
Carving Software-Defined Networks
for Scientific Applications with SPATEN

Celio Trois, Luis Bona, Marcos D. Fabro
Univ. Federal do Parana (UFPR) - Curitiba - Brazil

Email: {ctrois, bona, didonet}@inf.ufpr.br

Magnos Martinello
Univ. Federal do Espirito Santo (UFES) - Espirito Santo - Brazil

Email: magnos@inf.ufes.br

Abstract—Scientific applications (SciApps) are broadly used
in all science domains. For more accurate results, they are
increasingly demanding computational power and extremely agile
networks. These applications are usually implemented using
numerical methods presenting well-behaved patterns to exchange
data across its computing nodes. This paper presents SPATEN,
a tool that exploits the SciApps spatial communication patterns
as the fundamental logic to drive the network programming.
SPATEN classifies the SciApps nodes communications and bal-
ances the elephant flows across the available network paths. As
a proof-of-concept, we carried out a set of experiments in real
testbeds, demonstrating that network programming may affect
the SciApps performance significantly. Also, a balanced flow
allocation can speed up SciApps to near-optimal execution times.

I. INTRODUCTION

Scientists have been executing scientific applications
(SciApps) in different domains, including bioinformatics, as-
trophysics, weather forecasting, genome research, among oth-
ers. These applications are implemented with parallel and
distributed programming, exchanging huge amounts of data
among their computing nodes [2].

The wide majority of SciApps is implemented using well-
known numerical methods, so-called dwarfs [3]. A compu-
tational dwarf can be defined as “a pattern of communica-
tion and computation common across a set of applications”.
They have been used for optimizing the communication on
networks-on-chip, GPUs, multicore processors, multiprocessor
architectures, and user application performance [9], [4].

The performance of SciApps is highly dependent on the
computing nodes interconnection bandwidth. However, the
common assumption is that these applications run on a fixed
number of computing nodes [5] where the network has been
considered as a static resource, working as a connectivity
service that can not be controlled or modified.

Software-Defined Networking (SDN) has emerged to sup-
port new possibilities for network management, decoupling
control and forwarding functions and enabling the network to
become directly programmable according to the user require-
ments [11]. We have found in literature proposals using SDN
to improve specific user applications [6], [12]. However, to
the best of our knowledge, no existing work routes the data
flows through the network using the communication patterns
for improving the performance of SciApps.

In this work, we propose SpateN, tool that exploits the
Spatial PATterns as the key logic to Enhance the Network pro-
gramming. SPATEN classifies the elephant flows and balances
them across the available network paths. We assume that the
computing nodes have well-behaved communication patterns,
meaning that a given application executed in a set of nodes
has a strong trend to transmit the same amount of data across
the same nodes. Also, we consider that these applications run
on a dedicated cluster where SPATEN has full access to the
programmable switches.

As a proof-of-concept, we carried out a set of experiments
in real testbeds to demonstrate that (i) communication pat-
terns are fundamental to achieve the network programmability
demanded by SciApps; (ii) SPATEN is able to overcome the
challenges introduced by SDN; and (iii) a balanced network
load allows to keep near-optimal SciApps execution time.

The rest of this paper is structured as follows. Section II
presents a brief literature review, while in Section III, our
approach named SPATEN is described. Section IV reports our
experiments and finally, the conclusion and future works are
reported in Section V.

II. BACKGROUND

In this section, a characterization of SciApps communi-
cation patterns is presented. Also, we discuss some SDN
benefits, issues, and related works.

The SciApps are usually implemented using known numer-
ical methods whose present well-behaved communication and
computation patterns, so-called computational dwarfs [3], also
named as motif or kernel. The dwarfs are broadly used for de-
signing new chip-multiprocessors communication topologies,
network-on-chip, and thread mapping aiming to speed up user
applications. The communication patterns can be characterized
by their spatial behaviors, indicating where the nodes are
located in the network topology and how much information
they have exchanged. These characteristics can be used as
input to modify the Software-Defined Network for balancing
the communication across its paths.

One benefit brought by SDN is the ability to perform
the forwarding operation considering flows (multiple packet
headers fields) and not just the destination addresses. Thus, it
is possible to accommodate traffic from different applications
through different physical topology paths aiming to optimize
applications [12], [6].



Fig. 1: Spatial behavior of four scientific applications: bt, cg, ft, and lu.

While SDN brought improvements for the networks, it also
posed new problems. One issue introduced by SDN is the
time to populate the switches forwarding tables. When a SDN-
enabled device receives a new packet, if no match is found,
the device forwards the packet to the controller (reactive
approach); the controller manages the switch flow tables
by adding, modifying, or removing their entries. Querying
the controller reactively is time-expensive, so to deal with
this issue, some SDN programming languages [11] rely on
proactive approaches for installing the rules on switches ahead
of time.

Another issue brought by SDN is the time taken for finding
the matching rules at the switch flow tables. The number
of table entries is increased because SDN enables specifying
matching on specific flows using multiple packet header fields
(microflows). To alleviate this problem, SDN includes wild-
card matching rules. Ternary Content Addressable Memories
(TCAMs) are being used for speeding up wildcarding table
lookup operations. Although fast, TCAM is expensive and
power hungry; so SDN vendors are using a combination
of TCAM and SRAM or DRAM, but they are slower than
TCAMs for wildcarding.

Our approach uses the programmability introduced by SDN
along with SciApps spatial behavior information for balancing
the application flows through the network paths, avoiding both
issues shown above.

III. SPATEN: SPATIAL NETWORK PROGRAMMING

SPATEN is a tool that uses spatial information to program
the network for SciApps. For running an application the
scientist (user) must inform the application and the number
of computing nodes. Based on previously stored spatial be-
haviors, SPATEN generates the rules, proactively installs them
on the SDN switches, and when the network is ready, it starts
the application.

For developing SPATEN, we have investigated the communi-
cation behavior of NAS Parallel Benchmarks [7] applications,
selecting those that most exchanged information among the
computing nodes: bt, cg, ft, and lu. Their spatial behaviors
were recorded and stored in the SPATEN database. The net-
work topology annotated with links bandwidth and latency is
also stored in its database.

A. Spatial Behavior

Spatial behavior can be formalized as a traffic matrix MB ,
where each position MB [i][j] holds the number of bytes
transmitted from node i to node j. SPATEN has an option
for measuring/recording the application traffic matrix; in this
operation, SPATEN installs forwarding rules based on source
and destination address on all top-of-rack (ToR) switches
before executing the application. After the application has
finished, SPATEN reads the flow tables statistics from ToR
switches and compute its traffic matrix. We have opted to
create an option for reading/storing the traffic matrix, but it
could also be done online [8].

Figure 1 gives the spatial behavior of chosen applications.
It is possible to see that they feature different communication
patterns; ft exchanges almost the same amount of data across
all nodes, transmitting a maximum of 185.7 MB by a pair
of nodes. cg is the application that most exchanged data,
considering the pairs of nodes (597.1MB), however, as we can
see on its spatial behavior matrix, only a few pairs of nodes
have communicated. Figure 1 also presents the total amount
of data transmitted from all nodes.

For graphical visualization, we have normalized the matrix
to its maximum value, showing in a gray gradient, where cells
in black are the most communicating pair of nodes and white
no communication happened.

B. Classifying the Communication

This section presents details of how spatial behavior is
used to classify the communication. Traffic flows are typically
classified as either short-lived (mice flows) or throughput-
bound (elephant flows) [10]; SPATEN uses the spatial behavior
to detect the pairs of hosts exchanging elephant flows.

The cg application was chosen to explain the communica-
tion classification. The matrices are divided into Pods where
each Pod is the set of computers connected to the same ToR
switch. Figure 1b shows the cg spatial behavior matrix divided
in Pods, considering two Pods of eight nodes. The nodes in
the same Pod (crosshatched) are not classified because their
communications occur within the ToR switch. The remaining
matrix cells are labeled as unclassified.



To classify the cells, we have used the Muhammad et al.
approach [1], where the flow is classified as an elephant
whenever it is consuming 10% of the link bandwidth per
second. In Figure 1b, the cells identified in red with thin
diagonal lines have been classified as elephants; the rest of
the cells remained unclassified.

C. Routing

The Dijkstra’s weighted shortest-path algorithm [8] is used
for placing the previously classified elephant flows. SPATEN
finds a path and creates the rules (R1) for switches, with
a higher priority, matching source (i) and destination (j)
addresses.

After placing the elephants flows, SPATEN computes the
paths among all hosts using an approach similar to Mice-
Trap [10], reducing the number of matching rules by grouping
the flows by the destination address. These rules (R2) are
created with a lower priority.

SPATEN proactively fills the switches flow tables with R1
and R2 before starting the application, avoiding both problems
reported in Section II.

IV. EVALUATION

To evaluate our proposal, the experiments were structured
in two parts. The first part is devoted to understanding network
programmability impact on the SciApps performance. In the
second part, the experiments investigate the feasibility of
accelerating applications by balancing their elephant flows.

For all experiments, the applications were executed 30 times
and their execution times were recorded. To avoid the pitfalls
introduced by simulation and emulation tools, and be sure that
the obtained results are correct and accurate, all experiments
were executed in a real testbed. As the baseline, we have
firstly measured all experiments with the switches configured
as L2/L3 mode1, using the simplest possible topology: all
computers connected to a single switch.

Our testbed was composed of 16 Lenovo PCs with processor
Intel quad-core 3.2Ghz, 8GB RAM, 1TB HD, 1 Gigabit
Ethernet, running Linux Debian 8.2, and MPI implementation
mpich-3.2. Three Pica8 P-3290 OpenFlow switches running
the operating system PicOS v2.6.4. Each switch has 48 Gigabit
Ethernet ports, four 10 Gigabit optical SFP+ ports, and a
Firebolt3 chipset supporting up to 2048 flow entries in its
TCAM memory. This switch can operate in two modes of
operation: L2/L3 mode and Open vSwitch (OVS) mode. The
OVS mode supports OpenFlow 1.4, through Open vSwitch
v2.0 integration2. The evaluation was performed using the
NAS parallel benchmarks v3.3.1 [7].

A. Impact of Network Programmability

To understand the impact of network programmability, we
have used a single switch programmed with SPATEN, Ryu3,

1Layer 2 / Layer 3: The switch runs as a non-SDN switch.
2http://openvswitch.org/
3https://osrg.github.io/ryu/

and Pox4, two well-known SDN controllers, forwarding the
flows with their default reactive learning switch. We have ex-
ecuted the most rule-intensive applications, ft and lu, using 16
computers, measuring their execution time and investigating
the installed matching rules. Figure 2a shows the execution
times for lu application.

When the switch is programmed with Ryu controller, the
application execution time was close to the baseline. However,
the first execution the time was higher due to the time
for querying the controller. When controlled by Pox, the
application took longer to execute; this is explained because
the controller is creating and installing rules for every new
flow (microflow). Furthermore, Pox installs the rules using
expiration timeouts. When these timeouts expire, the rules
are removed and the controller has to be queried again. With
SPATEN, the execution time achieves the baseline, because
it proactively installs the necessary rules before starting the
application.

(a) lu execution time. (b) ft execution time.

Fig. 2: Execution time of ft and lu applications executed in 16
computers connected to a single switch.

Figure 2b shows the measured times for ft. When controlled
with Ryu the application execution average time was 1.4
seconds slower. However, in the first execution, to install the
all-to-all nodes matching rules, it took 106.4 seconds (77%
longer than the baseline). When the switch was controlled
by Pox, the ft execution time was much higher, taking an
average of approximately 94 seconds to finish its execution.
The application execution time using SPATEN was similar to
the baseline.

We note that the Ryu installs the matching rules using
source and destination MAC addresses. So, for the ft appli-
cation, it has installed 240 rules on the switch flow table. On
the other hand, Pox has ranged from 117 to 334 rules. The
higher number is because Pox creates microflow rules, and the
idle and hard timeouts were responsible for the variation. The
number of rules installed by SPATEN was 16 because they
match only the destination addresses.

An important remark is scalability regarding network states
for installing rules based on the {source, destination} tuple.
It implies that the necessary number of rules grows exponen-
tially, and can be calculated as n × (n − 1), where n is the
number of nodes. Considering 48 computing nodes connected
to all P-3290 Ethernet ports, and a controller installing rules

4https://github.com/noxrepo/pox



for communicating all-to-all nodes, it will be necessary a total
of 2256 flow entries, exceeding the 2048 entries TCAM size.
In our testbed switches, we have observed that the RTT for a
ping message goes from 0.3ms for rules stored in TCAM to
4ms when they are located in DRAM. The throughput goes
from 936Mbits/s when rules are stored in TCAM to only
4Mbits/s when stored in DRAM.

B. Programming the Network with SPATEN

In order to prove that SPATEN can optimize the SciApps,
we have used the two applications that more exchanged
traffic considering the pair of nodes (cg and bt). They were
executed in 16 computers connected through topology shown
in Figure 3. The topology is composed of three switches,
one spine switch and two are top-of-rack (ToR) switches. The
ToR switches have eight computers connected to its Gigabit
Ethernet ports, and they are connected to the spine with four
Gigabit links.

Fig. 3: Real testbed for SPATEN proof of the concept.

To assess the outcome, we have compared the application
execution time programmed with SPATEN, against a single
switch in L2/L3 mode (baseline). We have also measured the
execution time when the applications flows were unbalanced
on the available links.

(a) cg execution time. (b) bt execution time.

Fig. 4: Execution time of cg and bt applications executed in
16 computers connected to the given topology.

Figure 4a shows the measured execution time of this ex-
periment for the cg application while Figure 4b gives the bt
application. For both applications, the execution time had a
very small increase, in average 100 milliseconds, when the
network was programmed with SPATEN, compared to the
baseline. On the other hand, when elephant flows are allocated
to share a link, the execution time has increased considerably.
For instance, cg execution time doubles in Figure 4a, when
four elephant flows are sharing a link.

V. CONCLUSION

We have presented SPATEN, a tool that improves the per-
formance of scientific applications (SciApps) taking advantage
of their well-behaved communications patterns as the main
insight for programming the network. Our approach relies
on application spatial behavior to classify the elephant flows,
proactively allocating these flows in a balanced way along
network paths, eliminating the time for querying the controller
and reducing the number of installed matching rules. Our
experiments demonstrate the effectiveness of our approach,
keeping the execution time of SciApps to near-optimal times.

As future work, we intend to apply SPATEN in scientific
workflows with multiple execution phases, as well as the pos-
sibility to run (or schedule) multiple concurrent applications.

ACKNOWLEDGMENTS

The authors would like to thank CAPES for partial funding
of this research, CNPq under Grant 456143/2014-9, and the
Brazilian Ministry of Communications for partial funding it
via “Digital Inclusion: Technology for Digital Cities” project.

REFERENCES

[1] M. Afaq, S. Rehman, and W.-C. Song, “Large flows detection, marking,
and mitigation based on sflow standard in sdn,” Journal of Korea
Multimedia Society Vol, vol. 18, no. 2, pp. 189–198, 2015.

[2] S. Ahern, S. R. Alam, M. R. Fahey, R. J. Hartman-Baker, R. F. Barrett,
R. A. Kendall, D. B. Kothe, R. T. Mills, R. Sankaran, A. N. Tharrington
et al., “Scientific application requirements for leadership computing
at the exascale,” Oak Ridge National Laboratory (ORNL); Center for
Computational Sciences, Tech. Rep., 2007.

[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams
et al., “The landscape of parallel computing research: A view from
berkeley,” Technical Report UCB/EECS-2006-183, EECS Department,
University of California, Berkeley, Tech. Rep., 2006.

[4] L. Chen, X. Huo, and G. Agrawal, “A pattern specification and opti-
mizations framework for accelerating scientific computations on hetero-
geneous clusters,” in Parallel and Distributed Processing Symposium
(IPDPS), 2015 IEEE International. IEEE, 2015, pp. 591–600.

[5] R. d. R. Righi, V. F. Rodrigues, C. A. da Costa, G. Galante, L. C. E.
de Bona, and T. Ferreto, “Autoelastic: Automatic resource elasticity
for high performance applications in the cloud,” IEEE Transactions on
Cloud Computing, vol. 4, no. 1, pp. 6–19, Jan 2016.

[6] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a
globally-deployed software defined wan,” in ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4. ACM, 2013, pp. 3–14.

[7] H. Jin, H. Jin, M. Frumkin, M. Frumkin, J. Yan, and J. Yan, “The
openmp implementation of nas parallel benchmarks and its perfor-
mance,” NASA Technical Report NAS-99-011, Tech. Rep., 1999.

[8] J. Ru, S. Wei, and Z. Hongke, “Traffic matrix-based routing optimiza-
tion,” in Proceedings of the 2015 International Conference on Computer
Science and Intelligent Communication, 2015, pp. 429–432.

[9] E. Rubin, E. Levy, A. Barak, and T. Ben-Nun, “Maps: Optimizing
massively parallel applications using device-level memory abstraction,”
ACM Trans. Archit. Code Optim., vol. 11, no. 4, pp. 1–22, Dec. 2014.

[10] R. Trestian, G. M. Muntean, and K. Katrinis, “Micetrap: Scalable
traffic engineering of datacenter mice flows using openflow,” in 2013
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM 2013), May 2013, pp. 904–907.

[11] C. Trois, M. D. D. D. Fabro, L. C. E. de Bona, and M. Martinello,
“A survey on sdn programming languages: Towards a taxonomy,” IEEE
Communications Surveys Tutorials, vol. PP, no. 99, pp. 1–25, April 2016.

[12] C. Trois, M. Martinello, L. C. E. de Bona, and M. D. Del Fabro,
“From software defined network to network defined for software,” in
Proceedings of the 30th Annual ACM Symposium on Applied Computing,
ser. SAC ’15. ACM, 2015, pp. 665–668.


