$3^{\rm a}$ Prova de Algoritmos e Estruturas de Dados I $_{15/06/2018}$

Perguntas comuns e suas respostas:

• P: O que será avaliado?

R: A lógica, a criatividade, a sintaxe, o uso correto dos comandos, a correta declaração dos tipos, os nomes das variáveis, a indentação, o uso equilibrado de comentários no código e, evidentemente, a clareza. A modularidade, o correto uso de funções e procedimentos, incluindo passagem de parâmetros, e o bom uso de variáveis locais e globais e também a eficiência do seu algoritmo serão especialmente observados.

QUESTÃO: (100 pontos)

Considere as seguintes constantes e tipos assim definidos:

```
CONST MAX = 200;
TYPE tpMatriz = array [1..MAX,1..MAX] of integer;
```

Considere os seguintes protótipos de funções e procedimentos, junto da descrição do seu funcionamento:

• function achar_X (var M: tpMatriz; N, linIni, colIni, tam: integer) : boolean; Esta função deve procurar em uma matriz $M_{N\times N}$ por um conjunto de elementos cuja disposição forma visualmente um "X" constituído de números iguais, conforme pode ser visto na figura da esquerda abaixo.

A função recebe a matriz, uma coordenada (linIni, colIni) – linha e coluna respectivamente – e um número inteiro tam ($2 \le tam \le N$) que representa o tamanho do "X". A função retorna TRUE se os elementos contidos no "X" de tamanho tam, cujo canto superior esquerdo está na coordenada (linIni, colIni), possuem todos o mesmo valor, e retorna FALSE caso contrário. O teste da existência do "X" não deve ultrapassar os limites da matriz.

Exemplo: A matriz $M_{6\times 6}$ da figura abaixo, na **esquerda**, possui um "X" de tamanho 4 constituída de elementos "1" iniciando na coordenada (2,2). Assim, se a função receber esta matriz com N=6, linIni=2, colIni=2 e tam=4, deve retornar TRUE. Se receber a mesma matriz com N=6, linIni=1, colIni=1 e tam=6, deve retornar FALSE (pois esse "X" não existe). Se receber a mesma matriz com N=6, linIni=4, colIni=4 e tam=4, deve retornar FALSE (pois ultrapassa os limites da matriz).

• procedure inverte_cor (var M: tpMatriz; N: integer);

Este procedimento recebe uma matriz $M_{N\times N}$. O objetivo é inverter as cores da matriz. A inversão de cor funciona ao obter o maior número da matriz max e, para cada coordenada da matriz, subtrair de max o valor da coordenada.

Exemplo: Para a matriz $M_{6\times 6}$ da esquerda abaixo, o resultado será a matriz da direita.

- procedure ler_matriz (var M: tpMatriz; N: integer); Este procedimento lê do teclado uma matriz $M_{N\times N}$ de números inteiros.
- procedure imprimir_matriz (var M: tpMatriz; N: integer); Este procedimento imprime na tela uma matriz $M_{N\times N}$ de números inteiros.

O QUE DEVE SER FEITO (NESTA ORDEM):

- 1. Suponha, para este item 1, que as funções e procedimentos acima **já estão implementadas e funcionais**. Faça um programa Pascal completo que utiliza as funções e procedimentos acima para resolver o seguinte problema. O programa deve ler N e uma matriz $N \times N$ de números inteiros e imprimir a matriz resultante do seguinte processo. Se a matriz contém um "X" de **qualquer** tamanho tam (onde $2 \le tam \le N$), então deve-se imprimir a matriz com as cores invertidas. Caso contrário, deve-se imprimir a matriz sem modificações.
- 2. Implemente as funções e procedimentos acima.

2	3	1	5	2	3			3	2	4	0	3	2	
4	1	3	2	1	1			1	4	2	3	4	4	
2	2	1	1	3	2			3	3	4	4	2	3	
3	5	1	1	2	3			2	0	4	4	3	2	
2	1	4	4	1	4			3	4	1	1	4	1	
5	5	2	3	4	3			0	0	3	2	1	2	