
Managing a Grid of Computer Laboratories for Educational Purposes

Luis C. E. De Bona Marcos Castilho Fabiano Silva Daniel Weingartner
Luis H. A. Lourenço Bruno C. Ribas

Centro de Computação Cient́ıfica e Software Livre – C3SL
Universidade Federal do Paraná

E-mail: {bona,castilho,fabiano,danielw,lhal04,ribas}@c3sl.ufpr.br

Abstract

This paper presents a grid-based model for manag-
ing hundreds of distributed educational computing lab-
oratories. The aim is to dispense the need of spe-
cialised staff in each place whilst maximizing the labo-
ratories uptime. The model was implemented in order
to manage more than two thousand laboratories spread
across the entire public school network of Paraná State
(Brazil). Practical results are also presented validating
the model.

1 Introduction

Computer resources and access to the Internet are
nowadays considered necessary tools in a student’s
learning process, as well as a considerable help for
teachers to prepare their courses. This fact, associ-
ated to the cost reduction of computer hardware, led
to the creation and expansion of digital inclusion poli-
cies, aiming to provide computing laboratories for ev-
ery school.

However, the lack of specialized workforce to man-
age and maintain these laboratories frequently ruins
such efforts, because the computers get obsolete, the
software doesn’t work properly, computers get infected,
among other reasons. In public schools this situation
is worsened by the lack of funds for frequent updates.

The impossibility of having an expert to manage
each school in a huge public network demands an ef-
fort in order to define a new administration model. In
an ideal situation, educators and students should only
worry about the educational use of the system, and
not about its technical details. All system configura-
tion and management tasks should be performed either
automatically or by experts.

This paper presents a model that allows the admin-
istration of thousands of computing laboratories with
minimum human intervention. In this model, laborato-
ries are interconnected forming a computational grid [1]
that is activelly monitored, with information collected
on each node and transmited to a central processing
station, and management or maintainance tasks can be
automatically assigned to each laboratory in a secure
way.

Based on autonomic computing concepts [2], the
model intends to reduce the maintenance and manage-
ment costs, whilst providing a reliable and updated
computing environment. The idea is to ensure the self-
configuration, self-optimization, self-recuperation and
self-protection [3] of all connected laboratories.

The model also foresees two kinds of human inter-
ventions for administrative tasks: local execution of
simple tasks, by an ordinary user, through user-friendly
interfaces; and remote execution of critical or unpre-
dictable tasks, by a team of experts.

This model was implemented by the Paraná Digital
Project (PRD) in more than 2100 public school labo-
ratories, and is based on GNU/Linux software, under
Free Software licence (GPL), with all code freely avail-
able on the internet1.

The following sections describe the proposed model
in more details (Section 2), and present the PRD
project as a successfull implementation (Section 3).
Section 4 contains concluding remarks.

2 A Model for Maintenance and Man-
agement of Computing Laboratories

Computing laboratories are increasingly used in
schools and other educational institutions. To keep
these laboratories in working conditions is a challenge,

1http://www.c3sl.ufpr.br/prd

1



specially considering the lack of people with the needed
expertise.

Therefore, we propose a model that dispenses the
use of specialized staff in each laboratory, whilst min-
imizing downtime due to factors such as: external at-
tacks, failures in software components, bad configura-
tion of the system or its applications and the lack of
preventive maintenance of hardware.

The model considers that many geographically dis-
tributed computing laboratories can be interconnected
forming a computational grid. It also considers that
the hardware, operating system and main applications
of these laboratories is fairly homogeneous.

Tasks needed to install and manage such a comput-
ing laboratory are classified into local and global man-
agement tasks. Local management tasks are related to
specific aspects of each laboratory (such as user man-
agement), and tasks that demand physical access to the
hardware. These tasks must be translated into high
level, simple decisions, offered by a user-friendly inter-
face, that can be operated by an ordinary user called
local manager.

The global management tasks are the ones executed
to guarantee that the laboratory offers the expected
services, with maximum performance. These tasks are
determined in a global way and uniformly executed in
the grid. Hence, most of these tasks can be automated,
so that a small group of specialized system administra-
tors is able to manage hundreds of laboratories.

All critical tasks are considered to be global, and
can not be locally modified or executed. Though this
imposes strong restrictions, it allows the local manager
to be a user with no system expertise, and reduces oc-
currence of human mistakes that compromise the lab-
oratory’s operation.

In order to implement these global management
tasks, the proposal is to use the concepts of auto-
nomic computing, which in essence consists of the
system’s self-management, and can be analyzed in
four ways: self-configuration, self-recuperation, self-
protection and self-optimization.

2.1 Self-Configuration

The capacity of self-configuration of an autonomic
system involves the adaptation of new components or
new execution environments without a significant hu-
man intervention. Self-configuration is a continuous
process aiming to keep the system configured under
varying time and environment conditions [4].

The configuration policies are defined for the en-
tire grid by a core management team, who specifies
what are the system’s desired features, which softwares

should be installed, and what should be restricted or
not allowed.

In order to reduce hardware and management costs,
as well as simplify the implementation of the config-
uration policies, the use of a computing model based
on graphic terminals, so-called X-terminals [5] is pro-
posed. It basically consists several diskless worksta-
tions that access one or more processing servers. The
software and configuration parameters of these termi-
nals are determined at the server, a computer with
large disk, memory and processing capacity, being the
only machine that must be configured and maintained.

The initial installation of the server can be done with
a CD-ROM or a DVD containing a standard system
image. When the installation is completed, the system
needs to be updated through the network, in order to
ensure that it has the latest version of all software.

The X-terminals must be prepared to automatically
recognize and configure peripheral hardware such as
printers and removable media. Sharing policies for
these peripherals can be defined by the user or by the
local manager, depending on their intended use.

The servers’ self-configuration is based on modern
software package management systems [6], and unified
package sources (mirrors). The packaging systems al-
low automated installation and configuration, but usu-
ally present questions during these processes. The grid-
based model improves on the classical actualization
systems by providing default answers for all questions
that might be posed by all packages, eliminating local
interactions. In exceptional cases high level, simplified
questions can be presented to the local manager.

After the server is up and running it must frequently
check for updates at the central mirror, in order to in-
stall new software, new versions of existing packages,
patches that address security and maintenace issues,
configuration changes and other relevant changes. This
automated actualization process minimizes service dis-
ruption and data loss [7].

2.2 Self-optimization

Modern computing systems allow the configuration
of a collection of parameters that significantly impact
on their overall performance. Nevertheless, this is an
extremely complex tasks and specially demanding for
human operators. Autonomic systems constantly mon-
itor such parameters and seek to improve their own
performance, identifying and exploiting opportunities
to be more efficient [8].

Thus, a monitoring system is a fundamental build-
ing block of a self-optimization system. Data provided
by monitoring systems can be used by expert managers

2



to optimize system parameters, which then can be ap-
plied globally in the grid through the self-configuration
system. This turns out to be simpler when the labora-
tories have similar configurations. Besides, a monitor-
ing system allows the identification of possible failure
points, and can be used to determine the cause of fail-
ures after they occurred.

The historical and comparative analisys of the load
and performance metrics of the laboratories can also
be used to optimize the system. This analisys can,
for example, help to scale the hardware needed in each
laboratory, plan a hardware upgrade given the estimate
of load increase or find discrepancy of performance that
must be analised by experts.

Last but not least, the monitoring system might
keep a local copy of the information it generates, but
must regularly send it to the central management core,
where data from the whole grid is processed, analysed
and made available on a web page to allow public ac-
cess.

2.3 Self-recuperation and Self-protection

Failures in a system can cost many weeks of a man-
ager’s work to diagnose and repare. Autonomic sys-
tems automatically detect, diagnose, treat and prevent
problems due to bugs or hardware failures, leaving min-
imal decisions to the manager, and substantially reduc-
ing the recovering efforts [9, 10].

The downtime of computing laboratories can be
drastically reduced when certain aspects of the hard-
ware and the operating system are tracked. The ma-
jor aspects to be monitorated are: memory, hard disk
and temperature sensors. In case of any abnormal
behaviour, automatic alarms should turn on, so that
maintenance can be performed.

One aspect that deserves special attention is the
hard disk, since it is one of the most failure-prone
hardware component. The hard disk’s self monitor-
ing facility (SMART) tracks disk parameters such as
temperature and number of Hardware ECC Recovered
blocks, which are good indicators of failure probabil-
ity [11]. Data provided by the hard disk’s SMART fa-
cility might be used to indicate replacement need ahead
of any failure. Redundant Array of Inexpensive Disks
(RAID) should also be used to easy the replacement of
hard disks and to avoid the loss of data in case of an
unexpected disk failure.

Downtime can be minimized at the operating system
level by verifying the filesystem’s integrity. Damaged
or corrupted files might compromise the operation of
the whole system. So, it is necessary to perform a
periodic integrity verification for all the files. Once a

corruption is detected, the system must automatically
recover the file. This can be done through an automatic
reinstallation of the software package that contains the
damaged file(s) or by recovering a from a backup.

In case a complete system reinstallation is needed, a
recuperation process tries to reinstall the system with-
out loss of user data. Should the reinstallation process
stop or fail, the grid-model provides a bootable recov-
ery CDROM for the computing server, that boots the
server into an assistance mode, allowing the remote in-
tervention of an expert manager. Every remote access
to the server should be done through an encrypted SSH
connection.

3 Paraná Digital Project

The Paraná Digital project (PRD) provides a huge
testbed for the proposed model. It consists of a part-
nership between Paraná State Secretary of Education
(SEED)2, the State Computer Company of Paraná
(CELEPAR)3, the energy company COPEL4 and the
Federal University of Paraná (C3SL/UFPR)5.

The aim of the project is to provide every pub-
lic school of the Paraná State (from kindergarten to
grade 12) with a computing laboratory to access ed-
ucational tools (such as the Educational Portal6 and
Moodle7 software). The Paraná State has approxi-
mately 1,500,000 students, 57,000 teachers, in 2,100
schools distributed over 399 cities over 199,314 km2. A
more complete survey of the PRD project can be found
at [12].

3.1 The PRD architecture

The PRD network is organized as a grid and employs
the proposed management model in order to minimize
human intervention on schools. Hence, the decision
was to model a uniform computer network, managed
by one control center located in the city of Curitiba.
It is called the management core (or just Core), and
is responsable for the grid’s global policies and global
management tasks, as described in the previous sec-
tion.

Each school has a laboratory composed of 20 X-
terminals and a special computer, called the school
server. The latter acts simultaneously as processing
and storage unit, gateway to the network, firewall,

2http://www.seed.pr.gov.br
3http://www.celepar.pr.gov.br
4http://www.copel.com
5http://www.c3sl.ufpr.br
6http://www.diaadiaeducacao.pr.gov.br
7http://www.moodle.org

3



and access point to the Core. It consists of a dual-
processed machine, with 2GB of RAM, and two SATA
hard disks arranged in a RAID 1. It runs a Debian8-
based GNU/Linux distribution, and all servers have
the same software packages installed.

The network connection from each server to the Core
is provided by the electricity company COPEL through
a private network (VPN) of optical fibers (70%) and
satellite connections (30%). At the Core, a proxy-
controlled connection to the internet is provided. Fig-
ure 1 illustrates the PRD network architecture.

Figure 1: Paraná Digital Network Architecture

The first laboratory was installed in June/2006 and,
as of August/2008, 2,126 schools were operational. The
management team at the Core is composed of 12 highly
trained Unix managers, taking care of all software-
related issues from the entire network (approximately
44,000 workstations).

3.2 System Installation

The installation of a new computing laboratory is
a straightforward procedure. After the hardware is in-
stalled by the reseller, a person called the local manager
inserts a CD-ROM into the computing server and turns
it on. Some few questions are asked in order to identify
the school being installed (selected from a predefined
list, with predefined IP addresses) and a password is
set to controll locally managed tasks. The server then
installs the operating system from the CD-ROM. After
a reboot, it connects to the Core, performs any needed
software upgrade, and is ready to use.

The X-terminals do not need any software to be in-
stalled, since they boot over the network, loading all

8www.debian.org

their configuration from the server. The local manager
only has to register them by using a user-friendly soft-
ware. To use the system, a regular user must have an
account created by the local manager.

It is worth noting that, despite performing some typ-
ical root administrative tasks, the local manager does
not have root powers (i.e. is not the root user). All
the local manager does is execute a management soft-
ware that writes its output into a predefined directory,
which in turn is automatically read by the system and
executed. This way, only the Core managers and au-
tomatic scripts have root powers, ensuring that critical
tasks are globally defined on the grid.

3.2.1 System Recovery

In case of severe system failure, the same CD-ROM
used to install the system can be used to recover the
installation. The PRD project has conceived two ways
of recovering a corrupted local system: the automatic
recovery and the remote help. In case of an automatic
recovery, the local manager boots up the school server
with the installation CD and chooses the recovery op-
tion, which formats only the root filesystem, preserv-
ing user data and local information. A collection of
specially developed scripts saves important files (e.g..
passwords and local configuration), restoring them af-
ter system reinstallation.

The remote help is a last resort in case the previous
method fails. The school server boots up using the
PRD CD-ROM, and connects to the network even in
the case of hard disk errors. Then, by remote SSH
login, the Core managers can access the server to find
(and eventually fix) the problem, and/or try to backup
critical data. Only in case of severe disk error is the
“start from scratch” method necessary. Even then, the
local manager might be able to record an automatically
generated CD-ROM image, containing a “snapshot” of
the installed system with all its current configurations.

3.3 System Upgrade

Frequent system upgrades are necessary to pro-
vide new functionalities, address security problems and
propagate new software, tools, or policies from the
Core. On a huge grid such as the PRD network, server
upgrades must occur automatically, and this can be
done in two ways: automatic daily upgrades and trig-
gered upgrades.

The daily automatic upgrade is based on Debian’s
apt-get tools [6]. Every night, each school server looks
at the Core Debian mirror for new software packages.
Since it is a non-interactive procedure performed by

4



the entire grid, the package configuration scripts must
be throughly tested and completely sound. This is en-
sured by the management team at the Core. Besides,
the single packages repository ensures that all servers
will install exactly the same softwares.

Hence, in a normal situation, it is quite simple to
propagate a new tool or configuration over the entire
network, by just releasing the new Debian package(s)
in the PRD Debian mirror at the Core, and waiting
for the automatic upgrade. However, depending on
the seriousness of the security breach, the Core can
force all school servers to perform an instant upgrade.
If some schools are not connected, the Core registeres
it, and forces the upgrade as soon as the network link
turns on. Such situations occurr when a bug might
compromise the server’s security, as was the case with
the Kernel exploit that allowed an ordinary user to
become root [13].

Triggered upgrades might also be used to perform
larger changes on the system, such as the upgrade
from the oldest stable Debian version called sarge to
the new one called etch, which occurred in February
2008. In this case, the upgrade was sensitive because
the server had to reboot, and therefore the Core man-
agers decided to perform it on a more controlled man-
ner, schedulling the upgrade for few school servers at
a time, and ensuring it worked properly.

3.4 System Monitoring

Monitoring is an essential feature of autonomic sys-
tems, and provides information to allow the system’s
self-optimization and self-recuperation. Actually, mon-
itoring tools are at the heart of the PRD network, since
they reveal the real state of the whole grid. In the PRD
model, there are two different systems providing strate-
gic information: the statistics center and the diagnosis
system.

3.4.1 Statistic Center

The Statistic Center consists of a web site9 contain-
ing strategic information collected from each school ev-
ery night. It is used mainly to allow an overview of
the network’s growth and provide the State managers
with data concerning the laboratories usage, allowing
to plan further developments of the projet.

Laboratories usage data is automatically saved at
the school servers and the Core pulls that data, stor-
ing it in the a central database. The visualization of
the information is done using Pentaho System10 facili-

9http://www.prdestatistica.seed.pr.gov
10http://www.pentaho.com

ties. The type of collected data depends on the Paraná
State Secretary of Education’s demands, but usually
includes: uptime, memory use, load average, number
of schools, number of users, online time, among others,
providing strategic information for decision support.

Figure 2 shows the number of computing labora-
tories installed since September 2007, as well as the
monthly average of existing user accounts and login
time (both divided by 1,000 to fit the scale). The graph
shows a steady increase in the number of labs and user
accounts, while the login time steeply decreases on va-
cation periods.

 0

 500

 1000

 1500

 2000

 2500

Sep/07 Nov/07 Jan/08 Mar/08 May/08 Jul/08

Schools
User/1000

Login time/1000

Figure 2: Graph showing number of computing labs,
user accounts and login time on the PRD grid.

3.4.2 Instant Diagnosis System

The second monitoring tool is the Instant Diagnosis
System11, conceived to provide real time diagnosis of
the network’s server status. It detects possible faults
in the laboratories and triggers alarms to the Core.
Currently, it is capable to detect whether the schools
are online, identify a system with old software versions,
inconsistencies in a server’s filesystem, checksum errors
on installed software, missconfigured hard disk arrays,
status of the server’s nobreak, among many others.

This tool, combined with a good collection of scripts,
allows the management team at the Core to prevent
critical failures, either by acting remotely upon a prob-
lem, or by timely providing hardware replacement.

11http://yoda.c3sl.ufpr.br/SDI

5



3.4.3 Manual System Inspection

Frequently the monitoring tools show that some schools
behave abnormally, having a considerable decrease in
performance or uncommon errors, whose cause is not
easily identified. In such cases, the Core manageres
can log remotely via SSH into the servers to manually
inspect the server’s behavior.

However, if some problem is discovered or an im-
provement implemented, it should never be manually
installed on the server. Since the grid is highly homoge-
neous, all changes should happen on a global manner,
usually by providing new or upgraded software pack-
ages to the entire grid.

4 Conclusion

This article presented a model that allows the ad-
ministration of thousands of computing laboratories
with minimum human intervention. In this model, lab-
oratories are interconnected forming a computational
grid that is activelly monitored, with information col-
lected on each node and transmited to a central pro-
cessing station, and management or maintainance tasks
can be automatically assigned to each laboratory in a
secure way.

A large scale implementation of this model is pro-
vided, in which a management team composed of 12
highly trained Unix managers is able to controll all
software-related issues from the entire network (ap-
proximately 44,000 workstations) on more than 2,100
schools over all the Paraná State.

Acknowlegements

This research was supported by UGF/SETI-PR
(CV31/03,CV02/07,CV02/08)12. We would also like
to express our gratitude to the members of the C3SL
Research Group13 who activelly participated in these
projects.

References

[1] I. Foster and C. Kesselman, “Computational
grids,” pp. 15–51, 1999.

[2] D. M. C. Jeffrey O. Kephart, “The vision of auto-
nomic computing,” IEEE, Ed., vol. 1, no. 10, jan
2003, pp. 41–50.

12http://www.seti.gov.br/ugf
13http://www.c3sl.ufpr.br

[3] M. R. Nami and K. Bertels, “A survey of auto-
nomic computing systems,” in Proc. 3rd Interna-
tional Conference on Autonomic and Autonomous
Systems. IEEE Computer Society, 2007, p. 26.

[4] G. Tesauro, D. M. Chess, W. E. Walsh, R. Das,
A. Segal, I. Whalley, J. O. Kephart, and S. R.
White, “A multi-agent systems approach to auto-
nomic computing,” in Proc. 3rd Intl. Joint Confer-
ence on Autonomous Agents and Multiagent Sys-
tems. IEEE Computer Society, 2004, pp. 464–471.

[5] A. E. Socarras, “Anatomy of an x terminal,” IEEE
Spectrum, vol. 28, no. 3, pp. 52–55, 1991.

[6] G. N. Silva, “Apt-howto,” 2005. [Online].
Available: http://www.debian.org/doc/manual/
apt-howto/

[7] S. Potter and J. Nieh, “Reducing downtime due to
system maintenance and upgrades,” in LISA ’05:
Proc. 19th conference on Large Installation Sys-
tem Administration Conference. USENIX Asso-
ciation, 2005, pp. 6–6.

[8] M. Salehie and L. Tahvildari, “Autonomic com-
puting: emerging trends and open problems,”
SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp.
1–7, 2005.

[9] M. Parashar and S. Hariri, “Autonomic comput-
ing: An overview,” in Unconventional Program-
ming Paradigms. Springer, 2005, pp. 247–259.

[10] R. Sterritt and D. Bustard, “Towards an au-
tonomic computing environment,” in Proc. 14th
Intl. Workshop on Database and Expert Systems
Applications. IEEE Computer Society, 2003, p.
699.

[11] E. Pinheiro, W.-D. Weber, and L. Barroso, “Fail-
ure trends in a large disk drive population,” in
Proc. 5th USENIX conference on File and Stor-
age Techonogies, 2007.

[12] M. Castilho, M. Sunyé, D. Weingaertner, L. Bona,
F. Silva, A. Direne, L. Garcia, A. Guedes, and
C. Carvalho, Open Source for Knowledge and
Learning Management: strategies beyond tools.
Idea Group Inc., 2007, ch. Making Government
Policies for Education Possible by Means of Open
Source Technology: a successful case, pp. 343–368,
iSBN: 1-59904-117-0.

[13] W. Pitcock, “Linux 2.6 mmap() local root
exploit,” 2008. [Online]. Available: http://bugs.
debian.org/cgi-bin/bugreport.cgi?bug=464953

6


