) can be inferred from Σ, and moreover, no κi is redundant. A key κi

is redundant if κi = (Q, (Q′, S)), and there exists a κj in Θ, κj = (Q/Q′, (Q′′, S′)), and

(Q, (Q′/Q′′, S′)) can be inferred from Σ.

Intuitively, in Θ, every key has a minimum set of key paths, and moreover, if the set of

attributes S′ suffices to identify a node in n[[Q′/Q′′]], where n ∈ [[Q]], there is no need to

first identify a node n′ ∈ n[[Q′]] using the set of attributes S and then identify n ∈ n′[[Q′′]]

using S′. As an example, the first transitive set of keys in Example 4.1.4 is minimum.

4.2 Discussion

There are other ways of defining keys for XML, both more and less restrictive than what

we have described in the previous Section. This section presents a discussion on those

alternatives, starting with the proposals in XML-Schema.

79

4.2.1 XML-Schema

XML-Schema includes a syntax for specifying keys which is related to our definition, but

there are some substantive differences, even if we ignore the issue of relative keys. Possibly

the most important of these is that the language for path expressions is XPath. XPath is

a relatively complex language in which one can not only move down the document tree,

but also sideways or upwards, not to mention that predicates can be embedded as well.

Recently, it has been shown [MS04, NS03] that it is rather expensive to determine contain-

ment of XPath expressions. These issues are important if we want to reason about keys

as we do – for quite practical purposes – in relational databases. Indeed, the containment

problem is undecidable in the presence of disjunction, DTDs, and variables [NS03], and

it is coNP-complete even for a small fragment of XPath in the absence of DTDs [MS04].

For the (finite) axiomatizability of equivalence of XPath expressions, which is important

in studying the (finite) axiomatizability of XML key implication, the analysis is even more

intriguing [BFK03]. Thus, not surprisingly, reasoning about keys defined in XML Schema

is prohibitively expensive: Even for unary keys, i.e., keys defined in terms of a single

subelement, the finite satisfiability problem is NP-hard and the implication problem is

coNP-hard [AFL02b]. For the entire class of keys of XML Schema, to the best of our

knowledge, both the implication and axiomatizability problems are still open. In con-

trast, we will show in the next Chapter that our definition of keys can be reasoned about

efficiently.

Here is a brief summary of the other salient differences between our definitions and the

XML-Schema proposal.

Equality. XML Schema restricts equality to text nodes, while we have adopted a more

general form of tree equality.

Definition of the target set. In XML-schema the path expression that defines the tar-

get set is taken to start at arbitrary nodes. Recall that in a key (Q, (Q′, S)) in our

definition, the context path Q always starts from the root. But is is straightforward

to let Q start from an arbitrary node: one needs simply to substitute //Q for Q.

80

Definition of key paths. XML-Schema talks about a list (not a set) of key paths. While

this avoids issues of equivalence of XPath expressions, one can construct keys that are,

presumably, equivalent, but have different or anomalous presentations. For example

(temporarily using [...] for lists): (person, [firstname, lastname]), (person, [lastname,

firstname]), (person, [lastname, lastname, firstname]) impose the same constraint.

Given the difficulties in determining the equivalence of XPath expressions, there is

no general method of saying whether two such specifications are equivalent.

Relative keys. While there is no direct notion of a relative key in XML-Schema, in certain

circumstances one can achieve a related effect. Consider for example:

(ε, (book, {@isbn}))

(book, (chapter, {@number}))

In XML-Schema one can specify a key for chapter as

(book.chapter, [@number, up .@isbn]).

Here up (this is not XPath syntax) is the XPath instruction to move up one node.

Thus part of the key is outside of the value of a chapter node. One of the inferences

one could make for such a specification is that (book, [isbn]) is a key provided the

nodes in the target set all contain at least one chapter child node. Again, it is not

clear how to reason generally about such specifications.

4.2.2 Strong Keys

The definition of keys we have described in Section 4.1.3 is quite weak, which we believe

is in keeping with the semi-structured nature of XML. However, intuitively it does not

mirror the requirements imposed by a key in relational databases, i.e. the uniqueness of

a key and equality of key values. We now explore a definition which captures both these

requirements.

In a strong key definition, we require that the keys paths exist and are unique. That is,

given a key (Q, (Q′, {P1, . . . , Pn})) and a node n in [[Q]], n[[Pi]] contains exactly one node

81

for 1 ≤ i ≤ n. The key paths constrain the target set as follows: Take any two nodes

(n1, n2) ∈ [[Q]] and consider the pairs of nodes found by following a key path Pi from n1

and n2. If all such pairs of nodes are value-equal, then the nodes n1 and n2 are the same

node.

As an example of what it means for a path expression to be unique, consider Figure 4.1:

at the second book element, title and @isbn are unique, but author and chapter are

not unique at this node.

The definition of satisfaction for strong keys now becomes the following.

Definition 4.13 Let ϕ = (Q, (Q′, {P1, . . . , Pk})) be a key of K. An XML tree T satisfies

ϕ iff for all nodes n in [[Q]], n satisfies the following conditions:

• For all n′ in n[[Q]] and for all Pi(1 ≤ i ≤ k), Pi is unique at n′.

• For any n1, n2 in n[[Q]], if n1[[Pi]] =v n2[[Pi]](1 ≤ i ≤ k) then n1 = n2.

To distinguish the two definitions of keys let us refer to keys defined above as strong keys

and the keys defined in Section 4.1.3 as weak keys. Given this strong notion of keys, let us

re-examine some examples given before.

1. (book, {@isbn}): any two book elements have unique @isbn and differ on their values.

2. (//author, {name}): any two authors, no matter where they occur, have unique

name subelements and differ on those elements.

Now consider the following key: (//, {k}). It requires that every element have a key k,

including any element whose name is k . That is, the key imposes an infinite chain of k

nodes and therefore, there is no finite document satisfying it. That is, the key is not finitely

satisfiable. The problem arises because we require that key paths must exist. It should

be mentioned that the corresponding key in XML-Schema, (//∗, [id]), is not meaningful

either, because an id node cannot have a base type if it is to have an id subelement itself.

82

In order to obtain finite satisfiability of strong keys, we can restrict key paths to be simple

attributes, since attributes are always leaves in an XML tree. In this restricted form, keys

are of the form

(Q, (Q′, {@A1, . . . ,@Ak}))

and we denote this class of keys as Katt.

4.2.3 Keys that Determine Value Equality

So far we have assumed that key equality implies node identity; but occasionally we want

key equality to imply value equality. This happens in “non-second-normal form” keys as

the following example illustrates. Consider a scientific database that consists of a sequence

of entries (each entry describes some structure, e.g., a gene) and within each entry there

is a list of citations. The key for citations would be: (db.entry.citation, {isbn}), and two

entries may contain citations with the same isbn. Here we do not want to insist that the

two citations are the same node, but rather that they are value-equal. Of course, such a

database now has redundancy, but allowing occasional redundancies of this kind may be

preferable to having a separate list of citations and doing a join in order to recover the

citations relevant to an entry. An analog of this happens in relational databases where, for

efficiency purposes, it is sometimes useful to have non-second-normal-form relations.

This form of keys is closer to the notion of nested functional dependencies (NFDs) discussed

in Chapters 2 and 3, since equality of certain values imply value equality. A comparison

analysis between NFDs and XML keys is the subject of the next Section.

4.3 Comparison with Nested Functional Dependencies

Although nested functional dependencies (NFDs) and XML keys are defined on different

data models, there are a number of similarities between them. First, both are defined

in terms of navigation paths. For NFDs, traversing a path involves going down levels of

nestings that are always sets. For XML keys, traversing a path involves going down nested

lists, since in XML the order of elements is significant.

83

1 B

title

1 dbcis

(a)

Dept

name

stud
sid grade book

¨1¨ ¨db¨
¨2¨ ¨B¨

course

name

Dept

¨ee¨

(b)

cis550

grade

course

ee

sid grade
1
2

A
B

sid
course

studSet studSet

DeptSet

Dept

cnumcis500

ee501

isbn

title

1 db

cnum stud

cnum stud book

book

isbn

grade
isbn

course

isbn¨cis550¨ ¨ee501¨

sid
stud

cnum

sid

¨1¨ ¨A¨
title

¨cis500¨

name

¨cis¨
courseSet courseSet

book

title

¨1¨ ¨db¨

bookSetstudSet
bookSet

cnum

stud

grade

bookSet

¨1¨ ¨B¨

Figure 4.3: Data represented as a nested relation and as an XML tree

Second, both can define constraints defined on different levels of the data. In other words,

they can define global as well as local constraints. As an example, consider the data

illustrated in Figure 4.3. There is an obvious correspondence between data represented in

Figures 4.3(a) and (b), where every set-valued attribute A in the nested relation schema

Dept has a corresponding element named ASet in its representation as an XML tree. We

can define that name uniquely identify a department in the entire database as an NFD:

Dept[name→ course], and as an XML key: (Dept, {name}). It is possible to express that

sid identifies a student within each course as an NFD: Dept : Course[stud : sid → stud :

grade], and as an XML key: (Dept/CourseSet/course, (studSet/stud, {sid})).

Third, both involve equality on complex data. In NFDs, both the right and left-hand side

can involve equality of values of set type. XML keys do not restrict keys to be of type

text, but may involve equality of trees.

Fourth, both are capable of expressing that a set (or list) must contain at most one el-

ement and that the intersection of elements is empty. In the example of Figure 4.3,

one can define that each course can have at most one textbook as an NFD: Dept :

Course[book → book : isbn] (given that isbn is a local key for book), and as an XML

key: (Dept/courseSet/course, (bookSet/book, {})). We can also express that depart-

ments do not share course numbers, that is, that intersection of the set of course num-

bers of different departments is empty. As an NFD this constraint is expressed as:

Dept[course : cnum → name] (given that name is a key for Dept), and as an XML

key as: (Dept, {courseSet/course/cnum}).

84

<!DOCTYPE DeptSet [

<!ELEMENT DeptSet (Dept*)>

<!ELEMENT Dept (name, courseSet) >

<!ELEMENT courseSet (course*)>

<!ELEMENT course (cnum, studSet, bookSet)>

<!ELEMENT studSet (stud*)>

<!ELEMENT stud (sid, grade)>

<!ELEMENT bookSet (book*)>

<!ELEMENT book (isbn, title)>

<!ELEMENT name (#PCDATA)>

...

<!ELEMENT title (#PCDATA)>

]>

Figure 4.4: DTD of the document in Figure 4.3

But there are also a number of differences between NFDs and XML keys. The most

distinctive characteristic is that NFDs are defined on the nested relational model and

require a schema, whereas XML keys are defined on a semi-structured data and does not

necessarily come with a schema definition. The nested relational model we have adopted in

Chapters 2 and 3 contains both tuple and set constructors, where the outermost level is a

set of tuples. In contrast, the XML data model is a node-labeled tree, where internal nodes

contain an element label, and leaves can either contain an element label, a string value or

an attribute label combined with a string value. But, as illustrated by Figure 4.3, there is

an easy translation of a nested relation to an XML document, as well as a translation of a

nested relational schema to a DTD. As an example, the XML tree of Figure 4.3 conforms

to the DTD in Figure 4.4.

We have shown in Chapter 3 that given a set Σ of NFDs defined on a schema Sc one can

always find an instance I of Sc such that I satisfies Σ. That is, NFDs have the finite

satisfiability property. On the other hand, this is not true for XML keys in the presence of

a DTD. To illustrate, let us consider a simple DTD D:

<!ELEMENT foo (X, X)>

and a simple (absolute) key ϕ = (X, ∅). Obviously, there exists a finite XML tree that

conforms to the DTD D (see, e.g., Figure 4.5 (a)), and there exists a finite XML tree

that satisfies the key ϕ (e.g., Figure 4.5 (b)). However, there is no XML tree that both

85

X

(a)

X X

(b)

foo foo

Figure 4.5: Interaction between DTDs and XML keys

conforms to D and satisfies ϕ. This is because D requires an XML tree to have two

distinct X elements, whereas ϕ imposes the following restriction: The path X, if it exists,

must be unique at the root. This shows that in the presence and absence of DTDs, the

analysis of key satisfiability and implication can be wildly different. It should be mentioned

that keys defined in other proposals for XML, such as those introduced in XML Schema

[TBMM01], also interact with DTDs or other type systems for XML. This issue was recently

investigated in [AFL02a, FL02] for a class of keys and foreign keys defined in terms of XML

attributes. It is shown that in general it is not possible to check whether there exists an

XML document that both conforms to the DTD and satisfies a set of keys and foreign keys.

In particular, for unary keys and foreign keys the problem is shown to be NP-complete.

In contrast, in the next Chapter we will show that the XML keys defined in Section 4.1.3,

which are independent of any type definition, are always finite satisfiable, and moreover,

there exists a finite set of inference rules that is sound and complete.

The other distinctive characteristic is that although NFDs only involve value-based equal-

ity, XML keys involve both value and identity-based equality. As an example, consider

again the data illustrated in Figure 4.3. It can be easily verified that the nested relation sat-

isfies the NFD Dept[course : book : isbn→ course : book]. That is, whenever two courses

agree on a book’s isbn then the values of the their book attribute are equal as sets. The im-

mediate translation of this NFD to an XML key would be (Dept/courseSet/course/bookSet,

{book/isbn}). But this key is not satisfied by the XML tree of Figure 4.3(b) because there

are two values book/isbn rooted at of Dept/courseSet/course/book that have the value

“1”. This is because the value of book/isbn determines the value of the subtrees rooted

at Dept/courseSet/course/book, but not their identity (as a node tree), which is what

the XML key defines. If the XML key definition were modified to require that equal keys

imply node equality instead of node identity, as described in Section 4.2.3, then the XML

86

key above would be satisfied. It would also allow us to express that redundant data should

be consistent across the database. As an example, it would be able to express that if two

courses agree on their book’s isbn then they must also agree on the book’s title. This

constraint can be defined as an NFD as Dept[course : book : isbn→ course : book : title],

but cannot be expressed in our definition of XML keys. The issue of value equality versus

node equality also arises in the definitions for functional dependencies for XML, as we will

discuss in the next Section.

4.4 Functional Dependencies for XML

Several definitions of functional dependencies for XML (XFDs) have recently been pro-

posed [CDHZ03, VLL04, AL04]. In [VLL04] and [AL04] XFDs are of the form X → y1,

where X ∪ {y} are simple path expressions in PLs. While XFDs of [AL04] presumes

the existence of a DTD, in [VLL04] the definition of the constraint is independent of

any type specification. The satisfaction of XFDs are similar to the satisfaction of FDs

(and NFDs): given two elements n1, n2 in [[y]], if the values of all x ∈ X agree, where

x is defined along the path from the root to n1 and n2, then n1 = n2. Since XML

documents can have multiple nodes reached by following a path x ∈ X, the “agree-

ment” here is interpreted as intersection of sets of values or node identity. Value equal-

ity is only applied to leaf nodes with a string value, while node identity is applied in

all other nodes. As an example, the document in Figure 4.6 satisfies the the XFD

root.enrollment.lecturer.S → root.enrollment in both proposals. Here, the label S in

the path expression is to obtain the text value associated with element lecturer. Ob-

serve that value equality is used to compare root.enrollment.lecturer.S and node identity

is applied to root.enrollment. That is, the interpretation of this XFD is equivalent to

the absolute key (enrollment, {lecturer}). In fact, a subclass of XML keys in which key

paths are restricted to paths ending in text values can be captured by XFDs [VLL04].

But the two proposals differ on when an “incomplete” XML tree satisfies an XFD, where

1In this section we will only consider XFDs with a single path on the right-hand side, although some of
the proposals allow multiple paths.

87

root

lecturercourse

enrollment enrollment

lecturer

¨c1¨ ¨l2¨¨l1¨

Figure 4.6: Enrollment document

“incomplete” means that elements reached by following an identical path have a differ-

ent set of subelements and/or attributes. In the definition of [VLL04], an XML tree T

satisfies an XFD if for all possible completions of T , the XFD is satisfied. In contrast,

for [AL04] an XFD is trivially satisfied if an element on the left-hand side of the XFD

is missing. Borrowing the example from [VLL04], the document illustrated in Figure 4.6

satisfies the XFD root.enrollment.course.S → root.enrollment.lecturer.S under the se-

mantics defined in [AL04], but not under the semantics of [VLL04], since the completion

of the second enrollment element with course = “c1′′ would invalidate the XFD.

The syntax of XFDs proposed by [CDHZ03] differs from the definitions previously discussed

because an expression X → y is associated with variable bindings. The two examples above

on the document of Figure 4.6 are expressed as:

x ∈ root.enrollment, $x.lecturer.S → $x, and

x ∈ root.enrollment, $x.course.S → $x.lecturer.S.

While the path expression bound to a variable can contain “//”, a combination of wildcard

and Kleene closure, path expressions in X → y are simple paths. In contrast with the

previous two definitions, for an XFD to be satisfied, given two nodes n1, n2, reached by

following the variable bindings, each of the paths in X ∪ {y} must exist and be unique.

Therefore, although the first XFD is satisfied by the document in Figure 4.6, the second is

not, since there exist no course subelement under the second enrollment. The purpose of

XFDs in [AL04] and [VLL04] is to define a normal form for XML documents. In contrast,

the purpose of XFDs in [CDHZ03] is to be able to design a relational schema to store

XML, reducing the redundancy of data, while enforcing such constraints using relational

primary key constraints.

88

Although none of the definitions discussed in this Section presents a set of complete in-

ference rules, reasoning about them play an important role both in the algorithms for

designing the relational schema for XML storage and in the algorithms for normalizing an

XML document. In contrast, our definition of keys have a set of inference rules that are

sound and complete, as we will discuss in the next Chapter. The ability to reason about

keys efficiently will also give us the basis for developing algorithms for computing a set of

functional dependencies that are proven to be satisfied by the relational storage of XML

data, given that the document satisfies a set of XML keys. This is the subject of Chapter

6.

89

Chapter 5

Reasoning about Keys for XML

In this chapter we investigate the logical implication and satisfiability of keys for XML. In

relational and nested relational databases, the finite satisfiability problem is trivial: Given

any finite set of keys, one can always find a finite instance of the schema that satisfies that

set. In Chapter 2 we have discussed the implication problem of functional dependencies

for the nested relational model. The implication problem for relational keys and, more

generally, functional dependencies is also straightforward. It is well-known [AHV95, RG00]

that the problem is decidable in linear time, and that there are exactly two inference rules

that are sound and complete for the implication analysis. Let R be a relation schema and

Att(R) denote the set of attributes of R. We use X → R to denote that X is a key of R,

where X ⊆ Att(R). Then the rules can be given as:

Att(R)→ R
(schema)

X → R X ⊆ Y

Y → R
(superkey)

The first rule says that for any relation schema R, the set of all the attributes of R is a

key of R. The second asserts that if X is a key of R then so is any superset of X.

For XML the story is more complicated since the hierarchical structure of data is far more

complex than the 1NF structure of relational data. In some proposals, as in XML Schema,

keys are not even finitely satisfiable, as we have discussed in the previous Chapter. The

90

reason that the implication problem in other proposals is different from the definition

of XML keys presented in Chapter 4 is that there are bad interactions between DTDs

and keys, as observed in [AFL02a, FL02], and we consider keys independent of any type

specification. In this Chapter, we will show that our definition of weak keys defined in

Section 4.1.3, and strong keys with only attributes as key paths, defined in Section 4.2.2,

can be reasoned about efficiently. More specifically, we show that they are finitely satisfiable

and their implication is decidable in PTIME. Better still, their (finite) implication is finitely

axiomatizable, i.e., there is a finite set of inference rules that is sound and complete for

implication of these keys. In developing these results, we also investigate containment of

path expressions, which are not only interesting in their own right but also important in

the study of decision problems for XML keys.

Despite the importance of reasoning about keys for XML, little previous work has investi-

gated this issue. The only one closely related to this work is [AFL02a, FL02, FS03]. For

a class of keys and foreign keys, the decision problems were studied in the absence [FS03]

and presence [AFL02a, FL02] of DTDs. The keys considered there are defined in terms of

XML attributes and are not as expressive as keys studied in this work.

The remainder of this chapter is organized as follows. The decision problems for key

constraints are defined in Section 5.1; Section 5.2 establishes the finite axiomatizability and

complexity results for weak keys: First, we give a quadratic time algorithm for determining

inclusion of path expressions. The ability to determine inclusion of path expressions is

then used in developing inference rules for keys, for which a PTIME algorithm is given.

Section 5.2.4 establishes the results for strong keys, followed by discussions in Section 5.3.

5.1 Decision Problems

In this Section we will define the decision problems for our key constraint languages K,

presented in Section 4.1.3, and Katt, presented in Section 4.2.2. We first consider satisfia-

bility of keys of these languages. Let Σ be a finite set of keys in K (or in Katt), and T be

an XML tree. Following [End72], we use T |= Σ to denote that T satisfies Σ. That is, for

91

any ψ ∈ Σ, T |= ψ.

The satisfiability problem is to determine, given any finite set Σ of keys in K (or in Katt)

whether there exists an XML tree satisfying Σ. The finite satisfiability problem is to

determine whether there exists a finite XML tree satisfying Σ.

As observed in the previous section, keys defined in some proposals (e.g., XML Schema)

may not be finitely satisfiable. In contrast, any set of key constraints of K and of Katt

can always be satisfied by a finite XML tree. In particular, for any set Σ of keys in K, a

tree consisted of only the root node satisfies Σ. Similarly, a tree T consisted of the root

node with its attributes that are required to exist satisfies any set of keys Θ in Katt. That

is, in the construction of T , nodes corresponding to attributes @A1, . . . ,@An are created

under the root, for each key in Θ of the form (ε, {@A1, . . . ,@An}). Such a key determines

that attributes @A1, . . . ,@An are required to exist under the root node, according to the

definition of strong keys satisfaction. Thus,

Observation. Any finite set Σ of keys in K or in Katt is finitely satisfiable.

Next, we consider implication of key constraints. Let Σ ∪ {ϕ} be a finite set of keys. We

use Σ |= ϕ to denote Σ implies ϕ, that is, for any XML tree T , if T |= Σ, then T |= ϕ.

There are two implication problems associated with keys: The implication problem is to

determine, given any finite set of keys Σ ∪ {ϕ}, whether Σ |= ϕ. The finite implication

problem is to determine whether Σ finitely implies ϕ, that is, whether for any finite XML

tree T , if T |= Σ, then T |= ϕ.

Given any finite set Σ ∪ {ϕ} of keys in K or in Katt, if there is an XML tree T such that

T |=
∧

Σ ∧ ¬ϕ, then there must be a finite XML tree T ′ such that T ′ |=
∧

Σ ∧ ¬ϕ. That

is, key implication has the finite model property and as a result:

Proposition 5.1 The implication and finite implication problems for keys coincide.

Proof. First, we will consider keys in K. Observe that given any finite set Σ ∪ {ϕ} of K

constraints, Σ |= ϕ iff no XML tree T exists such that T |=
∧

Σ ∧ ¬ϕ. Thus it suffices to

92

show that if there exists an XML tree T such that T |=
∧

Σ ∧ ¬ϕ, then there must be a

finite XML tree T ′ such that T ′ |=
∧

Σ ∧ ¬ϕ. That is, the complement of the implication

problem for K has the finite model property [End72]. This can be verified as follows. Let

ϕ = (Q, (Q′, {P1, . . . , Pk})). Since T 6|= ϕ, there are nodes n ∈ [[Q]], n1, n2 ∈ n[[Q′]],

xi ∈ n1[[Pi]] and yi ∈ n2[[Pi]] for all i ∈ [1, k] such that xi =v yi but n1 6= n2. Let T ′ be the

finite subtree of T that consists solely of all the nodes in the paths from root to xi, yi for

all i ∈ [1, k]. It is easy to verify that T ′ |= Σ and T ′ |= ¬ϕ. Clearly, T ′ is a finite XML

tree.

The proof for keys in Katt is similar, but in the construction of T ′, the finite subtree of T ,

besides keeping the nodes in the paths from root to xi and yi, T
′ consists also of all required

attributes of such nodes. That is, for any n ∈ [[Q1]], such that there exists Q2 where xi or yi

is in n[[Q2]], the following is true: if Q1 = Q′
1/Q

′′
1 and Σ |= (Q′

1, (Q
′′
1 , {@A1, . . . ,@An}, then

given that T |= Σ, n has as children nodes corresponding to all attributes @A1, . . . , An.

Then, in the construction of T ′, n will keep as children all the @Ai’s nodes. Clearly, T ′ is

a finite XML tree, T ′ |= Σ and T ′ |= ¬ϕ. 2

In light of Proposition 5.1, we can also use Σ |= ϕ to denote that Σ finitely implies ϕ. We

investigate the finite implication problems for keys in the next section.

5.2 Key Implication

In this section, we study the finite implication problem for keys. Our main results are the

following:

Theorem 5.1 The finite implication problem for K is finitely axiomatizable and decidable

in polynomial time in the size of keys.

Theorem 5.2 The finite implication problem for Katt is finitely axiomatizable and decid-

able in polynomial time in the size of keys.

93

We prove the first theorem by showing that there is a finite axiomatization (see Lemma 5.6)

and an algorithm for determining finite implication of K constraints (see Lemma 5.7).

Analogously, we prove the second theorem by showing that there is a finite axiomatization

and an algorithm for determining finite implication of Katt constraints (see Lemma 5.8).

A roadmap for the proofs of the theorems is as follows. Since our axioms for finite implica-

tion for K and Katt rely on path containment, we shall first study the containment of path

expressions for the language PL in Section 5.2.1. We then provide a finite set of inference

rules and show that it is sound and complete for finite implication of K constraints in

Section 5.2.3. Based on the inference rules, we also develop a polynomial time algorithm

for determining finite implication. We shall also present complexity results in connection

with finite implication of absolute keys of Kabs in Section 5.2.2. We then provide a finite

set of inference rules, as well as a polynomial time algorithm for determining implication

of Katt in Section 5.2.4. In the remainder of the Chapter we will refer to weak keys of K

as just keys, and to keys of Katt as strong keys.

5.2.1 Inclusion of PL Expressions

A path expression P of PL is said to be included (or contained) in another PL expression

Q, denoted by P ⊆ Q, if for any XML tree T and any node n in T , n[[P]] ⊆ n[[Q]]. That

is, the nodes reached from n by following P are contained in the set of nodes reached by

following Q from n. We write P = Q if P ⊆ Q and Q ⊆ P .

In the absence of DTDs, P ⊆ Q is equivalent to the containment of the regular language

defined by P in the regular language defined by Q. Indeed, if there exists a path ρ such

that ρ ∈ P but ρ 6∈ Q, then one can construct an XML tree T with a path ρ from the root.

It is obvious that in T , [[P]] 6⊆ [[Q]]. The other direction is immediate. Therefore, P ⊆ Q

iff for any path ρ, if ρ ∈ P then ρ ∈ Q.

We investigate inclusion (containment) of path expressions in PL: Given any PL expres-

sions P and Q, is it the case that P ⊆ Q? As we shall shortly establish, this is important

to the proof of Theorem 5.1, and it is decidable with low complexity.

94

P ∈ PL
ε/P ⊆ P P ⊆ ε/P P/ε ⊆ P P ⊆ P/ε

(empty-path)

P ∈ PL
P ⊆ P

(reflexivity)

P ∈ PL
P ⊆ //

(star)

P ⊆ P ′ Q ⊆ Q′

P/Q ⊆ P ′/Q′ (composition)

P ⊆ Q Q ⊆ R
P ⊆ R

(transitivity)

Table 5.1: Ip: Rules for PL expression inclusion

We provide in Table 5.1 a set of inference rules, denoted by Ip, and develop a quadratic

time algorithm for testing inclusion of PL expressions.

Theorem 5.3 Given two PL expressions P and Q, Ip is a set of sound and complete

inference rules for determining whether P ⊆ Q. Moreover, there is a quadratic time

algorithm in the size of P and Q for determining whether P ⊆ Q.

Proof. The soundness of Ip is easily verified by induction on the lengths of Ip-proofs.

The proof of completeness of Ip is more involved. Our goal is to establish that if P ⊆ Q,

then this can be proved by applying rules of Ip. A roadmap for the proof is as follows:

First, nondeterministic finite state automata M(P) and M(Q) are defined for P and Q,

respectively. Then, we show that there exists a simulation relation (see Definition 5.1)

between the start states of M(P) and M(Q) if and only if P ⊆ Q (see Lemma 5.1).

Finally, we show that the existence of such relation can be established using the rules of

Ip (see Lemma 5.2), thus completing the proof.

A quadratic time algorithm that determines whether a PL expression P is contained in a

PL expression Q is given in Figure 5.2. The correctness and the complexity analysis of

the algorithm is shown in Lemma 5.3. 2

Next, we develop the lemmas used in establishing Theorem 5.3. To simplify discussion, we

95

a a c b
FS

Figure 5.1: NFA for the PL expression a//a/c//b

assume that a PL expression P is in normal form. A PL expression P is in normal form

if it does not contain consecutive //’s and it does not contain ε unless P = ε. It is easy

to see that given any PL expression P , P can be rewritten into its normal form in linear

time as stated by the following proposition.

Proposition 5.2 Given any PL expression P , it takes linear time to transform P to an

equivalent PL expression in normal form.

Proof. It is easy to see that “// //” can be reduced to “//” using the star and composition

rules of Ip. Moreover, by the empty-path rule, we can also assume that P does not contain

ε unless P = ε. Obviously, a single pass over P can transform P into its normal form. 2

The proofs of Lemmas 5.1, 5.2, and 5.3 rely on an underlying construction called a sim-

ulation relation. Given two PL expressions P and Q, a simulation relation is defined on

the transition diagrams of the nondeterministic finite state automata (NFAs) [HU79] as-

sociated with P and Q. We first describe the NFA associated with a PL expression and

then define the simulation.

Let P and Q be path expressions in PL, and the NFAs for P and Q be M(P) and M(Q),

respectively, defined as follows:

M(P) = (N1, C ∪ { }, δ1, S1, F1),

M(Q) = (N2, C ∪ { }, δ2, S2, F2),

where N1, N2 are sets of states, C is the alphabet, δ1, δ2 are transition functions, S1, S2

are start states, and F1, F2 are final states of M(P) and M(Q), respectively. Observe that

the alphabets of the NFAs have been extended with the special character “ ” which can

match any character in C. Observe also that the transition diagram of a PL expression is

always a NFA that has a “linear” structure as depicted in Figure 5.1. More specifically,

M(P) has the following properties (similarly for M(Q)):

96

• There is a single final state F1.

• For any state n ∈ N1, except the final state F1, there exists exactly one letter l ∈ C

such that the NFA can make a move from n on input l to a single different state n′

in N1. In other words, δ1(n, l) = {n′}, n 6= n′, and δ1(n, l
′) = ∅ for all l′ ∈ C if l′ 6= l.

For the final state, δ1(F1, l) = ∅ for all l ∈ C. We shall simply write δ1(n, l) = n′ if

δ1(n, l) = {n′}.

• At any state n ∈ N1, given the special letter “ ”, the NFA either does not move at

all, or goes back to n. That is, either δ1(n,) = ∅ or δ1(n,) = n.

As shown in Figure 5.1, the only cycles in the transition diagram of the NFA are introduced

by “ ”, which go from a state back to itself.

Given M(P) and M(Q), we can define a simulation relation, �, on N1 × N2. Similar to

simulations used in the context of semistructured data [ABS00], the relation � defines a

correspondence between the nodes (or edges) in M(P) and M(Q). Intuitively, the relation

� is defined in such a way that given an input string, every step taken byM(P) in accepting

this string has a corresponding step in M(Q) according to the simulation relation.

Definition 5.1 Let M(P) and M(Q) be NFAs defined for path expressions P and Q,

respectively. Then, for any n1 ∈ N1 and n2 ∈ N2, there is a simulation relation n1 � n2 if

all of the following conditions are satisfied:

• If n1 = F1 then n2 = F2.

• If δ1(n1,) = n1 then δ2(n2,) = n2.

• For any l ∈ C, if δ1(n1, l) = n′1 for some n′1 ∈ N1, then

– either there exists a state n′2 ∈ N2 such that δ2(n2, l) = n′2 and n′1 � n′2, or

– δ2(n2,) = n2 and n′1 � n2.

As Lemma 5.1 will show, given two PL expressions P and Q, showing that P ⊆ Q is

equivalent to showing that there is a simulation relation S1 � S2. Observe that by the

97

definition of the simulation relation, the final state F1 of M(P) can only correspond to the

final state F2 of M(Q). Therefore, if S1 �S2 and every transition in M(P) corresponds to

a transition in M(Q), whenever M(P) accepts an input string, M(Q) also does, and thus

P ⊆ Q.

Lemma 5.1 Let P and Q be two PL expressions and M(P) = {N1, C ∪ { }, δ1, S1, F1}

and M(Q) = {N2, C ∪ { }, δ2, S2, F2} be their respective NFAs. Then, P ⊆ Q if and only

if S1 � S2.

Proof. The proof makes use of the closure of a transition function δ as defined in [HU79]:

δ̂(n, ε) = {n}

δ̂(n, w/l) = {p | ∃x ∈ δ̂(n,w), p ∈ δ(x, l)}

Let δ̂1 and δ̂2 be the closure functions of δ1 and δ2, respectively. Observe that P ⊆ Q if

and only if for any ρ ∈ P , if F1 ∈ δ̂1(S1, ρ) then F2 ∈ δ̂2(S2, ρ). Using this observation,

we show the lemma as follows. Assume S1 �S2. We first show that if n1 ∈ δ̂1(S1, ρ) where

ρ is a path in P then there exists n2 ∈ δ̂2(S2, ρ) such that n1 � n2. This can be shown

by induction on the length of ρ, denoted by |ρ|. For the base case, if ρ = ε then by the

definition of δ̂, δ̂1(S1, ε) = {S1}, and δ̂2(S2, ε) = {S2}, and S1 � S2 by assumption. We

now assume that the statement is true when |ρ| < k and we shall show that the statement

is also true when |ρ| = k. Assume ρ ∈ P , |ρ| > 0 and let ρ = ρ′/l where l ∈ C. Let

n′1 ∈ δ̂1(S1, ρ
′) and by induction hypothesis, there exists n′2 ∈ δ̂2(S2, ρ

′) such that n′1 � n′2.

Since ρ ∈ P , ρ is accepted by M(P). Therefore, the last transition taken by M(P) on l

from n′1 to the final state can be one of the following cases:

• l is consumed by a “ ” transition from n′1. More precisely, δ1(n
′
1,) = n′1 and by the

definition of �, it must be that δ2(n
′
2,) = n′2. Hence n′1 = F1 which implies that

n′2 = F2.

• l is consumed by a “l” transition from n′1. More precisely, δ1(n
′
1, l) = F1 and by the

definition of �, either

98

– for some state n′′2 ∈ N2, δ2(n
′
2, l) = n′′2 and F1 � n′′2 which implies that n′′2 = F2

or

– δ2(n
′
2,) = n′2 and F1 � n′2 which implies that n′2 = F2.

Thus, if F1 ∈ δ̂1(S1, ρ) then we have F2 ∈ δ̂2(S2, ρ). That is, P ⊆ Q.

For the other direction, we assume P ⊆ Q. Our goal is to show that for any path ρ, if

n1 ∈ δ̂1(S1, ρ) then there exists n2 ∈ δ̂2(S2, ρ) such that n1 � n2. To see this, note that for

any ρ ∈ P , we have F1 ∈ δ̂1(S1, ρ), and since P ⊆ Q, F2 ∈ δ̂2(S2, ρ). Thus we can define

F1 � F2. In addition, for any path ρ, if δ̂1(S1, ρ) ⊆ N1, then there exists path ρ′ such that

F1 ∈ δ̂1(S1, ρ/ρ
′). Thus the statement can be easily verified by contradiction. Observe

that δ̂1(S1, ε) = {S1} and δ̂2(S2, ε) = {S2}. Thus S1 � S2 and the lemma follows. 2

The next lemma establishes the relationship between the existence of a simulation relation

such that S1 � S2 and the rules of Ip.

Lemma 5.2 Let P and Q be two PL expressions and M(P) = {N1, C ∪ { }, δ1, S1, F1}

and M(Q) = {N2, C ∪ { }, δ2, S2, F2} be their respective NFAs. If S1 � S2, then P ⊆ Q

can be proven using the inferences rules of Ip.

Proof. We prove the lemma by first assuming that there exists a simulation relation �

such that S1 � S2. By the definition of � and the properties of M(P), there exists a total

mapping θ : N1 → N2 such that θ(S1) = S2, θ(F1) = F2, and for any state n1 ∈ N1,

n1 � θ(n1). Let the sequence of states in M(P) be ~v1 = p1, . . . , pk, where p1 = S1 and

pk = F1, and similarly, let the sequence of states in M(Q) be ~v2 = q1, . . . , ql, where q1 = S2

and ql = F2. It is easy to verify that for any i, j ∈ [1, k], if i < j, θ(pi) = qi′ and θ(pj) = qj′ ,

then i′ ≤ j′. We define an equivalence relation ∼ on N1 as follows:

pi ∼ pj iff θ(pi) = θ(pj).

Let [p]∼ denote the equivalence classes of p with respect to ∼. An equivalence class is

non-trivial if it contains more than one state. For any equivalence class [p], let pi and pj

be the smallest and largest states in [p] respectively. That is, for any ps ∈ [p], i ≤ s ≤ j.

99

Algorithm Incl(n1, n2)

1. if visited(n1, n2)
then return false
else mark visited(n1, n2) as true;

2. process n1, n2 as follows:
Case (a): if n1 = F1 then

if n2 = F2 and (δ1(F1,) = ∅ or δ2(F2,) = F2)
then return true;
else return false;

Case (b): if δ1(n1, a) = n′

1
and δ2(n2, a) = n′

2
for letter a

and δ1(n1,) = ∅ and δ2(n2,) = ∅
then return Incl(n′

1
, n′

2
);

Case (c): if δ1(n1, a) = n′

1
and δ2(n2,) = n2 and δ2(n2, a) = n′

2
for letter a

then return (Incl(n′

1
, n2) or Incl(n′

1
, n′

2
))

else if δ1(n1, a) = n′

1
and δ2(n2,) = n2 and δ2(n2, a) = ∅

then return Incl(n′

1
, n2);

3. return false

Figure 5.2: Algorithm for testing inclusion of PL expressions

By treating pi as the start state, and pj as the final state, we have a NFA that recognizes

a regular expression, denoted by Pi,j . Similarly, we can define P1,i and Pj,k such that

P = P1,i/Pi,j/Pj,k. It is easy to verify that if [p] is a non-trivial equivalence class, then

there must be δ2(θ(pi),) = θ(pi). In other words, θ(pi) indicates an occurrence of “//”

in Q. Observe that P1,i/Pi,j/Pj,k ⊆ P1,i//Pj,k. This can be proved by using the star and

composition rules of Ip. By an induction on the number of non-trivial equivalence classes,

one can show that P ⊆ Q can always be proved using the star , composition, transitivity

and reflexivity rules in Ip as illustrated above. Thus Ip is complete for inclusion of PL

expressions. 2

Based on the previous lemmas, we provide in Figure 5.2 a recursive function Incl(n1, n2)

for testing inclusion of PL expressions.

Lemma 5.3 Given two PL expressions P and Q, there exists a quadratic time algorithm

for determining whether P ⊆ Q.

Proof. The function Incl(n1, n2) is an implementation of Definition 5.1, and assumes the

100

existence of M(P ′) and M(Q′), where P ′ and Q′ are the normal forms of PL expressions

P and Q, respectively. To test whether P ⊆ Q, the function Incl(n1, n2) is invoked

with arguments Incl(S1, S2), where S1 and S2 are the start states of M(P ′) and M(Q′)

respectively. By Lemma 5.1, P ⊆ Q if and only if S1 � S2. Since the function with inputs

S1 and S2 determines whether S1 � S2, it in fact determines whether P ⊆ Q.

We use visited(n1, n2) to keep track of whether Incl(n1, n2) has been evaluated before.

Initially, visited(n1, n2) is false for all n1 ∈ N1 and n2 ∈ N2.

We now show that the algorithm runs in quadratic time. By Proposition 5.2, P and Q

can be rewritten into their normal forms in O(|P |) and O(|Q|) time respectively, where |P |

and |Q| are the lengths of P and Q. The construction of M(P) can also be done in O(|P |)

time and the same argument applies for Q. The initialization statement can be executed

in O(|P | |Q|) time. Since each condition of the cases (a)-(c) can be tested in constant

time and the first statement of the algorithm ensures that any pair of states (n1, n2) from

N1×N2 is never processed twice, it is easy to see that Incl(S1, S2) runs in O(|P | |Q|) time.

We can therefore conclude that the algorithm is in quadratic time. 2

5.2.2 Axiomatization for Absolute Key Implication

Recall that an absolute key (Q′, S) is a special case of a K constraint (Q, (Q′, S)) when

Q = ε. Absolute keys are constraints imposed on the entire XML tree T rather than on

certain subtrees of T . Not surprisingly, the problem of determining (finite) implication

of absolute keys is simpler than that for relative keys. We therefore start by giving a

discussion on the rules for absolute key implication. The set of rules, denoted as Iabs, is

shown in Table 5.2 and is subsequently extended as rules for relative key implication.

• superkey. If S is a key for the set of nodes in [[Q]] then so is any superset of S. This

is the only rule of Iabs that has a counterpart in relational key inference.

• subnodes. Observe that any node v ∈ [[Q/Q′]] must be in the subtree rooted at some

node v′ in [[Q]] and since we have a tree model, there is no sharing of nodes. Hence v

101

(Q, S) P ∈ PL
(Q, S ∪ {P})

(superkey)

(Q/Q′, {P})
(Q, {Q′/P})

(subnodes)

(Q, S ∪ {Pi, Pj}) Pi ⊆ Pj

(Q, S ∪ {Pi})
(containment-reduce)

(Q, S) Q′ ⊆ Q
(Q′, S)

(target-path-containment)

(Q, S ∪ {ε, P}) P ′ ∈ PL
(Q, S ∪ {ε, P/P ′})

(prefix-epsilon)

(Q, {})
(Q/@l, {})

(attribute)

(ε, {})
(epsilon)

Table 5.2: Iabs: Rules for absolute key implication

uniquely identifies v′. Therefore, if a key path P uniquely identifies a node in [[Q/Q′]]

then Q′/P uniquely identifies a node in [[Q]].

• containment-reduce. If S ∪ {Pi, Pj} is the set of key paths that uniquely identifies

nodes in [[Q]] and Pi ⊆ Pj then we can leave out Pj from the set of key paths. This

is because for any nodes n1, n2 in [[Q]], if n1[[Pi]] ∩v n2[[Pi]] 6= ∅, then we must have

n1[[Pj]] ∩v n2[[Pj]] 6= ∅ since Pi ⊆ Pj . Thus, by the definition of keys, S ∪ {Pi} is also

a key for [[Q]].

• target-path-containment. A key for the set [[Q]] is also a key for any subset of [[Q]].

Observe that [[Q′]] ⊆ [[Q]] if Q′ ⊆ Q.

• prefix-epsilon. If a set S ∪ {ε, P} is a key of [[Q]], then we can extend the key path P

by appending to it another path P ′, and the modified set is also a key of [[Q]]. This

is because for any nodes n1, n2 ∈ [[Q]], if n1[[P/P
′]] ∩v n2[[P/P

′]] 6= ∅ and n1 =v n2,

then we have n1[[P]]∩v n2[[P]] 6= ∅. Note that n1 =v n2 if n1[[ε]]∩v n2[[ε]] 6= ∅. Thus, by

the definition of keys, S ∪{ε, P/P ′} is also a key for [[Q]]. Observe, however, that the

implication of (Q, {ε}) from the premise is not sound. One can construct an XML

tree with only two nodes n1 and n2 in [[Q]] that are value equal but do not have

102

Algorithm implication

Input: a finite set Σ ∪ {ϕ} of absolute keys, where ϕ = (Q, {P1, ..., Pk})
Output: true iff Σ |= ϕ

1. if ϕ = (Q/@l, {}) then ϕ:= (Q, {});
2. if Q = ε then output true and terminate
3. for each (Qi, Si) ∈ (Σ ∪ {ϕ}) do

repeat until no further change
if Si = S ∪ {P ′, P ′′} such that P ′ ⊆ P ′′ then Si := Si \ {P ′′}

4. for each φ ∈ Σ do
(i) if φ = (Q′, {P ′

1
, ..., P ′

m}), Q ⊆ Q
′ and for all

i ∈ [1..m] there exists j ∈ [1..k] such that either
(a) Pj ⊆ P ′

i or
(b) Pj = R1/R2, R1 ⊆ P ′

i and there exists l ∈ [1, k] such that Pl = ε
then output true and terminate

(ii) if φ = (Q′/Q′′, {P}), Q ⊆ Q′ and for some j ∈ [1..k], either
(a) Pj ⊆ Q′′/P or
(b) Pj = R1/R2, R1 ⊆ Q′′/P , and there exists l ∈ [1, k] such that Pl = ε
then output true and terminate

(iii) if φ = (Q′/Q′′, {}), Q ⊆ Q′ and for some j ∈ [1..k], either
(a) Pj ⊆ Q′′ or
(b) Pj = R1/R2, R1 ⊆ Q′′, and there exists l ∈ [1, k] such that Pl = ε
then output true and terminate

5. output false

Figure 5.3: Finite implication of absolute keys

any paths in P . Since paths of P are missing in the trees of n1 and n2, the XML

tree satisfies the premise trivially. However, this tree clearly does not satisfy (Q, {ε})

since n1 =v n2.

• attribute. If there exists a single node reached by following path Q, and any node

has at most one attribute labeled @l, then it is also true that there exists a single

node reached by following path Q/@l.

• epsilon. This rule is sound because there is only one root. In other words, [[ε]] is

exactly the root node and therefore the empty set forms a key for the root.

Observe that these rules are far more complex than the rules for relational key inference

(given in the beginning of the Chapter). Moreover, observe that some rules rely on the

ability to reason about path inclusion.

103

As our next theorem shall show, the set of inference rules Iabs is sound and complete

for determining the (finite) implication of absolute keys. Moreover, there is an O(n5)

algorithm for determining the (finite) implication of absolute keys, where n is the size of

keys.

Theorem 5.4 The finite implication problem for Kabs is finitely axiomatizable and decid-

able in O(n5) time, where n is the size of keys.

Proof. We omit the proof of soundness and completeness of Iabs because most of the

proof can be verified along the same lines as the proof of Lemma 5.6 that we shall discuss

in Section 5.2.3.

A function for determining finite implication of absolute keys is given in Figure 5.3. The

correctness of the algorithm follows from the axioms for finite implication of absolute keys.

Step 1 and 2 of the algorithm are simple applications of the attribute and epsilon rules,

respectively. Step 3 applies containment-reduce to transform keys to the key normal form.

A key φ = (Q, (Q′, S)) of K is in the key normal form if for every pair of paths Pi and

Pj in S, Pi 6⊆ Pj. In Step 4, the algorithm checks whether a key φ in Σ can prove ϕ by

verifying the applicability of rules of Iabs in three cases: when φ has many key paths (Step

4(i)), when φ has only one key path (Step 4(ii)), and when φ has no key paths (Step 4(iii)).

Note that Step 4(i) and Step 4(ii) coincide when φ = (Q′, {P ′
1}).

In Step 4(i), we apply target-path-containment rule to infer (Q, {P ′
1, ..., P

′
m}) from φ, if

possible. If successful, our remaining goal is to transform the set of key paths {P ′
1, ..., P

′
m} of

φ to {P1, ..., Pk} of ϕ. Since Step 3 has been applied, the set {P ′
1, ..., P

′
m} cannot be reduced

further. Furthermore, observe that at this point, only superkey, containment-reduce, and

prefix-epsilon rules are relevant rules for key paths. Our goal is thus to transform every key

path P ′
i into some Pj using these rules. The resulting set of key paths can be augmented,

through the use of superkey rule, so that the final set of key paths is {P1, ..., Pk}, as

desired. Obviously, a key path P ′
i can be replaced with Pj for some j ∈ [1, k] if Pj ⊆ P ′

i

(this corresponds to Step 4(i)(a)). The replacement can done through the use of superkey

rule, to add the path Pj , and then containment-reduce, to remove the path P ′
i . Otherwise,

104

if a proper prefix of Pj is contained in P ′
i (see Step 4(i)(b)), then the replacement can occur

through the use of superkey rule to add the key path R1. Then through containment-reduce,

we remove the path P ′
i . The path R1 in the current set of key paths can then be extended

to R1/R2: We first add another key path ε (if it does not already exist) through superkey

rule. Then, through prefix-epsilon rule, R1/R2 can be obtained. This also explains the

requirement that the key path set of ϕ must contain ε. Observe that these are the only

possible ways to obtain the desired set of key paths. No inference rules can be applied if

P ′
i is contained in Pj or a proper prefix of Pj . Thus Step 3(i) is correct in the case when

there are many key paths in φ.

In Step 4(ii), the subnode rule is applied to first obtain (Q′, {Q′′/P}) from φ and the rest

of the argument is similar to the preceding discussion. In Step 4(iii), the superkey rule

must be applied to obtain (Q′/Q′′, {ε}) before the subnode rule can be applied.

Observe that in Step 4, we test whether ϕ can be proven from Σ by going through each

φ ∈ Σ at most once. This is sufficient because if indeed Σ |= ϕ, then ϕ must be the

consequence of a sequence of applications of rules of Iabs on a single key in Σ, as illustrated

in the previous discussion. That is, since the applicability of epsilon and attribute rules

have already been checked in Steps 1 and 2 and every other rule of Iabs has a premise that

consists of only one key, the first rule applied in the sequence of rule applications must

have a premise that makes use of only one of the keys in Σ.

We next show that the algorithm runs in O(n5) where n is the size of keys. Let Σ∪{ϕ} be a

finite set of keys in Kabs. Without loss of generality, we assume that all path expressions in

the set are in the normal form. If not, by Proposition 5.2, it takes linear time to transform

a PL expression to an equivalent PL expression in the normal form. It only takes constant

time to execute Steps 1 and 2 of the algorithm. From Theorem 5.3, Step 3 can be done in

cubic time. To see this, consider a key φ = (Qi, Si) in Σ ∪ {ϕ}. It takes |Si| ∗ |Si| units

of time to check containment of path expressions in Si. Since there are at most |Σ| + |ϕ|

keys, Step 3 is O(n3) in the size of Σ and ϕ. Case 4(i) of the algorithm requires one to

test for containment of path expressions Pj in P ′
i , which can be done in O(|Pj | ∗ |P

′
i |) time,

and, in case (b), partition Pj in |Pj | possible ways and test for containment in P ′
i . This

105

(Q, (Q′, S)) P ∈ PL
(Q, (Q′, S ∪ {P}))

(superkey)

(Q, (Q′/Q′′, {P}))
(Q, (Q′, {Q′′/P}))

(subnodes)

(Q, (Q′, S ∪ {Pi, Pj})) Pi ⊆ Pj

(Q, (Q′, S ∪ {Pi}))
(containment-reduce)

(Q, (Q′, S)) Q1 ⊆ Q
(Q1, (Q′, S))

(context-path-
containment)

(Q, (Q′, S)) Q2 ⊆ Q
′

(Q, (Q2, S))
(target-path-containment)

(Q, (Q1/Q2, S))

(Q/Q1, (Q2, S))
(target-to-context)

(Q, (Q′, S ∪ {ε, P})) P ′ ∈ PL
(Q, (Q′, S ∪ {ε, P/P ′}))

(prefix-epsilon)

(Q1, (Q2, {Q
′/P1, . . . , Q

′/Pk})) (Q1/Q2, (Q′, {P1, . . . , Pk}))
(Q1, (Q2/Q

′, {P1, . . . , Pk}))
(interaction)

(Q, (Q′, {}))

(Q, (Q′/@l, {}))
(attribute)

Q ∈ PL, S is a set of PL expressions

(Q, (ε, {}))
(epsilon)

Table 5.3: I: Rules for key implication

requires O(|Pj | ∗ |Pj | ∗ |P
′
i |) time. Therefore, for a key φ ∈ Σ, the cost of Case 4(i) is at

most (|P1|+ . . .+ |Pk|)(|P
′
1|+ . . .+ |P ′

m|) + (|P1|
2 + . . .+ |Pk|

2)(|P ′
1|+ . . .+ |P ′

m|), which is

O(n3). The cost of Cases 4(ii) and 4(iii) of the algorithm is O(n4) because they require one

to execute the same containment test as Case 4(i) for |Q′/Q′′| possible ways to partition

Q′/Q′′. Since each constraint φ in Σ is examined at most once, the algorithm is O(n5),

where n is the size of Σ and ϕ. It is possible that this algorithm can be improved further

to achieve a lower complexity but this is beyond the scope of this work. 2

106

5.2.3 Axiomatization for Key Implication

We now turn to the finite implication problem for K, and start by giving in Table 5.3

a set of inference rules, denoted by I. Most rules are generalizations of rules shown in

Table 5.2 except for rules that deal with the context path in the setting of relative keys:

context-path-containment, target-to-context, and interaction. We briefly illustrate these

rules below.

• context-path-containment . Note that [[Q1]] ⊆ [[Q]] if Q1 ⊆ Q. If (Q′, S) holds on all

subtrees rooted at nodes in [[Q]], then it must also hold on all subtrees rooted at

nodes in any subset of [[Q]].

• target-to-context . If a set S of key paths can uniquely identify nodes of a set X in the

entire tree T , then it can also identify nodes of X in any subtree of T . Along the same

lines, if in a tree T rooted at a node n in [[Q]], S is a key for n[[Q1/Q2]], then in any

subtree of T rooted at n′ in n[[Q1]], S is a key for n′[[Q2]]. Note that n′[[Q2]] consists of

nodes that are in both n[[Q1/Q2]] and the subtree rooted at n′. In particular, when

Q = ε this rule says that if (Q1/Q2, S) holds then so does (Q1, (Q2, S)). That is,

if the (absolute) key holds on the entire document, then it must also hold on any

sub-document.

• interaction. This is the only rule of I that has more than one key in its precondition.

By the first key in the precondition, in each subtree rooted at a node n in [[Q1]],

Q′/P1, . . . , Q
′/Pk uniquely identify a node in n[[Q2]]. The second key in the precondi-

tion prevents the existence of more than one Q′ node under Q2 that coincide in their

P1, . . . , Pk nodes. Therefore, P1, . . . , Pk uniquely identify a node in n[[Q2/Q
′]] in each

subtree rooted at n in [[Q1]]. More formally, for any n ∈ [[Q1]] and n1, n2 ∈ n[[Q2/Q
′]],

there must be v1, v2 in n[[Q2]] such that n1 ∈ v1[[Q
′]], n2 ∈ v2[[Q

′]] and for all i ∈ [1, k],

we must have n1[[Pi]] ⊆ v1[[Q
′/Pi]] and n2[[Pi]] ⊆ v2[[Q

′/Pi]]. If n1[[Pi]] ∩v n2[[Pi]] 6= ∅,

then v1[[Q
′/Pi]] ∩v v2[[Q

′/Pi]] 6= ∅, for any i ∈ [1, k]. Thus, by the first key in the

precondition, v1 = v2. Hence n1, n2 ∈ v1[[Q
′]] and as a result, n1 = n2 by the second

key in the precondition. Therefore, (Q1, (Q2/Q
′, {P1, . . . , Pk})) holds.

107

Given a finite set Σ ∪ {ϕ} of K constraints, we use Σ `I ϕ to denote that ϕ is provable

from Σ using I (and Ip for path inclusion).

To illustrate how I is used in an implication proof, let us consider two K constraints:

φ = (A, (B/C//, {D, D//})),

ψ = (A/B, (C, {//D, E})).

An I-proof for φ |= ψ is given as follows.

1) φ |= (A, (B/C//, {D})) by D ⊆ D// and the containment-reduce rule. Note that

D ⊆ D// is proved by using star , empty-path and composition of Ip.

2) φ |= (A, (B/C, {//D})) by 1) and subnodes.

3) φ |= (A/B, (C, {//D})) by 2) and target-to-context .

4) φ |= (A/B, (C, {//D, E})) by 3) and superkey .

As another example, observe that the following is provable from I:

(Q, (Q′, S ∪ {P})) P ′ ⊆ P

(Q, (Q′, S ∪ {P ′}))
(key-path-containment)

Indeed, if (Q, (Q′, S ∪ {P})) holds then by superkey , so does (Q, (Q′, S ∪ {P,P ′})). By

containment-reduce we have that (Q, (Q′, S ∪ {P ′})) holds.

We now show that I is indeed a finite axiomatization for K constraint implication. The

proof for soundness and completeness is given in Lemma 5.6 and relies on the notion of

abstract trees. An abstract tree is an extension of an XML tree by allowing “//” as a node

label. Abstract trees have the following property, given by Lemma 5.5: whenever a finite

abstract tree can be constructed such that it satisfies a set of keys Σ but not a key ϕ,

then an XML tree can be derived with the same property – it satisfies Σ but not ϕ. Thus

this XML tree is a proof witnessing Σ 6|= ϕ. Given this, to prove that I is complete for

determining (finite) implication of keys, it suffices to show that whenever Σ 6`I ϕ, there

exists an abstract tree T such that T satisfies Σ but not ϕ.

We start by giving a discussion on abstract trees. In an abstract tree, “//” is treated as

an ordinary label. Therefore, the sequence of labels in an abstract tree is a PL expression

that may contain occurrences of “//”. Let R be the sequence of labels in the path from

108

node a to b in an abstract tree T , and let P be a path expression in PL. We say that

T |= P (a, b) if R ⊆ P . Given this, the definitions of node sets can be easily generalized for

abstract trees. Given a node n in an abstract tree T and a PL expression P , the node set

n[[P]] in T consists of all nodes x such that T |= P (n, x). The satisfaction of a K constraint

for abstract trees uses this definition of node set and is very similar to Definition 4.9. An

abstract tree T satisfies a key (Q, (Q′, {P1, . . . , Pk})) if for every node n ∈ [[Q]], n satisfies

the key (Q′, {P1, . . . , Pk}). A node n satisfies a key (Q′, {P1, . . . , Pk}) if for any n1, n2

in n[[Q′]], if for all i ∈ [1, k] there exist nodes xi and yi in T such that T |= Pi(n1, xi),

T |= Pi(n2, yi), and xi =v yi, then n1 = n2.

The following definition describes the construction of an XML tree from an abstract tree.

Definition 5.2 Given an abstract tree T , and an element tag η, we say that G is the XML

tree defined from T using η if G is obtained by substituting every occurrence of “//” in T

by η.

Observe that G and T have the same set of nodes. In addition, for any nodes a, b in G,

there is a path ρ such that G |= ρ(a, b) iff there is a path R in T such that T |= R(a, b),

where R is the same as ρ except that for each occurrence of “//” in R, the label η appears

at the corresponding position in ρ. Let us refer to R as the path expression w.r.t. ρ and

conversely, ρ as the path w.r.t. R.

Our goal is to show that, given a set of keys Σ ∪ {ϕ}, if T satisfies Σ but not ϕ, then the

XML tree G defined from T using some label η also satisfies Σ and not ϕ. To do so, we first

establish that there is a correspondence between nodes in T and in G reached by following

a path expression P in PL. This result in then used to prove the desired property.

Lemma 5.4 Let T be an abstract tree, η be an element tag that does not occur anywhere

in T , and G be the XML tree defined from T using η. Let P be a path expression in PL,

and a, b be nodes in G. Then, there exists a path ρ ∈ P such that G |= ρ(a, b) if and only

if T |= P (a, b), i.e., T |= R(a, b) and R ⊆ P where R is the path expression w.r.t. ρ.

109

Proof. (1) Assume that T |= P (a, b), i.e., there is a path R from a to b in T such that

R ⊆ P . By the definition of G, we must have G |= ρ(a, b), where ρ is the path w.r.t. R.

Recall that ρ is obtained by substituting η for occurrences of “//”. Since R ⊆ P , we have

ρ ∈ P .

(2) Conversely, assume that there exists a path ρ ∈ P such that G |= ρ(a, b). By the

definition of G, we have T |= R(a, b), where R is the path expression w.r.t. ρ. Thus, it

suffices to show that R ⊆ P . To do so, we consider the NFAs of R, P and ρ as defined in

Section 5.2.1:

M(R) = (NR, A ∪ { }, δR, SR, FR),

M(P) = (NP , A ∪ { }, δP , SP , FP),

M(ρ) = (Nρ, A ∪ {η}, δρ, Sρ, Fρ),

whereA is an alphabet that contains neither “ ” nor η. Recall that NFAs for PL expressions

have a “linear” structure as shown in Figure 5.1. In particular, since ρ does not contain

“//”, M(ρ) has a strict linear structure. More specifically, let the sequence of states in Nρ

be s1, . . . , sm, where s1 = Sρ and sm = Fρ. Then for any i ∈ [1,m−1], there is exactly one

l ∈ A∪{η} such that δρ(si, l) 6= ∅. More precisely, δρ(si, l) = si+1, and for any l ∈ A∪{η},

δρ(Fρ, l) = ∅. Let the sequence of states in NR be n1, . . . , nk, where n1 = SR and nk = FR.

Then we can define a function f from Nρ to NR with the following properties:

• f(Sρ) = SR and f(Fρ) = FR.

• For any i, j ∈ [1,m], if f(si) = ni′ , f(sj) = nj′ and i < j, then i′ ≤ j′.

• For any i ∈ [1,m] and l ∈ A, δρ(si, l) = si+1 iff δR(f(si), l) = f(si+1) and f(si) 6=

f(si+1).

• For the special letters “ ” and “η”, for any i ∈ [1,m], we let δρ(si, η) = si+1 iff

δR(f(si),) = f(si+1) and f(si) = f(si+1). In particular, if it is the case that

δR(FR,) = FR then we have δρ(sm−1, η) = Fρ and f(sm−1) = f(Fρ) = FR.

We define an equivalence relation ∼ on Nρ such that

s ∼ s′ iff f(s) = f(s′).

110

Let us use [s] to denote the equivalence class of s w.r.t. ∼. Without loss of generality,

assume that R is in the normal form, i.e., it does not contain two consecutive //’s and it

does not contain ε unless it is ε. Then it is easy to verify that [s] consists of at most two

states. More precisely, if [s] = {s}, then either s is a final state or there is l ∈ A such

that δρ(s, l) = s′, and if [s] = {s, s′} then there is some i ∈ [1,m − 1] such that s = si,

s′ = si+1, δρ(s, η) = s′ and f(s) = f(s′). Given these, we define a function g from NR to

the equivalence classes such that for all n ∈ NR,

g(n) = [s] iff f(s) = n.

Recall that in Lemma 5.1, we have shown that given two PL expressions Q and Q′ with

their respective NFAs M(Q) and M(Q′) then, Q ⊆ Q′ if and only if SQ�SQ′. The symbols

SQ and SQ′ are the start states of M(Q) and M(Q′) respectively and � is a simulation

as defined in Definition 5.1. Furthermore, there is a function θ from NQ to NQ′ such that

θ(SQ) = SQ′ , θ(FQ) = FQ′ , and for any state s ∈ NQ, s � θ(s). The symbols, NQ and

NQ′ , denote the sets of states in M(Q) and M(Q′) respectively. Since ρ ∈ P , the language

defined by ρ (which consists of a single string ρ) is contained in the language defined by

P , i.e., ρ ⊆ P . Thus, there exists a function θ from Nρ to NP and a simulation relation �

such that θ(Sρ) = SP , θ(Fρ) = FP , and for any s ∈ Nρ, s � θ(s). It is easy to verify the

following claim:

Claim: For all s, s′ ∈ [s], θ(s) = θ(s′).

Indeed, as observed earlier, if s, s′ ∈ [s], then there is some i ∈ [1,m− 1] such that s = si,

s′ = si+1 and δρ(s, η) = s′. Since η does not appear in P , if θ(s) = n′ and θ(s′) = n′′, then

there must be δP (n′,) = n′′ and n′ = n′′, by the definition of simulation relations. As a

result, we can define θ([s]) to be θ(s). Given these, to show R ⊆ P , it suffices to show that

for any n ∈ NR,

n � θ(g(n)).

For if it holds, then SR � θ(g(SR)) = θ(Sρ) = SP . We next show that this holds. Assume,

by contradiction, that there is n ∈ NR such that it is not the case that n � θ(g(n)). Let

n be such a state with the largest index in the sequence of states in NR starting from SR.

111

Then by the definition of simulation relations given in Section 5.2.1, we must have one of

the following cases.

(i) n = FR and either

1. θ(g(FR)) 6= FP , or

2. θ(g(FR)) = FP but δR(FR,) = FR, δP (FP ,) = ∅.

The first case contradicts the assumption that g(FR) = [Fρ] and θ([Fρ]) = θ(Fρ) = FP .

If it were the second case, then by δR(FR,) = FR, we would have g(FR) = {Fρ, sm−1}

and δρ(sm−1, η) = Fρ. By the above claim, there must be θ(sm−1) = θ(Fρ) = FP and

δP (FP ,) = FP . Again this contradicts the assumption.

(ii) n 6= FR and either

1. δR(n,) = n but δP (θ(g(n)),) 6= θ(g(n)), or

2. there is some label l ∈ A such that δR(n, l) = n′, but we have neither δP (θ(g(n)), l) 6=

θ(g(n′)) nor δP (θ(g(n)),) = θ(g(n)).

If it were the first case, then by the definition of the function g, we would have that g(n) =

{si, si+1} and δρ(si, η) = si+1. Thus by the above claim, there must be θ(si) = θ(si+1),

δP (θ(si),) = θ(si) and, in addition, θ(g(n)) = θ(si). Hence δP (θ(g(n)),) = θ(g(n)),

which contradicts the assumption. If it were the second case, then given δR(n, l) = n′, we

would have either δP (θ(g(n)), l) = θ(g(n′)) or δP (θ(g(n)),) = θ(g(n)), by the definition

of simulation relations and g(n) � θ(g(n)). Again this contradicts the assumption. Thus

n� θ(g(n)) for all n ∈ NR. 2

We are now in position to show that abstract trees have the following property:

Lemma 5.5 Let Σ ∪ {ϕ} be a finite set of K constraints. If there is a finite abstract tree

T such that T |= Σ and T |= ¬ϕ, then there is a finite XML tree G such that G |= Σ and

G |= ¬ϕ.

112

Proof. Let Σ ∪ {ϕ} be a finite set of keys in K, and T be a finite abstract tree such that

T |= Σ and T 6|= ϕ. Let η be an element tag that does not occur in any key of Σ∪{ϕ}, and

G be the XML tree defined from T using η. We shall prove that G |= Σ and G |= ¬ϕ. From

Lemma 5.4, it follows immediately that for any path expression P in PL, [[P]] consists of

the same nodes in T and G. For if T |= P (r, a), where r is the root, then there is a path

R in T such that T |= R(r, a) and R ⊆ P . By Lemma 5.4, we have G |= ρ(r, a), where ρ

is the path w.r.t. R and ρ ∈ P . That is, a is in [[P]] in the tree G. Conversely, if a is in

[[P]] in the tree G, then there is a path ρ ∈ P such that G |= ρ(r, a). Again by Lemma 5.4,

T |= R(r, a) and R ⊆ P , where R is the path expression w.r.t. ρ. Thus, a is in [[P]] in the

abstract tree T .

We are now ready to show that G |= Σ and G |= ¬ϕ. Suppose, by contradiction, that

there exists a key φ = (Q, (Q′, {P1, ..., Pk})) in Σ such that G |= ¬φ. Then there exist a

node n ∈ [[Q]], two distinct nodes n1, n2 ∈ n[[Q′]] and, in addition, for all i ∈ [1, k], there

exist nodes xi ∈ n1[[Pi]], yi ∈ n2[[Pi]] such that xi =v yi. But by Lemma 5.4, we would

have T |= Pi(n1, xi) ∧ Pi(n2, yi) for all i ∈ [1, k]. Therefore, T 6|= φ, which contradicts our

assumption. We next show G |= ¬ϕ. Let ϕ = (Q, (Q′, {P1, ..., Pk})). Since T |= ¬ϕ, there

must exist a node n ∈ [[Q]], two distinct nodes n1, n2 ∈ n[[Q′]], and for all i ∈ [1, k], there

exist nodes xi, yi such that xi =v yi and, in addition, there exists a path Ri in T such that

T |= Ri(n1, xi) ∧ Ri(n2, yi), where Ri ⊆ Pi. Thus, by Lemma 5.4, there is path ρi ∈ Pi

such that xi ∈ n1[[ρi]], yi ∈ n2[[ρi]]. Hence G |= ¬ϕ. 2

This property of abstract trees is now used to show that I is a finite axiomatization for K

constraint implication.

Lemma 5.6 The set I is sound and complete for finite implication of K constraints. That

is, for any finite set Σ ∪ {ϕ} of K constraints, Σ |= ϕ if and only if Σ `I ϕ.

Proof. To simplify the discussion, we assume that all keys are in key normal form and all

path expressions are in normal form. In general, given constraints φ and φ′ in K, where φ′

is the key normal form of φ, φ and φ′ are equivalent. That is, for any XML tree T , T |= φ

iff T |= φ′. Thus, the assumption does not lose generality.

113

φ

φ φ

φ

φ φ

φ

φ

n

Q w

n

Q

Rp

Qt

n

w

Rp

Qt

n

w

Rp

Q

Qc

Qt

Q

Qc

Qc
w

n

Q

Rp

Qt

Q’

Q Q

Q’

Q Q

Q’

Q’

n1 n2

P1 Pk P1 Pk

x1 xk y1 yk

t1 tk t1 tk

Q’ Q’

r

(a)

n1 n2

x = y

r

Q’

(b)

P1 Pk

y1 yk

t1 tk

P1 Pk

x1 xk

t1 tk

(e)

n1 = n2

r

x = y

n1 n2

x = y

r

(d)

P1 Pk

y1 yk

t1 tk

P1 Pk

x1 xk

t1 tk

Q’ Q’

(c)

n1 = n2

r

Q’

x = y

xi

ti

Pi’

xi

ti

Pi’

Figure 5.4: Abstract trees constructed in the proof of Lemma 5.6

Soundness of I can be verified by induction on the lengths of I-proofs. For the proof of

completeness, let Σ∪{ϕ} be a finite set of keys in K, where ϕ = (Q, (Q′, {P1, ..., Pk})). We

show that if Σ 6`I ϕ then Σ 6|= ϕ. More specifically, assume that Σ 6`I ϕ. Then we show

that there exists an XML tree G such that G |= Σ but G 6|= ϕ.

The construction of G involves the following steps: First, we define a finite abstract tree

T such that T 6|= ϕ. Then, T is modified in a way that the resulting tree Tf satisfies Σ.

That is, for each key φ ∈ Σ, we check whether T satisfies φ. If not, certain nodes in T

are merged such that the modified tree satisfies φ. At the end of the merging process,

114

Tf |= Σ and either: (1) Tf 6|= ϕ, and by Lemma 5.5, we can construct an XML tree G from

Tf that satisfies Σ but not ϕ; or (2) Tf |= ϕ. In this case, we show that our assumption

that Σ 6`I ϕ does not hold. That is, we show that each step of the merging operations

corresponds to applications of certain rules in I. Therefore, if Tf |= ϕ then Σ `I ϕ, which

contradicts the assumption.

Before describing the construction of the abstract tree, we first modify the key ϕ if it is of

the form (Q, (Q′/@a, {})) to be (Q, (Q′, {})), since if we prove the latter, we have Σ `I ϕ

by the attribute rule in I. We also assume that Q′ 6= ε, since otherwise we have Σ `I ϕ by

the epsilon rule.

The construction of a finite abstract T that does not satisfy ϕ is as follows. The abstract

tree T consists of a single path Q from the root leading to a node n, which has two distinct

subtrees T1 and T2. Each subtree has a Q′ path. These Q′ paths lead to nodes n1 and n2

from n in T1 and T2, respectively. From each of n1 and n2 there are paths P1, . . . , Pk, as

depicted in Figure 5.4 (a). For each i ∈ [1, k], let xi be the (single) node at the end of the

Pi path in T1, and yi be the (single) node at the end of the Pi path in T2.

Assume that for each i ∈ [1, k], xi =v yi, but for any other pair x, y in T , x 6=v y. This can

be achieved as follows: for each element in T we add a new text subelement. For any x, y

in T , if they are xi, yi then we let them have the same value when they are A or S nodes,

and let their text subelements have the same value when they are E nodes (in this case

the text subelements are their only subelements). If they are not xi, yi then we let them

have different values if they are A or S nodes, and let their text subelements have different

values if they are E nodes. The only exception is when there is i ∈ [1, k] such that Pi = ε.

In this case, we have to assure n1 =v n2. That is, for all j ∈ [1, k] and for any P ′
j such that

Pj = P ′
j/P

′′
j for some P ′′

j ∈ PL, we let x′j =v y
′
j, where x′j , y

′
j are the nodes in n1[[P

′
j]] and

n2[[P
′
j]], respectively. For any other pair x, y in T , we let x 6=v y as before. It is easy to see

that T |= ¬ϕ.

We next modify T such that T |= Σ. Using the following algorithm and starting with T

constructed above, we examine each φ in Σ. If the abstract tree does not satisfy φ, then

we merge certain nodes in the tree such that the modified tree satisfies φ. Assume that for

115

each φ in Σ, φ = (Qφ, (Q
′
φ, {P

′
1, . . . , P

′
m})).

repeat until no further change in T

if there exist key φ ∈ Σ and nodes x, x′
1
, . . . , x′m in T1, y, y

′

1
, . . . , y′m in T2,

and node w in T such that

T |= Qφ(r, w) ∧Q′

φ(w, x) ∧Q′

φ(w, y) ∧ P ′

1
(x, x′

1
) ∧ . . . ∧ P ′

m(x, x′m) ∧

P ′

1
(y, y′

1
) ∧ . . . ∧ P ′

m(y, y′m) ∧ x′
1

=v y
′

1
∧ . . . ∧ x′m =v y

′

m ∧ x 6= y

then merge x, y and their ancestors in T as follows:

Case 1: if x, y are on Q′ paths from n to n1, n2

respectively, and they are not n1, n2

then merge nodes as shown in Figure 5.4 (b) and (d)

Case 2: if x, y are on some Pi in T1, T2, respectively, or if they are n1, n2

then (i) merge nodes as shown in Figure 5.4 (c) and (e)

(ii) terminate the algorithm

By the construction of T , x′i =v y
′
i iff they are corresponding nodes in T1 and T2, respec-

tively. Moreover, the node w can only be either on path Q or on path Q′. In Case 1,

the subtree under x and the subtree under y will both be under the same node x = y, as

shown in Figure 5.4 (b) and (d). In Case 2, under the node n1 (which is merged with n2)

only a single copy of the Pi path is retained and we discard the rest of the key paths in

{P1, ..., Pk}. If x and y are n1 and n2, respectively, a single copy of each of the Pi paths

are retained under node n1.

The algorithm terminates since T is finite and thus merging can be performed only finitely

many times. Let Tf denote the tree obtained upon the termination of the algorithm. Note

that Tf 6|= ϕ iff n1 6= n2. If this is the case, by Lemma 5.5, there is an XML tree G such

that G |= Σ and G 6|= ϕ, which completes the proof. On the other hand, if Tf |= ϕ, that

is, the algorithm terminates in Case 2, we have to show that Σ `I ϕ, which leads to a

contradiction.

Let us also use T to denote the tree obtained after executing z merging operations. We

show by induction on z that each step of merging corresponds to applications of certain

116

rules of I, and thus if T |= ϕ then Σ `I ϕ. For the base case, z = 0, the statement holds

since the initial tree does not satisfy ϕ. Assume the statement for z. We will show that it

also holds for z + 1.

First, consider the merging in Case 1 as shown in Figure 5.4 (b) and (d). This step

generates I-proofs for keys that will be used in establishing Σ `I ϕ if Tf |= ϕ. By the

definition of abstract trees, Case 1 can only happen if there is a PL expression Rp such

that Q/Q′ ⊆ Qφ/Q
′
φ/Rp and in addition, for all j ∈ [1,m], there is s ∈ [1, k] such that

either (i) Rp/Ps ⊆ P ′
j or (ii) there is a PL expression Rj such that Rp/Ps ⊆ P ′

j/Rj . If it

is (ii) then there must exist some l ∈ [1, k] such that Pl = ε in ϕ, by the definition of T .

We consider the following cases.

(a) If the node w is on the path Q, i.e., it is above n in T , then there must be PL expression

Qt such that Q′ = Qt/Rp, and x, y ∈ n[[Qt]] as illustrated in Figure 5.4 (b). Moreover,

from φ the following can be proved:

(Q, (Qt, {Rp/P1, . . . , Rp/Pk}))

by using target-to-context , three containment rules (i.e., context-path-containment, target-

path-containment and key-path-containment) and superkey . If it is (ii) then prefix-epsilon

is also needed.

(b) If the node w is on the path Q′, i.e., it is below n but above n1, n2 in T , then there must

be PL expressions Qc, Qt such that Q/Qc ⊆ Qφ, Q′ = Qc/Qt/Rp, w ∈ n[[Qc]] and x, y ∈

n[[Qc/Qt]] as illustrated in Figure 5.4 (d). This can only happen when some descendants

x′, y′ of n on path Q′ above x, y were merged in a previous step by the algorithm. More

precisely, there are PL expressions Qt1, Qt2 such that Qt = Qt1/Qt2, x
′, y′ ∈ n[[Qc/Qt1]]

and x′, y′ were merged in Case 1 of the algorithm. Thus by the induction hypothesis, we

have that the following is provable from Σ by using I:

(Q, (Qc/Qt1, {Qt2/Rp/P1, . . . , Qt2/Rp/Pk})).

From φ the following can be proved

(Q/Qc, (Qt1/Qt2, {Rp/P1, . . . , Rp/Pk}))

117

by using the three containment rules and superkey . If it is (ii) then prefix-epsilon is also

needed. Thus by target-to-context and interaction we have

(Q, (Qc/Qt1/Qt2, {Rp/P1, . . . , Rp/Pk})).

That is, (Q, (Qc/Qt, {Rp/P1, . . . , Rp/Pk})).

(2) Next, we consider the merging in Case 2 as shown in Figure 5.4 (c) and (e). If it is the

case then we show Σ `I ϕ. By the definition of abstract trees, Case 2 can only happen if

there is a PL expression Rp such that Q/Q′/Rp ⊆ Qφ/Q
′
φ and in addition, for all j ∈ [1,m],

there is s ∈ [1, k] such that either (i) Ps ⊆ Rp/P
′
j or (ii) there is a PL expression Rj such

that Ps ⊆ Rp/P
′
j/Rj . If it is (ii) then there must exist some l ∈ [1, k] such that Pl = ε in

ϕ, by the definition of T . We consider the following cases.

(a) If the node w is on the path Q, i.e., it is above n in T , then there must be PL expression

Qt such that Qt/Q
′/Rp ⊆ Q

′
φ, x ∈ n1[[Rp]] and y ∈ n2[[Rp]] as illustrated in Figure 5.4 (c).

If Rp = ε then ϕ can be proved from φ by using target-to-context , the three containment

rules and superkey . Note that if it is (ii) then prefix-epsilon is also needed. If Rp 6= ε

then by the construction of T , we must have m = 1. Thus, we can also prove ϕ from φ

by using subnodes, target-to-context , the three containment rules and superkey . Thus, we

have Σ `I ϕ, which contradicts our assumption.

(b) If the node w is on the path Q′, i.e., it is below n but above n1, n2 in T , then there must

be PL expressions Qc, Qt such that Q/Qc ⊆ Qφ, Q′ = Qc/Qt, w ∈ n[[Qc]], x ∈ n1[[Rp]] and

y ∈ n2[[Rp]] as illustrated in Figure 5.4 (e). This can only happen when some descendants

x′, y′ of n on path Q′ above n1, n2 were merged in a previous step by the algorithm. More

precisely, there are PL expressions Qt1, Qt2 such that Qt = Qt1/Qt2, x
′, y′ ∈ n[[Qc/Qt1]]

and x′, y′ were merged in Case 1 of the algorithm. Thus, by the induction hypothesis, we

have that the following is provable from Σ by using I:

(Q, (Qc/Qt1, {Qt2/P1, . . . , Qt2/Pk})).

If Rp = ε then from φ the following can be proved

(Q/Qc, (Qt1/Qt2, {P1, . . . , Pk}))

118

by using the three containment rules and superkey . Observe that if it is (ii) then prefix-

epsilon is also needed. If Rp 6= ε then by the construction of T , we must have m = 1. Thus,

we can also prove it from φ by using subnodes, target-to-context , the three containment

rules and superkey . Thus by interaction and target-to-context we have

(Q, (Qc/Qt1/Qt2, {P1, . . . , Pk})).

That is, (Q, (Q′, {P1, . . . , Pk})) = ϕ. Thus again we have Σ `I ϕ, which contradicts our

assumption.

This shows that I is complete for K constraint implication and thus completes the proof

of Lemma 5.6. 2

Finally, we show that K constraint implication is decidable in polynomial time.

Lemma 5.7 There is an algorithm that, given any finite set Σ ∪ {ϕ} of K constraints,

determines whether Σ |= ϕ in time O(n7), where n is the size of keys.

Proof. A function for determining finite implication of K constraints is given in Algo-

rithm 5.5.

The correctness of the algorithm follows from Lemma 5.6 and its proof. Similar to the

algorithm for implication of absolute keys (Figure 5.3), it applies I rules to derive ϕ if

Σ |= ϕ. Observe that Steps 1, 2, and 3 are identical in both algorithms, and Step 5(a),

when ignoring the context path, proves ϕ from φ by applying exactly the same inference

rules as the algorithm in Figure 5.3. In fact, if we replace paths Q,Qφ, and Qt by ε in Step

5(a), it is identical to the algorithm in Figure 5.3.

The presence of a context path adds complexity to the algorithm for two reasons. First,

it can be the case that either the context path of a key in Σ is contained in a prefix of

Q, considered in Steps 5(a) and (c); or Q is contained in a prefix of the context path of a

key in Σ, considered in Steps 5(b) and (d). Second, the application of the interaction rule

depends on the existence of two distinct keys in Σ. As a consequence, we need to keep

track of intermediate keys in the I-proof. In the algorithm, these keys are produced by

Steps 5(c) and (d), and they are kept in the set variable X.

119

Algorithm implication

Input: a finite set Σ ∪ {ϕ} of K constraints, where ϕ = (Q, (Q′, {P1, ..., Pk}))
Output: true iff Σ |= ϕ

1. if ϕ = (Q, (Q′/@l, {})) then ϕ:= (Q, (Q′, {}));
2. if Q′ = ε or Q′ = @l then output true and terminate

3. for each (Qi, (Q
′

i, Si)) ∈ Σ ∪ {ϕ} do
repeat until no further change

if Si = S ∪ {P ′, P ′′} such that P ′ ⊆ P ′′ then Si := Si \ {P ′′}
4. X := ∅;

5. repeat until no keys in Σ can be applied in cases (a)-(d).
for each φ = (Qφ, (Q′

φ, {P
′

1
, ..., P ′

m})) ∈ Σ do

// See Figure 5.4(c) for an illustration of this case.
(a) if there is Qt, Rp in PL such that Q ⊆ Qφ/Qt, Qt/Q

′/Rp ⊆ Q′

φ, Rp = ε if m > 1

and for all j ∈ [1,m] there is s ∈ [1, k] such that either
(i) Ps ⊆ Rp/P

′

j or
(ii)Ps = R′

s/R
′′

s , R′

s ⊆ Rp/P
′

j , and there exists l ∈ [1, k] such that Pl = ε
then output true and terminate

// See Figure 5.4(e) for an illustration of this case.
(b) if there are Qc, Qt, Rp in PL such that

Q/Qc ⊆ Qφ, Q′/Rp ⊆ Qc/Q
′

φ, Q′ = Qc/Qt, Rp = ε if m > 1, and

for all j ∈ [1,m] there is there is s ∈ [1, k] such that either
(i) Ps ⊆ Rp/P

′

j or
(ii)Ps = R′

s/R
′′

s , R′

s ⊆ Rp/P
′

j , and there exists l ∈ [1, k] such that Pl = ε;
and moreover, there is (Q, (Qc, {Qt/P1, ..., Qt/Pk})) in X

then output true and terminate

// See Figure 5.4(b) for an illustration of this case.
(c) if there are Qc, Qt, Rp in PL such that Q ⊆ Qφ/Qc, Qc/Q

′ ⊆ Q′

φ/Rp, Q
′ = Qt/Rp

and for all j ∈ [1,m] there is s ∈ [1, k] such that either
(i) Rp/Ps ⊆ P ′

j or
(ii) Ps = R′

s/R
′′

s , Rp/R
′

s ⊆ P
′

j , and there exists l ∈ [1, k] such that Pl = ε
then
(1) if m = 1 then X := X ∪ {(Q, (Q1, {Q2/Rp/P1, . . . , Q2/Rp/Pk}))}

where Qt = Q1/Q2 for some Q1, Q2 ∈ PL;
(2) if m > 1 then X := X ∪ {(Q, (Qt, {Rp/P1, . . . , Rp/Pk}))};
(3) Σ := Σ \ {φ};

// See Figure 5.4(d) for an illustration of this case.
(d) if there are Qc, Qt, Rp in PL such that Q/Qc ⊆ Qφ, Q′ ⊆ Qc/Q

′

φ/Rp,

Q′ = Qc/Qt/Rp and for all j ∈ [1,m] there is s ∈ [1, k] such that either
(i) Rp/Ps ⊆ P ′

j or
(ii) Ps = R′

s/R
′′

s , Rp/R
′

s ⊆ P
′

j , and there exists l ∈ [1, k] such that Pl = ε;
and moreover, there is (Q, (Qc, {Qt/Rp/P1, ..., Qt/Rp/Pk})) in X

then
(1) if m = 1 then X := X ∪ {(Q, (Q1, {Q2/Rp/P1, . . . , Q2/Rp/Pk}))}

where Qc/Qt = Q1/Q2 for some Q1, Q2 ∈ PL;
(2) if m > 1 then X := X ∪ {(Q, (Qc/Qt, {Rp/P1, . . . , Rp/Pk}))};
(3) Σ := Σ \ {φ};

6. output false

Figure 5.5: Finite implication of K constraints

120

Next, observe that each conditional statement in step 5 corresponds to applications of

certain rules in I. More specifically:

• Steps 5(a) and (c) use the three containment rules (i.e., context-path-containment,

target-path-containment and key-path-containment), target-to-context , superkey , and

subnodes. If it is (ii) then prefix-epsilon is also used.

• Steps 5(b) and (d) apply the three containment rules, superkey , subnodes, and inter-

action, which need intermediate results of the I-proof stored in X. If it is (ii) then

prefix-epsilon is also used.

For the interested reader, Step 5(a) corresponds to Figure 5.4(c). Since nodes n1 and n2

are merged when considering a key φ ∈ Σ, we can prove ϕ. Similarly, Step 5(b) corresponds

to Figure 5.4(e). The difference between Steps 5(a) and (b) is whether or not the context

path of the key contains a prefix of Q. Steps 5(c) and (d) correspond to Figure 5.4(b) and

(d) respectively. Here these keys do not prove ϕ directly, but they generate intermediate

results, which are saved in X. Again the difference is whether the context path of the key

contains a prefix of Q.

We next show that this algorithm runs in polynomial time. To see this, observe that Steps

1 and 2 take constant time and Step 3 takes at most O((|Σ|+ |ϕ|)3) time. For Step 5, the

worst scenario can happen as follows: for each key in Σ, the conditions of (a) - (d) are tested

and only the last key in Σ is removed after testing all keys in Σ. Hence, the second time

the for loop is performed, one less key is tested. Therefore if there are s keys in Σ, a total

of O(s2) keys will be tested. We next examine the complexity of each condition of Steps

(a) - (d). For Step (a), we need to partition Q to find Qt. Also, for each such Qt, we need

to partition Q′
φ to find Rp. Since containment of path expressions is tested in quadratic

time, the first two inclusion tests cost at most |Q|∗(|ϕ|∗(|φ|+ |ϕ|)+ |Q′
φ |∗((|ϕ|+ |φ|)∗|φ|)),

which is O(n4) in total, where n is the size of keys. Then for each key path P ′
j in φ, we

check if there is a key path Ps in ϕ and partition Ps to get R′
s such that case (i) or (ii) is

satisfied. This costs |Ps| ∗ (|Rp|+ |P
′
j |) + |Ps| ∗ |Ps| ∗ (|Rp| + |P

′
j |). Since there are m key

paths in φ, for all k key paths in ϕ these tests cost (|P1|+ . . . + |Pk|) ∗ (m ∗ |Rp|+ |P
′
1|+

121

. . .+ |P ′
m|) + (|P1| ∗ |P1|+ . . .+ |Pk| ∗ |Pk|)(m ∗ |Rp|+ |P

′
1|+ . . .+ |P ′

m|). Note that Rp = ε

when m > 1, and there are |Q| ∗ |Q′
φ| possible expressions for Qt, and Rp. Therefore, the

cost of step (a) is at most |Q| ∗ |Q′
φ| ∗ (|ϕ| ∗ (|φ|+ |φ|) + |ϕ|2 ∗ (|φ|+ |φ|)), which is O(n5).

It is easy to see that the Steps (b), (c), and (d) involve at most the same cost. Since these

tests are performed O(s2) times, the overall cost of the algorithm is O(n7), and therefore

we have a polynomial algorithm. It is possible that this algorithm can be improved further

to achieve a lower complexity but this is beyond the scope of this work. 2

5.2.4 Axiomatization for Strong Key Implication

In this Section we will discuss the problem of finite implication for Katt. Recall that the

differences of keys of Katt from those of K are twofold: key paths are restricted to be simple

attributes, and they are required to exist. In Table 5.4 we give a set of inference rules for

Katt, denoted as Iatt. Rules context-containment, target-containment, target-to-context,

and epsilon are identical to the ones shown in Table 5.3, while the uniqueness rule has no

counterpart there. The superkey, context-to-target, and attribute rules are restrictions of

ones shown in Table 5.3. We briefly illustrate these rules below.

• superkey: if a set of attributes S is a key, then more attributes can be added to S,

as long as they are required to exist.

• context-to-target: for any node n in [[Q]], there is at most one node n′ in n[[Q1]]; thus

n[[Q1/Q2]] = n′[[Q2]]. As a result, if S can uniquely identify a node in n′[[Q2]], it

can also uniquely identify a node in n[[Q1/Q2]]. Observe that this rule restricts the

interaction rule of I for the case when key paths are simple attributes. That is, in

I, if (Q, (Q1, {})) then by the superkey rule we can obtain (Q, (Q1, {Q2/S})). Given

the key (Q/Q1, (Q2, S)), by interaction we obtain (Q, (Q1/Q2, S)).

• uniqueness: if for every node n in [[Q]] there exists at most a single node in n[[Q1/@l]],

and every node n′ in n[[Q1]] is required to have attribute @l (since @l ∈ S) then it

must be the case that there exists at most one node in n[[Q1]]. This is the only rule

that is a direct consequence of key paths being required to exist under certain nodes.

122

(Q, (Q′, S)), (Q/Q′, (ε, S′)), @l ∈ S′

(Q, (Q′, S ∪ {@l}))
(superkey)

(Q, (Q′, S)), Q1 ⊆ Q
(Q1, (Q′, S))

(context-containment)

(Q, (Q′, S)), Q2 ⊆ Q
′

(Q, (Q2, S))
(target-containment)

(Q, (Q1/Q2, S))

(Q/Q1, (Q2, S))
(target-to-context)

(Q, (Q1, {})), (Q/Q1, (Q2, S))

(Q, (Q1/Q2, S))
(context-to-target)

(Q, (Q1/@l, {})), (Q, (Q1, S)), @l ∈ S

(Q, (Q1, {}))
(uniqueness)

(Q, (@l, {}))
(attribute)

(Q, (ε, {}))
(epsilon)

Table 5.4: Iatt: Rules for strong key implication

• attribute: any path expression Q has at most one attribute labeled @l. Observe that

this rule is simpler, but equivalent to the one shown for keys in K.

Based on the inference rules in Iatt, we develop Algorithm implication shown in Fig-

ure 5.6 for checking implication of keys in Katt. The algorithm is based on the following

observation: given a key φ = (Q, (Q′, S)), it is not the case that new keys can be derived

from φ by pushing down part of the context path Q to its target, but it is always possible

to pull up part of the target path Q′ to its context. Intuitively, we can always derive

keys that are local to subtrees given that they hold on larger trees, but not the other

way around. Therefore, “local” keys are easier to check. Based on this observation, the

algorithm for checking whether a key ϕ = (Q, (Q′, S)) is provable from Σ can be divided

in two parts. First, ϕ is modified to be “as local as possible”, by pulling up the target path

Q′ to its context, such that the resulting key ϕ′ satisfies the following condition: if Σ |= ϕ′

then Σ |= ϕ. It is based on a reverse use of the context-to-target rule. That is, given that

123

Q′ = Q1/Q2, and Σ |= (Q, (Q1, {})), if Σ |= ϕ′, where ϕ′ = (Q/Q1, (Q2, S)), then Σ |= ϕ

by the context-to-target rule. Observe that the modification on ϕ can only be executed if

Σ |= (Q, (Q1, {})). Therefore, in the algorithm, before modifying the key to be checked

(Lines 4 to 6), Σ is extended by the uniqueness rule (Lines 1 to 3) to contain all keys of

the form (Q, (Q′, {})) derivable from Σ.

The second part of the algorithm checks whether ϕ′ is provable from Σ. Since the context-

to-target rule has already been applied and all keys that can be derived by the uniqueness

rule have been inserted in Σ, Σ |= ϕ′, where ϕ′ = (Q1, (Q
′
1, S)), if and only if it is one of

the following cases:

(1) the target path Q′
1 is a single attribute label (Line 7) and Σ |= ϕ′ by the attribute rule;

(2) the target path Q′
1 = ε and all attributes in S are required to exist (Line 8); in this

case, Σ |= ϕ′ by the epsilon rule. Observe that Function exist is invoked for checking the

existence of attributes in S;

(3) there exists a key φ = (Q2, (Q
′
2, S2)) in Σ such that

(a) S2 ⊆ S1, and attributes in (S1 \ S2) are required to exist (Line 10), and moreover,

(b) context path Q1 of ϕ′ can be partitioned into P1/P
′
1 such that P1 ⊆ Q2 and P ′

1/Q
′
1 ⊆

Q′
2 (Line 11).

Condition (a) checks whether ϕ′ can be derived from φ by the superkey rule and condition

(b) checks for the applicability of the target-to-context, context-containment, and target-

containment rules.

Therefore, the algorithm verifies if each of the rules in Iabs can be applied in proving that

Σ |= ϕ. We now state our main result for keys in Katt.

Lemma 5.8 For determining finite implication of keys of Katt,

• the set Iatt is sound and complete; and

• there is an O(n4) time algorithm, where n is the length of constraints involved.

Proof. We omit the proof of soundness and completeness of Iatt because most of the proof

can be verified along the same lines as the proof of Lemma 5.6 discussed in Section 5.2.3.

124

Algorithm implication

Input: a set of XML keys Σ, and an XML key ϕ.
Output: true iff Σ |= ϕ.

1. for each key φ = (Q2, (Q
′

2
/@l, {})) in Σ do

2. if exist(Q2/Q
′

2
, {@l})

3. then Σ := Σ ∪ {(Q2, (Q
′

2
, {}))}; /* by the uniqueness rule */

4. for each key φ = (Q2, (Q
′

2
, {})) in Σ do

5. if ϕ = (Q1, (Q
′

1
, S1)) and Q1 ⊆ Q2, and there are (longest) P1 and P ′

1
such that

Q′

1
= P1/P

′

1
and P1 ⊆ Q′

2
/* by the context-to-target and */

6. then ϕ := (Q1/P1, (P
′

1
, S1)) /* containment rules */

7. if ϕ = (Q, (@l, {})) then return true /* by the attribute rule */
8. else if ϕ = (Q, (ε, S)) then return exist(Q, S); /* by the epsilon rule */

9. for each key φ = (Q2, (Q
′

2
, S2)) in Σ do

10. if ϕ = (Q1, (Q
′

1
, S1)) and S2 ⊆ S1 and

exist(Q1/Q
′

1
, S1 − S2) then /* by the superkey rule */

11. if there are P1, P
′

1
such that Q1 = P1/P

′

1
, and

P1 ⊆ Q2 and P ′

1
/Q′

1
⊆ Q′

2
/* by the target-to-context */

12. then return true; /* and containment rules */

13. return false;

function exist (Q, S)

Input: Q: path expression; S: a set of attributes.
Output: true iff for each l ∈ S and each n ∈ [[Q]], n.@l exists.

1. X := S;
2. for each key φ = (Q1, (Q

′

1
, S1)) in Σ do

3. if Q ⊆ Q1/Q
′

1

4. then X := X − S1; /* φ ensures that for all @l ∈ S1, n.@l must exist */
5. return (X = { }); /* returns true if and only if all attributes in S are

guaranteed to exist by Σ */

Figure 5.6: Finite implication of Katt constraints

A formal proof of correctness of the algorithm in Figure 5.6 is long yet simple; it follows

from the axioms for constraint implication and thus omitted. We will now show that the

algorithm takes O(|Σ|2 |ϕ|2) time, where |Σ| and |ϕ| are the sizes of Σ and ϕ, respectively.

Indeed, in Section 5.2.1 we have presented an algorithm for checking if a path expression

P1 is contained in P2 which is quadratic, O(|P1||P2|). Thus Function exist can be done

in O(|Σ||Q|) time. Given the cost of Function exist, it is easy to see that Lines 1 to 3 of

algorithm propagation take at most O(|Σ|2) time. Line 5 takes at most O(|Q′
1| (|Q1||Q2|+

|P1||Q
′
2|)) since there exists |Q′

1| ways of partitioning Q′
1 in P1 and P ′

1. Therefore, for all

keys in Σ, Lines 4 to 6 take at most O(|ϕ| (|ϕ||Σ| + |ϕ||Σ|)) time, that is O(|ϕ|2|Σ|).

125

For Line 10, recall that the key paths in S2 and S1 are simple attributes, and therefore

the containment of S2 in S1 can be checked in O(|S2||S1|) time. Function exist is in

O(|Σ|(|Q1|+ |Q
′
1|)) time. Thus, Lines 10 to 11 take at most O(|S2||S1|+ |Σ|(|Q1|+ |Q

′
1|)+

|Q1| (|P1||Q2| + (|P ′
1| + |Q

′
1|)|Q

′
2|)). Hence for all keys in Σ, Lines 9 to 12 cost at most

O((|Σ||ϕ|) + |Σ||ϕ|+ |ϕ| (|ϕ||Σ|+ |ϕ||Σ|)) time, which again is O(|Σ| |ϕ|2). Therefore, the

whole algorithm takes O(|Σ|2 + |Σ| |ϕ|2) time, or simply O(|Σ|2 |ϕ|2). 2

5.3 Discussion

We have investigated two key constraint languages for XML, and studied the associated

(finite) satisfiability and (finite) implication problems in the absence of DTDs. These keys

are capable of expressing many important properties of XML data. Moreover, in contrast

to other proposals, keys defined in these languages can be reasoned about efficiently. More

specifically, keys expressed in these languages are always finitely satisfiable, and their

(finite) implication is finitely axiomatizable and decidable in PTIME in the size of keys.

We believe that these key constraints are simple yet expressive enough to be adopted by

XML designers and maintained by systems for XML applications.

One might be interested in using different path languages to express keys. The contain-

ment and equivalence problems for the full regular language are PSPACE-complete [GJ79],

and they are not finitely axiomatizable. Another alternative is to adopt the language of

[MS99], which simply adds a single wildcard to PL. Despite the seemingly trivial addi-

tion, containment of expressions in their language is only known to be in PTIME. It would

be interesting to develop an algorithm for determining containment of expressions in this

language with a complexity comparable to the related result established in this work. For

XPath [CD99] expressions, it has been shown [MS04, NS03] that it is rather expensive to

determine containment of XPath expressions.

Along the same lines as our XML key language, a language of foreign keys needs to be

developed for XML. As shown by [FS03, FL02, AFL02a], the implication and finite impli-

cation problems for a class of keys and foreign keys defined in terms of XML attributes

126

are undecidable, in the presence or absence of DTDs. However, under certain practical

restrictions, these problems are decidable in PTIME. Whether these decidability results

still hold for more complex keys and foreign keys needs further investigation.

There are more general definitions of key constraints than the ones considered in this

Chapter that deserve further investigation. Among them are keys that imply value-equality

on nodes rather than node identity, as described in 4.2.3. This is useful in XML documents

in which redundancy is tolerated. It is sometimes useful to put the same information in

more than one place in an XML document in order to avoid having to do joins to recover

this information. Definitions of functional dependencies for XML (XFDs)[AL04, VLL04,

CDHZ03], described in Section 4.4, are also capable of expressing such redundancies. Like

in relational databases, XFDs of [AL04] and [VLL04] form the basis to define a normal form

for XML documents. In contrast, the purpose of defining XFDs in [CDHZ03] is to reduce

the redundancy of data when using relational technology to store an XML document. A

sound set of inference rules are given, as well as an implication algorithm based on these

rules. But the rules are not proven to be complete. A different approach for validating

a relational schema for storing XML data is to compute the set of constraints that are

proven to be valid in the relational storage given that certain constraints are satisfied by

the XML document. These relational constraints can then be used to check whether the

XML data being stored is compatible with an existent schema or to design a new relational

schema. This approach is explored in the next Chapter. That is, based on our ability to

reason about keys efficiently, we will develop algorithms for computing a complete set of

functional dependencies that are proven to be satisfied by the relational storage of XML

data, given that the document satisfies a set of XML keys.

127

Chapter 6

Propagating XML Constraints to

Relations

A common paradigm in many application areas in which XML is used as a data exchange

format is for a data provider to export its data using XML; on the other end, the data

consumer imports some or all of the XML data and stores it using database technology.

Since the XML data being transmitted is often large in size and fairly regular in structure,

the database technology used is frequently relational.

A recognized problem with XML is that it is only syntax and does not carry the semantics

of the data. To address this problem, a number of constraint specifications have recently

been proposed for XML which include a notion of keys, presented in Chapter 4. A natural

question to ask, therefore, is how information about constraints can be used to determine

when an existing consumer database design is incompatible with the data being imported,

or to generate de-novo a good consumer database.

For example, the GUS database [DCB+01] at the Penn Center for Bioinformatics imports

XML gene expression data (MAGE-ML) and maps portions of it into a pre-existing re-

lational schema using a Perl object layer. Due to the complexity of the GUS schema,

the MAGE-ML data, and the transformation, it is very difficult to know whether or not

inconsistency (integrity constraint errors) will arise as the data is imported. We illustrate

128

@isbn

@number

@isbn

@number

@number @number
"2"

@number

E

S

E

S

E 19

E E

21

E

A
E

34

"XML"
18

ES

1E

6E

E

17S

5EA E

E

S

E

Er

11

0

name

32

"Attributes"

27

"Tim Bray"

 "1"
name

name

3 4
author

name
chapter

"10"

name

title
section

title

name
28

"123"
13

"Introduction" "Conclusion"

15
"234"

"XML"
"1"

chapter chapter
20

Acquainted"
"Getting

"Fundamentals"

"1"

book book

24
section

31
A A

14 2312

7

35 S

33

S

29E

S
30

22

A

25

26

16A

A

Figure 6.1: Tree representation of XML data

the problem below, using the familiar domain of books.

Example 6.1 Suppose that the XML data (represented as a tree) in Fig. 6.1 is being

exchanged and that the initial design of the consumer database has a single table Chapter

with fields bookTitle, chapterNum and chapterName (written Chapter(bookTitle,

chapterNum, chapterName)). The table is populated from the XML data as follows:

For each book element, the value of the title subelement is extracted. A tuple is then

created in the Chapter relation for each chapter subelement containing the title value

for bookTitle, the number value for chapterNum, and the name value for chapterName

(see Fig. 6.2(a) for the resulting relational instance.) The key of the Chapter table has

been specified as bookTitle and chapterNum. While importing this XML data, violations

of the key are detected because two different books have the same title (“XML”) and

disagree on the name of chapter one (“Introduction” versus “Getting Acquainted”). After

digging through the documentation accompanying the XML data, the database designers

decide to change the schema to Chapter(isbn, chapterNum, chapterName)with a key of

isbn and chapterNum (populated in the obvious way from the XML data). The resulting

relational instance is shown in Fig. 6.2(b). While importing the XML data, no violations

of the key constraint are detected. However, the designers are not sure whether they were

lucky with this particular XML data set, or whether such violations will never occur.

It turns out that given the following keys on the XML data, the designers of the consumer

database could prove that the key of Chapter in their modified design is correct:

1. (ε, (//book, {@isbn})): isbn uniquely identifies a book element.

2. (//book, (chapter, {@number})): within each book, number is a key for chapter, i.e.,

129

bookTitle chapterNum chapterName
XML 1 Introduction
XML 10 Conclusion
XML 1 Getting Acquainted

(a) Chapter: the initial design

isbn chapterNum chapterName
123 1 Introduction
123 10 Conclusion
234 1 Getting Acquainted

(b) Chapter: a refined design

Figure 6.2: Sample relational instances

number is a key for chapter relative to book.

3. (//book, (title, {})), and (//book/chapter, (name, {})): each book has a unique title,

and within each book, each chapter has a unique name.

That is, if these XML keys hold on the data being imported, then isbn, chapterNum →

chapterName is a functional dependency (FD) that is guaranteed to hold on the Chapter

relation generated (in other words, (isbn, chapterNum) is a key of the relation). We refer

to the FD as one that is propagated from these XML keys.

In general, given a transformation to a predefined relational schema and a set Σ of XML

keys, one wants to know whether or not an FD is propagated from Σ via the transformation.

Let us refer to this problem as XML key propagation. The ability to compute XML key

propagation is important in checking the consistency of a predefined relational schema for

storing XML data. 2

On the other hand, suppose that the relational database is designed from scratch or can

be re-designed to fit the constraints (and thus preserve the semantics) of the data being

imported. A common approach to designing a relational database is to start with a rough

schema (possibly the universal relation) and refine it into a normal form (such as BCNF or

3NF [AHV95]) using FDs. In our scenario, we assume that the designer specifies the rough

130

schema by a mapping from the XML document. The FDs over that rough schema must

then be inferred from the keys of the XML document using the mapping. However, it is

impractical to compute the set F of all the FDs propagated since F is exponentially large

in the number of attributes. We would therefore like to find a minimum cover [AHV95] of

F , that is, a subset Fm of F that is equivalent to F (i.e., all the FDs of F can be derived

from Fm using Armstrong’s Axioms, which are well-known for inferring relational FDs)

and is non-redundant (i.e., none of the FDs in Fm can be derived from other FDs in Fm).

Example 6.2 Returning to our example, suppose that the database designers decide to

start from scratch and initially propose a schema of Chapter(isbn, booktitle, author,

chapterNum, chapterName), with the obvious mapping from the data in Fig. 6.1. From

the four keys given earlier, the following minimum cover for Chapter can be derived:

isbn → bookTitle, isbn, chapterNum→ chapterName.

Using these dependencies, the following BCNF decomposition of the initial design would

be produced: Book(isbn, bookTitle), Author(isbn, author) and Chapter(isbn,

chapterNum, chapterName). Note that isbn → author is not mapped from the keys

since a book may have several authors. 2

In this chapter we present a framework for improving consumer relational database design.

Our approach is based on inferring functional dependencies from XML keys through a given

mapping (transformation) of XML data to relations. The class of XML keys considered is

the class of strong keys, where key paths are simple attributes. The class, denoted as Katt,

is defined on Section 4.2.2 of Chapter 4. We believe that the keys considered represent an

important class commonly found in practice, e.g., in bioinformatic applications, and is a

subset of those in XML Schema [Tho02].

Although a number of relational storage techniques have been developed for XML [STZ+99,

Sha01, Ora01, SKWW00, MFK+00, LC01], to the best of our knowledge, our framework

and algorithms are the first results on mapping XML constraints through relational views.

Being able to reason about constraints on views not only plays an important role in the

design of relational storage of XML data, but it is also useful for query optimization and

131

data integration.

The rest of the chapter is organized as follows. Section 6.1 defines our transformation

language. The constraint propagation problem is formally defined in Section 6.2, along

with undecidability results that give practical motivation for the restrictions adopted in

the framework. In particular, we show that it is impossible to derive relational dependencies

from XML constraints if either a transformation language is too rich or the XML constraints

include foreign keys. The algorithms for key propagation are presented in Sections 6.3 and

6.4. First, we present a polynomial time algorithm for checking whether an FD on a

predefined relational database is propagated from a set of XML keys via a transformation.

Then, in Section 6.4, we present a polynomial-time algorithm that, given a universal

relation specified by a transformation rule and a set of XML keys, finds a minimum cover

for all the functional dependencies mapped from XML keys. Experimental results follow in

Section 6.5. They show that the algorithms are efficient in practice. Section 6.6 describes

related work, and possible extensions of the framework.

Note that the polynomial-time algorithm for finding a minimal cover from a set of XML

keys is rather surprising, since it is known that a related problem in the relational context

– finding a minimum cover for functional dependencies embedded in a subset of a relation

schema – is inherently exponential [Got87].

6.1 Transformations from XML to Relations

The transformation language given below is quite simple, and forms a core of many common

transformations found throughout the literature, in particular those of [STZ+99].

Definition 6.1 A transformation σ from XML to relations of schema R = (R1, . . . , Rn)

is specified as (Rule(R1), . . . , Rule(Rn)), where each Rule(Ri), referred to as the table rule

for Ri, is defined with:

• a set Xi of variables, in which xr is a distinguished variable, referred to as the root

variable;

132

• a set of field rules {l : value(x) | l ∈ att(Ri)}, where x is a distinct variable in Xi,

and att(Ri) denotes the set of attributes in the schema of relation Ri;

• a set of variable mapping rules of the form x ← y/P , where x, y ∈ Xi and P is a

path expression.

In addition, each variable x ∈ Xi is connected to the root variable xr; that is, x is specified

with either x ← xr/P in the rule, or x ← y/P and y is connected to xr; moreover, for

any x ← y/P , 1) P is a simple path (i.e. without //) unless y is xr, and 2) no field rule

is defined as l : value(y) when there exists a variable x specified with x← y/P , that is, y

does not indicate a text node.

Intuitively, σ defines a set of table rules, one for each relation Ri. Given an XML tree T ,

Rule(Ri) generates an instance of Ri from T . Specifically, Rule(Ri) is defined with a set

Xi of variables that range over nodes in T , along with a set of field rules which populate

the fields (columns) of the table with the values of these nodes. A variable rule x← y/P

indicates that if the variable y denotes a node in T , then the variable x ranges over nodes

in y[[P]]. A field rule l : value(x) computes the serialized value of the subtree rooted at x

(to be explained later) for the l field. The condition in the definition is to ensure that all

mapping rules make sense, i.e. there exists some XML tree T such that for any x← y/P

in the rule, y[[P]] is indeed a set of nodes reachable from the root of T .

Example 6.3 Expanding on Example 6, consider the following schema R (with keys

underlined):

book(isbn, title, author, contact)

chapter(inBook, number, name)

section(inChapt, number, name)

A transformation σ from the XML data of Fig. 6.1 to R could be specified as:

σ = (Rule(book), Rule(chapter), Rule(section))

Rule(book) = { isbn: value(x1), title: value(x2), author: value(x3), contact: value(x4)},

133

Xr

name

//book/chapter

section

Xr

//book

Y1

//book

Y2

chapter

name

Xr

Zc

Zs

Z3

Z1

@number

Z2

(inChapt)

(number) (name)

@number
Xb

X1 X2 Xa

@isbn
title author

X4

(contact)

X3

(author)

name
contact

(isbn) (title)

Yb

Yc

Y3

@isbn

(name)

(inBook)

@number

(number)

(a) Rule(book) (b) Rule(chapter) (c) Rule(section)

Figure 6.3: Table trees

xb ← xr//book, x1 ← xb/@isbn, x2 ← xb/title,

xa ← xb/author, x3 ← xa/name, x4 ← xa/contact;

Rule(chapter) = { inBook: value(y1), number: value(y2), name: value(y3)},

yb ← xr//book, y1 ← yb/@isbn, yc ← yb/chapter,

y2 ← yc/@number, y3 ← yc/name;

Rule(section) = { inChapt: value(z1), number: value(z2), name: value(z3)},

zc ← xr//book/chapter, z1 ← zc/@number, zs ← zc/section,

z2 ← zs/@number, z3 ← zs/name.
2

Table trees. Throughout the remainder of the chapter, we will use an abstract representa-

tion of a table rule called a table tree. In a table tree TR representing Rule(R), each variable

in Rule(R) corresponds to a unique node, , and edges are labeled with path expressions.

For example, Figure 6.3 depicts table trees for the table rules given in Example 6.1.

Semantics. Given an XML tree T , each Rule(Ri) maps T to an instance Ii of Ri. More

specifically, given a variable specification x ← y/P , x ranges over y[[P]]; xr is always

interpreted as the root r. A field rule l : value(x) populates the l field with values in

{value(x) | x ∈ y[[P]]}, where the function value in a field rule returns a string representing

the pre-order traversal of the subtree rooted at x. Let att(Ri) = {l1, . . . , lk} and each

variable x be specified with x ← x′/Px. Then the instance Ii is generated by Ii = {(l1 :

value(x1), . . . , lk : value(xk)) | xr = r, x ∈ x′[[Px]], x ∈ Xi}.

134

book

isbn title author contact
123 XML Tim Bray null

234 XML null null

chapter

inBook number name
123 1 Introduction
123 10 Conclusions
234 1 Getting Acquainted

section

inChapt number name
1 1 Fundamentals
1 2 Attributes

Figure 6.4: Instances generated by the transformation of Example 6.1

Example 6.4 Rule(section) is interpreted as:

{(inChapt : value(z1), number : value(z2), name : value(z3)) |

zc ∈ r[[//book/chapter]], z1 ∈ zc[[@number]], zs ∈ zc[[section]],

z2 ∈ zs[[@number]], z3 ∈ zs[[name]]}.

Referring to the XML tree T in Fig. 6.1, value(6) = (name : (S : Introduction), @number :

1). The interpretation of the table rules of Example 6.1 over T generates the relational

instance of Fig. 6.4. 2

Several subtleties are worth mentioning. First, since XML data is semistructured in nature

it is likely that for x ← y/P , y[[P]] is empty. In this case value(x) is defined to be null.

Second, if y[[P]] has multiple elements, then to generate the relation with the table rule

containing x, an implicit Cartesian product is computed so that all nodes in y[[P]] are

covered in the relation. That is, for each x ∈ y[[P]], there is a tuple t whose l field

has value(x). Finally, note that the transformation language is capable of expressing

projection (π), Cartesian product (×) and set union (∪; limited in the sense that it is

implemented with “//”). We shall compare our approach with others published in the

literature [STZ+99, BFRS02, MFK01, SKWW00] in Section 6.6.

135

6.2 Problem Statement and Limitations

Having described our transformations, we next state the central technical problems investi-

gated in this chapter: the key propagation problem and the problem of finding a minimum

cover.

6.2.1 Key propagation

The question of key propagation asks if given a transformation σ from XML data to rela-

tions of a fixed schema R and an XML tree T satisfying a set Σ of XML keys, whether

σ(T) satisfies an FD ϕ (on a relation schema R in R). We write Σ |=σ R : ϕ if the impli-

cation holds for all XML trees satisfying Σ, and refer to ϕ as an FD propagated from Σ.

With respect to a transformation specification language, the key propagation problem is to

determine, given any σ expressed in the language, any XML keys Σ and an FD ϕ, whether

or not Σ |=σ R : ϕ. Note that we do not require the XML data to conform to any DTD or

other type specification.

A subtle issue arises from null values in σ(T), the relations generated from an XML tree

T via σ. In particular, there may exist R tuples in σ(T) with FD X → Y such that their X

or Y fields contain null. The presence of null complicates FD checking since comparisons

of null with any value do not evaluate to a Boolean value (true or false [RG00]). A

brutal solution is to restrict the semantics of the transformation σ so that a tuple is not

included if it has a null field. Since XML is semistructured, this could exclude a large

number of “incomplete” tuples from σ(T). We therefore adopt the following semantics of

FDs: σ(T) satisfies the FD X → Y , denoted by σ(T) |= X → Y , iff

• for any tuple t in R, if πX(t) contains null then so does πY (t);

• for tuples t1, t2 in R, if neither πXY (t1) nor πXY (t2) contains null and πX(t1) =

πX(t2), then πY (t1) = πY (t2).

The motivation behind the first condition is that an FD is possibly treated as a key when

normalizing the relational schema, and an “incomplete key” X cannot determine complete

136

Y fields. We call this condition as the null restriction for FD satisfaction. Observe that

under the new semantics, the reflexivity rule of the Armstrong Axioms for FD inference

has to be adjusted. This is because, given any set of labels X, there is no guarantee that

for any subset Y of X, X → Y ; indeed, a tuple t may contain null in fields of X \ Y ,

but not in fields of Y . Thus, an FD is only considered trivial if it is of the form X → X,

and the reflexivity rule is now stated as: for any set of labels X, X → X. Note that

the augmentation and transitivity rules of the Armstrong Axioms remain unchanged. One

consequence of this new set of rules is that although the union rule can be inferred from the

new rules, the decomposition rule cannot. That is, if X → Y and X → Z then X → Y Z.

But if X → Y Z we cannot infer that X → Y . This is because although it is known that

whenever X contains null so does Y Z, we are not sure that Y alone also contains null.

Example 6.5 Let σ be the transformation Rule(book) given in Example 6.1 and Σ be the

set of keys defined in the introduction. Then Σ |=σ book: isbn→ title since in any XML

tree T satisfying Σ: (1) an @isbn attribute uniquely determines a book element; and (2)

below each book element there is at most one node reachable via path title. Thus given

the definition of Rule(book), among complete book tuples (in which title is not null),

an isbn field uniquely determines a title field. 2

It has been shown that the implication problem of full dependencies on views, which

are defined with SPCU (selection, projection, cartesian product, and union) queries, is

decidable both in the relational model [AHV95] and in the nested relational model [PT99].

Our transformation language is very simple, and can only express projection (π), Cartesian

product (×) and a limited form of set union (∪). Based on the previous decidability results,

it is likely that the language can be extended to express selection and a general form of set

union without significantly affecting our framework for key propagation. But one might

be tempted to develop a even richer language, which can express all relational algebra

operators, including set difference (−). Although these operators can be generalized to

XML trees (e.g., with our value function), the following negative result holds:

Theorem 6.1 The key propagation problem from XML to relational data is undecidable

when the transformation specification language can express all relational algebra operators.

137

Proof. We prove the theorem by reduction from the equivalence problem for relational

algebra queries: given any relation schema S,R and relational algebra queries Q1, Q2 from

S to R, determine whether for any instance I of S, Q1(I) = Q2(I) (denoted by Q1 ≡ Q2).

This is a well-known undecidable problem [Var81].

We give the reduction as follows. Let R′ be an extension of R with the addition of a new

filed @l, i.e., Attr(R′) = Attr(R)∪{@l} where @l is not in Attr(R) and Attr(S). We define

a mapping σ from XML data to relational databases of schema R = {R′}, a set Σ of XML

keys, and an FD ϕ on R′, such that Σ |=σ R′ : ϕ iff Q1 ≡ Q2. More specifically, let Σ

consist of a single absolute key: (S/t, Attr(S)). That is, in an XML tree T satisfying Σ,

the values of Attr(S) attributes of any S/t node uniquely determine the node. We define

the FD ϕ to be ∅ → R′, i.e., there is a unique tuple in the R′ relation. Finally, we define

the mapping σ to be

{t} ∪ “2”×((Q1(πAttr(S)(S/t))−Q2(πAttr(S)(S/t)))∪(Q2(πAttr(S)(S/t))−Q1(πAttr(S)(S/t)))),

where t is a R′ tuple such that all of its fields have constant value “1”, while in all the

other tuples the @l fields have a constant value “2”; and πAttr(S)(S/t) denotes the values

of Attr(S) attributes of S/t nodes.

There is an one-to-one mapping between the set of all instances of S and the πAttr(S)(S/t)

values of all XML trees satisfying Σ. Thus E = (Q1(πAttr(S)(S/t)) −Q2(πAttr(S)(S/t))) ∪

(Q2(πAttr(S)(S/t))−Q1(πAttr(S)(S/t))) is equal to the empty set ∅ for all XML trees satis-

fying Σ iff for all instances I of S, the difference between Q1(I) and Q2(I) is ∅, i.e., when

Q1 ≡ Q2. Note that σ(T) |= ϕ iff σ(T) consists of a single tuple. However the tuple t is

already in σ(T), which is distinguished from the others in σ(T) by the value of its @l field.

Hence for each XML tree T satisfying Σ, σ(T) |= ϕ iff the set E is ∅. Thus Σ |=σ R
′ : ϕ

iff Q1 ≡ Q2. Hence the encoding is indeed a reduction from the equivalence problem for

relational algebra queries to the key constraint propagation problem. Since the former is

undecidable, so is the latter. 2

In contrast, as will be seen shortly, for our transformation language there is a polynomial

time algorithm in the size of Σ and σ.

138

The key propagation problem can be similarly defined for XML to XML transformations,

and is equally important in that context. It is worth mentioning that popular query

languages for XML, such as XQuery [Cha01], subsume our specification language and in

fact, when being (naturally) used to specify XML to XML transformations, are undecidable

extensions as well.

6.2.2 Minimum cover

The problem of finding a minimum cover is to compute, given a universal relation U and

a set Σ of XML keys, a minimum cover Fm for the set F+ of all FDs on U propagated

from Σ. Guided by Fm, one can then decompose U into a normal form as illustrated by

Example 6. This is analogous to techniques for designing relational databases [AHV95]. In

our context, a universal relation is simply the collection of all the fields of interest, along

with a table rule that defines these fields.

Example 6.6 Recall the schema R and the transformation given in Example 6.1. A

universal relation U here is the collection of all the fields of R, defined as follows:

U = (bookIsbn, bookTitle, bookAuthor, authContact, chapNum, chapName,

secNum, secName),

Rule(U) = {bookIsbn: value(x1), bookTitle: value(x2), bookAuthor: value(x3),

authContact: value(x4), chapNum: value(y1), chapName: value(y2),

secNum: value(z1), secName: value(z2)},

xb ← xr//book, x1 ← xb/@isbn, x2 ← xb/title, xa ← xb/author,

x3 ← xa/name, x4 ← xa/contact, yc ← xb/chapter, y1 ← yc/@number,

y2 ← yc/name, zs ← yc/section, z1 ← zs/@number, z2 ← zs/name

The table tree of Rule(U) is depicted in Fig. 6.5 (a).

Suppose the following set of keys are defined:

• KS1 : (ε, (//book, {@isbn})): within the context of the entire document a book

element is identified by its @isbn attribute.

139

• KS2 : (//book, (chapter, {@number})): within the context of any subtree rooted at

a book node, a chapter is identified by its @number attribute.

• KS3 : (//book, (title, {})): each book has at most one title; similarly,

KS4 : (//book/chapter, (name, {})) for the name of a chapter, and

KS5 : (//book/chapter/section, (name, {})) for section name.

• KS6 : (//book/chapter, (section, {@number})): within the context of a chapter of a

book, each section is identified by its @number attribute.

• KS7 : (//book, (author/contact, {})): a book can have multiple authors, but at most

one has contact information (the contact author).

From this set of XML keys, the following minimum cover for the FDs on U can be com-

puted:

bookIsbn → bookTitle, bookIsbn → authContact,

bookIsbn, chapNum → chapName, bookIsbn, chapNum, secNum → secName.

Guided by these FDs, we can decompose U into BCNF:

book(bookIsbn, bookTitle, authContact),

author(bookIsbn, bookAuthor),

chapter(bookIsbn, chapNum, chapName),

section(bookIsbn, chapNum, secNum, secName)
2

Although in the relational context algorithms have been developed for computing a min-

imum cover for a set of FDs [BB79, Got87, Mai80], they cannot be used in our context

since the FDs must be computed from the XML keys Σ via the transformation σ, instead

of being provided as input as for those relational algorithms. Furthermore, relational FDs

are not capable of expressing XML keys and vice versa.

6.2.3 Propagation of other XML constraints

XML Schema supports both keys and foreign keys. A simple form of foreign keys is

(Q1, [@l1, . . . ,@ln]) ⊆ (Q2, [@l
′
1, . . . ,@l

′
n]), where Q1, Q2 are path expressions and @li,@l

′
i

140

Xr

//book

X2 Xa

Y2

name
X4

chapter

section

name

Y1

Xb

Yc

Zs
(chapNum)

X3

name contact

title

(chapName)

(bookTitle)

author

(bookAuthor) (authContact)

Z2

(secName)

@isbn

X1

(bookIsbn)

Z1

(secNum)

@number

@number

(a) Rule(U)

x x

l l(())

x

(l)

@l

x
...

1
1x

lak

a1

a2
@l

@l

1
1@l

l1)(1 l()

2
1

2
1

2
1

1
k

2
k1

k 2
k

2
k

1
k

xr

(b) From Example 6.4.1

Figure 6.5: Table trees

are attributes. It asserts that for any node n1 in [[Q1]] there exists n2 in [[Q2]] such that

n1.@li = n2.@li for all i ∈ [1, n], and that @l′1, . . . ,@l
′
n are a key of nodes in [[Q2]]. That is,

the list [@l1, . . . ,@ln] is a foreign key of nodes in [[Q1]] referencing nodes in [[Q2]]. Although

it is tempting to develop algorithms to compute the propagation of both keys and foreign

keys, we have the following negative result:

Theorem 6.2 The propagation problem for XML keys and foreign keys is undecidable for

any transformation language that can express identity mapping.

Proof. We prove the theorem by reduction from the implication problem for keys by

keys and foreign keys in the relational model: given a relational schema R, a key φ on

relation schema R ∈ R, and a set of keys and foreign keys Θ over R, decide whether or

not Θ |= R : φ. This is an undecidable problem [FL02].

We give the reduction by defining an identity mapping σ from XML data to relational

databases of schema R, and a mapping from a set Θ of relational keys and foreign keys to

a set Σ of XML keys and foreign keys, such that Σ |=σ R : φ iff Θ |= R : φ.

The identity mapping is one in which the XML representation of a relational database of R

is mapped to the same database. Intuitively we adopt the canonical XML representation

141

of relations: the root of the XML tree has a child R for every R in R; each R has children

t encoding the tuples of an instance of R; and each t child of R has attributes appearing in

a tuple of the instance. In our language this can be expressed as a transformation defined

with paths of length 3:

σ = {Rule(R) | R ∈ R}

Rule(R) = {l1 : value(y1), . . . , ln : value(yn)},

xt ← xr/R/t, y1 ← xt/@l1, . . . , yn ← xt/@ln, where Attr(R) = {l1, . . . , ln}

We encode relational constraints Θ in terms of XML constraints Σ as follows.

1. for each key: R[l1, . . . , lk]→ R, we generate an XML key: (ε, (R/t, {@l1, . . . ,@lk})).

2. for each foreign key: R[l1, . . . , lk] ⊆ R′[l′1, . . . , l
′
k] and R′[l′1, . . . , l

′
k]→ R, we generate

an XML foreign key: (R/t, {@l1, . . . ,@lk}) ⊆ (R′/t′, {@l′l, . . . ,@l
′
k}).

We show that the above encoding is indeed a reduction by proving that Θ |= R : φ iff

Σ |=σ R : φ.

First, for any instance I of R, such that I |=
∧

Θ ∧ ¬φ, we can construct an XML tree T

as follows. Each relation R in R corresponds to an element under the root node, and each

tuple t of πR(I) corresponds to an element in the tree reached by following path R/t, and

with attributes Attr(R) populated with values of t. It is easy to see that T |= Σ. Since

σ maps the tree representation of I back to I, σ(T) 6|= φ. Therefore, if Θ 6|= R : φ, then

Σ 6|=σ R : φ.

For the other direction, consider any XML tree T such that T |= Σ, yet σ(T) 6|= R : φ.

Since all paths involved in constraints of Σ have a maximum length of three, parts of T

with depth greater than three or not mentioned in the constraint’s path expressions are

irrelevant. Since σ is an identity mapping from the tree representation T of I back to I, if

T |= Σ then I |= Θ, and σ(T) = I 6|= R : φ. Therefore, if Σ 6|=σ R : φ then Σ 6|= R : φ.

This shows that the above encoding is indeed a reduction from the implication problem of

keys by keys and foreign keys in the relational model. 2

142

Because of this negative result, we restrict our attention to the propagation of XML keys.

6.3 Checking Key Propagation

Checking key propagation is nontrivial for a number of reasons: First, XML data is

semistructured in nature, which complicates the analysis of key propagation by the pres-

ence of null values. Second, XML keys which are not in Σ but are consequences of Σ

may yield FDs on a relational view. Thus key propagation involves XML key implication.

Third, XML data is hierarchically structured and thus XML keys are relative in their

general form – they hold on a sub-document. However, its relational view collapses the

hierarchical structures into a flat table and thus FDs are “absolute” – they hold on the

entire relational view. Thus one needs to derive a unique identification of a sub-document

from a set of relative keys.

Example 6.7 To illustrate this last point, consider again the transformation σ given in

Example 6.1 and the set Σ of XML keys given in Example 6.2.2. From KS2, a key for

chapter, one might expect an FD number → name to hold on the chapter relation. This

is, however, not the case since @number is a key of chapter relative to a particular book;

thus to uniquely identify a chapter in the entire document one also needs a key for book.

Reflecting this in the relation chapter, one can expect that number, inBook→ name is an

FD, where inBook is a key for book by KS1 and σ. However, KS1 and KS2 alone do not

yield the FD, because XML data is semistructured and thus a chapter may have several

name subelements. One can conclude that it is indeed an FD propagated from Σ only after

KS4 is taken into account, which says each chapter has at most one name. Putting these

together, the FD is derived from a set of XML keys consisting of KS1,KS2 and KS4.

Observe that, however, neither inChapt, number→ name is an FD propagated from Σ on

the section relation, nor is isbn→ author an FD on the book relation. 2

As illustrated in the example, to uniquely identify a node within the entire document we

need a set of XML keys identifying unique contexts up to the root. This notion has been

formalized by the definition of a transitive set of keys in Chapter 4 (Section 4.1.4). We say

143

that a node is keyed if there exists a transitive set of keys to uniquely identify the node.

Example 6.8 The set {KS1,KS2} is transitive since any chapter in the document can

be identified by providing @isbn of a book and @number of a chapter. Thus every chapter

node is keyed. In contrast, {KS2} is not transitive since with it alone there is no way to

uniquely identify a book in the document, which is necessary before identifying a chapter

of that book. 2

6.3.1 Propagation Algorithm

Before we present the algorithm, we first introduce a few notions.

Table tree. Algorithm propagation uses the tree representation of a transformation to

bridge the gap between XML keys and the FD φ to be checked. Without loss of generality,

assume that φ is of the form Y → Z with (Y ∪ Z) ⊆ Attr(R), and that Rule(R) is

{li : value(xi) | i ∈ [1,m]} along with a set X of variables and mappings x ← y/P for

each x ∈ X. In the table tree TR representing Rule(R), any variable x in X has a unique

node corresponding to it, referred to as the x-node. In particular, the xr-node is the root of

TR. Observe that for any x, y ∈ X, if the x-node is a descendant of the y-node in TR, then

there is a unique path in TR from the y-node to the x-node, which is a path expression.

We denote the path by P (y, x), which exists only if there are variables x1, . . . , xk in X such

that x1 = y, xk = x and for each i ∈ [1, k − 1], xi+1 ← xi/Pi is a mapping in Rule(R).

We use descendants(y) to denote the set of all the variables that are descendants of y;

we define ancestors(y) similarly. In particular, if x is specified with x ← y/P then the

variable y is called the parent of x, denoted by parent(x), and x ∈ children(y). Referring

to Figure 6.3 (c), for example, xr is the parent of Zc, and P (xr, Zc) is //book/chapter.

Algorithm. The intuition behind Algorithm propagation is as follows. Given an FD

φ = Y → Z on R, assume that the table tree representing Rule(R) is TR, and that each

li ∈ Z is specified with value(xi). Let var(Z) be the set of variables that populate fields

in Z; that is, var(Z) = {x | l : value(x) ∈ Rule(R), l ∈ Z}. Then Σ |=σ Y → Z iff (1)

for every li ∈ Z, either li ∈ Y , or xi is the root node, or there exists a variable target

144

in TR such that target is an ancestor of some z ∈ var (Z), and is keyed with fields of

Y . Moreover, either xi is unique under target or xi is unique under some ancestor of

target. In other words, there is a set of transitive keys that uniquely identifies target with

only those attributes which define fields of Y , Σ |= (P (xr, target), (P (target, z), {})), and

Σ |= (P (xr, x
′), (P (x′, xi), {})), where x′ is target or some ancestor of target; (2) every

field of Y is defined by an attribute of some ancestor of an xi that is required to exist.

The first condition asserts that for any R tuples t1 and t2, if they agree on their Y fields

and do not contain null, then they agree on their Z fields. The second condition excludes

the possibility that in some R tuple t, fields in Z are defined while some of their Y fields

are null.

Example 6.9 Consider the transformation rule below, depicted as a table tree in Fig-

ure 6.6(a).

Rule(R) = {l1: value(x1), ly1
: value(y1), ly2

: value(y2), lz: value(z)},

x′ ← xr/Q1, target ← x′/Q2, y ← target/Q3, z ← y/Q4,

y1 ← target/@l1, y2 ← y/@l2, x1 ← x′/Q5

From the following set Σ of XML keys:

φ1 : (Q1/Q2, {@l1}) φ2 : (Q1/Q2, (Q3/Q4, {}))

φ3 : (Q1, (Q5, {})) φ4 : (Q1/Q2/Q3, (ε, {@l2}))

we can conclude that Σ |=σ ly1
→ lz by only considering keys φ1 and φ2, which assert that

the target-node is keyed with @l1, and that z is unique under target, respectively. By also

considering φ3, we can conclude that Σ |=σ ly1
→ lz, l1. This is because a given value of

@l1 uniquely identifies a node in [[Q1/Q2]], and along this path there exists at most one

x1-node that populates l1. However, it is not the case that Σ |=σ ly1
→ l1, because this FD

violates the null restriction for FD satisfaction. That is, it is not the case that whenever

in a tuple t, t.ly1
= null then t.l1 = null, since the existence of an x1-node does not

guarantee the existence of a y1-node. On the other hand, if @l2 is a required attribute for

y, as defined by φ4, Σ |=σ ly1
, ly2
→ lz, and Σ |=σ ly1

, ly2
→ lz, l1. 2

145

l(1)
y1

l()
y2
1

l(
1

)1

l()zl()z
1

xr

y

y

Q

1

@l2

Q
3

Q

Q
2

5

4

x

1@l

1

Q
1
k

y

y

Q

1

@l2

2

Q
3

Q

Q
2

5

4

x

z

y

1

Q

1

1

1

1

1

1

11

@l
1

1

1

1

l(
1

)

)
y1

l()
y2

l(

k

k

k

k

k
k

k
2

k

k

k

k

k

x

y

k

k

k

zk

k

x

target

1

1

1

1

target

. . . .

l(

l(

1

l(

l(

y

y

)

)

Q

1

y1
@l2

2

y2

xr

Q
3

Q
1

Q

Q
2

5

4

x´

target

x

1
)

)z

z

y

@l1

(a) (b)

Figure 6.6: Table trees to illustrate key propagation

To keep track of the information needed to check FD propagation we associate the following

with each variable x in Rule(R):

• att [x]: the set of attributes of the x-node that populate fields in Attr(R), and are

required to exist for x.

• required [x]: the set of fields populated with required attributes of the x-node.

• unique[x]: the set of fields populated with unique descendants of the x-node.

• ancestor [x]: the list of ancestors of x, starting from the root xr.

Note that if y ← x/@a is a variable mapping, l : value(y) ∈ Rule(R), and there exists a

key (Q, (Q′, S)) ∈ Σ such that @a ∈ S then @a ∈ att [x], and l ∈ required [x]. Moreover,

l ∈ unique[x] since any node in an XML tree has at most one attribute labeled with a

particular name. Therefore, required [x] ⊆ unique[x].

Putting everything together, Algorithm propagation is shown in Figure 6.7. The algo-

rithm first verifies if the FD to be checked is trivial, that is, if Y = Z, and returns true

if this is the case. Then, for each variable x ∈ X it computes the associated informa-

tion att [x], unique[x], required [x], and ancestor [x] by invoking procedure initializeVars

(Line 2). The algorithm uses Ycheck and Zcheck to verify if the two conditions defined for

FDs are satisfied. That is, Ycheck is used to ensure that whenever fields in Z are defined

then fields in Y are also defined; that is, they do not contain null. This is the case if all

fields in Y are defined with attributes that are required either for variables that populate

146

fields in Z or for their ancestors. Therefore, in the algorithm, the initial value of Ycheck

is set to (Y \ required [xr]) (Line 3) because every required attribute of the root node is

present in any XML tree. Then, fields that are required either for variables in var (Z)

or their ancestors are removed from the set (Lines 4 to 8). If at the end of this process,

Ycheck becomes empty, we can conclude that the condition is satisfied.

The algorithm uses Zcheck to verify the other condition for FD satisfaction. That is, if

tuples that agree on their Y fields also agree on their Z fields. This is the case if every

field in Z is either unique under a keyed ancestor target, or unique under an ancestor

of target. The initial value of Zcheck is set to (Z \ unique[xr]) (Line 9) because unique

fields of the root are constants in any relation. The algorithm proceeds by considering

each field l ∈ Zcheck, where l is specified with l : value(x). First, the algorithm removes

l from Zcheck if l ∈ Y or if x is the root variable (Line 11). It then traverses the table-

tree TR top-down along the ancestor path from the root xr to x (Lines 12 to 25), and for

each ancestor target in this path, checks if target is keyed (Line 17). The central part

of the algorithm is to check whether there is a set of transitive keys for target. To do

so, it uses variable context to keep track of the closest ancestor for which a key has been

found. That is, target is keyed iff Σ |= (P (xr, context), (P (context, target), att [target])),

i.e., the attributes of target are a key of target relative to its closest ancestor with a key.

XML key implication is checked by invoking Algorithm implication given in Figure 5.6 of

Chapter 5. If it holds, the algorithm moves context down to target (Line 18); then, it sets

a Boolean flag isKeyed to true if x is unique under target (Line 19). Moreover, it removes

from Zcheck every unique field along the path from target to the root xr. The algorithm

returns true iff Zcheck and Ycheck becomes empty, i.e., the two conditions given above

are satisfied.

Example 6.10 To illustrate the algorithm, recall the transformation σ of Example 6.1

and the set Σ of XML keys of Example 6.2.2. Consider FD: isbn→ contact over relation

book defined by Rule(book), which is depicted in Figure 6.3 (a). Note that the field

contact in the FD is specified with variable x4. Given Σ, σ and the FD, the algorithm

starts the traversal on the ancestors of x4, which consists of xr, xb (resp. //book) and xa

(resp. //book/author). First, it checks if xr is keyed by inspecting Σ |= (ε, {}). Since this

147

Algorithm propagation

Input: XML keys Σ, FD φ = Y → Z over R, and Rule(R) in a transformation σ.
Output: true iff Σ |=σ R : φ.

1. if Y = Z then return true;
2. initializeVars(xr);

3. Ycheck := Y \ required [xr];
4. for each l ∈ Z, where l : value(x), do
5. w:= x;
6. while w 6= xr do
7. Ycheck := Ycheck \ required [w];
8. w:= parent(w);

9. Zcheck := Z \ unique[xr];
10. for each l ∈ Zcheck , where l : value(x), do
11. if l ∈ Y or x = xr then Zcheck := Zcheck \{l};
12. traverse[x]:= ancestor [x];
13. context:= xr;
14. isKeyed := false;
15. while not isKeyed and traverse[x] 6= nil do
16. target := head(traverse[x]);
17. if implication(Σ, (P (xr , context), (P (context, target), att [target]))) then
18. context:= target;
19. if l ∈ unique[target] then
20. isKeyed := true;
21. w:= target;
22. while w 6= xr do
23. Zcheck := Zcheck \unique[w];
24. w:= parent(w);

25. traverse[x]:= tail(traverse[x]);

26. return (Zcheck = {}) and (Ycheck = {});

procedure initializeVars (x)

Input: x: a variable in Rule(R).
Output: att [x], required [x], unique[x], and ancestor [x] computed.
1. if x = xr then ancestor [x]:= nil;
2. else w:= parent(x); ancestor [x]:= ancestor [w] + (w :: nil);
3. att [x] := {}; required [x]:= {}; unique[x]:= {};
4. for each y in descendant(x) do
5. if implication(Σ, (P (xr , x), (P (x, y), {}))) then
6. if l : value(y) is in Rule(R) then
7. unique[x]:= unique[x] ∪ {l};
8. if y ← x/@l′ is a variable mapping and there exists (Q, (Q′, S)) in Σ

such that P (xr, x) ⊆ Q/Q′ and @l′ ∈ S then
9. att [x] := att [x] ∪ {@l′};
10. required [x]:= required [x] ∪ {l};
11. for each y in children(x) do initializeVars(y);

Figure 6.7: An algorithm for checking XML key propagation

148

holds by the epsilon rule, the algorithm then checks whether xb is keyed by inspecting

Σ |= (//book, {@isbn}). Since this is true, the algorithm proceeds to check whether x4 is

unique under xb, i.e., whether Σ |= (//book, (author/contact, {})). This is also the case. In

addition, the field isbn in the FD is defined in terms of an attribute of xb, that is required

to exist. That is, by the semantics of keys, (//book, {@isbn}) requires every book element

to have an @isbn attribute. Thus the algorithm concludes that the FD is derived from Σ

via σ and returns true.

Next, let us consider Rule(chapter) of Example 6.1, represented by the table tree of Fig-

ure 6.3 (b), and let φ be an FD: inBook, number → name over chapter. Here the field

name is defined by the variable y3. Given Σ, φ and Rule(chapter), Algorithm propagation

starts the traversal on ancestors of y3: xr, yb (resp. //book) and yc (resp. //book/chapter).

After successfully checking that xr is keyed, it then checks whether yb is keyed by check-

ing Σ |= (//book, {@isbn}). This is indeed the case; however, y3 is not unique under

yb. It therefore proceeds to look for a key for yc relative to yb, by checking whether

Σ |= (//book, (chapter, {@number})). Again this is the case; furthermore, y3 is unique

under yc since Σ |= (//book/chapter, (name, {})). In addition, all the attributes involved

in the keys are those that define the fields of the ancestors of y3. Thus the algorithm

concludes Σ |=σ chapter : φ and returns true.

In contrast, the algorithm returns false when checking inChapt, number → name over

relation section, w.r.t. the table rule of Figure 6.3 (c). Here the field name is specified

with z3. After successfully verifying that xr is keyed, the algorithm checks whether its

next ancestor is keyed, i.e., whether Σ |= (//book/chapter, {@number}). This fails. Thus

it attempts to verify Σ |= (//book/chapter/section, {@number}), another key relative to

the root, which fails again. At this point the algorithm concludes that the FD cannot be

derived from Σ and returns false. 2

The complexity of the algorithm is O(m2n4), where m and n are the sizes of XML keys Σ

and table tree TR, respectively. First, let us analyze procedure initializeVars. The cost

of function implication (Line 5) is O(m2n2) since the size of the key to be checked is at

most the size of the transformation. Lines 8 to 10 take at most O(m2n) time. Since each

149

variable has at most n descendents, the total cost of the procedure is O(m2n3). From the

main algorithm, procedure initializeVars is executed once for each variable in X and

therefore the cost of Line 2 of algorithm propagation is O(m2n4). The computation of

Ycheck on Lines 3 to 8 cost O(n2) because the size of Z is O(n), and each variable has at

most n ancestors. For computing Zcheck , the cost of function implication is O(m2n2),

and it is called at most n2 times, since the size of Zcheck is O(n), each with at most O(n)

ancestors. Lines 22 to 24 are executed at most once for each variable in Zcheck and cost

O(n) time. Therefore, the cost of Lines 9 to 25, and the whole algorithm is O(m2n4).

Observe that checking key propagation is related to the problem of mapping constraints

through views, which has been well-studied for relational data [Klu80, KP82, MMS79,

BV84b]. But the results established there cannot be applied in our context since the

transformation language differs, and XML keys cannot be captured by FDs, and vice-

versa. Moreover, the likelihood of the presence of null values when mapping XML data

to relations motivated us to adopt a slightly different semantics for FD satisfaction, which

defines an explicit treatment for null values.

6.3.2 The Correctness of the Propagation Algorithm

We next verify the correctness of the algorithm:

Theorem 6.3 Given any set Σ of XML keys, a transformation σ and an FD φ over a

relation R, Algorithm propagation returns true if and only if Σ |=σ R : φ.

We will first give a rough outline of the proof. Let φ = Y → Z be the FD to be checked.

The proof can be divided in two parts: The first is to show that Zcheck is empty if and

only if for any XML tree T such that T |= Σ, and for any tuples t1 and t2 in σ(T) that do

not contain null on attributes Y ∪ Z, πY (t1) = πY (t2) implies πZ(t1) = πZ(t2). We will

refer to this condition as the agreement condition for FD satisfaction. The second part is

to show that Ycheck is empty if and only if and for any tuple t in σ(T), πY (t) contains

null implies that πZ(t) also contains null. That is, the two conditions for FD satisfaction

are guaranteed to hold in σ(T) given that T |= Σ.

150

The proof of the first part is a bit long. The outline is as follows. First, we decompose

Y → Z to a set of “simple” FDs Yi → Zi, where each field in the set Yi∪Zi is defined along

a path from xr to a keyed variable xi. Then, in Lemma 6.1 we will show that Σ |=σ Y → Z

if and only if for every i, Σ |=σ Yi → Zi. Given this, we encode Yi with a set of transitive

keys Θi for the xi-node, Zi with a set of keys Γi determining the uniqueness of each field

in Zi, and reduce the problem of showing Σ |=σ Yi → Zi to the problem of showing XML

key implication Σ |= Θi ∪ Γi. That is, Σ |=σ Yi → Zi if and only if Σ |= Θi ∪ Γi. The

if direction requires Lemma 6.2, and the only if direction is established by Lemma 6.3.

Therefore, given that algorithm propagation first looks for a transitive set of keys for a

variable target which only involves attributes that define fields in Y , and when such a

key is found, it removes from Zcheck fields that are unique for target or for an ancestor

of target, we can conclude that the agreement condition of FDs is satisfied if and only if

Zcheck becomes empty.

Example 6.11 Consider a transformation σ depicted as a table tree in Figure 6.6(b), and

a set of XML keys Σ similar to those defined for Example 6.3.1:

(k1) target
i is keyed with @li1: (Qi

1/Q
i
2, {@l

i
1};

(k2) z
i is unique for targeti: (Qi

1/Q
i
2, (Q

i
3/Q

i
4, {}));

(k3) x
i
1 is unique for xi: (Qi

1, (Q
i
5, {}));

(k4) @li2 is required for yi: (Qi
1/Q

i
2/Q

i
3, (ε, S)), and @li2 ∈ S. That is, there exists a key

for the yi-node involving attribute @li2.

Consider the FD φ = l1y1
, l1y2

, . . . , lky1
, lky2
→ l11, l

1
z , . . . , l

k
1 , l

k
z . The process of verifying whether

φ is propagated from Σ can be reduced to checking the propagation of each φi = liy1
, liy2
→

li1, l
i
z, where φi is defined along a path from the root to targeti. Recall that var (Z) denotes

the set of variables that populate fields in Z. We have to show that Zcheck becomes empty

if and only if every z ∈ var (Z) is either unique for some targeti (by checking keys of

the form k2), or unique for some ancestor of targeti (by checking keys of the form k3).

Moreover, targeti must be keyed by attributes that populate fields in Y , as exemplified by

keys of the form k1.

151

Observe that keys of the form k4 only define “extraneous” attributes on the left-hand

side of φ and therefore are not relevant for the first part of the proof. However, they are

relevant for the second part. Observe that if @li2 were not an attribute of an ancestor of

some z ∈ var(Z) or were not required to exist, then there is no guarantee that whenever

fields in Z are defined, liy2
, the attribute populated by @li2, is also defined. This is why

algorithm propagation removes from Ycheck all the required attributes of all z ∈ var(Z)

and of all their ancestors. 2

Before developing the details of the first part of the proof, we present a few definitions.

Definition 6.2 Let Rule(R) be a transformation rule, and Σ a set of XML keys. We

say that a label l is required for a variable x (according to Σ) if l : value(y) in Rule(R),

y ← x′/@a, x′ = x or x′ is an ancestor of x, and there exists an XML key (Q, (Q′, S)) ∈ Σ

such that P (xr, x
′) ⊆ Q/Q′ and @a ∈ S.

Definition 6.3 Let Rule(R) be a transformation rule, Y a set of fields in Attr(R), and

w a variable in Rule(R). We denote by:

• Yattr(w): the set of attributes of w that populate fields in Y . That is, Yattr (w) =

{@a | y ← w/@a, l : value(y), and l ∈ Y }.

• var(Y): the set of variables corresponding to the set of labels Y . That is, var(Y) =

{y | l : value(y), l ∈ Y }.

• varInPath(Y): the set of variables along the path from xr to some y in var(Y).

That is, varInPath(Y) = {y′ | l : value(y), y ∈ var(Y), P (xr, y
′)/P (y′, y) =

P (xr, y), y
′ 6= y}.

Proof of Part 1. We have to show that Zcheck becomes empty if and only if for any

XML tree T such that T |= Σ, σ(T) satisfies the agreement condition for FD satisfaction.

First, observe that if Z ⊆ Y then by algorithm propagation, Zcheck becomes empty,

and it is obvious that for any XML tree T , σ(T) |= φ with respect to the agreement

condition. When Z 6⊆ Y , we will first show that checking propagation of φ is equivalent

152

to checking propagation on FDs {φ1, . . . , φn}, where each φi is a simple FD. Recall that

varInPath(Y) denotes the set of variables along a path from xr to a variable in var(Y).

Let us denote by pathsDefBy(Y) the longest paths defined by variables in varInPath(Y).

That is, pathsDefBy(Y) = {W1, . . . ,Wn}, where each Wi corresponds to a path from xr

to a variable in varInPath(Y) with no descendents in the same set. More specifically,

Wi = {y1, . . . , yk}, where for every i ∈ [1, k], yi ← yi−1/Qi is a mapping in σ, y0 = xr, and

there exists no y′ ∈ (varInPath(Y) \Wi) defined with y′ ← yk/Q
′, for some path Q′. Note

that ∪i∈[1,n](Wi) = varInPath(Y). Now we are in position to define φi: φi = Yi → Zi,

where Yi ⊆ Y is the set of labels populated with attributes of variables in Wi, and Zi ⊆ Z

is the set of labels populated with variables such that its the closest ancestor w with

Yattr (w) 6= ∅ is in Wi. We denote this set of FDs as fdsDefBy(φ). The Lemma below

shows that Σ |=σ φ if and only if Σ |=σ fdsDefBy(φ).

Lemma 6.1 Let Σ be a set of XML keys, σ a transformation, and φ an FD. Σ |=σ φ if

and only if Σ |=σ fdsDefBy(φ).

Proof. Let φ = Y → Z, and fdsDefBy(φ) = {Yi → Zi | i ∈ [1, n]}. The if direction

is direct. That is, given that for all i ∈ [1, n] Σ |=σ Yi → Zi, by the augmentation and

transitivity rules for FD inference we can obtain Y → Z. Therefore, Σ |=σ Y → Z. For

the other direction, we will show that if Σ |= Y → Z then every φi is well-defined, that is,

it is not of the form Yi → ∅, and moreover, for each Zi, Yi is the largest subset of Y such

that Σ |=σ Yi → Zi.

Recall that fdsDefBy(φ) is defined based on pathsDefBy(Y), which denote the longest paths

from the root to a parent of a variable in var(Y). Let pathsDefBy(Y) = {W1, . . . ,Wn},

where the last variable in each path Wi is xi. First, we will show that φi is well-defined.

More specifically, we will show that in each φi there exists at least one variable zi ∈ Zi

that is a descendent of xi. Suppose, by contradiction, that there exists a φj that does not

satisfy this condition. Then we can build an XML tree T such that T |= Σ but T 6|= φ, that

is Σ 6|=σ φ, which leads to a contradiction. The construction of T is as follows. T consists

of a single node corresponding to every variable in var(Y)∪varInPath(Y)∪var(Z), except

for xj and Yattr (xj). Clearly, T |= Σ. But σ(T) consists of a single tuple t such that πY (t)

153

contains null but not πZ(t). This is because, by definition, Yattr(xj) 6= ∅. Since in T a

node corresponding to xj is missing, so is Yattr (xj). Therefore, all fields in Y populated

with Yattr(xj) contain null and σ(T) 6|= φ, which contradicts our assumption.

Given that every φi is well-defined, we are now going to show that in each φi, there exists

no set larger than Yi such that Σ |=σ Yi → Zi. Consider an arbitrary Zi, and suppose by

contradiction that there exists a set S ⊂ Y , such that Σ |=σ Yi ∪S → Zi, where S 6= ∅ and

S ∩ Yi = ∅. Consider an XML tree T constructed as follows. T consists of a single node

corresponding to each variable in Wi and var(Zi), and each node contains all its required

attributes. All attributes and elements in T are given the same value. Obviously, T |= Σ.

Also, σ(T) contains a single tuple t, where πZi
(t) does not contain null. But there are no

nodes in T to populate fields in S, since by construction fields in S are not required for

variables in Wi. Therefore, πYi∪S(t) contains null. Therefore, Σ 6|=σ R : Yi ∪ S → Zi, a

contradiction. This shows that fields in Zi do not depend on any field in Y \ Yi. Thus, if

Σ |=σ φ, it must be the case that for every i ∈ [1, n], Σ |=σ φi, and φ was obtained from

these FDs by the augmentation and transitivity rules for FD inference. 2

Given that checking whether φ is propagated from Σ is equivalent to checking if every φi

is propagated from Σ, we will now define sets of keys Θi and Γi such that Σ |=σ Yi → Zi if

and only if Σ |= Θi ∪Γi. Let Θi be the transitive set of keys computed for xi by algorithm

propagation. That is, Θi = {κ1, . . . , κm}, where κj = (P (xr, yj−1), (P (yj−1, yj), att [yj])),

y0 = xr, and ym = xi. Let Γi denote the set of keys determining the uniqueness of fields

in Zi. That is, Γi = {(P (xr, x
′), (P (x′, z), {})) | x′ = xi or x′ is an ancestor of xi, and

z ∈ var(Zi)}.

(a) Σ |= Θi ∪ Γi implies Σ |=σ Yi → Zi with respect to the agreement condition

Recall that Θi is a transitive set of keys for an xi-node, where each key is defined only with

attributes @Aj that define fields in Yi. We will show that if Σ |= Θi then for any XML

tree T that satisfies Σ there exists no two nodes in [[P (xr, xi)]] that agree on the values of

all attributes @Aj . Since every field in Zi is defined with unique nodes along this path, we

will then show that in σ(T) there exists no two two tuples that agree on Yi but not in Zi.

154

First, we will formalize the notion of two nodes in an XML tree T agreeing on a set of

labels Y . Let Rule(R) be a transformation, Y a set of fields in Attr(R), and {y1, . . . , ym}

be variables defined in Rule(R) along a path P (xr, ym) with Yattr (yi) 6= ∅. Let T be an

XML tree, and v0, . . . , vm, v′0, . . . , v
′
m be two sets of nodes in T such that v0, v

′
0 = r, and

for all i ∈ [1,m], vi ∈ vi−1[[P (yi−1, yi)]], and v′i ∈ v
′
i−1[[P (yi−1, yi)]]. We say that vm and v′m

agree on Y if for every i in [1,m] and every @a in Yattr (yi), val(vi.@a) = val(v′i.@a).

Having presented the definition, the next Lemma establishes that it is indeed the case that

Σ |= Θi implies that for any XML tree T that satisfies Σ there exists no two nodes agreeing

on Yi.

Lemma 6.2 Let Rule(R) be a transformation, Y a set of fields in Attr(R), and {y1, . . . , ym}

be variables defined in Rule(R) along a path P (xr, ym) with Yattr (yi) 6= ∅. Let Θ be a set of

transitive keys {κ1, . . . , κm}, where κi = (P (xr, yi−1), (P (yi−1, yi),Yattr (yi))), i ∈ [1,m],

and y0 = xr. Let Yi be the set of fields in Y defined by attributes in Yattr (yj), j ≤ i. Then

Σ |= Θ if and only if for any XML tree T such that T |= Σ there exist no two nodes in

[[P (xr, yi)]] agreeing on Yi, for all i ∈ [1,m].

Proof. First, suppose, by contradiction, that for any XML tree T that satisfies Σ there

exist no two distinct nodes agreeing on any Yi, yet Σ 6|= Θ. That is, there exists a key κi ∈ Θ

such that Σ 6|= κi. Therefore, there must exist an XML tree T ′ such that T ′ |= (Σ ∧ ¬κi).

But if T ′ 6|= κi, it must contain two distinct nodes n, n′ in [[P (xr, yi)]] agreeing on Yi, a

contradiction. Thus, Σ |= Θ.

For the other direction, let T be a tree that satisfies Σ, and suppose Σ |= Θ. We will

show by induction on m, the size of Θ, that there exist no two distinct nodes [[P (xr, ym)]]

in T agreeing on Ym. For the base case, m = 1, Θ = {(ε, (P (xr, y1),Yattr (y1))}. That

is, it consists of a single absolute key. Since T |= Σ, and Σ |= Θ, T cannot have two

distinct nodes in [[(P (xr, y1)]] agreeing on Y1. Assume the statement for m−1, and we will

show that it also holds for m. Let w be an arbitrary node in [[P (xr, ym−1)]]. By inductive

hypothesis, there exists no other node that agrees on Ym−1 with w. Therefore, it suffices

to show that there exist no two nodes u, u′ in w[[P (ym−1, ym)]] agreeing on Yattr(ym). By

155

definition, Θ contains a key (P (xr, ym−1), (P (ym−1, ym),Yattr (ym))), and by assumption,

Σ |= Θ; hence T |= Θ. Since u and u′ agree on Yattr(ym), they cannot be distinct nodes

in T . This completes the proof. 2

Given that in any XML tree T that satisfies Σ there exists no two nodes in [[P (xr, xi)]]

agreeing on Yi whenever Σ |= Θi, we will next show that if Σ |= Θi∪Γi then in σ(T) there

are no two tuples t1, t2 that do not contain null on fields in Yi such that πYi
(t1) = πYi

(t2)

and πZi
(t1) 6= πZi

(t2). Suppose, by contradiction, that there exists two such tuples t1 and

t2. Let ancestors(xi) = {y1, . . . , yk}. By the semantics of transformation σ, if a tuple t is

in σ(T) then there are nodes v1, . . . , vk on a path P (xr, xi) in T such that yi is mapped

to vi, v1 is the root r, vk ∈ [[P (xr, xi)]], and vi ∈ vi−1[[P (yi−1, yi)]] for i ∈ [2, k]. Moreover,

for each l ∈ Yi, t.l is determined by val(vi.@a) for some @a ∈ Yattr(yi), and for each

l ∈ Zi, t.l is determined by the value of a node in vi[[Q]]. Since Σ |= Γi, for each vi,

|vi[[Q]]| ≤ 1. Thus one can easily verify that the existence of two tuples t1 and t2 such

that πYi
(t1) = πYi

(t2) and πZi
(t1) 6= πZi

(t2) implies the existence of two distinct nodes

u, u′ ∈ [[P (xr, xi)]] agreeing on Y , which contradicts Lemma 6.2. Thus, Σ |= (Θi ∪ Γi)

implies Σ |=σ Yi → Zi with respect to the agreement condition.

(b) Σ |=σ Yi → Zi with respect to the agreement condition implies Σ |= Θi ∪ Γi

First, observe that Yi is defined as consisted of all fields in Y that are populated with

attributes of nodes in a path P (xr, xi), no matter if they are necessary for identifying a

node in [[P (xr, xi)]] or not. Thus, Yi may contain extraneous fields. If this is the case,

there exists a subset Y ′
i of Yi such that Σ |=σ R : Y ′

i → Zi. We denote as Ymin a minimum

subset of Yi such that φ′ = Ymin → Zi, and Σ |=σ φ
′.

If Σ |=σ φ
′ then there exists a transitive set of keys Θ′

i such that Σ |= Θ′
i and a set of keys

determining the uniqueness of each label in Zi, that coincides with Γi, such that Σ |= Γi.

This is asserted by Lemma 6.3, given below. Therefore, to prove the claim, it suffices to

show that if Σ |= Θ′
i then Σ |= Θi. This is a direct consequence of Lemma 6.2. More

specifically, let T be an arbitrary XML tree such that T |= Σ. Since, Σ |= Θ′
i then by

Lemma 6.2, there exist no two nodes in [[P (xr, xi)]] agreeing on Ymin. Since Ymin ⊆ Yi, it

156

cannot be the case that two nodes agree on Yi but not on Ymin. Thus, by Lemma 6.2 and

the construction of Θi, Σ |= Θi. Recall that in algorithm propagation a label l is removed

from Zcheck whenever a transitive set of keys for a variable target is found, and l is either

unique for target of for some ancestor of target. Thus, Zcheck becomes empty if and only

Y → Z satisfies the agreement condition of FDs.

Lemma 6.3 Let Σ be a set of XML keys, σ be a transformation with a corresponding table

tree TR, and V = {y1, . . . , yk} be a set of variables such that yi ← yi−1/P (yi−1, yi) is a

mapping in σ, and y0 = xr.

Let φ = Y → Z be an FD such that every l ∈ Y is a required label for some yi ∈ V , and

V ′ = {y′1, . . . , y
′
m} be the set consisted of all variables in V with Y attr(yi) 6= ∅. If Σ |=σ φ,

Z 6⊆ Y , and for no set Y ′ ⊂ Y , Σ |=σ Y
′ → Z then:

1. there exists a transitive set of keys Θ = {κ1, . . . , κm}, where κi is of the form

(P (xr, y
′
i−1), (P (y′i−1, y

′
i),Yattr (y′i))), y

′
0 = xr, and Σ |= Θ.

2. there exists l ∈ Z defined by l : value(z) such that Σ |= (P (xr, y
′
m), (P (y′m, z), {}));

moreover, for every l′ ∈ (Z−{l}), if l′ is defined by l′ : value(z′), and yi is the closest

ancestor of z′ in V then Σ |= (P (xr, yi), (P (yi, z
′), {})).

Proof. Let Γ = {(P (xr, w), (P (w, z), {})) | where z ∈ var (Z), and w is the closest

ancestor of the z in V }. It suffices to show that if Σ 6|= Θ ∪ Γ then Σ 6|=σ Y → Z. More

specifically, given that Σ 6|= Θ ∪ Γ, there exists an XML tree T such that T |= Σ but

T 6|= Θ ∪ Γ. Then, we can show that in σ(T) there exists two tuples t1, and t2 such that

πY (t1) = πY (t2) but πZ(t1) 6= πZ(t2). That is, Σ 6|=σ Y → Z.

First, suppose that Σ |= Γ, but Σ 6|= Θ. Let y′n+1 be the first variable in V ′ such that

Σ 6|= κn+1. That is, for all j ≤ n, Σ |= κj , yet Σ 6|= κn+1. Next, we describe the construction

of an XML tree T such that T |= (Σ ∧ Γ ∧ ¬Θ). T contains a single path Q from the root

to a node u in [[P (xr, y
′
n)]], and two paths from u to nodes u′, u′′ in u[[P (y′n, y

′
m)]]. Every

node in T has all the required attributes according to Σ. Let var(Z) = {z1, . . . , zl}, and

{w1, . . . , wl} be the closest ancestors in V of each zi. If wi is along the path P (xr, y
′
n)

157

then a single node attached to the unique node in [[P (xr, wi)]] is created. Otherwise, a

node corresponding to each zi is created in each subtree rooted at u. Arbitrary values are

assigned to attributes in the path Q. Corresponding attributes in both subtrees rooted at

u have the same value if they populate fields in Y and different values otherwise. In other

words, if uj , u
′
j are in n[[P (y′n, y

′
j)]], then val(uj .@a) = val(u′j .@a) if @a in Yattr (y′j), and

val(uj .@a) 6= val(u′j .@a), otherwise.

We will now show that T indeed satisfies Σ and Γ, but not Θ. It is easy to see that T |= Γ

since at most one node corresponding to each z ∈ var(Z) is created at a single node. It is

also easy to see that T 6|= Θ. Before showing that T |= Σ, recall that by assumption the

set Y in φ is minimum. That is, for no set Y ′ ⊂ Y , Σ |=σ Y
′ → Z. Since every label in Y

corresponds to a key path in Θ, Θ is a minimum transitive set of keys for y′m. Based on

this observation, we will show that T |= Σ. Since in T there exists a single path Q from

the root to u, T can only violate Σ if it is one of the following cases:

(1) the set of attributes Yattr (y′j), j > n + 1, identifies a node in the subtree rooted at

u, that is, Σ |= (Q, (P (y′n, y
′
j),Yattr (y′j))): Observe that there exists a key κj in Θ, where

κj = (Q/P (y′n, y
′
j−1), (P (y′j−1, y

′
j),Yattr (y′j))). Since Θ is minimum, it cannot be the case

that Σ |= (Q, (P (y′n, y
′
j),Yattr (y′j))), otherwise the set of attributes Yattr (y′j−1), relative

to P (xr, y
′
j−1) would be extraneous. Therefore, Σ 6|= (Q, (P (y′n, y

′
j),Yattr (y′j))), for any

j > n+ 1.

(2) a node in a subtree under u must be unique for u, that is, Σ |= (Q, (P (y′n, w), {}))

for some w ∈ (V ∪ var (Y) ∪ var (Z)): Suppose P (y′n, w) = P1/P2, where Q/P1 is the

path in the table tree from xr to the closest ancestor of w that is in V . To see that

Σ 6|= (Q, (P1/P2, {})), observe that if Σ |= (Q, (P1/P2, {})), then by the target-to-context

rule for XML key inference, Σ |= (Q/P1, (P2, {})). Therefore, the attributes Yattr (y′n)

relative to y′n would be extraneous, and Θ would not be minimum.

Given that T |= Σ ∧ Γ ∧ ¬Θ, we next verify that σ(T) consists of two tuples that violates

the agreement condition for FD satisfaction. By the semantics of transformation σ, the

two tuples t1, t2 in σ(T) are such that: (a) for each l′ ∈ Y , t1.l
′ and t2.l

′ are the values of

the same node reached by following P (xr, y
′
i/@a), for 1 ≤ i ≤ n, or corresponding nodes in

the subtrees rooted at u. In both cases, t1.l
′ = t2.l

′; (b) for the distinguished label l ∈ Z

158

populated with a descendent of y′m, t1.l and t2.l are the values of some descendent of u′

and u′′ such that t1.l 6= t2.l, since by construction l 6∈ Y . Thus t1 and t2 are indeed two

tuples in σ(T) that violate FD φ.

We now turn to the case that Σ |= Θ, but Σ 6|= Γ. Similar to the previous discussion, we will

construct an XML tree T such that T |= Σ ∧Θ ∧ ¬Γ, and show that σ(T) 6|= Y → Z. Let

z be an arbitrary variable in var(Z) such that Σ 6|= ϕ, where ϕ = (P (xr, w), (P (w, z), {})),

and w is the closest ancestor of z in V . Consider an XML tree T constructed as follows. T

consisted of a single path from the root to a node u reached by following path P (xr, yk).

Each node along the path contains all the required attributes, and, additionally, one node

corresponding to each variable in var(Z) \ {z}. The node corresponding to P (xr, w) con-

tains two descendents u, u′ reached by following path P (w, z), and distinct values are

assigned to each of them; that is, val(u) 6= val(u′). Arbitrary values are assigned to every

other node. It is easy to see that T |= (Σ ∧ Θ ∧ ¬ϕ). We will now show that σ(T) does

not satisfy φ. Let lz ∈ Z be the field populated with z. By the semantics of transfor-

mations, σ(T) contains two tuples t1, t2, such that t1.lz corresponds to the value the u

node, t2.lz corresponds to u′, and all other fields in t1 and t2 correspond to the value of

the same node in T . Therefore, πY ∪Z\{lz}(t1) = πY ∪Z\{lz}(t2), but πlz(t1) 6= πlz(t2). That

is, Σ 6|=σ Y → Z, as we wanted to prove. 2

Proof of Part 2. Next, we have to show that Ycheck is empty if and only if for any XML

tree T such that T |= Σ, and for any tuple t in σ(T), πY (t) contains null implies that

πZ(t) also contains null.

For the if direction, assume that Ycheck is empty, T is an XML tree that satisfies Σ, and

suppose, by contradiction, that in σ(T) there exists a tuple t such that πY (t) contains

null but not πZ(t). Let la be an arbitrary field in Y such that πla(t) is null, where la

is specified with la : value(xa) and xa ← xb/@a. Observe that xb must be an ancestor of

some z ∈ var(Z), otherwise, by algorithm propagation, Ycheck 6= {}. Let lz : value(z).

By the semantics of transformations, if πla(t) = null, and πlz(t) 6= null then in T there

exists a node v ∈ [[P (xr, xb)]], and n ∈ v[[P (xb, z)]] such that v does not have an attribute

@a. But since @a is an attribute of an ancestor of x, and Ycheck is empty, @a must be

159

a required attribute for xb. Therefore, T 6|= Σ, which contradicts our assumption. We

conclude that Ycheck = {} implies that for any tuple t in σ(T), if πY (t) contains null

then so does πZ(t). For the other direction, suppose Σ |=σ Y → Z. We have to show

that Ycheck is empty. Recall that in algorithm propagation Ycheck is initialized with

(Y \ required [xr]) and it is subsequently subtracted by every required attribute of variables

in var(Z) and their ancestors. Therefore, it suffices to show that indeed whenever Σ |=σ φ

every field in Y is required for one of these variables. This is established by the following

Lemma.

Lemma 6.4 Let Σ be a set of XML keys and σ a transformation rule. If Σ |=σ Y → Z

then for every l ∈ Y , l is required either for some z ∈ var(Z) or for an ancestor of some

z ∈ var(Z).

Proof. Recall that varInPath(Z) denotes the set of variables along a path from xr to

a variable in var(Z). The proof is by contradiction. That is, assume that there exists

a label l in Y such that l is not required for any z in var(Z) ∪ varInPath(Z). Then we

will show that there exists an XML tree T such that T |= Σ and σ(T) 6|= Y → Z. Let y

be the variable the populates field l. Consider an XML tree T constructed as follows. T

consists of a single node corresponding to each variable in varInPath(Z) and var (Z), and

each node contains all its required attributes according to Σ. All attributes and elements

in T are given the same value. Obviously, T |= Σ. Also, σ(T) contains a single tuple t,

where πZ(t) does not contain null. But since |[[P (xr, y)]]| = {}, πl(t) = null. Therefore,

Σ 6|=σ Y → Z, a contradiction. 2

Thus, if Σ |=σ Y → Z, every field in Y is required either for a variable that defines a field

in Z or for one of its ancestors. Thus, by the computation of Ycheck , the variable becomes

empty at the end of the algorithm propagation. This completes the proof. 2

160

6.4 Computing Minimum Cover

In this section we present two algorithms for finding a minimum cover for FDs propagated

from XML keys. The first algorithm is a direct generalization of Algorithm propagation

of Figure 6.7, and always takes exponential time. We use this naive algorithm to illustrate

the difficulties in connection with finding a minimum cover. The second algorithm takes

polynomial time in the size of input, by reducing the number of FDs generated in the

following way: a new FD is inserted into the resulting set only if it cannot be implied from

the FDs already generated, using the inference rules for FDs. To the best of our knowledge,

this is the first effective algorithm for finding a minimum cover for FDs propagated from

XML keys.

We present the two algorithms in Sections 6.4.1 and 6.4.2 respectively; a correctness proof

is provided in Section 6.4.3.

6.4.1 A Naive Algorithm

Algorithm propagation given in the last section allows us to check XML key propagation.

Thus a naive algorithm for finding a minimum cover is to generate each possible FD on U,

check whether or not it is in F+, the set of all the FDs mapped from the XML keys, using

Algorithm propagation, and then eliminate redundant FDs from F+ using a minimization

algorithm; this yields a minimum cover Fmc for F+. The algorithm, Algorithm naive, is

shown in Figure 6.8. It takes exponential time in the size of U for any input since it

computes all possible FDs on U.

Obviously, Algorithm naive is too expensive to be practical. The problem with the algo-

rithm is that it needs to compute F+, which is exponential in the size of U.

Example 6.12 Consider the transformation depicted as the table tree in Figure 6.9(a),

and a set Σ consisting of 2k + 1 keys: (a1/.../ai−1, (ai, {@l
j
i })) for i ∈ [1, k] and j ∈ [1, 2]

plus (a1/.../ak, (l, {})). Then F+ includes the following: (1) 2k many FDs of the form

lj11 , . . . , l
jk

k → l, where ji ∈ [1, 2] for i ∈ [1, k]; (2) for each m ∈ [1, k], 2m many FDs of

161

Algorithm naive

Input: XML keys Σ, a universal relation U defined by Rule(U).
Output: a minimum cover Fmc for all the FDs on U propagated from Σ.

1. Fmc := ∅;
2. for all Y ⊆ Attr(U) do
3. for all l ∈ Attr(U) do
4. if propagation (Σ, Y → l, Rule(U))
5. then Fmc := Fmc ∪ {Y → l};
6. Fmc := minimize(Fmc);
7. return Fmc;

function minimize (F)

Input: F : a set of FDs.
Output: A non-redundant cover of F .

1. G:= F ;
2. for each φ in F do
3. if (G \ {φ}) |= φ
4. then G:= G \ {φ};
5. return G;

Figure 6.8: A naive algorithm for finding a minimum cover

the form: lj11 , . . . , l
jm
m → l

j′m
m , where jm, j

′
m ∈ [1, 2] and jm 6= j′m; (3) for each m ∈ [1, k],

4(m− 1) many FDs of the form l1m, l
js
s → l1m and l2m, l

js
s → l2m, where s < m and js ∈ [1, 2].

The set is exponentially large, although it does not include any trivial FDs.

A minimum cover Fmc for F+, however, consists of 2k + 1 FDs only (for m ∈ [1, k]):

l11, . . . , l
1
m → l2m, l11, . . . , l

1
m−1, l

2
m → l1m, l11, . . . , l

1
k → l.

Plus at most 4k2 FDs of the form l1m, l
js
s → l1m and l2m, l

js
s → l2m. 2

This observation motivates us to develop an algorithm that directly finds Fmc without

computing F+.

6.4.2 A Polynomial-Time Algorithm

We next present a more efficient algorithm for finding a minimum cover for all the prop-

agated FDs. The algorithm takes as input a set Σ of XML keys and a universal relation

162

x x

l l(())

x

(l)

@l

x
...

1
1x

lak

a1

a2
@l

@l

1
1@l

l1)(1 l()

2
1

2
1

2
1

1
k

2
k1

k 2
k

2
k

1
k

xr

(a) Table tree of Example 6.4.1

y1
l(
1)

l(

l(

l(

y

xr

1

x1

x2

x3

y
2

z

@l3

1

z2

l(
2

3

4

5

Q

3

Q4

Q2

Q
3

5Q
)

)

)

)

@l 2

1@l

(b) Table tree of Example 6.4.2

Figure 6.9: Trees representing universal relations

U defined by a transformation σ; it computes a minimum cover for all FDs on U propa-

gated from Σ via σ in O(m4n4) time, where m and n are the sizes of XML keys Σ, and

transformation σ, respectively.

The algorithm works as follows. Recall that the transformation Rule(U) can be depicted as

a table tree TU, in which each variable x in the set X of Rule(U) is represented by a unique

node, referred to as the x-node. The algorithm traverses TU top-down starting from the

root xr, and generates a set Fmc of FDs that is a minimum cover of F+. More specifically,

at each x-node encountered, it expands Fmc by including certain FDs propagated from Σ.

The obvious question is what new FDs are added at each x-node. As in Algorithm

propagation, at each x-node a new FD Y → Z is included in Fmc only if (1) x is keyed with

a set of attributes that define the fields in Y ; (2) each field l ∈ Z is defined by the value of

a node y and y is unique for x; (3) Y → Z cannot be derived from FDs previously inserted

in Fmc using the rules for FD inference. The first condition requires that x has a keyed

ancestor target and a set S of attributes such that Σ |= (P (xr, target), (P (target, x), S)),

and moreover, the key for target and S define the fields of Y . The second condition can

be stated as Σ |= (P (xr, x), (P (x, y), {})). The third condition prevents redundant FDs to

be inserted in Fmc.

163

Example 6.13 Recall the universal relation U defined by the transformation σ and the

set Σ of XML keys of Example 6.2.2, and the table tree depicted in Figure 6.5. An FD

derived at the z2 node is bookIsbn, chapNum, secNum→ secName. The left-hand side of the

FD corresponds to a transitive set of keys for the zs-node consisted of a section @number

which is an attribute of zs, as well as a chapter @number and a book @isbn, which are a

key of zs’s ancestor yc. The right-hand side of the FD is defined by a node z2 unique under

zs, by KS5 in Σ. Thus the key for the zs node actually consists of the key of its ancestor

yc as well as a key for section (@number) relative to yc. 2

Example 6.14 Consider the transformation rule below, depicted as a table tree in Fig-

ure 6.9(b).

Rule(R) = {l1: value(y1), l2: value(y2), l3: value(y3), l4: value(z1), l5: value(z2)},

x1 ← xr/Q1, x2 ← x1/Q2, x3 ← x2/Q3, y1 ← x1/@l1,

y2 ← x2/@l2, y3 ← x3/@l3, z1 ← x1/Q4, z2 ← x3/Q5

From the following set Σ of XML keys:

φ1 : (Q1, {@l1}) φ2 : (Q1, (Q2/Q3, {@l3})) φ3 : (Q1/Q2, {@l2})

φ4 : (Q1/Q2, (Q3, {})) φ5 : (Q1, (Q4, {})) φ6 : (Q1/Q2/Q3, (Q5, {}))

we can conclude that there exists a single transitive set of keys for the x1-node, consisted

of key φ1, where attribute @l1 defines field l1. Therefore, given that by key φ5, l4 is unique

for x1, at this node FD l1 → l4 is included in Fmc. Similarly, there exists one transitive set

of keys for the x2-node consisted of φ3, which defines field l2. From keys φ4 and φ5 we can

derive (Q1/Q2, (Q3/Q5, {})) by the context-to-target rule for XML key inference. That is,

l5 is unique for x2. Moreover, by the attribute rule, it is true that (Q1/Q2/Q3, (@l3, {})),

and therefore, by the context-to-target rule, Σ |= (Q1/Q2, (Q3/@l3, {})). That is, l3 is also

unique for x2. Thus, at this node, FDs l2 → l3 and l2 → l5 are included in Fmc. For the

x3-node, there are two transitive sets of keys: {φ1, φ2} and {φ3, φ4}, which define sets of

fields {l1, l3}, and {l2}, respectively. Since both l3 and l5 are unique for x3 and FDs with

l2 on the left-hand side of the FD have already been included in Fmc, at this node only

164

one FD {l1, l3} → l5 is inserted in Fmc. 2

Critical to the performance of the algorithm is to minimize the number of FDs added

at each x-node while ensuring that no FDs in Fmc is missed. This is done in two ways:

First, we reduce our search for candidate FDs to those whose left-hand side corresponds to

attributes of keys in Σ. Second, we observe that an ancestor target of an x-node may have

several keys, but that in creating a transitive key for x only one of them must be selected

as long as the following property is enforced: for any two transitive keys K1 and K2 of

the x-node, F includes Y1 → Y2, and Y2 → Y1, where Y1, Y2 are sets of U fields defined by

K1 and K2, respectively. Following Example 6.4.2, suppose an extra field l′1 in defined in

U with l′1 : value(y′1), where y′1 ← x1/@l
′
1, and a new key φ′1 = (Q1, {@l

′
1}) is inserted in

Σ. In this case, x1 would have two transitive sets of keys consisted of keys {φ1} and {φ′1}

and the following FDs would be generated at x1: l1 → l4, l1 → l′1, l
′
1 → l4, and l′1 → l1.

Therefore, when creating a key for x3, based on φ2, we can select either l1 or l′1 to combine

with l3. Recall that the only FD generated at x3 is {l1, l3} → l5. Since l′1 → l1, from these

two FDs we can derive {l′1, l3} → l5.

There are some subtleties caused by the troublesome null value. First, if Y1, Y2 are sets of

U fields defined by two transitive keys K1 and K2 for x, then Y1 → Y2, and Y2 → Y1 are

sound only if both contain at least one field defined by an attribute of the x-node. Consider

again Example 6.4.2 and the sets of fields {l2} and {l1, l3} that define two transitive sets

of keys for the x3-node. Although it is indeed the case that Σ |=σ l2 → {l1, l3}, it is not

true that Σ |=σ {l1, l3} → l2. This is because it is possible that in an XML tree a node

corresponding to x2 exists, without a node that corresponds to x3. If this is the case, the

l3 field contains null but not l2, and therefore σ(T) violates the null restriction for FD

satisfaction.

Second, let K1 be a transitive key for an x-node, Y1 be the sets of U fields defined by K1,

and l be a field defined by the value of a node y such that y is unique for an ancestor x′

of x. Since there is a unique ancestor x′ in a tree that connects to x via the path P (x′, x),

a key for x is also a key for x′, provided that x exists under x′. Therefore, given that y is

unique for x′, Y1 → l. Consider again Example 6.4.2, where l2 is the field defined by key

165

φ3 of the x2-node. Since in any XML tree, for each node n2 ∈ [[P (xr, x2)]] there exists a

single node n1 such that n2 ∈ n1[[P (x1, x2)]], and moreover, z1 is unique for x1, we could

expect that Σ |=σ l2 → l4. But since the existence of node n1 does not guarantee the

existence of a corresponding node n2, it is possible that in a tuple t of σ(T), t.l2 = null

but t.l4 6= null therefore violating the null restriction for FD satisfaction. To overcome

this problem, instead of l2 → l4, an FD l2 → {l2, l4} is inserted in Fmc.

Third, observe that an FD of the form {l1, l2} → l1 is sound if whenever the value of l1 is

not null then the value of l2 is also not null. That is, if the value of l1 is defined by the

value of a node y, where y is a child of x, then l2 must be required to exist for x′, where

either x′ = x or x′ is an ancestor of x. Observe that this form of FD does not depend

on the existence of a key for the x-node. In Example 6.4.2, at node x3, all the following

FDs of this form are generated: {l3, l1} → l3, {l3, l2} → l3, {l5, l1} → l5, {l5, l2} → l5,

{l5, l3} → l5.

To keep track of the information needed to generate FDs at each x-node, we associate att [x],

required [x], unique[x], and ancestor [x] with each x in Rule(U) as defined for algorithm

propagation. In addition, the following variables are defined:

• field [x]: the set of fields in U with values defined by children of x;

• keys[x]: a list of sets of U fields, each set mapped from a transitive key of the x-node

that involves at least one attribute of x;

• uniqueUp[x]: the highest ancestor y of x under which x is unique; that is, y is the

variable closest to xr such that Σ |= (P (xr, y), (P (y, x), {}));

• descKeys [x]: a set of keys, each for a unique keyed descendents of x;

• uniqueDesc[x]: a set of variables that are unique descendents of x;

• uniqueAnc[x]: the set of fields populated with unique descendents of ancestors of x.

Algorithm. Using this notation, Algorithm minimumCover is shown in Figure 6.10. Con-

ceptually, the algorithm can be divided in three parts: initialization step, computation of

keys, and FD generation. The initialization step is done by Algorithm minimumCover in

166

Algorithm minimumCover

Input: XML keys Σ, a universal relation U defined
by Rule(U) along with a set X of variables.

Output: a minimum cover for all FDs on U
propagated from Σ.

1. initializeVars(xr);
2. for each x in X do
3. keys [x]:= nil; field [x]:= {};
4. uniqueUp[x]:= nil; uniqueDesc[x]:= {};
5. descKeys [x]:= {};
6. for each y in descendent(x) do
7. if implication (Σ,

(P (xr , x), (P (x, y), {}))) then
8. uniqueDesc[x]:= uniqueDesc[x] ∪ {y};
9. if y in children(x) and

l : value(y) is in Rule(U) then
10. field [x]:= field [x] ∪ {l};

11. keys [xr]:= {} :: nil;
12. for each x in children(xr) do
13. computeKeys(x);

14. F := {}; uniqueAnc[xr]:= {};
15. for each S in unique[xr] do
16. F := F ∪ {∅ → S};
17. for each l in field [xr] do
18. for each l′ in (required [xr] \ {l}) do
19. F := F ∪ {{l′, l} → l};
20. for each x in children(xr) do
21. genFDs(x);
22. return F ;

Figure 6.10: Computing minimum cover

Lines 1 to 10. First, the computation of att [x], required [x], unique[x], and ancestor [x] is

executed by invoking procedure initializeVars (Line 1), presented in Figure 6.7. Vari-

ables keys [x], descKeys [x], and uniqueUp[x] are given initial values in Lines 3 to 5, and

variables uniqueDesc[x] and field [x] are computed in Lines 6 to 10. Next, the algorithm

proceeds to the computation of keys. First, keys[xr] is initialized by inserting in it the

empty set (Line 11); that is, since there exists a single root node in any XML tree, the

empty set is a key for xr. Then a recursive procedure computeKeys is invoked to each

children of the root node (Line 13). After the keys of all nodes are computed, algorithm

minimumCover proceeds to the generation of a minimum cover F of all FDs propagated

from Σ via the transformation. After inserting in F FDs that can be derived for the root

node (Lines 14 to 19), it invokes a recursive procedure genFDs to process their children

(Line 21). Detailed descriptions of procedures computeKeys and genFDs are given next.

Procedure computeKeys. Procedure computeKeys(x) is presented in Figure 6.11.

Given a variable x, the procedure computes keys[x], and uniqueUp[x] as follows: for each

(Q, (Q′, S)) in Σ, it checks whether S is contained in att [x] (Line 2) and if it is the case,

it computes K, the set of fields of U defined by attributes in S (Line 3). It then traverses

167

procedure computeKeys (x)

Input: x: a variable in Rule(U).
Output: keys [x] containing minimum keys of x.
1. for each (Q, (Q′, S)) ∈ Σ do
2. if S ⊆ att [x] and Q′ 6= ε then
3. K:= {l | @l′ ∈ S,

l : value(y) ∈ Rule(U),
y ← x/@l′ is a variable mapping};

4. traverse[x]:= ancestor [x];
5. keyFound := false;
6. while not keyFound and

traverse[x] 6= nil do
7. target:= head(traverse[x]);
8. if keys [target] 6= nil and

implication(Σ, (P (xr , target),
(P (target, x), S))) then

9. keyFound := true;
10. if K 6= {} then
11. if x not in uniqueDesc[target] then
12. K:= K ∪ head(keys [target]);
13. keys [x]:= K :: keys [x];
14. else uniqueUp[x]:= target;
15. traverse[x]:= tail(traverse[x]);

16. if keys [x] 6= nil then
17. auxK[x]:= keys [x];
18. while auxK[x] 6= nil do
19. K:= head(auxK[x]);
20. if there exists K ′ in keys [x]

s.t. K ′ ⊂ K then
21. remove K from keys [x];
22. auxK[x]:= tail(auxK[x]);

23. if uniqueUp[x] 6= nil then
24. w:= parent(x);
25. while w 6= uniqueUp[x] and

(uniqueUp[w] 6= uniqueUp[x] or
(uniqueUp[w] = uniqueUp[x] and
keys [w] = nil)) do

26. w:= parent(w);
27. unique[w]:= unique[w] \ unique[x];
28. descKeys [w]:=

descKeys [w] ∪ {head(keys [x])};

29. for each y in children(x) do
30. computeKeys(y);

Figure 6.11: Procedure computeKeys

the ancestor path ancestor [x] of x starting from the root. It finds the first ancestor target

of x that is keyed, and checks whether S is a key for the x-node relative to target using

Algorithm implication (Line 8). If these conditions are satisfied, a transitive key K ′ for

x is constructed by combining K with the first transitive key for the ancestor target of

the x-node, which is in the list keys [target] (Line 12). It increments keys [x] by adding

this transitive key if K 6= {} (Line 13), that is, if it contains at least one attribute of the

x-node. If K = {} then uniqueUp[x] is set to target (Line 14). That is, target is the

variable closest to xr such that x is unique under target.

Besides computing all keys of the x-node, we have to guarantee that every value in keys [x]

is minimum. This is done as follows. First, when searching for keys, we ignore all XML

keys in Σ of the form φ = (Q, (ε, S) (Line 2), since a key computed from φ only add

fields defined by S to an existent value in keys[x]. Second, if K ′ = Kt ∪K is a key to be

168

x´

xr

1
Q

Q
2

xa

xi

x

descKeys[xa] = {K´ }

(l´)

z

(li)

zi

Q

Q

Q

4

5

6

3
Q

keys[x´]=[K´]

unique[x´]={l´}

uniqueUp[x´]=xa

unique[xi]={li}

keys[xa]=[Ka]

keys[xi]=[]

keys[x]=[K]

.
z

2

l(
2

)

1

1
)

z

l

l(

z

n

n

)

(

xr

1

x2

Q

Q
2

.

.

xn

Q
n

uniqueUp[x1] = nil

uniqueUp[x2] = x1

uniqueUp[xn] = x1

unique[xn]={ln}

unique[x1]={l1,...,ln}

unique[x2]={l2,...,ln}

x1@a

@a

@a

keys[x1]=[{l1}]

keys[x2]=[{l2}]

keys[xn]=[{ln}]

1

2

n

xr

1
Q

Q
2

Q
4

3
Q

x1

Q
5

x´

xd

z1

descKeys[x1]={ {ld1,ld2} }

keys[xd]=[{ld1,ld2}]

x2

(l´)

x

z

z2
z3

z4
z5

z6
z7

(ld1)
(ld2)

(l1)

(l5)

keys[x1]=[{l5}]

required[x1]={l5}

(l3)
(l4)

(l2)

required[x´]={l´ , l2}

required[xd]={ld1, ld2}

keys[x´]=[{l2}]

required[x2]={l3, l4}

keys[x2]=[{l3}, {l4}]

(b) K −> K U {l} (c) {l1, l2} −> l1(a) K −> l

Figure 6.12: Minimization of FDs

inserted in keys [x], where Kt is an element of keys[target] and K is a set of fields defined

by attributes of x, then K ′ is only inserted in F if x is not unique under target; that is,

if x is not in uniqueDesc[target] (Line 11). If this is the case, Kt is also a key for x and

therefore, K ′ is not minimum. Third, for any two distinct keys K1 and K2 in keys[x] such

that K1 ⊂ K2, we remove K2 from the list keys[x] (Lines 16 to 22).

Recall that values in keys[x] correspond to the left-hand side of FDs generated by the

algorithm. Consider a transformation σ depicted as a table tree in Figure 6.12(a) and

a set of XML keys Σ defining that each xi has a single key {li}, and every xi is unique

for x1. Observe that for any field li, if li ∈ unique[xi] then li is also in unique[xj] for

every j < i. That is, if li is unique for xi and xi is unique under x1, then xi is unique

under xj, and li is unique for xj. Therefore, for every i > j, lj → li is an FD propagated

from Σ. If all FDs of this form were generated, we would have the following set V of

non-trivial FDs: {l1 → l2, . . . , l1 → ln, l2 → l3, . . . , l2 → ln, . . . , ln−1 → ln}. Observe that

if l1 → l2 and l2 → l3 then l1 → l3 by the transitivity rule for FD implication. That

is, the set contains redundant FDs. In fact, the following is a minimum cover for V :

{l1 → l2, l2 → l3, . . . ln−1 → ln}. To prevent the generation of redundant FDs, the sets

unique[xi] and descKeys [xi], the set that contains keys of unique descendents of xi, are

adjusted in the following way: unique[xi+1] is removed from unique[xi], and a key of xi+1

169

is inserted in descKeys [xi] (Lines 23 to 28). In the above example, after this operation,

unique[xi] = {}, and descKeys[xi] = {{li+1}} for all i ∈ [1, n − 1], and unique[xn] = {ln}.

Procedure genFDs. Given that procedure computeKeys has already adjusted sets

unique[x] and descKeys [x], procedure genFDs(x) first chooses a key K ∈ keys[x] (Line 2),

and expands the minimum cover F with FDs K → l for every l ∈ unique[x] (Lines 3 to

5), and K → S for every S ∈ descKeys [x] (Lines 6 to 7). That is, the transitive key of the

x-node determines the unique descendants of x.

In addition, to guarantee the equivalence of all transitive keys in keys[x], we should expand

F with K → K ′ and K ′ → K for each K ′ in keys [x]. Moreover, the following FDs should

also be inserted in F to cope with the null value restriction: 1) K → K ∪ {l} for every

l ∈ unique[x′], where x′ is an ancestor of x; and 2) {l1, l2} → l1, where l1 ∈ fields[x],

l2 ∈ required [x′], and x′ is either x or an ancestor of x. Although the set of FDs described

generates a cover of all FDs propagated from Σ, it is not a minimum cover. In order to

obtain a minimum cover of F+, some extra checking and bookkeeping must be performed.

In the following we will describe how each of these forms of FDs are minimized.

Minimization of FDs of the form K → K ∪ {l}. Consider an FD f = K → K ∪ {l′}

where l′ ∈ unique[x′], and x′ is an ancestor of x as illustrated in Figure 6.12(b). Observe

that if x′ has a key K ′, F contains K ′ → l′ for every l′ ∈ unique[x′]. Therefore, we can

use the following approach to derive f : we insert K → K ∪K ′ in F , and then obtain f

by transitivity of the following FDs, derived by the augmentation rule for FD inference:

K → K ∪ K ′ → K ∪ {l′}. More specifically, given a key K of x, because of the tree

structure of an XML document, K is a key for every ancestor of x, provided that a node

that corresponds to x exists. Therefore, for every x, we insert in F an FD of the form

K → K ∪K ′, where K ′ is a key of the closest keyed ancestor of x (Lines 22 to 23). Then,

by transitivity, we can derive K → K ∪K ′′, where K ′′ is an arbitrary ancestor of x.

The only case in which a different ancestor of x should be chosen to generate an FD of

this form is when its closest ancestor x′ is unique under some xa with key Ka. That

is, uniqueUp[x′] 6= nil. If this is the case, since from F we can derive Ka → K ′, and

K → K ∪ Ka, by transitivity we can obtain K → K ∪ K ′. Therefore, we should look

170

procedure genFDs (x)

Input: x: a variable in Rule(U).
Output: a minimum cover of F+.

1. if keys [x] 6= nil then
2. K:= head(keys [x]);
3. for each l in unique[x] do
4. if l not in K then
5. F := F ∪ {K → l};
6. for each S in descKeys [x] do
7. F := F ∪ {K → (S \K)};

8. w:= parent(x);
9. while (keys [w] = nil) do
10. w:= parent(w);
11. uniqueAnc[x]:= uniqueAnc[w] ∪ unique[w];
12. keyedAnc:= w;
13. w:= parent(x);
14. while w 6= keyedAnc do
15. for each l in unique[w] do
16. if l not in uniqueAnc[x] then
17. F := F ∪ {K → (K ∪ {l})};
18. uniqueAnc[x]:= uniqueAnc[x] ∪ unique[w];
19. w:= parent(w);
20. while uniqueUp[w] 6= nil or keys[w] = nil do
21. w:= parent(w);
22. if head(keys [w]) 6⊂ K then
23. F := F ∪ {K → (K ∪ head(keys [w]))};

24. for each l in field [x] do
25. for each l′ in (required [x] \ {l}) do
26. if (l not in unique[x]) or
27. ({l′} not in keys [x]) then
28. F := F ∪ {{l, l′} → {l}};

29. w:= x;
30. while w 6= xr do
31. w:= parent(w);
32. if required [w] 6= {} then
33. allReqAreKeys := true;
34. for each l′ in required [w] do
35. if {l′} not in keys [w] then
36. allReqAreKeys := false;
37. for each l in field [x] do
38. if ({l, l′} not in keys [x]) or

(required [x] = {l}) then
39. F := F ∪ {{l, l′} → {l}};
40. if allReqAreKeys and

descKeys [w] = {} then
41. l′:= elementOf (required [w]);
42. for each l in field [x] do
43. if (l not in unique[w]) and

(({l, l′} not in keys [x]) or
(required [x] = {l})) then

44. F := F ∪ {{l, l′} → {l}};

45. auxK[x]:= tail(keys[x]);
46. while auxK[x] 6= nil do
47. K ′:= head(auxK[x]);
48. F := F ∪ {K ′ → (K \K ′)};
49. auxK[x]:= tail(auxK[x]);
50. for each y in children(x) do
51. genFDs(y);

Figure 6.13: Procedure genFDs

171

for the next keyed ancestor of x (Lines 20 to 21). In the example of Figure 6.12(b),

uniqueUp[x′] = xa, and xa is the closest keyed ancestor of x′. Therefore FD K → K ∪Ka

is inserted in F . Given this, we can obtain FDs of the form K → K ∪ {l} for every field

l that is unique for any ancestor of x′. Thus, we only have to generate FDs of the form

K → K ∪ {l} if l is a unique field for an xi-node in the path from x to its closest keyed

ancestor, unless l is also unique for an ancestor of x above x′, that is, l ∈ uniqueAnc[x]

(Lines 13 to 19).

Minimization of FDs of the form {l1, l2} → l1. FDs of the form {l1, l2} → l1 are

generated at an x-node if l1 is in fields[x] and l2 is in required [x′], where x′ is either x or

an ancestor of x. Observe that this form of FD is the only one that does not depend on

the existence of a transitive key for x. First, suppose that l2 is a required field for x. Then

the FD is inserted in F unless {l2} is in key[x], and l1 is in unique[x] (Lines 24 to 28). If

this is the case, F |= l2 → l1, and the FD can be derived by the augmentation rule for FD

inference.

Now consider that l2 is required for some ancestor x′ of x as illustrated in Figure 6.12(c).

Similar to the previous case, if l2 is a key for x′, and there exists a field l′ ∈ required [x′] such

that l′ 6= l2, then F |= l2 → l′, since required [x′] ⊆ unique[x′], and F |= {l1, l
′} → l1. Thus,

we can obtain {l1, l2} → l1 by the augmentation and transitivity rule for FD inference.

Therefore, we should not insert an FD in F if {l2} is in keys[x′] (Lines 34 to 39). The

only exception to this rule is when there exists no field l′ ∈ required [x′] that satisfies the

conditions above. This can happen if for every l′ ∈ required [x′], l′ is a key for x′ as it is

the case for variable x2 of Figure 6.12(c). According to the rule above, FDs {l1, l3} → l1

and {l1, l4} → l1 are not generated, and therefore we cannot derive these FDs as described

above. Given that every key for x2 is equivalent, it suffices to choose l′ to be either l3 or

l4 and insert {l′, l1} → l1 in F (Lines 40 to 44). Then the FD of this form for the other

field in required [x2] can be obtained by transitivity.

The only case in which such an FD involving a key of an ancestor does not have to be

generated is when it has a unique keyed descendent as illustrated by variable x1 of Figure

6.12(c). That is, descKeys[x1] 6= {} (Line 40). In the example, x1 has a key {l5}, and a

172

descendent xd with a key {ld1, ld2}. Since xd is unique for x1, F |= l5 → {ld1, ld2}. Given

that both ld1 and ld2 are required fields for xd, F |= {l1, ld1} → l1 and F |= {l1, ld2} → l1.

Therefore, by the augmentation and transitivity rules for FD inference, F |= {l1, l5} → l1.

Thus, this FD does not have to be inserted in F .

The only case that remains to be discussed is when {l2, l1} is in keys[x]. Similar to the

previous case, the FD should not be included in F if there exists a field l′ ∈ required [x] such

that l′ 6= l1. If this is the case, F |= {l′, l1} → l1, and F |= {l2, l1} → l′, since l′ ∈ unique[x].

Thus, by transitivity, {l2, l1} → l1. Given this, {l2, l1} → l1 should be included in F only

if required [x] = {l1} (Line 38 and Line 43), that is, if a field l′ 6= l1 that satisfies the above

conditions does not exist.

Minimization of FDs of the form K → K ′. Let K be a key in keys[x]. We will first

show that if we generate all forms of FDs described above for K, then for any other key K ′

in keys[x], F |= K → K ′. Let K ′ = (L ∪ S), where for every field l ∈ L, l is in required [x],

and for every field l′ ∈ S, l′ is in required [y], where y is an ancestor of x. Since a required

field is also unique, K → l for every l ∈ L, and K → K ∪ {l′} for every l′ ∈ S. Therefore,

by the augmentation and transitivity rules for FD inference, K → K ∪K ′. Observe that

K ′ must contain at least one field l1 in required [x]. Therefore, for every label l2 ∈ K,

{l2, l1} → l1. Thus, K ∪K ′ → K ′, and by transitivity, K → K ′. Therefore, to maintain

the equivalence among all keys in keys[x], we only have to choose one K ∈ keys[x] to

generate the FDs described, and then expand F with K ′ → K for the other keys in the

list (Lines 45 to 49).

Example 6.15 Given transformation σ and the set Σ of XML keys of Example 6.2.2,

Algorithm minimumCover returns the FDs given in Example 6.2.2. Specifically, the al-

gorithm traverses the table tree of Figure 6.5 top-down starting at the root. At node

xb, two FDs are generated: bookIsbn→ bookTitle and bookIsbn→ authContact. Here

keys [xb] = [{bookIsbn}]. At node yc, FD bookIsbn, chapNum→ chapName is included in F

since keys [yc] is [{bookIsbn, chapNum}], which is constructed by combining the field name

populated with @number, a key of yc relative to xb, and the key in keys [xb]. Similarly,

at node zs FD bookIsbn, chapNum, secNum→ secName is inserted into F . The minimum

173

cover for all the FDs propagated from Σ via σ also includes the following FDs of the form

{l1, l2} → l1:

{bookT itle, bookIsbn} → bookT itle {chapNum, bookIsbn} → chapNum

{chapName, chapNum} → chapName {chapName, bookIsbn} → chapName

{bookAuthor, bookIsbn} → bookAuthor {authContact, bookIsbn} → authContact

{secNum, chapNum} → secNum {secNum, bookIsbn} → secNum

{secName, secNum} → secName {secName, chapNum} → secName

{secName, bookIsbn} → secName

2

One can show that the size of keys [x] is quadratic in the size of Σ, unique[x] and required [x]

are bounded by the size of Rule(U), and the set X is no larger than the size of Rule(U);

thus the set F is bounded by m2n3, where m and n are the sizes of XML keys Σ and table

tree TR, respectively. That is, the size (thus the cardinality) of F is at most O(m2n3), a

polynomial in the input size.

The complexity of the algorithm is O(m4n4) time. It is not hard to see that for each

variable x in Rule(U), Procedure computeKeys(x) takes O(m4n3) time. Indeed, for each

key in Σ (Line 1) and for each ancestor target of x (Line 6), it checks implication of XML

keys using Algorithm implication (Line 8), which takes O(m2n2) time since the key to

be checked is no larger than the size of Rule(U). The minimization of keys[x] (Lines 16

to 22) takes at most O(m4) time because there exists at most m values in keys [x] each of

size at most m. The last step in the procedure (Lines 23 to 28) takes no more than O(n)

time. Therefore, the overall cost of procedure computeKeys for a variable x is O(m4n3).

Before analyzing procedure genFDs(x), observe that the size of unique[x], uniqueAnc[x],

required [x], and field [x] is at most O(n). Since one key K is selected to generate FDs of

the form K → l and K → S, where l ∈ unique[x], and S ∈ unique[x], Lines 2 to 7 take

O(n) time. The generation of FDs of the form K → (K ∪ S) takes O(n3) time (Lines 8

to 23), and the generation of FDs of the form {l, l′} → l for required fields for x takes

O(n2) time (Lines 24 to 28). Generating this form of FDs for ancestors of x (Lines 29 to

44) takes O(m2n3) time given that the outer loop is executed at most n times, each for an

174

ancestor of x. Each ancestor w has at most n fields in required [w], x has at most n fields

in fields[x], and for each combination it is tested if the value is in keys[x] of size O(m2).

The second loop (Lines 40 to 44) takes at most the same time. The generation of FDs of

the form K → K ′ for each K ′ in keys [x] takes O(m) time (Lines 45 to 49), since there

exists at most O(m) values in keys[x]. Therefore, the overall cost of procedure genFDs for

a variable x is O(m2n3).

Since Procedure computeKeys and genFDs processes each variable x in Rule(U) once, the

total time for executing both procedures (Lines 12 to 21) is at most O(m4n4) time. The

initialization steps (Lines 1 to 10) take at most O(m2n4) time, and therefore, algorithm

minimumCover costs at most O(m4n4). Since Σ and Rule(U) are usually small, this al-

gorithm is efficient in practice. The experimental results of Section 6.5 also show that it

substantially outperforms Algorithm naive.

A final remark is that, although one can generalize Algorithm minimumCover to check

XML key propagation instead of using Algorithm propagation, there are good reasons

for not doing so. The complexity of Algorithm minimumCover is higher than that of

Algorithm propagation (O(m4n4) vs. O(m2n4)). In short, Algorithm propagation is

best used to inspect a predefined relational schema, whereas Algorithm minimumCover

helps normalize a universal relation at the early stage of relational design.

6.4.3 The Correctness of the Minimum Cover Algorithm

We now prove the correctness of our algorithm for computing a minimum cover:

Theorem 6.4 Given a set Σ of XML keys and a universal relation U defined by a trans-

formation σ, Algorithm minimumCover computes a minimum cover for all the FDs on U

propagated from Σ via σ.

To prove the theorem, we will first show that the set F resulting from the algorithm indeed

generates all FDs necessary to cope with the null value restriction. More specifically, in

Lemma 6.5 we will show that for any field l1 ∈ fields[x], and any field l2 required for x,

175

F |= {l1, l2} → l1. Then, in Lemma 6.6, we will show that if K = head(keys[x]) then

F |= K → K ∪ {l} for every field l that is unique for an ancestor of x, and moreover,

F |= K ∪ {l} → K for every required field l for x.

Based on these two lemmas we develop the proof of the theorem in three parts. The first

is to show that for any FD φ = Y → Z in F it is indeed the case that Σ |=σ φ. The proof

is based on the idea that Y corresponds to the set of fields defined by a transitive set of

keys Θ for an x-node, and fields in Z are unique for x. Given that Σ |= Θ, for any XML

tree T if T |= Σ then there exists no two nodes in T agreeing on Y . Since fields in Z are

unique, σ(T) |= φ.

The second part is to show that all FDs propagated from Σ can be derived from F . That

is, if Σ |=σ φ then F |= φ. Similar to the correctness proof of algorithm propagation

presented in Section 6.3.2, we decompose the FD φ = Y → Z to a a set of simple FDs

φi : Yi → Zi such that labels in Yi∪Zi are defined along a path from the root xr to a variable

xi. Given this, we encode Yi to a set of transitive keys Θ and Zi to a set of keys asserting

the uniqueness of each field in Zi such that Σ |=σ Yi → Zi if and only if Σ |= Θ∪Γ. Then,

in Lemma 6.7, we show that F |= Yi → head(keys [xi]) and F |= head(keys [xi])→ Yi; that

is, they are equivalent according to F , and moreover, F |= head(keys [xi])→ Zi. Thus, by

transitivity, we derive F |= Yi → Zi. Given that for every φi the implication holds, we can

obtain F |= Y → Z by the augmentation and transitivity rules for FD inference.

The third part is to show that F is not only a cover of all FDs propagated from Σ, but a

minimum cover. That is, F does not contain any redundant FDs. We will show that for

each of the forms of FDs generated by the algorithm, F \ {φ} 6|= φ.

Lemma 6.5 Let x be a variable in Rule(R), and l a field defined by a child of x. For

every label l′, if l′ is required for x then F |= {l, l′} → l.

Proof. Let l be defined by l : value(y), where y ← x/Q, and l′ be defined by l′ : value(y′),

where y′ ← x′/@a, and either x′ = x or x′ is an ancestor of x. We will show by induction on

|P (x′, x)| that for all fields in required [x′], F |= {l, l′} → l. For the base case, |P (x′, x)| = 0,

that is, x = x′. This case is direct because procedure genFDs inserts FD {l, l′} → l for all

176

l ∈ field [x], and all l′ ∈ required [x], except when {l′} is in keys[x], and l is in unique[x].

But then F |= l′ → l, and the FD can be obtained by augmentation of l.

Suppose the statement holds for all descendents of x′. We have to show that it also holds

for x′. Let l′ be an arbitrary field in required [x′]. Observe that, by construction, if {l′}

is not in keys[x′] and {l, l′} is not in keys [x] then F contains {l, l′} → l. Therefore, we

have to show that in these two cases the FD can be derived from F . First, consider that

{l, l′} is in keys[x]. If there exists a field l′′ 6= l in required [x] then, by construction, F

contains both {l, l′′} → l, and {l, l′} → l′′, since required [x] ⊆ unique[x]. Therefore, by the

augmentation and transitivity rules for FD inference, F |= {l, l′} → l. If such an l′′ does

not exist, then by construction the FD is inserted in F and therefore the implication also

holds.

Now consider that {l′} is in keys [x′]. Similar to the previous case, if there exists an l′′ 6= l′ in

required [x′] such that F |= {l, l′′} → l then {l, l′} → l can be obtained by the augmentation

and transitivity rules for FD inference, since F |= l′ → l′′. Such an l′′ does not exist if for

all fields li ∈ required[x
′], {li} is a key for x′. Let required [x′] = {l1, . . . , lk}. It suffices

to show that for some li, F |= {li, l} → l. For if it holds, since for all lj, j ∈ [1, k],

F |= head(keys [x′]) → lj , and F |= lj → head(keys [x′]), we can obtain F |= {lj , l} → l

for any lj by the augmentation and transitivity rules for FD inference. By construction,

an FD {li, l} → l is inserted in F , except when descKeys [x′] 6= {}. If this is the case,

then F contains head(keys[x′]) → head(keys[z]), where head(keys[z]) ∈ descKeys [x′].

By inductive hypothesis, for every field lz ∈ head(keys[z]), F |= {l, lz} → l. Therefore,

F |= head(keys[z]) ∪ {l} → l. Thus, by the augmentation and transitivity rules, F |=

head(keys[x′]) ∪ {l} → l. That is, for some li ∈ required [x′], {l, li} → l is in F , as we

wanted to show. 2

Lemma 6.6 Let x be a keyed variable, and K = head(keys [x]). For every unique label l

for x′, where either x′ is an ancestor of x or x′ = x, F |= K → K ∪{l}. For every required

label l for x, F |= K ∪ {l} → K if x 6= xr.

177

Proof. We will first show that for every required label l for x F |= K ∪{l} → K if x 6= xr.

By construction, there exists a label l′ ∈ K such that l′ ∈ fields[x]. Therefore, by Lemma

6.5, since l is required for x, F |= {l, l′} → l′. Therefore, by augmenting both sides with

K, we obtain K ∪ {l} → K.

A roadmap of the proof that F |= K → K ∪ {l} is as follows. First, we will show that for

every keyed ancestor w of x, F |= K → K ∪ head(keys [w]). Given this, let l be defined

by l : value(xl) and w be either x or a common keyed ancestor of xl and x. We will then

show that F |= head(keys[w]) → head(keys[w]) ∪ {l}. From these two FDs we can derive

K → K ∪head(keys[w])∪{l} by the augmentation and transitivity rules for FD inference.

Since every field lw ∈ head(keys[w]) is required for x, F |= K ∪ {lw} → K, and thus

F |= K ∪head(keys[w])→ K. Applying again the augmentation and transitivity rules, we

finally obtain K → K ∪ {l}.

To show that for every keyed ancestor w of x, F |= K → K ∪ head(keys [w]), observe

that if uniqueUp[w] = w′, then by construction, w′ is keyed and F |= head(keys [w′]) →

head(keys [w]). Therefore, it suffices to show that for every keyed ancestor w of x with

uniqueUp[w] = nil, F |= K → K∪head(keys [w]). The proof is by induction on the number

of keyed variables w′ between x and w with uniqueUp[w′] = nil. For the base case, w is

the closest keyed ancestor of x with uniqueUp[w] = nil, and it is direct because F contains

K → K ∪ head(keys [w]).

Now suppose that w is the n-th keyed ancestor of x with uniqueUp[w] = nil, and the

statement holds for w and descendents of w. We have to show that it holds for w′, its

closest keyed ancestor. Let Hw = head(keys [w]), and Hw′ = head(keys [w′]). By inductive

hypothesis, the following FDs can be inferred from F :

φ1 : K → K ∪Hw

φ2 : Hw → Hw ∪Hw′ .

Since every l ∈ Hw is required for x, F |= K ∪ {l} → K. Therefore, the following FD can

also be inferred from F :

178

φ3 : K ∪Hw → K

We can now obtain K → K ∪Hw′ by transitivity of the following FDs:

K → K ∪Hw φ1

K ∪Hw → K ∪Hw′ ∪Hw augmentation of φ2 with K

K ∪Hw ∪Hw′ → K ∪Hw′ augmentation of φ3 with Hw′.

Given that for every keyed ancestor w of x, F |= K → K ∪head(keys [w]), to complete the

proof, we have to show that F |= head(keys[w]) → head(keys[w]) ∪ {l} for every required

field l for x, where l is defined by a variable xl, and w is either x or a common keyed

ancestor of xl and x. We have two cases to consider.

Case 1: the closest common ancestor w of xl and x is keyed. Let l be a field in unique[w].

If l 6∈ head(keys [w]) then procedure genFDs inserts head(keys [w]) → l in F . Otherwise,

since every lw ∈ head(keys [w]) is required for w, F |= {lw, l} → l. Therefore, by the

augmentation and transitivity rules for FD inference we obtain F |= head(keys [w]) → l.

By applying the augmentation rule again we obtain head(keys [w])→ head(keys [w]) ∪ {l}.

Case 2: the closest common ancestor w of xl and x is not keyed. Let x′ be w closest

keyed ancestor, and l a field in unique[w]. By construction, procedure genFDs inserts

head(keys [x])→ head(keys [x])∪{l} in F , unless l ∈ uniqueAnc[x′]. If this is the case, then

there exists a keyed ancestor w′ of x′ such that F |= head(keys [w′])→ head(keys[w′])∪{l}.

Given that w′ is also an ancestor of x, this completes the proof. 2

Now we are ready to show that F is a minimum cover of all FDs propagated from Σ via

σ. Let F be the set of FDs computed by algorithm minimumCover. We have to show that

if φ ∈ F then Σ |=σ R : φ (Part 1), and if Σ |=σ R : φ then F |= φ (Part 2). Moreover, we

have to show that there is no subset F ′ of F such that F ′ |= F (Part 3).

Proof of Part 1. Let φ = Y → Z be an arbitrary FD in F generated by procedure

genFDs when processing a variable y. We have to show that Σ |=σ R : φ. That is, we have

to show that for any XML tree T such that T |= Σ, σ(T) |= φ. By construction, φ can be

of two forms: 1) {l, l′} → l, and 2) K → Z, where K is in keys[y].

179

Consider FDs of the first form. Since {l} ⊂ {l, l′} it cannot be the case that for any two

tuples t1, t2 ∈ σ(T), πl,l′(t1) = πl,l′(t2) and πl(t1) 6= πl(t2). Therefore, we only have to

show that the FD does not violate the null restriction for FD satisfaction. This is indeed

the case since by construction, if l ∈ field [y] then l′ ∈ required [y′], where either y′ is y or

an ancestor of y. That is, for any XML tree T that satisfies Σ, whenever there exists a

node n ∈ [[P (xr, y)]], it must be the case that there exists a node n′ ∈ [[P (xr, y
′)]] such

that n ∈ n′[[P (y′, y)]]. Moreover, since l′ ∈ required [y′], if l′ : value(z) is in Rule(U) and

z ← y′/@a then n′[[P (y′,@a)]] is not empty. Therefore, by the semantics of transformations,

for any tuple t ∈ σ(T), whenever πl(t) 6= null, πl′(t) 6= null. Thus, σ(T) satisfies the null

restriction for FD satisfaction.

Now consider the second form of FDs: φ : K → Z, where K is a value in keys[y]. Recall

that K is composed of required attributes of ancestors of y, and moreover, contains at

least one required attribute of y. As a consequence, the existence of a node v in [[P (xr, y)]]

implies that πY (t) does not contain null. Therefore, we have to show that: 1) the existence

of nodes to populate fields in Z guarantees the existence of a node v in [[P (xr, y)]], and 2)

for any node v in [[P (xr, y)]], there exists at most one node in T that corresponds to each

label in Z.

The first condition guarantees that whenever πY (t) contains null so does πZ(t). It suffices

to show that there exists a label l ∈ Z such that l ∈ descendent(y). This is indeed the case,

since by construction either Z involves K, or Z = {l}, where l is a unique descendent of

y, or Z = head(keys [w]), where w is a descendent of y, or Z = K ′, where K ′ is in keys[y].

The second condition guarantees that there exists no two tuples in σ(T) that agree on Y

but not on Z. By construction, K corresponds to fields populated with attributes in a

transitive set of keys for y. That is, this set of attributes uniquely identifies a node in

[[P (xr, y)]]. Let this transitive key defined by K be Θ. Since Σ |= Θ, by Lemma 6.2, there

exists no two nodes in T agreeing on K. Therefore, we only have to show that for any node

v in [[P (xr, y)]], there exists at most one node in T that corresponds to every label in Z.

For if it holds there are no two tuples in σ(T) that agree on the values of K, and for each

value of K there exists at most one value for Z. By construction, either Z in unique[y], or

180

Z in descKeys [y], or Z in keys [y], or Z = K ∪ L, where for every l ∈ L, l is unique for y

or for some ancestor of y.

The first two cases are direct because by the computation of unique[y] and descKeys[y],

either Z = {l}, l : value(z′), z′ is a descendent of y, and Σ |= (P (xr, y), (P (y, z′), {})),

or Z = head(keys [w]), and Σ |= (P (xr, y), (P (y,w), {})). For the third and fourth cases,

observe that any K ′ in keys [y] is composed of only required labels of y, and by definition,

every required label of y is also unique for y or for an ancestor of y. Because of the tree

structure of T , for every node n in [[P (xr, y)]], and every ancestor y′ of y there exists

a unique node n′ ∈ [[xr, y
′]] such that n ∈ n′[[P (y′, y)]]. Therefore, by the semantics of

transformations, for each value of K there exists at most one value for Z. This completes

the proof that for any φ ∈ F , Σ |=σ R : φ.

Proof of Part 2. We now have to show that if Σ |=σ R : φ then F |= φ. Let φ = Y → Z.

As shown in the proof of Theorem 6.3, φ can be decomposed to a set of simple FDs

φi = Yi ∪ Zi, denoted as fdsDefBy(φ). According to Lemma 6.1, Σ |=σ φ if and only if for

every i, Σ |=σ φi. We then encode Zi as a set of XML keys Γ that asserts the uniqueness

of each field in Zi. Moreover, we define Ymin to be a minimum subset of Yi such that

Σ |=σ Ymin → Zi, and encode Ymin as a transitive set of keys Θ for an xi-node. By Lemma

6.3, Σ |= Θ ∪ Γ.

Therefore, to prove that F |= φi : Yi → Zi. we will first show that F |= Ymin →

head(keys[xi]), and F |= head(keys[xi]) → Ymin. This is asserted by Lemma 6.7 given

below and it is based on the definition of Θ. Given this, we then show that for every field

l ∈ Yi but not in Ymin, denoted as Yext, F |= head(keys [xi])∪{l} → head(keys [xi]). This is

direct from Lemma 6.6, since every l in Yext is required for xi. Thus, by the augmentation

and transitivity rules, F |= head(keys [xi]) ∪ Yext → head(keys [xi]). Given that F |=

Ymin → head(keys [xi]), we can obtain Ymin ∪ Yext → head(keys [xi]) ∪ Yext by augmenting

both sides with Yext. Therefore, by transitivity, F |= Ymin ∪ Yext → head(keys [xi]).

To complete the proof, we have to show that F |= head(keys [xi])→ Zi. Let Zi = Zx ∪Za,

where Zx ⊆ unique[xi], and Za = Zi \ Zx. Observe that in order to satisfy the null

restriction for FD satisfaction, Zx 6= ∅. Recall that by Lemma 6.3, Σ |= Γ, where Γ =

181

{(P (xr , w), (P (w, z), {})) | z ∈ var (Zi), and w is the closest ancestor of the z in Wi}. That

is, every label l ∈ Zi is unique for some w, where w = xi, or w is an ancestor of xi. There-

fore, by Lemma 6.6, for every l ∈ Za, F |= head(keys [xi])→ head(keys [xi])∪{l}. Applying

the augmentation and transitivity rules we can derive head(keys [xi])→ head(keys [xi])∪Za.

By construction, Zx ⊆ unique[xi], and procedure genFDs generates head(keys [xi])→ l for

every l ∈ Zx. Therefore, F |= head(keys [xi]) → Zx. By augmenting this FD with Za we

obtain head(keys [xi])∪Za → Zx∪Za. Therefore, by transitivity, head(keys [xi])→ Zx∪Za,

that is, F |= head(keys [xi]) → Zi. Since F |= Yi → head(keys[xi]), by the augmentation

and transitivity rules for FD inference we derive F |= Yi → Zi. Given that for all i,

F |= Yi → Zi, we can conclude that F |= Y → Z.

Lemma 6.7 Let x 6= xr be a variable, and Θ be a minimum transitive set of XML keys

for x such that Σ |= Θ. Let K be the set of labels defined by attributes of keys in Θ, that is,

K = {l | l : value(y), y ← w/@a, @a ∈ S, (Q, (Q′, S)) ∈ Θ}. Then F |= head(keys [x])→

K, and F |= K → head(keys [x]).

Proof. Let Θ be {κ1, . . . , κn}, where each κi is defined as follows. Let V = {y1, . . . , yn}

be the subset of variables along the path P (xr, x) with children that populate fields in

K. Define {Y1, . . . , Yn} to be the subsets of K such that each Yi correspond to fields

populated by children of yi, and Ki to be the set {Yj | j ≤ i}. Given this, we define

κi = (P (xr, yi−1), (P (yi−1, yi),Kattr(yi))), where Kattr(yi) denotes the set of attributes

of yi that define fields in Yi.

We will show by induction on n, the cardinality of Θ, that for all i ∈ [1, n], F |=

head(keys [yi]) → Ki and F |= Ki → head(keys [yi]). For the base case, n = 1, i.e. Θ =

{(ε, (Q,Kattr(y1)))}. SinceKattr(y1) is minimum, there must exist a key (ε, (Q′,Kattr(y1)))

in Σ, where Q ⊆ Q′. Therefore, algorithm computeKeys inserts Y1 in keys [y1]. Since

Y1 ⊆ required [x] ⊆ unique[x], algorithm genFDs generates head(keys [x]) → l for every

l ∈ Y1. Therefore, by the augmentation and transitivity rules for FD inference, F |=

head(keys [x]) → K. The other direction is direct because an FD K → head(keys [x]) \K

is also generated by genFDs and inserted in F .

182

Assume the statement holds for every i < n. We will show that it holds for n. Ob-

serve that when processing variable yn, procedure computeKeys inspects all keys φ in Σ

to check whether φ can be part of a transitive set of keys for the yn-node. Since Θ is

minimum, if (Qk, (Q
′
k,Kattr(yn))) ∈ Θ, then there exists a key φ = (Q, (Q′,Kattr(yn)))

in Σ. Therefore, starting from xr, computeKeys checks for each keyed ancestor ya of

yn whether Kattr(yn) is a key for the yn-node with respect to ya. That is, if Σ |=

(P (xr, ya), (P (ya, yn),Kattr(yn))). First, suppose that ya = yn−1, and let Hn−1 = head

(keys [yn−1]). In this case, an element is inserted in keys[yn] by combining Hn−1 with

Yn. By inductive hypothesis, F |= Kn−1 → Hn−1, and procedure genFDs inserts in F

an FD (Hn−1 ∪ Yn) → head(keys [yn]). Therefore, by the augmentation and transitivity

rules, F |= Kn−1 ∪ Yn → head(keys [yn]). To show the other direction, observe that since

every l ∈ Yn is unique for yn, F contains head(keys [yn]) → l. Therefore, F |= φ′1, where

φ′1 = head(keys [yn]) → Yn. By inductive hypothesis, F |= φ′2, where φ′2 = Hn−1 → Kn−1.

Therefore, we can obtain head(keys [yn])∪Hn−1 → Kn−1∪Yn by transitivity of the following

FDs:

head(keys [yn]) ∪Hn−1 → Yn ∪Hn−1 augmentation of φ′1 with Hn−1

Hn−1 ∪ Yn → Kn−1 ∪ Yn augmentation of φ′2 with Yn

Since every label l ∈ Hn−1 is unique for yn−1, and yn−1 is an ancestor of x, by Lemma

6.6, F |= head(keys [yn]) → head(keys [yn]) ∪ {l}. Therefore, by the augmentation and

transitivity rules, F |= head(keys [yn])→ head(keys [yn])∪Hn−1. Therefore, by transitivity,

F |= head(keys [yn])→ Kn−1 ∪ Yn.

Now, suppose that P (xr, yn−1) = P (xr, ya)/Q. That is, Kattr(yn) is a key for the yn-node

with respect to ya and ya is a keyed ancestor of yn−1. Let Ha = head(keys [ya]). In this

case, a value is inserted in keys [yn] by combining Ha with Yn. Thus, according to the

previous discussion, the following FDs are consequences of F :

φ1 : Ha ∪ Yn → head(keys [yn])

φ2 : head(keys [yn])→ Ha ∪ Yn

We have to show that F |= Hn−1 ∪ Yn → Ha ∪ Yn and F |= Ha ∪ Yn → Hn−1 ∪ Yn.

183

Before doing so, we will first establish the implication of some FDs involving Hn−1 and

Ha. Observe that since ya is an ancestor of yn−1, every l ∈ Ha is required for yn−1, and

unique for ya. Therefore, by Lemma 6.6 the following FDs are implied by F :

φ3 : Ha ∪Hn−1 → Hn−1

φ4 : Hn−1 → Ha ∪Hn−1.

By inductive hypothesis the following FDs are also consequences of F :

φ5 : head(keys [yn−2] ∪ Yn−1 → Hn−1

φ6 : Hn−1 → head(keys [yn−2]) ∪ Yn−1.

By construction, Yn−1 ⊆ unique[yn−1]. Therefore, F implies the following FD:

φ7 : Hn−1 → Yn−1.

From these FDs we can infer the following:

φ8 : Hn−1 ∪Ha → Yn−1 ∪Ha

φ9 : Yn−1 ∪Ha → Hn−1] ∪Ha.

φ8 is obtained by augmenting φ7 with Ha, while φ9 is obtained by transitivity of the

following FDs:

Ha → Ha ∪ head(keys [yn−2]) by Lemma 6.6

Ha ∪ Yn−1 → Ha ∪ head(keys [yn−2]) ∪ Yn−1 by augmentation with Yn−1

head(keys [yn−2]) ∪Ha ∪ Yn−1 → Hn−1 ∪Ha augmentation of φ5 with Ha.

Now we are ready to show that F |= Hn−1∪Yn → Ha∪Yn and F |= Ha∪Yn → Hn−1∪Yn.

Since every label l in Yn−1 is required for x, and unique for yn−1, by Lemma 6.6, the

following FDs are consequences of F :

φ10 : head(keys [yn]) ∪ {l} → head(keys [yn])

φ11 : head(keys [yn])→ head(keys [yn]) ∪ {l}.

184

Therefore, by the augmentation and transitivity rules with φ1 and φ2 we obtain:

φ12 : Ha ∪ Yn ∪ Yn−1 → Ha ∪ Yn

φ13 : Ha ∪ Yn → Ha ∪ Yn ∪ Yn−1.

Then, we can obtain F |= Hn−1 ∪ Yn → Ha ∪ Yn by transitivity of the following FDs:

Hn−1 ∪ Yn → Ha ∪Hn−1 ∪ Yn augmentation of φ4 with Yn

Ha ∪Hn−1 ∪ Yn → Ha ∪ Yn−1 ∪ Yn augmentation of φ8 with Yn

Ha ∪ Yn−1 ∪ Yn → Ha ∪ Yn φ12.

We can obtain F |= Ha ∪ Yn → Hn−1 ∪ Yn similarly using φ13, φ9, and φ3. Therefore, for

all yi ∈ V , F |= head(keys [yi])→ Ki and F |= Ki → head(keys [yi]). 2

Proof of Part 3. We now have to show that F is minimum. Let x be an arbitrary keyed

variable. We will consider each of the forms of FDs generated at the x-node, and show

that if we insert an FD ϕ in F then F \ {ϕ} 6|= ϕ.

First, consider an FD of the form ϕ1 = K → S, where K = head(keys [x]), and either

S = {l}, l : value(y), and l ∈ unique[x], or S ∈ descKeys [x], and S = head(keys [y]), where

y is a descendent of x. By construction, S 6⊆ K, and ϕ1 cannot be obtained by reflexivity

and augmentation of K or S. Therefore, if ϕ1 is redundant, it must be the case that there

exists a set of fields Y ′ such that F |= {K → Y ′, Y ′ → S}. We will show that such Y ′ does

not exist. Given that Σ |= (P (xr, x), (P (x, y), {})), then for any variable x′ along the path

P (x, y), Σ |= (P (xr, x)/P (x, x′), (P (x′, y), {})) by the target-to-context rule for XML key

inference. That is, y is also unique for x′. Therefore, we have to show that there exists no

x′ that is keyed such that Σ |= (P (xr, x), (P (x, x′), {})). For if it holds, unique[x] contains

head(keys [x′]), and F contains both K → head(keys [x′]) and head(keys [x′]) → S. Thus,

F |= ϕ1 by transitivity. Suppose, by contradiction, that there exists an x′ that satisfies

the condition above. We will show that if this is the case then ϕ1 6∈ F . By construction, if

Σ |= (P (xr, x), (P (x, x′), {})), and keys [x] 6= nil, uniqueUp[x′] 6= nil. If uniqueUp[x] = nil

then uniqueUp[x′] = x and in the computation of unique[x], it is subtracted by unique[x′],

and head(keys[x′]) is inserted in descKeys[x]. Therefore, F contains K → head(keys[x′]),

185

but not K → S, a contradiction. If uniqueUp[x] = z then Σ |= (P (xr, z), (P (z, x), {})). By

the context-to-target rule for XML key inference, Σ |= (P (xr, z), (P (z, x)/P (x, x′), {})), that

is, x′ is also unique under z. Therefore, uniqueUp[x] = uniqueUp[x′], and by construction,

unique[x′] is also subtracted from unique[x], and head(keys[x′]) is inserted in descKeys[x].

Thus, K → S is not inserted in F , a contradiction. Given that ϕ1 ∈ F implies that there

exists no x′ such that Σ |= (P (xr, x), (P (x, x′), {})), F \ ϕ1 6|= ϕ1.

Now consider FDs of the form ϕ2 = K ′ → (K \ K ′) generated by genFDs(x), where

K = head(keys [x]), and K ′ is another key in keys[x]. Suppose, by contradiction, that

ϕ2 is redundant. Let K = Ka
1 ∪ L1, and K ′ = Ka

2 ∪ L2, where Ka
1 = head(keys [x1]),

Ka
2 = head(keys [x2]), and (L1 ∪ L2) ⊆ required [x]. Observe that F 6|= K ′ → Ka

1 because

of the null restriction for FD satisfaction. Since by construction, K and K ′ are minimum,

and there exists no other form of FDs with K ′ on the left-hand side, if F \ {ϕ2} |= ϕ2,

it must be the case that F |= Ka
2 ∪ L2 → L1, and F |= Ka

2 → Ka
1 . We will show that

the latter is true only when x1 = x2. Observe that if x1 is an ancestor of x2, the FD

violates the null restriction. Therefore, it must be the case that x1 is a descendent of x2.

But if F |= Ka
2 → Ka

1 , x1 is unique for x2. That is, Σ |= (P (xr, x2), (P (x2, x1), {})). In

this case, since algorithm computeKeys looks for keys starting from the root, L1 would

be combined with Ka
2 to form a key for x, and not with Ka

1 . That is, K would not be

in keys[x], a contradiction. Therefore, if F |= Ka
2 → Ka

1 , then x1 = x2, and F contains

K ′ → (K \K ′) = L1. Otherwise, F 6|= Ka
2 → Ka

1 , and thus F \ ϕ2 6|= ϕ2.

Next, we have to show that if F contains ϕ3 = K → (K ∪ S) then F \ {ϕ3} 6|= ϕ3.

By construction, K = head(keys [x]), and either S = {l}, and l ∈ unique[w], or S =

head(keys [w]), where w is an ancestor of x. Observe that in both cases, F 6|= K → S

because of the null restriction. Suppose, by contradiction, that F \ {ϕ3} |= ϕ3. Then

there must exist a set of labels V such that F |= K → V → S, and ϕ3 is obtained by

augmentation ofK. If F |= V → S, by construction, V = head(keys [w′]), for some ancestor

w′ of w. Consider first that S = {l}. Then, l is in unique[w′] and since keys [w′] 6= nil,

when procedure genFDs is processing x, uniqueAnc[x] contains l. Therefore, ϕ3 6∈ F , a

contradiction. Now consider that S = head(keys [w]). Then, by construction, if F |= V →

head(keys[w]) then either uniqueUp[w] = w′, or uniqueUp[w] = uniqueUp[w′] = w′′, for

186

some ancestor w′′ of w′. In both cases, since uniqueUp[w] 6= nil, ϕ3 would not be in F , a

contradiction.

To complete the proof, we have to show that if F contains ϕ4 = {l, l′} → l, F \{ϕ4} 6|= ϕ4.

Let l be a label in field [x], and l′ a label in required [w], where l : value(y), y ← x/P is in

Rule(U), and l′ : value(w′), w′ ← w/@a. If l 6∈ unique[x] then there exists no FD in F ,

except of this form, with l on the right-hand side. Therefore, F \ ϕ4 6|= ϕ4. We have to

show that this is true also when l ∈ unique[x]. If ϕ4 is obtained by augmentation from F

then it must be the case that F |= l′ → l. But this is true only if for some variable w, {l′}

is in keys [w] and l is in unique[w]. If this is the case, by construction, both when w = x

and when w is an ancestor of x, ϕ4 is not included in F . Therefore, if F \ ϕ4 |= ϕ4, it

must be obtained by transitivity. That is, there exists a set of labels V such that either

F |= {l, l′} → V or F |= l′ → V , and moreover, F |= V ∪ {l} → l. Suppose first that

that there exists a set of labels V such that F |= {l, l′} → V . But then {l, l′} must be in

keys [x], and V = l′′, where l′′ 6= l. That is, required [x] must contain at least one additional

field besides l and thus required [x] 6= {l}. But if this is the case, ϕ4 is not inserted into F ,

a contradiction.

Suppose now that there exists V such that F |= l′ → V . For the implication to hold, {l′} is

in keys [w]. But if this is the case, {l′, l} → l is only included in F if for all l′′ ∈ required [w],

{l′′} is in keys [w]. We will show that if ϕ4 is in F there exists no set of labels V 6= {l′} such

that F |= l′ → V and F |= V ∪ {l} → l. Thus, F \ ϕ4 6|= ϕ4. Suppose, by contradiction,

that V exists. By assumption, for every label l′′ ∈ required [w], {l′′} is in keys [w]. Thus,

if for one label l′′ ∈ required [w], F |= {l′′, l} → {l} then the implication is true for all

required labels in required [w]. This is because by Lemma 6.7, for any {l′′} in keys [w],

F |= l′′ → head(keys [w]), and F |= head(keys [w]) → l′′. Therefore, by transitivity, for

any l′′ ∈ required [w], F |= {l′′, l} → l. By construction, if ϕ4 is in F then for no other

l′′ ∈ required [w], {l′′, l} → l is in F . Therefore, if F |= l′ → V then V must be a key of some

descendent w′ of w that is unique under w. But if this is the case, descKeys [w] 6= {} and

ϕ4 would not be included in F . Therefore, there exists no V 6= {l′} such that F |= l′ → V

and F |= V ∪ {l} → l, and thus, F \ ϕ4 6|= ϕ4. This completes the proof that F is indeed

a minimum cover of all FDs propagated from Σ. 2

187

6.5 Experimental Study

The various algorithms presented in this chapter have been implemented in a prototype

system, which is being used at the Penn Center for Bioinformatics to process gene expres-

sion data. We have conducted a number of experiments for the following purposes:

1. to evaluate the performance of Algorithm propagation and Algorithm minimumCover

in practice;

2. to compare the performance of Algorithm minimumCover versus naive when com-

puting a minimum cover of FDs propagated from a set of XML keys;

3. to compare the cost of Algorithm propagation versus a generalization of Algorithm

minimumCover for checking XML key propagation;

4. to analyze the impact of different data sets (the size of the relational schema U, the

size of table tree/transformation, the number of XML keys) on the performance of

Algorithms propagation and minimumCover.

As will be seen shortly, the results of our experiments show that both Algorithm propagation

and Algorithm minimumCover work well in practice: they take merely a few seconds even

given large relational schema, transformation/table tree and XML keys as input. This

demonstrates that despite their O(m2n4) and O(m4n4) worst-case complexities, the algo-

rithms are efficient in practice. For computing minimum cover, Algorithm minimumCover

is several orders of magnitude faster than Algorithm naive, and for checking key propa-

gation Algorithm propagation significantly outperforms the generalization of Algorithm

minimumCover. Our experimental results also reveal that Algorithm minimumCover is

more sensitive to the number of XML keys than to the size of the transformation. This is

a rather pleasant discovery, since in many applications the number of keys does not change

frequently whereas a relational schema may define tables with a variety of different arities

(number of fields). Our results also show that Algorithm propagation has a surprisingly

low sensitivity to the size of the transformation, and that its execution time grows linearly

with the size of XML keys.

188

6.5.1 Experimental Testbed

To explore the impact of different types of transformation rules and XML key sets on the

performance of our algorithms, we designed a synthetic generator of transformations and

XML keys. The generator produces experimental data sets based on the following user-

defined parameters: the number of fields in a relation, the depth of a table-tree (i.e., the

size of a transformation), and the number of XML keys. The choice of these parameters

was guided by the statistics of applications at the Penn Center for Bioinformatics involving

importing data in MAGE-ML (a standard designed to represent gene expression data and

relevant annotations) into GUS (a pre-existing relational database).

All experiments were conducted on the same 1.6GHz Pentium 4 machine with 512MB

memory. The operating system is Linux RedHat v7.1 and the program was implemented

in C++ using Qt Library 3.0, running in the KDE desktop environment. The execution

times reported in the next section were obtained after running the programs for at least 5

times for each setting.

6.5.2 Experimental Results

We next present the results of three experiments, conducted for different values of the

following parameters: the depth of the table-tree (depth), the number of keys (keys), and

the number of fields (fields).

The first experiment evaluates the performance of the two algorithms developed in Sec-

tion 6.4 for computing minimum cover. Figure 6.14 presents the results for two settings:

while varying the number of fields in U, the first curve depicts the execution time of Al-

gorithm naive for depth = 5 and keys = 5, while the other two curves plot the execution

time of Algorithm minimumCover for depth = 5 and keys = 5 as well as for depth = 10

and keys = 10. We have also conducted the experiments for different values of depth and

keys, and the results are consistent with Figure 6.14. These results tell us the following.

First, the average complexity of Algorithm minimumCover in practice is much better than

its O(m4n4) worst-case complexity given in Section 6.4, where m and n are the sizes of

189

depth:5 keys:5 depth:10 keys:10
field naive minimumCover minimumCover

5 0.302 0.05 0.2877
6 0.866 0.061 0.2938
7 2.36 0.067 0.3161
8 6.804 0.074 0.3297
9 20.259 0.089 0.3398
10 55.407 0.102 0.368
15 0.189 0.5448
20 0.341 0.834
25 0.449 1.1985
30 0.583 1.6263
50 3.364
100 8.436
200 32.903
500 132.15

Figure 6.14: Time for computing minimum cover in seconds

the transformation and XML keys respectively. Consider, for example, the execution time

of the algorithm for depth = 10 and key = 10 given in Figure 6.14. When the number of

fields is increased (which corresponds roughly to increasing the size of the transformation),

the execution time grows in the power of two in average instead of in the power of four.

Second, the table of Figure 6.14 shows that the algorithm needs less than 35 seconds for

200 fields, and a little over 2 minutes even for 500 fields. Since in most applications the

number of fields in a relation is much less than 500 – in the GUS database [DCB+01]

it varies from 7 to 50 with an average of 15 (for which Algorithm minimumCover takes

less than 1 second) – we can say that Algorithm minimumCover performs well in practice.

190

Third, predictably the performance of Algorithm minimumCover is much better than Al-

gorithm naive. For example, when the number of fields is incremented by 5, the execution

time of minimumCover at most doubles, while for naive it grows almost two-hundred-fold.

We next consider checking XML key propagation. An algorithm for doing so, Algo-

rithm propagation, was presented in Section 6.3. An alternative algorithm can also be

developed by means of Algorithm minimumCover as follows: Given a transformation σ, a

set of keys Σ, and an FD φ = Y → Z, the algorithm first invokes minimumCover(Σ, σ)

to compute a minimum cover Fmc of all the FDs propagated; it then checks whether or

not Fmc implies φ using relational FD implication, and whether all the fields in Y are

guaranteed to have a non-null value when none of the fields in Z contains null. It returns

true iff these conditions are met. In what follows, we refer to this generalized algorithm

as GminimumCover since the performance is roughly comparable to the original algorithm.

Our second experiment serves two purposes: to compare the effectiveness of these two algo-

rithms for checking key propagation, and to study the impact of the depth of the table-tree

(depth) on the performance of Algorithms propagation and GminimumCover. Figure 6.15

depicts the execution time of these algorithms for field = 15 and keys = 10 with depth

varying from 2 to 15. These parameters were chosen based on the actual average table size

of the GUS database [DCB+01] and the average tree depth found in real XML data [Cho02].

The results in Figure 6.15 reveal the following. First, Algorithm propagation works well

in practice: it takes merely 0.05 second even when the table tree is as deep as 15. Second,

these algorithms are rather insensitive to the change to depth. Third, propagation is

much faster then GminimumCover for checking key propagation, as expected. Although the

actual execution times of the algorithms are quite different, the ratios of increase when the

depth of the table-tree grows are similar. This is because in both algorithms the depth de-

termines how many times Algorithm implication is invoked, and because the complexity

of Algorithm implication is a function of the size of the XML keys, which grows when

the depth of the table tree gets larger.

Our third experiment demonstrates how the number of XML keys (keys) influences the

191

field:15 key:10
depth propagation GminimumCover

2 0.01613 ratio of increase 0.191 ratio of increase
4 0.0171 6.0% 0.281 47.1%
6 0 01977 15.6% 0.382 35.9%
8 0.02413 22.1% 0.484 26.7%
10 0.0297 23.1% 0.586 21.1%
15 0.05097 71.6% 0.928 58.4%

Figure 6.15: Effect of depth of the table tree on the time for computing XML key propa-
gation

performance of Algorithms propagation and GminimumCover when checking key propa-

gation. Here we choose fields = 15 and depth = 10, again based on the statistics of

the GUS database [DCB+01] and XML data [Cho02]. The results (Figure 6.16) show that

increasing the number of keys has a bigger impact on Algorithm GminimumCover than on

propagation, in which the growth of the execution time is almost linear. In fact, additional

experiments tell us that for depth = 10 and keys = 50, Algorithm GminimumCover runs in

under 2 minutes for 200 fields, but when increasing the number of keys to 100, its execution

time is over 4 minutes for relations with 150 fields. In contrast, Algorithm propagation

runs in both settings in less than 5 seconds. In addition, for 1000 fields, which is the

maximum number of fields allowed by Oracle [Ora01], the execution time of propagation

is 85 seconds on average for 50 keys, and 142 seconds for 100 keys.

192

field:15 depth:10
keys propagation GminimumCover

5 0.02148 ratio of increase 0.279 ratio of increase
10 0.0263 22.5% 0.42 50.5%
15 0.03215 22.2% 0.816 94.3%
20 0.04025 25.2% 1.441 76.6%
25 0.04441 10.3% 2.227 54.5%
30 0.05517 24.2% 3.197 43.6%

Figure 6.16: Effect of number of keys on the time for computing XML key propagation

A closer look at Algorithm propagation reveals that the constant ratio of increase is based

on the time needed for executing the calls to Algorithm implication. That is, if the depth

of the table-tree is fixed, the number of calls is roughly the same for the whole experiment;

the increase in running time is based on the the performance of Algorithm implication,

which depends on the size of the XML keys. The performance of implication also has

an impact on the Algorithm GminimumCover. However, the number of keys has a bigger

impact on this algorithm because for each node in the table-tree all the keys are analyzed.

Also, by increasing the number of XML keys, the number of FDs in the resulting set is

likely to grow, increasing the execution time for minimizing the list of keys and for checking

whether an FD is redundant.

In summary, our experimental results show that in practice both Algorithm minimumCover

and Algorithm propagation perform much better than the worst-case complexity analysis

193

given in the previous sections. In addition, minimumCover is much faster than Algo-

rithm naive for computing minimum cover of FDs propagated from a set of XML keys,

and Algorithm propagation should be used for checking XML key propagation instead of

Algorithm GminimumCover.

6.6 Discussion

To the best of our knowledge, the only other work related to XML constraint propagation

is the query rewriting method of MARS [DT03b, DT03a] and the CPI algorithm [LC01].

In [DT03b], a chase/backchase method for query rewriting of [PT99, DPT99] has been

extended for a semistructured data model. The method can be used for determining

constraint propagation through views when views are expressed in XBind, an XML analog

of relational conjunctive queries, and dependencies are XICs (XML Integrity Constraints),

an analog of embedded depedencies for XML. However, [DT03b, PT99] do not consider

computation of a minimum cover for propagated FDs, and the generality of XICs does

not allow efficient analysis when being used to study the propagation of XML keys. CPI

is orthogonal to our work because it derives constraints from DTDs (the so-called type

constraints), while we propose a transformation language and key propagation analysis

that is independent of a DTD. If both DTDs and XML keys are present, we could combine

both approaches for determining constraint propagation. This work also parallels that of

[AMN+01, AMN+03], which investigates propagation of type constraints through queries.

In the relational context, the problem of mapping constraints through views has been

well-studied [Klu80, KP82, MMS79, BV84b], and polynomial time algorithms for finding

a minimum cover for a set of FDs have been developed in [Mai80] and [BB79]. These

algorithms take FDs as input and thus the complexity of the algorithms is a function of

the size of the FDs. In contrast, in the context of XML key propagation the goal is to

compute a cover for a (possibly exponentially large) set of FDs that are mapped from XML

keys. These FDs are not provided as input; thus the size of the FDs cannot be used as a

parameter of the complexity function. Our problem is related to finding a cover for the

FDs embedded in a subset of a relation schema, which is inherently exponential [Got87].

194

It is worth mentioning that the problem of computing embedded FDs cannot be reduced

to ours since the XML key language cannot capture relational FDs, and vice versa.

Several approaches have been explored for using a relational database to store XML docu-

ments, and they can be classified into two categories: those that represent the document as

a graph [MFK01] or set of paths [SKWW00], and those that capture the structure of the

data by grouping together certain subelements [STZ+99, BFRS02]. For those in the first

category, very little can be said about how constraints in the XML document are propa-

gated to the database, since the connection between subelements is lost when mapped to

the relational database. In contrast, approaches in the second category take advantage of

DTDs [STZ+99] or XML Schema [BFRS02] to generate relational storage mappings that

maintain related data in the same relation, and hence dependencies may be preserved. Our

framework allows the grouping of subelements by means of variable scoping rules, and does

not require a DTD or any other type of schema. Our algorithms for deriving functional

dependencies from XML keys could be combined with techniques in the second category

to automatically generate mappings through which constraints can be reasoned about.

The transformation language presented in Section 6.1 is similar to that of Stored [DFS99].

While our path language for transformation specifications is more expressive, Stored has

features that we do not support, such as label variables. The new release of Oracle

(9i) [Ora01] also supports a new datatype called XML Type with member functions to

traverse it using XPath. With this functionality, a relation can be created and populated

using a Table function in a way similar to our mapping language.

The results presented in this chapter are not only useful for refining the relational design

for XML storage, but also for optimizing queries and in understanding XML to XML

transformations.

195

Chapter 7

Conclusion

This chapter summarizes the results reported in this dissertation and identifies further

research directions.

7.1 Contributions

The main goal of this dissertation is to investigate how constraints can be used to check

the consistency of data being exchanged between different sources. Data exchange involves

transformations of data, and therefore the “transformed” data can be seen as a view of its

source. Thus, the problem we have investigated is how constraints are propagated to views,

when the data involved is not restricted to relational tables, but may be hierarchically

structured in several levels of nesting. The ability to determine constraint propagation

relies on the ability to determine constraint implication. This is because the validity of a

constraint on the view may not result directly from constraints defined on the source data,

but from their consequences. Therefore, we have started the dissertation by investigating

two forms of constraints: nested functional dependencies (NFDs) and keys for XML, and

their implication problems.

Nested Functional Dependencies (NFDs) We have presented a definition of func-

tional dependencies (NFD) for the nested relation model. NFDs naturally extend the

196

definition of functional dependencies for the relational model by using path expressions

instead of attribute names. The meaning of a path expression of the form A1 : . . . : An

is that each Ai, i < n is an attribute of set type, and Ai+1 denotes an element of the

set. The meaning of NFDs was given by defining their translation to logic, and it involves

both equality of base types as well as equality of set types. NFDs provide a framework

for expressing a natural class of dependencies in complex data structures. In particular,

in our definition of NFDs, both inter- and intra-set dependencies can be expressed. NFDs

can also express that a given set is expected to be a singleton, and that sets should not

share elements.

We presented a set of inference rules for NFDs that are sound and complete for the case

when no empty sets are present. Although for simplicity we have adopted the nested

relational model, and the syntax of NFDs is closely related to this model, allowing nested

records or sets would not change the inference rules presented significantly.

Keys for XML A definition of keys for XML has been presented, which allows one to de-

fine both global (absolute), as well as local (relative) keys. That is, keys that uniquely iden-

tify nodes in the context of the entire XML tree, and keys that identify nodes in subtrees of

the document, respectively. Our definition of keys is independent of any type specification,

and it is more expressive than previous proposals of the XML Standard[BPSM98], XML

Data [Lay98b], and XML Schema [TBMM01]. Similar to NFDs, keys also involve path

expressions, but path expressions here may contain not only element/attribute labels, but

also “//”, a combination of wildcard and Kleene closure. That is, it denotes the traversal

of an arbitrary number of labels. Two notions of equality were used to define keys: node

identity and value equality of complex values, which in this case involves tree structures.

In summary, our keys express that a set of key values (that can be tree values) determines

the identity of a node in a context, that can either be a subtree or the entire XML tree.

Since a relative key alone does not allow one to uniquely identify a node in the entire

XML tree, we have introduced the notion of transitive keys. That is, a set of XML keys

that identifies unique contexts up to the root node. A comparison analysis between our

keys and the one proposed by XML Schema have been presented, as well as a discussion

197

on alternative definition of keys. One of the alternatives discussed is one in which keys

determine value equality of trees instead of node identity. This is useful when one wants to

maintain XML data in “non-second-normal-form”. That is, when it is preferable to allow

redundancy of data rather than split it in different parts of the document. Since this form

of keys is closer to the definition of NFDs, we have also presented a comparison analysis

between these two different notions of constraints.

Another important characteristic for keys is whether key values are required to exist or

not. We have identified two notions of keys, both important in their own right: strong

keys, where key values must exist and be unique, which is similar to the notion of keys

in the relational model; and weak keys, where key values may not exist, and can define a

set of values, which is to cope with the semi-structured nature of XML. We denoted as K

the class of weak keys, and Katt the class of strong keys with key values restricted to be

simple attributes. We then presented a number of results for decision problems of the key

languages K and Katt, that we enumerate below:

1. Any finite set of keys in K or in Katt is finitely satisfiable; that is, given any finite set

Σ of keys in these languages, there always exists a finite XML tree that satisfies Σ.

2. There exists a sound and complete set of inference rules for determining containment

of expressions in our path language. Moreover, given two path expressions P and

Q, deciding whether P ⊆ Q can be determined in O(|P | |Q|) time, where |P | is the

length of P .

3. There exists a sound and complete set of inference rules for determining implication

of weak absolute keys. Given a set of absolute keys Σ ∪ {ϕ}, it can be determined

whether Σ |= ϕ in O(n5) time, where n is the size of keys involved.

4. There exists a sound and complete set of inference rules for determining implication

of keys in K. Given a set of K constraints Σ ∪ {ϕ}, there is an algorithm that

determines whether Σ |= ϕ in O(n7) time.

5. There exists a sound and complete set of inference rules for determining implication

of keys in Katt. Given a set of Katt constraints Σ ∪ {ϕ}, there is an algorithm that

198

determines whether Σ |= ϕ in O(n4) time.

The ability to reason about keys efficiently gave us the basis to develop a framework to

address the problem that motivated our work. That is, to determine propagation of XML

keys to functional dependencies defined on a relational view of XML data.

Propagation of XML constraints to relations Being able to determine whether an

FD is valid on relations that store XML data is important in two different scenarios: one

is to check the consistency of imported XML data with a predefined relational schema; the

other is to design a relational database from scratch or to re-design it to fit the constraints,

and thus preserve the semantics, of data being imported. The framework we have presented

is based on inferring functional dependencies from XML keys through a given mapping

(transformation) of XML data to relations.

Our first contribution consisted of undecidability results that show the difficulty of the

generic problem of XML constraint propagation. These negative results gave practical

motivation for the restrictions adopted in the framework. In particular, one result showed

that it is impossible to effectively propagate all forms of XML constraints supported by

XML Schema, which include keys and foreign keys, even when the transformations are

trivial. This motivated our restriction of constraints to strong XML keys in Katt. Another

undecidability result showed that when the transformation language is too rich, XML

constraint propagation is also not feasible, even when only keys are considered. Since XML

to relational transformations are subsumed by XML to XML transformations expressible in

XML query languages, this negative result applies to most popular XML query languages

such as XQuery [Cha01] and XSLT [Cla99].

Our second contribution was a polynomial time algorithm for checking whether an FD on a

predefined relational database is propagated from a set of XML keys via a transformation.

Given the undecidability results mentioned earlier, we considered a class of XML keys that

is a subset of keys in XML Schema [Tho02] and includes those commonly found in practice.

We also presented a simple mapping language that is capable of specifying transformations

from XML data to relations of any predefined schema and is independent of DTDs and

other schema information for XML. In this setting, we developed the first algorithm for

199

checking XML key propagation. It is based on the sound and complete inference system

for keys in Katt.

Our third contribution was a polynomial-time algorithm that, given a universal relation

specified by a transformation rule and a set of XML keys, finds a minimum cover for all the

functional dependencies mapped from XML keys. This allows us to normalize the design of

the relational schema for storing XML data, and optimize query and update operations on

XML data stored in relations [KKN04]. Note that the polynomial-time algorithm is rather

surprising, since it is known that a related problem in the relational context – finding a

minimum cover for functional dependencies embedded in a subset of a relation schema – is

inherently exponential [Got87].

To verify the effectiveness of our method, we also provided experimental results which

show that the algorithms are efficient in practice.

7.2 Further Work

There remain a number of questions related to the work of this dissertation that have not

been explored, and bellow we describe some of them.

In Chapter 3 we have presented a set of inference rules for NFDs that are sound and

complete when no empty sets are present. It would be interesting to investigate ways

of relaxing this assumption. One possible approach is require the user to define which

set-valued paths are known to have at least one element. We believe this is a natural

requirement to make, since definition of cardinality has long been recognized as integral

part of schema design [Che76] and is part of the DDL syntax for SQL (NON-NULL).

Generalizing the inference rules to this case would allow us to reason about constraints for

a larger family of instances.

In Chapter 5 we have investigated two key constraint languages introduced in Chapter 4

and studied their associated (finite) satisfiability and (finite) implication problems in the

absence of DTDs. For further research, a number of issues deserve investigation. First,

200

despite their simple syntax, there is an interaction between DTDs and our key constraints.

As described in Section 4.3, in the presence of DTDs, keys may not be finitely satisfiable.

This shows that in the presence of DTDs, the analysis of key satisfiability and implication

can be wildly different. It should be mentioned that keys defined in other proposals for

XML, such as those introduced in XML Schema [TBMM01], also interact with DTDs or

other type systems for XML. This issue was recently investigated in [AFL02a, FL02] for a

class of keys and foreign keys defined in terms of XML attributes.

Second, there are more general definitions of key constraints that should be considered.

Among them are the ones that require equal keys to imply value-equality on nodes rather

than node identity. This is useful in XML documents in which redundancy is tolerated.

It is sometimes useful to put the same information in more than once place in an XML

document in order to avoid having to do joins to recover this information.

Third, one might be interested in using different path languages to express keys. The

containment and equivalence problems for the full regular language are PSPACE-complete

[GJ79], and they are not finitely axiomatizable. Another alternative is to adopt the lan-

guage of [MS99], which simply adds a single wildcard to the path language. Despite the

seemingly trivial addition, containment of expressions in their language is only known to be

in PTIME. It would be interesting to develop an algorithm for determining containment of

expressions in this language with a complexity comparable to the related result established

in this dissertation. For XPath [CD99] expressions, it has been shown [MS04, NS03] that

it is rather expensive to determine containment of XPath expressions, which is important

in the implication analysis of XML keys. For the (finite) axiomatizability of equivalence

of XPath expressions, which is important in studying the (finite) axiomatizability of XML

key implication, the analysis is even more intriguing [BFK03]. Thus, not surprisingly,

reasoning about keys defined in XML Schema is prohibitively expensive: Even for unary

keys, i.e., keys defined in terms of a single subelement, the finite satisfiability problem is

NP-hard and the implication problem is coNP-hard [AFL02b]. For the entire class of keys

of XML Schema, to the best of our knowledge, both the implication and axiomatizability

problems are still open.

201

Fourth, along the same lines as our XML key language, a language of foreign keys needs

to be developed for XML. As shown by [FS03, FL02, AFL02a], the implication and finite

implication problems for a class of keys and foreign keys defined in terms of XML attributes

are undecidable, in the presence or absence of DTDs. However, under certain practical

restrictions, these problems are decidable in PTIME. Whether these decidability results

still hold for more complex keys and foreign keys needs further investigation.

In Chapter 6 we have presented a framework for determining the propagation of XML

keys to functional dependencies defined on the relational view of XML data. One possible

extension of our framework is in our transformation language. It can be extended by

allowing predicates so that one can select XML data that satisfy certain conditions; our

conjecture is that this can be done without significantly increasing the complexity of the

algorithms.

One topic for future work is to study the propagation of alternative definitions of keys for

XML, in particular keys that determine value equality instead of node equality. This is

because in a data exchange format, the existence of redundant data may be tolerable and

sometimes desirable to make it easier to understand and to parse. This is in contrast to

stored data, for which the normalization theory has been developed for eliminating data

redundancy. Although this form of keys can express redundancy of entire subtrees in the

XML document, it cannot express redundancy of single element or attribute values. For

that, we would need to define a functional dependency. Thus, it would be interesting to

investigate restricted forms of FDs for XML that can be reasoned about efficiently, and

study how they can be propagated to relations.

Another topic is to study constraint propagation in the presence of types of XML Schema.

However, as indicated in [AFL02a, FL02], the interaction between types and constraints

makes the analysis of XML key propagation more intriguing and even undecidable. There-

fore further work is needed to identify practical restrictions on types and constraints of

XML Schema for efficient XML constraint propagation.

It would also be interesting to investigate the propagation of XML keys to NFDs. If

the transformation language were modified to keep the identity of every element in the

202

XML document that is unnested to populate a field in the flat relation, this operation

would result in a set of multi-valued dependencies with an id in the left-hand side and the

nested attributes on the right-hand side. Then the nested relation could be obtained by

a sequence of nesting operations similar to the reconstruction of a nested relation from

its flat representation as described in Chapter 3. Given the correspondences between

FDs+MVDs and NFDs presented there, we conjecture that it is possible to derive the set

of NFDs propagated from XML keys. But this has to be further investigated.

203

Bibliography

[AB86] Serge Abiteboul and Nicole Bidoit. Non first normal form relations: An algebra

allowing restructuring. Journal of Computer and System Sciences (JCSS),

33(3):361–390, 1986.

[ABS00] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web. From

Relations to Semistructured Data and XML. Morgan Kaufman, 2000.

[AFL02a] Marcelo Arenas, Wenfei Fan, and Leonid Libkin. On verifying consistency

of XML specifications. In Proceedings of ACM Symposium on Principles of

Database Systems (PODS), pages 259–270, Madison, Wisconsin, USA, 2002.

[AFL02b] Marcelo Arenas, Wenfei Fan, and Leonid Libkin. What’s hard about XML

Schema constraints? In Proceedings of International Conference on Database

and Expert Systems Applications (DEXA), pages 269–278, September 2002.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.

Addison-Wesley, 1995.

[AL04] Marcelo Arenas and Leonid Libkin. A normal form for XML documents. ACM

Transactions on Database Systems, 29(1):195–232, March 2004.

[AMN+01] Noga Alon, Tova Milo, Frank Neven, Dan Suciu, and Victor Vianu. XML with

data values: Typechecking revisited. In Proceedings of ACM Symposium on

Principles of Database Systems (PODS), pages 138–149, 2001.

204

[AMN+03] Noga Alon, Tova Milo, Frank Neven, Dan Suciu, and Victor Vianu. Typecheck-

ing XML views of relational databases. ACM Transactions on Computational

Logic, 4(3):315–354, 2003.

[App98] Vidur Apparao et al. Docu-

ment Object Model (DOM) Level 1 Specification. W3C Recommendation,

October 1998. http://www.w3.org/TR/REC-DOM-Level-1/.

[BA00] Amos Bairoch and Rolf Apweiler. The SWISS-PROT protein sequence

database and its supplement TrEMBL. Nucleic Acids Research, 28:45–48,

2000.

[Bak00] Wendy Baker et al. The EMBL nucleotide sequence database. Nucleic Acids

Research, 28:19–23, 2000.

[BB79] Catriel Beeri and Philip A. Bernstein. Computational problems related to the

design of normal form relational schemas. ACM Transactions on Database

Systems, 4(1):455–469, 1979.

[BDF+02] Peter Buneman, Susan Davidson, Wenfei Fan, Carmem Hara, and Wang-

Chiew Tan. Keys for XML. Computer Networks, 39(5):473–487, August 2002.

[BDF+03] Peter Buneman, Susan Davidson, Wenfei Fan, Carmem Hara, and WangChiew

Tan. Reasoning about keys for XML. Information Systems, 28(8):1037–1063,

2003.

[Ben00] Dennis Benson et al. GenBank. Nucleic Acids Research, 28:15–18, 2000.

[BFK03] Michael Benedikt, Wenfei Fan, and Gabriel Kuper. Structural properties of

XPath fragments. In Proceedings of International Conference on Database

Theory (ICDT), pages 79–95, Siena, Italy, January 2003. To appear in Theo-

retical Computer Science.

[BFMY83] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the

desirability of acyclic database schemes. Journal of the ACM, 30(3):479–513,

July 1983.

205

[BFRS02] Philip Bohannon, Juliana Freire, Prasan Roy, and Jerome Simeon. From XML

schema to relations: A cost-based approach to XML storage. In Proceedings

of IEEE International Conference on Data Engineering (ICDE), pages 64–75,

2002.

[BFW98] Peter Buneman, Wenfei Fan, and Scott Weinstein. Path constraints on

semistructured and structured data. In Proceedings of ACM Symposium on

Principles of Database Systems (PODS), pages 129–138, 1998.

[BLS+94] Peter Buneman, Leonid Libkin, Dan Suciu, Val Tannen, and Limsoon Wong.

Comprehension syntax. Sigmod Record, 23(1):87–96, 1994.

[BPSM98] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup

Language (XML) 1.0. World Wide Web Consortium (W3C), Feb 1998.

http://www.w3.org/TR/REC-xml.

[BV84a] Catriel Beeri and Moshe V. Vardi. Formal systems for tuple and equality

generating dependencies. SIAM Journal of Computing, 13(1):76–98, 1984.

[BV84b] Catriel Beeri and Moshe Y. Vardi. A proof procedure for data dependencies.

Journal of the ACM, 31(4):718–741, 1984.

[CD99] James Clark and Steve DeRose. XML Path Language (XPath). W3C Working

Draft, November 1999.

http://www.w3.org/TR/xpath.

[CDHZ03] Yi Chen, Susan Davidson, Carmem Hara, and Yifeng Zheng. RRXS: Re-

dundancy reducing XML storage in relations. In Proceedings of International

Conference on Very Large Databases (VLDB), pages 189–200, 2003.

[Cha01] Don Chamberlin et al. XQuery 1.0: An XML Query Language. W3C Working

Draft, June 2001.

http://www.w3.org/TR/xquery.

[Che76] Peter P. Chen. The entity-relationship model - toward a unified view of data.

ACM Transactions on Database Systems, 1:9–36, 1976.

206

[Cho02] Byron Choi. What are real DTDs like. In Proceedings of the International

Workshop on the Web and Databases (WebDB), pages 43–48, 2002.

[Cla99] James Clark. XSL Transformations (XSLT). W3C Recommendation, Novem-

ber 1999. http://www.w3.org/TR/xslt.

[DCB+01] Susan Davidson, Jonathan Crabtree, Brian Brunk, Jonathan Schug, Val Tan-

nen, Chris Overton, and Chris Stoeckert. K2/Kleisli and GUS: Experiments in

integrated access to genomic data sources. IBM Systems Journal, 40(2):512–

531, 2001.

[DFHQ03] Susan Davidson, Wenfei Fan, Carmem Hara, and Jing Qin. Propagating XML

constraints to relations. In Proceedings of IEEE International Conference on

Data Engineering (ICDE), pages 543–554, March 2003.

[DFS99] Alin Deutsch, Mary Fernandez, and Dan Suciu. Storing semistructured data

with STORED. In Proceedings of ACM SIGMOD Conference on Management

of Data, pages 431–442, 1999.

[DHP97] Susan Davidson, Carmem Hara, and Lucian Popa. Querying an object-

oriented database using CPL. In Proceedings of the Brazilian Symposium

on Databases (SBBD), pages 137–153, 1997.

[DK97] Susan Davidson and Anthony Kosky. WOL: A language for database trans-

formations and constraints. In Proceedings of IEEE International Conference

on Data Engineering (ICDE), pages 55–65, 1997.

[DPT99] Alin Deutsch, Lucian Popa, and Val Tannen. Physical data independence,

constraints, and optimization with universal plans. In Proceedings of Interna-

tional Conference on Very Large Databases (VLDB), pages 459–470, 1999.

[DT03a] Alin Deutsch and Val Tannen. MARS: A system for publishing XML from

mixed and redundant storage. In Proceedings of International Conference on

Very Large Databases (VLDB), pages 201–212, 2003.

207

[DT03b] Alin Deutsch and Val Tannen. Reformulation of XML queries and

constraints. In Proceedings of International Conference on Database

Theory (ICDT), pages 225–241, January 2003. Also available at:

http://db.cis.upenn.edu/Publications.

[ea02] Paul T. Spellman et al. Design and implementation of microarray gene ex-

pression markup language (mage-ml). Genome Biology, 3(9), 2002.

[End72] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press,

1972.

[ER01] EMBL-EBI (European Bioinformatics Institute) and Rosetta Inpharmatics.

Gene Expression RFP Response, August 2001. www.geml.org/omg.htm.

[FL02] Wenfei Fan and Leonid Libkin. On XML integrity constraints in the presence

of DTDs. Journal of the ACM, 49(3):368–406, 2002.

[FS03] Wenfei Fan and Jérôme Siméon. Integrity constraints for XML. Journal of

Computer and System Sciences (JCSS), 66(1):254–291, 2003.

[FSTG85] Patrick C. Fischer, Lawrence V. Saxton, Stan J. Thomas, and Dirk Van Gucht.

Interactions between dependencies and nested relational structures. Journal

of Computer and System Sciences (JCSS), 31:343–354, 1985.

[GJ79] Michael Garey and David Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[Got87] Georg Gottlob. Computing covers for embedded functional dependencies. In

Proceedings of ACM Symposium on Principles of Database Systems (PODS),

pages 58–69, 1987.

[HD99] Carmem Hara and Susan Davidson. Reasoning about nested functional de-

pendencies. In Proceedings of ACM Symposium on Principles of Database

Systems (PODS), pages 91–100, 1999.

[HU79] John E. Hopcroft and Jeffery D. Ullman. Introduction to Automata Theory,

Languages and Computation. Addison-Wesley, 1979.

208

[IRS76] Harry B. Hunt III, Daniel J. Rosenkrantz, and Thomas G. Szymanski. On the

equivalence, containment, and covering problems for the regular and context-

free languages. Journal of Computer and System Sciences (JCSS), 12:222–268,

1976.

[JS82] Gerhard Jaeschke and Hans-Jorg Schek. Remarks on the algebra of non first

normal form relations. In Proceedings of ACM Symposium on Principles of

Database Systems (PODS), pages 124–138, 1982.

[KKN04] Rajasekar Krishnamurthy, Raghav Kaushik, and Jeffrey F. Naughton. Ef-

ficient XML-to-SQL query translation: Where to add the intelligence? In

Proceedings of International Conference on Very Large Databases (VLDB),

pages 144–155, 2004.

[Klu80] Anthony Klug. Calculating constraints on relational expressions. ACM Trans-

actions on Database Systems, 5(3):260–290, 1980.

[KP82] Anthony Klug and Rod Price. Determining view dependencies using tableaux.

ACM Transactions on Database Systems, 7(3):361–380, September 1982.

[Lay98a] Andrew Layman et al. XML-Data. W3C Note, January 1998.

http://www.w3.org/TR/1998/NOTE-XML-data.

[Lay98b] Andrew Layman et al. XML-Data. W3C Note, January 1998.

http://www.w3.org/TR/1998/NOTE-XML-data.

[LC01] Dongwon Lee and Wesley W. Chu. CPI: Constraints-preserving inlining al-

gorithm for mapping XML DTD to relational schema. Data & Knowledge

Engineering, 39(1):3–25, 2001.

[LDB97] Zoé Lacroix, Claude Delobel, and Philippe Brèche. Object views and database

restructuring. In Proceedings of International Workshop on Database Program-

ming Languages (DBPL), pages 180–201, 1997.

209

[LS97] Alon Y. Levy and Dan Suciu. Deciding containment for queries with complex

objects. In Proceedings of ACM Symposium on Principles of Database Systems

(PODS), pages 20–31, 1997.

[LVL03] Jixue Liu, Millist W. Vincent, and Chengfei Liu. Local XML functional depen-

dencies. In Proceedings of ACM International Workshop on Web Information

and Data Management, pages 23–28, 2003.

[Mai80] David Maier. Minimum covers in relational database model. Journal of the

ACM, 27(4):664–674, 1980.

[Mai83] David Maier. The Theory of Relational Databases. Computer Science Press,

1983.

[Mak77] Akifumi Makinouchi. A consideration on normal form of not-necessarily-

normalized relation in the relational data model. In Proceedings of Inter-

national Conference on Very Large Databases (VLDB), pages 447–453, 1977.

[MFK+00] Ioana Manolescu, Daniela Florescu, Donald Kossmann, Florian Xhumari, and

Don Olteanu. Agora: Living with XML and relational. In Proceedings of

International Conference on Very Large Databases (VLDB), pages 623–626,

2000.

[MFK01] Ioana Manolescu, Daniela Florescu, and Donald Kossmann. Pushing XML

queries inside relational databases. Tech. Report no. 4112, INRIA, 2001.

[MMS79] David Maier, Alberto Mendelzon, and Yehoshua Sagiv. Testing implications

of data dependencies. ACM Transactions on Database Systems, 4(4):455–469,

1979.

[MNE96] Wai Y. Mok, Yiu-Kai Ng, and David W. Embley. A normal form for precisely

characterizing redundancy in nested relations. ACM Transactions on Database

Systems, 21(1):77–106, March 1996.

[MS99] Tova Milo and Dan Suciu. Index structures for path expressions. In Proceedings

of International Conference on Database Theory (ICDT), pages 277–295, 1999.

210

[MS04] Gerome Miklau and Dan Suciu. Containment and equivalence for a fragment

of XPath. Journal of the ACM, 51(1):2–45, January 2004.

[NS03] Frank Neven and Thomas Schwentick. XPath containment in the presence of

disjunction, DTDs, and variables. In Proceedings of International Conference

on Database Theory (ICDT), pages 315–329, 2003.

[Ora01] Oracle Corporation. Oracle9i Application Developer’s Guide - XML, Release

1 (9.0.1), 2001.

[OY87] Z.Meral Ozsoyoglu and Li-Yan Yuan. A new normal form for nested relations.

ACM Transactions on Database Systems, 12(1):111–136, March 1987.

[PDST00] Lucian Popa, Alin Deutsch, Arnaud Sahuguet, and Val Tannen. A chase too

far? In Proceedings of ACM SIGMOD Conference on Management of Data,

pages 273–284, 2000.

[PT99] Lucian Popa and Val Tannen. An equational chase for path-conjunctive

queries, constraints, and views. In Proceedings of International Conference

on Database Theory (ICDT), pages 39–57, 1999.

[RG00] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.

McGraw-Hill Higher Education, 2000.

[RKS88] Mark A. Roth, Henry F. Korth, and Abraham Silberschatz. Extended algebra

and calculus for nested relational databases. ACM Transactions on Database

Systems, 13(4):389–417, December 1988.

[RLS98] Jonathan Robie, Joe Lapp, and David Schach. XML Query Language (XQL).

Workshop on XML Query Languages, December 1998.

[Sha01] Jayavel Shanmugasundaram et al. A general techniques for querying XML

documents using a relational database system. SIGMOD Record, 30(3):20–26,

2001.

[SKWW00] Albrecht Schmidt, Martin L. Kersten, Menzo Windhouwer, and Florian Waas.

Efficient relational storage and retrieval of XML documents. In Proceedings

211

of the International Workshop on the Web and Databases (WebDB), pages

47–52, 2000.

[ST04] Lawrence V. Saxton and Xiqun Tang. Tree multivalued dependencies for XML

datasets. In Proceedings of International Conference on Web-Age Information

Management (WAIM), pages 357–367, 2004.

[STZ+99] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He, David J.

DeWitt, and Jeffrey F. Naughton. Relational databases for querying XML

documents: Limitations and opportunities. In Proceedings of International

Conference on Very Large Databases (VLDB), pages 302–314, 1999.

[TBMM01] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendel-

sohn. XML Schema Part 1: Structures. W3C Working Draft, May 2001.

http://www.w3.org/TR/xmlschema-1/.

[Tho02] Henry Thompson. Personal communication, 2002.

[TMD92] Jean Thierry-Mieg and Richard Durbin. Syntactic definitions for the ACEDB

data base manager. Technical report, MRC Laboratory for Molecular Biology,

Cambridge, 1992.

[TSS97] Zahir Tari, John Stokes, and Stefano Spaccapietra. Object normal forms and

dependency constraints for object-oriented schemata. ACM Transactions on

Database Systems, 22(4):513–569, December 1997.

[Ull83] Jeffrey D. Ullman. Principles of Database Systems - Second Edition. Computer

Science Press, 1983.

[Var81] Moshe Y. Vardi. The decision problem for database dependencies. Information

Processing Letters, 12(5):251–254, 1981.

[VL03] Millist W. Vincent and Jixue Liu. Functional dependencies for XML. In

Proceedings of the Asian Pacific Web Conference (APWeb), pages 22–34, 2003.

212

[VLL04] Millist W. Vincent, Jixue Liu, and Chengfei Liu. Strong functional dependen-

mcies and their applicatiopn to normal forms in XML. ACM Transactions on

Database Systems, 2004. (to appear).

[Wad00] Philip Wadler. A formal semantics for patterns in xsl. Technical report, Bell

Labs, 2000.

[Wed92] Grant D. Weddel. Reasoning about functional dependencies generalized for

semantic data models. ACM Transactions on Database Systems, 17(1):32–64,

March 1992.

213

