
Transformation-based Framework for Record
Matching

Arvind Arasu Surajit Chaudhuri Raghav Kaushik
Microsoft Research

{arvinda, surajitc, skaushi}@microsoft.com

Abstract— Today’s record matching infrastructure does not
allow a flexible way to account for synonyms such as “Robert”
and “Bob” which refer to the same name, and more general forms
of string transformations such as abbreviations. We propose a
programmatic framework of record matching that takes such
user-defined string transformations as input. To the best of our
knowledge, this is the first proposal for such a framework. This
transformational framework, while expressive, poses significant
computational challenges which we address. We empirically
evaluate our techniques over real data.

I. I NTRODUCTION

Record matching [1] is an essential step in order to use data
warehouses for accurate data analysis. For example, owing to
various errors in data, the customer name in a sales record may
not match exactly with the name of the same customer in the
registration table. A critical component of record matching
involves determining whether two strings are similar or not.
String similarity is typically captured via a similarity function
that, given a pair of strings returns a number between 0 and 1,
a higher value indicating a greater degree of similarity with
the value 1 corresponding to equality.

As reviewed by Koudas, Sarawagi, and Srivastava [1],
previously proposed similarity functions predominantly focus
on the syntactic difference between strings in measuring their
similarity. While this is indeed an indicator of similarity,there
are many cases where strings that are syntactically far apart
can still represent the same real-world object. This happens in
a variety of settings such as street names (the street nameSW
154th Aveis also known asLacosta Dr E in the postal area
corresponding to zipcode33027), the first names of individuals
(Robert can also be referred to asBob), conversion from
strings to numbers (secondto 2nd) and abbreviations (Internal
Revenue Servicebeing represented asIRS).

Prior work addresses this issue primarily usingtoken stan-
dardization[1], [2]. The idea is to pre-process the input data
so that all variations of a string are converted into a canonical
(standard) representation. Thus, for example, the input could
be pre-processed so that all occurrences ofBob are converted
to Robert. However, this approach is inadequate as illustrated
by the following example.

Example 1:Suppose we have three stringsJeff Jones, J
Jonesand John Jonesand suppose that record matching is
performed using string equality. If we adopt the approach
of token standardization, then there are only three possible
outcomes: (1) no two of the above strings join (for example, if

we do not change any token), (2) all three pairs of strings join
say by standardizingJohnandJeff to J, and (3)J Jonesjoins
with exactly one ofJeff JonesandJohn Jones. It is impossible
to achieve the following output:J Jonesjoins with bothJeff
Jonesand John Jonesbut the latter two do not join. This is
clearly a limitation of token standardization since there are
scenarios where this is desirable. �

The key issue illustrated in Example 1 is that equivalences
are only one form of string variations. We also have variations
such as abbreviations that lose information. For example, afirst
initial (such asJ) can be expanded in multiple ways (John,
Jeff, etc.) that are clearly not equivalent.

We argue that it is impractical to expect a generic similarity
function to be cognizant of such domain-dependent variations.
Rather the matching framework has to be customizable to take
these variations asexplicit input. In this paper, we propose
a simple programmatic framework based ontransformation
rules to capture non-syntactic notions of string similarity.
Informally, transformation rules generate a set of new strings
for any given string; two strings are considered similar ifsome
pair of strings generated from the original strings is similar.
The following example illustrates this.

Example 2:Consider the names in Example 1. Our trans-
formation rules are of the formJ → Jeff and J → John.
Informally, the first rule means that an occurrence ofJ can
be replaced withJeff. Under these rules,J Jonesgenerates
three strings:J Jones, Jeff Jones, andJohn Jones. The strings
Jeff Jonesand John Jonesdo not generate any new string
other than themselves. Therefore, the stringsJ JonesandJeff
Joneswould be considered similar, since they both generate
the stringJeff Jones; on the other hand, the stringsJeff Jones
andJohn Joneswould not be considered very similar. �

The similarity between strings generated using transformation
rules is captured using one of the traditional similarity func-
tions such as jaccard or edit distance. Thus, our framework is
orthogonal to the choice of the underlying similarity function.

As Example 2 suggests, and as we will argue in the rest
of the paper, transformation rules provide a highly expres-
sive framework for declaratively capturing a wide variety of
non-syntactic string similarity such as synonymous words or
names, acronyms and first name initialization. To the best
of our knowledge, this is the first proposal that takes such
transformations as explicit input. We show using an empirical
study on real data that we can leverage our transformation
rule-based framework to significantly improve the quality of

record matching.
As part of our empirical study, we also consider the ease

of specifying transformation rules. We argue using two rep-
resentative data cleaning domains, addresses and academic
publications, that there often exist rich sources of domain
knowledge that can be leveraged to semi-automatically derive
a large number of useful transformation rules. These include,
for example, data published by USPS [3] for addresses,
manually curated sites such as Wikipedia [4] and DBLP [5].

While the transformational framework is expressive, it also
introduces significant computational challenges. A fundamen-
tal operation in record matching issimilarity join, which
identifies all pairs of strings (records) that are similar. The
naive approach suggested by our semantics is to generate
all derived strings using transformation rules and compute
similarity join over the derived strings. However, this approach
is not efficient since the number of derived strings could be
very large, as illustrated by the following example.

Example 3:Consider the citation:
N Koudas, S Sarawagi, D Srivastava. Record link-
age: Similarity Measures and Algorithms. Proceed-
ings of the 2006 ACM SIGMOD International Con-
ference. Chicago, IL, USA.

Suppose that we consider the set of rules{N → Nick, S →
Sunita, D → Divesh, SIGMOD→ Special Interest Group on
Management of Data, ACM → Association for Computing
Machinery, IL → Illinois}. The number of strings generated
by this citation under these rules is26 = 64. �

We address the computational challenges thus posed by our
framework. We present general techniques applicable to a
large subset of common similarity functions, and some spe-
cializations optimized for set-based similarity functions such
as jaccard similarity and its variants. Our experimental results
suggest that our new techniques provide at least one or two
orders of magnitude performance improvements over the naive
approach.

II. RELATED WORK

Record matching has been a thriving area of database
research surveyed in [1] and [2]. Substantial portions of this
work have focused on designing suitable similarity functions.
Some of these functions are domain-specific, such as the Jaro
distance [6] and Jaro Winkler distance [7] for person names,
and functions used by tools such as Trillium [8] for addresses.
However, by and large, the focus of prior research has been on
domain-independent similarity functions. These can be broadly
classified into:

• core functionsthat are based on the syntactic differ-
ence between two records, such as edit distance and
its variations [9], jaccard similarity, tf-idf based cosine
similarity [10], functions based on language models from
information retrieval and for example Hidden Markov
Models [11]

• machine-learningbased approaches that use positive and
negative examples to identify a combination of core
functions [12], [13], [14], [15], and

• linkage-based functions[16], [17], [18], [19] that exploit
the relationship among attributes to measure the similarity
between records (such as joining two papers based on the
corresponding sets of authors).

Our main contribution is to the class of core functions which
we enrich with a table of user-specified transformations. Our
goal is to be domain-independent. The limitations of the core
functions in the absence of transformations have already been
discussed in Section I. Extensions of these core functions have
been studied that attempt to account for equivalences between
strings that are syntactically far apart. Affine edit distance [12],
[9] is a variant of classic edit distance that allows for prefix-
based abbreviations (Corp as a short-form ofCorporation).
However, these extensions only account for special cases
such as prefix-based abbreviations. For instance, affine edit
distance does not account for equivalences of first names and
street aliases. These special cases are implicit. In contrast, our
approach takes transformation rules as explicit input. We com-
pare the record matching quality of our approach empirically
against these approaches [12]. Our technique complements
machine-learning based approaches that use examples to learn
the best combination of core functions.

Algorithms that perform linkage-based record match-
ing [16], [17] work iteratively jointly deducing equivalences
among various attributes (e.g., papers, authors) and usingthe
equivalences derived in the current iteration in the next itera-
tion. In principle, it is possible to seed these algorithms with
an initial set of equivalences that are user-defined. However,
this is inadequate since not all string variations correspond to
equivalences as shown in Example 1. Further, these algorithms
model equivalences only at the attribute level, not at the intra-
attribute level. For instance, the fact thatRobert is the same
asBob is not used to deduce thatRobert Jonesis the same as
Bob Jones. Such a deduction is one of our contributions and
thus our techniques can be used to complement linkage-based
algorithms.

III. STRING TRANSFORMATIONS

As noted in Section I, string matching is a critical compo-
nent of record matching and is the focus of this paper. We
model strings as a sequence oftokenswhere each token is
a (smaller) string. We assume the existence of procedures
that convert a string into a token sequence and vice versa.
A given string may be tokenized for instance by splitting it
based on delimiters such as white spaces. By this method, the
string Internal Revenue Serviceis converted to the sequence of
tokens<Internal,Revenue,Service>. Henceforth, we use the
term string to refer to a sequence of tokens and the term
substringto refer to a (contiguous) subsequence of tokens.

A. Transformation Rules

A transformation rule consists of a pair
(context ,Production) where Production is of the form
lhs → rhs. Each of context , lhs, rhs is a string. The
sequencelhs cannot be empty, butrhs can be. A production
without a corresponding context is called acontext-free

transformation and we use the production itself to denote the
rule.

Example 4:Some example transformation rules are:

• IL → Illinois
• ACM → Association for Computing Machinery
• (33027, SW 154th Ave→ Lacosta Dr E)

The first two rules are context-free, while the third is context-
sensitive. �

We now describe how a strings can be transformed given a
set of transformation rulesT . The transformations are driven
by the productions. The context is used to identify a set of
productions that are applicable tos. Let P(s) denote all pro-
ductions wherecontext is a substring ofs (thus, all context-
free transformations are included inP(s)). The productions in
P(s) can be used to transforms. A productionP = lhs → rhs

in P(s) can be applied tos if lhs is a substring ofs; the
result of applying the production is the strings′ obtained by
replacing the substring matchinglhs with rhs.

Example 5:We can use the transformation (33027, SW
154th Ave→ Lacosta Dr E) to go from the stringSW 154th
Ave, Miramar FL 33027to Lacosta Dr E, Miramar FL 33027.
However, the stringSW 154th Ave, Miramar FLdoes not
derive any new string since the context is not a substring.
�

We can apply any number of productions inP(s) one after an-
other. However, a token that is generated as a result of produc-
tion application cannot participate in a subsequent production.
We provide the rationale for this restriction in Section III-D.
Briefly, without this restriction, the transformation framework
becomes intractable.

Example 6:We can use the productionDrive → Dr to
generate the stringLacosta Dr E from the string Lacosta
Drive E. However, we cannot further convertLacosta Dr E
to Lacosta Doctor Eusing the productionDr → Doctor. �

The set of stringsgeneratedby s is the set of all strings
obtained by applying zero or more productions inP(s) to
s.

Example 7:To illustrate a more complex example, we
consider the set of productions: (B C → X), (C D → Y),
(D E → Z), (X Z → U) as applied to the stringA B C D E.
Note that overlapping portions of this string match different
rules. Each such match derives a different string. The set of
strings that are generated is{A B C D E, A X D E, A B Y E,
A B C Z, A X Z}. �

B. String Similarity

We now discuss how we extend the notion of string sim-
ilarity in the presence of transformation rules. A similarity
function f and a threshold0 < θ ≤ 1 together define a
similarity predicate(f, θ) that is satisfied by strings(s1, s2)
if f(s1, s2) ≥ θ.

Given a set of transformation rulesT , two stringss1 and
s2 satisfy a similarity predicate(f, θ) under T if there are
stringss′

1
ands′

2
respectively generated bys1 ands2 usingT

such thatf(s′
1
, s′

2
) ≥ θ.

Example 8:Suppose that the similarity predicate is equal-
ity. The stringSW 154th Ave Florida 33027is equal to the
stringLacosta Dr E, FL 33027under the transformations{FL
→ Florida, (33027, SW 154th Ave→ Lacosta Dr E)}. This
happens since both of the above strings generate the same
string Lacosta Dr E, Florida 33027. �

Following from the above discussion, we can assign a
similarity score to two strings given a similarity functionf
and a set of transformationsT . The similarity between strings
s1 and s2 under T is defined to be the maximum similarity
(as measured byf) among all pairss′

1
and s′

2
respectively

generated bys1 ands2 usingT . With this definition, adding
transformations can only increase the similarity between two
strings.

Notice that the above definition as stated does not penalize
the application of a transformation rule for computing simi-
larity. For instance, for the rules of Example 7, the similarity
of both pairs (A B C D E, A B C D E) and (A B C D E, A X
Z) is the same for any similarity function, although the first
pair contains exactly identical strings, while the second does
not. We can imagine scenarios where penalizing or costing the
application of transformation rules is useful, and this canbe
done in several ways. One example is simply counting the
number of rules applied. We can incorporate costs simply
by taking as input a budget on the total cost of rules to
restrict the number of strings generated by a given string.
This methodology is independent of the underlying similarity
function. Of course, this is not the only way to incorporate
costs—we could for example aggregate the rule application
costs with the final similarity value returned. We defer a
detailed study of these alternatives to future work.

C. Generating Transformations

One question that arises from our framework is how we can
obtain transformations. We now discuss various ways of doing
this.

First, we may obtain transformations through specialized
tables that are readily available for various domains. We
illustrate with the following examples.

1) US Addresses:The United States Postal Service
(USPS) [3] publishes extensive information about the
format of US addresses, which can be used to get
transformation rules for address strings. The published
information contains a comprehensive list of alternate
representations of common strings such asstreetandst,
andNE andNorth East. It also contains a list of about
176,000 street aliases. Our example in Section I (the
street nameSW 154th Aveis also known asLacosta Dr
E in the postal area corresponding to zipcode33027)
was drawn from this table. This set of aliases holds for
a given zipcode which constitutes the context.

2) Academic Publications:The DBLP site [5] provides
a list of conferences and their abbreviations, which
can be used to derive transformation rules via screen-
scraping. We can also use the list of authors in DBLP

to get transformation rules corresponding to first name
abbreviations such as those illustrated in Example 2.

3) There are also several useful online resources such as
www.acronymfinder.com, which contains exten-
sive lists of abbreviations, and Wikipedia [4].

Second, transformations can be programmatically generated.
For example, we can generate rules that connect the integer
and textual representation of numbers such as25thandTwenty-
Fifth.

Third, the set of transformation rules need not be explicitly
specified, but could be specified implicitly using regular ex-
pressions. For example, the regular expressionRural Route
\d+ → RR \d+ conceptually specifies an infinite set of
transformation rules of the formRural Routei → RR i, for
i = 1, 2, We can apply such transformation rules to derive
strings using standard techniques from regular expression
matching.

We use transformation rules obtained as described above in
our experiments in Section V.

D. Relationship to Formal Grammars

We now relate our method of applying productions to formal
grammars [20]. The goal of this is two-fold. It illustrates the
principle behind our method, and also shows why we do not
permit a token that is generated as a result of production
application from participating in a subsequent production.

Suppose we assign one terminal for each distinct tokent
and a non-terminalNt corresponding tot. Given strings, let
N(s) denote the sequence of non-terminals corresponding to
the sequence of tokens ins. Consider the formal grammar
defined using the following rules:

1) Start → N(s)
2) N(lhs) → rhs for each productionlhs → rhs in P(s).
3) Nt → t for each tokent.

It is easy to see that the set of strings that can be obtained from
s as stated above is equivalent to the set of strings generated
by the above formal grammar.

Suppose that we allowed tokens generated as a result of
production application to participate in subsequent productions
any number of times by changing the above grammar to
replace rules of the formN(lhs) → rhs with N(lhs) →
N(rhs), then we are left with unrestricted grammars [20]
where even deciding membership is undecidable (in our set-
ting, that would mean that given two strings and a set of
productions, even the problem of determining whether one
string is generated by the other is undecidable.) We thus need
to restrict the power of this grammar by requiring that tokens
generated as a result of production application participate
in subsequent productions only a bounded number of times.
While we set this bound to be 0 in this paper, our techniques
extend to any boundk ≥ 0.

IV. SIMILARITY JOIN WITH STRING TRANSFORMATIONS

In Section III-B, we define the notion of similarity under
transformations (this is based on a given underlying similarity
function). Recall that the goal of record matching is to find

INPUT: RelationsR, S, T , similarity functionf and thresholdθ
1. Let relationsExpandR andExpandS be initialized

to R andS respectively
2. For eachr ∈ R, find every stringr′ generated byr underT

and add(r, r′) to ExpandR
3. For eachs ∈ S, find every strings′ generated bys underT

and add(s, s′) to ExpandS
4. Perform a similarity join onExpandR andExpandS

to find tuples(r, r′, s, s′) such thatf(r′, s′) ≥ θ
5. Output all distinct pairs(r, s) from the

tuples(r, r′, s, s′) returned by step 4.

Fig. 1. Baseline Similarity Join

pairs of records that are similar. In practice, the record match-
ing is implemented in two different settings. Theindexing
setting is where one of the input relations is given in advance.
The idea is to pre-process this relation to create an index which
is then used at query time to take an input string and look up
all records that are similar to it. Thejoin setting is where
both the input relations are given and the goal is to find pairs
of records that are similar. In this paper, we focus on the
join setting noting that our techniques are also applicableto
indexing.

The formal similarity join problem can be stated as follows:
given two input relationsR and S, a relationT containing
transformations and a similarity thresholdθ, find all pairs of
strings(r, s), r ∈ R, s ∈ S whose similarity underT is greater
than or equal toθ. There are two components to this problem.
First, for each string inR and S, we need to find the set
of matchingtransformations, i.e. transformations where both
the context and lhs are substrings. Second, we use the set of
matched productions to perform the similarity join. We now
describe the details of each of these components. We focus
on context-free transformations. Extending the techniques pre-
sented here to handle context is straightforward.

A. Finding Matching Transformations

For a given input stringx in either R or S, the goal is to
find all transformations wherelhs is its substring. We adopt
well-known techniques to address this problem. Observe that
if l is a substring ofx, then l is a prefix of some suffix ofx.
Under the assumption that the relationT fits in-memory, we
construct a trie over all the distinctlhs in T . We then process
every string inR andS and for a given string, use each of its
suffixes to look up the trie. For the case whenT does not fit
in memory, there exist standard external memory adaptations
of the above approach which we can leverage. The details are
straightforward and we defer them to the full version of the
paper.

B. Baseline Similarity Join

The semantics of computing a similarity join under trans-
formations suggests the algorithm outlined in Figure 1. In
steps 2 and 3, we store the original string along with the string
generated by it since we use the original strings in step 5. In

our implementation, we store an identifier with every string
that we use instead of the string itself.

This is the algorithm we use when we treat the similarity
function as a blackbox. There are several similarity functions
for which the best known implementation of a similarity join
is via a cross-product of the input relations. In such cases,
step 4 above involves computing a cross-product. While this
is an expensive step, this is not an artifact of the transformation
framework, rather a problem intrinsic to the similarity function
chosen.

C. Similarity Join using Signatures

Efficient implementations over a relational database system
have been proposed for a large class of similarity functions
such as jaccard similarity, hamming distance, cosine similarity
and edit distance [21], [22], [23] based onsignature-schemes.

We begin by reviewing the notion of signature schemes.
A signature-based algorithm for computing the similarity join
betweenR andS involving similarity predicate(f, θ) operates
as follows: It first generates a set ofsignaturesfor each string
in R andS. The signatures have thecorrectnessproperty: if
f(r, s) ≥ θ, thenr ands share a common signature. Signature
schemes have been proposed for several similarity functions
such as edit distance and jaccard similarity [1]. Based on this
property, the signature-based algorithm generatescandidate
pairs by identifying all (r, s) ∈ R × S such that the set
of signatures ofr and s overlap. Since set overlap can be
tested using an equi-join, a DBMS is used for evaluating this
step. Finally, in apost-filteringstep, it checks the similarity
join condition f(r, s) ≥ θ for each candidate pair(r, s), and
outputs those that satisfy the condition.

We illustrate signature schemes through an example. Sup-
pose the similarity function is jaccard similarity obtained by
tokenizing the two strings into sets of tokens (for example,
the string “Microsoft Corporation” can be tokenized to obtain
the set{“Microsoft”, “Corporation”}) and computing the ratio
of the (weighted) intersection size over the (weighted) union
size. One previously proposed signature scheme for computing
the similarity join between two relations with the predicate
that the jaccard similarity be above thresholdθ is prefix-
filtering [24]. We fix a global ordering over the universe
of elements{1, . . . ,m} that constitute the sets. The prefix
filter of a sets at jaccard thresholdθ is defined to be the
subset ofs containing the(1 − θ) | s | smallest elements
of s according to the global ordering. For example, if the
global ordering of{1, . . . ,m} is simply the natural number
ordering, the prefix filter of{1, 3, 6, 8, 9} for jaccard similarity
θ = 0.6 consists of the two smallest elements ofs, i.e.,
{1, 3}. We can show that prefix filter satisfies the correctness
property required of signatures: theθ-prefix filters of two sets
with jaccard similarity> θ have nonempty intersection. In
practice, the ordering of elements induced by their frequency
in the input sets (rarer elements are smaller) results in thebest
performance [23].

We now focus on similarity functions that can be imple-
mented using signature schemes. The straightforward way

INPUT: RelationsR, S, T and thresholdθ
1. For eachr ∈ R, computeSign(r) =

Sm

i=1
sign(ri)

wherer generates the set{r1, . . . , rm}
2. For eachs ∈ S, computeSign(s) =

Sn

j=1
sign(sj)

wheres generates the set{s1, . . . , sn}
3. Generate all candidate pairs(r, s) ∈ R × S, satisfying
Sign(r) ∩ Sign(s) 6= φ
4. Output any candidate pair(r, s) whose similarity
underT is ≥ θ.

Fig. 2. Signature-Based Algorithm using Compression

of using signature schemes is to use them in step 4 in
Figure 1. This involves generating signatures for each string
in ExpandR andExpandS . Since the number of strings gen-
erated by each string can be large as illustrated in Example 3,
this approach can be prohibitively expensive.

Suppose thatr ∈ R generates the set of strings{r1, . . . , rm}
underT and thats ∈ S generates the set{s1, . . . , sn}. Note
that the above approach generates signatures for eachri and
sj . Denote the signature generated by stringri as sign(ri).
Observe that:

Property 1: There existi, j such thatsign(ri)∩sign(sj) 6=
φ if and only if (

⋃m

i=1
sign(ri)) ∩ (

⋃n

j=1
sign(sj)) 6= φ.

Thus, instead of generating eachsign(ri), it suffices to
generateSign(r) =

⋃m

i=1
Sign(ri) (respectivelySign(s) =⋃n

j=1
Sign(sj)). This set can be significantly smaller since if

some element appears in more than one distinct signature, it
needs to be represented only once. We refer to this techniqueas
signature compression. We illustrate this through an example.

Example 9:Consider the citation record in Example 3. Re-
call that the number of generated records is26 = 64. Suppose
the set (of last names){Koudas, Sarawagi, Srivastava} is a
signature generated by all the 64 generated records. This is
not unexpected for several common similarity functions since
an overlap on the last names of the authors in a citation is
indicative of a high value of similarity. This signature need
not be replicated 64 times; one copy suffices.

The overall signature-generation step is illustrated in Fig-
ure 2.

D. Optimizations for Jaccard variants

The signature compression technique illustrated in Sec-
tion IV-C applies to any similarity function that can be
supported via signature schemes. Clearly, a better knowledge
of the similarity function is likely to open up even more op-
portunities for improving the execution efficiency of similarity
joins. We now present optimizations that focus on jaccard
similarity (denotedJaccSim) — computed by tokenizing two
strings into (multi)sets of tokens and taking the size of the
intersection divided by the size of the union. We choose
jaccard similarity since it has been shown that supporting
jaccard similarity efficiently leads to efficient implementations
of several other similarity functions [22], [24]. Further,the
optimizations we describe below can be applied to any set-
based similarity function that has the property that for sets
of a given size, the similarity score is monotonic with the

INPUT: RelationsR, S, T , thresholdθ and
a clustering of the tokens

1. For eachr ∈ R:
Rename each matching transformationlhs → rhs

to obtaincluster(lhs) → cluster(rhs)
ComputeClusteredSign(r) =

Sm

i=1
sign(ri)

wherecluster(r) generates the set{r1, . . . , rm}
using the renamed transformations

2. For eachs ∈ S, computeClusteredSign(s) similarly
3. Generate all candidate pairs(r, s) ∈ R × S, satisfying
ClusteredSign(r) ∩ ClusteredSign(s) 6= φ
4. Output any candidate pair(r, s) whose similarity
underT is ≥ θ.

Fig. 3. Signature-Based Algorithm with Token Clustering

intersection size (examples include hamming distance and
trivially, set intersection.)

A well-known signature scheme for jaccard similarity is
based on the idea oflocality-sensitive hashing (LSH). The
compressed LSH signatures corresponding to the set of all
strings generated from a given input string, can be constructed
without explicitly materializing the set. The details while
straightforward are intricate and we defer it to the full version
of the paper. Before discussing the postprocessing step (Step
4, Figure 2), we first present a technique for further reducing
the number of signatures.

1) Token Clustering:The signature compression technique
described in Section IV-C exploits the resemblance among the
strings generated by a given input string — the more the
resemblance, the greater the opportunities for compression.
We further enhance this resemblance by clustering all the
tokens. Suppose we assign a new token corresponding to each
cluster of tokens. For a tokent, let cluster(t) denote the token
corresponding to the cluster to whicht is assigned. For a string
x, let cluster(x) denote the string obtained by replacing every
tokent with cluster(t). We can see that the following property
holds.

Property 2: Consider two stringsr ∈ R, s ∈ S along with
the transformations that match them. The jaccard similarity of
JaccSim(cluster(r), cluster(s)) ≥ JaccSim(r, s).
Thus, the algorithm in Figure 2 could be modified as follows:
before finding the set of strings generated by a given string,
rename both the string and the matching transformations
according to the token clustering, generate signatures and
then do the post-filtering step with theoriginal (un-renamed)
strings. By Property 2, the renaming cannot miss out any
pair of strings that satisfy the similarity predicate. Thus, this
modification is correct. We outline this in Figure 3.

The advantage yielded by this is that if there are rules where
a single token yields a large number of alternatives — such as
is the case with abbreviations where for instance the first initial
J could lead to a large number of first names beginning with
J — these rules would shrink to a single rule if we clustered
all of these first names and the letter J. Note that while this
is similar to token standardization discussed earlier, it is a
performance technique in our context and does not change the

semantics. In particular, the procedure outlined in Figure3
returns the same (correct) resultindependentof the clustering
used.

This leaves open the question of what clustering yields the
best overall benefit. On the one hand, if we leave every token
in its own cluster, then the resemblance among the generated
strings is unaffected and we get no benefit whatsoever. On the
other hand, if we collapse all tokens into a single cluster, then
the resemblance among generated strings is maximized, but the
number of false positives returned when we join the signatures
is likely to be excessively high. Based on this observation,we
define our goal so that tokens that appear on therhs side
of the samelhs are more likely to be in the same cluster,
whereas tokens that do not appear together on therhs side
of the samelhs are less likely to be in the same cluster. We
capture this intuition by using the well-known paradigm of
correlation clustering [25].

2) Post-Processing:The post-processing step of our sig-
nature based algorithm involves checking for a given pair
of strings r, s whether the similarity predicate under trans-
formations holds (this step is performed with the original,
un-renamed strings and transformations). The straightforward
method of checking this condition is to actually compute all
strings generated byr ands, compute their cross-product and
check exhaustively whether there is some pair satisfying the
similarity predicate. The question arises whether we can do
better than this.

Unfortunately, we show that in the worst case, it is NP-
hard to avoid such an exhaustive check. This is formally stated
below.

Lemma 1:The problem of computing the jaccard similarity
between two input stringsr, s given a set of transformations
is NP-hard.

However, we observe in practice that a large class of trans-
formations are such that both thelhs andrhs are single tokens
(e.g.,St→ Street). We call themsingle-tokentransformations.
Interestingly, if all transformations are single-token, then it is
possible to compute the jaccard similarity between two strings
(under the transformations) in polynomial time. We achieve
this by reducing this problem to bipartite matching [26].

Observe that under single-token transformations, the length
of all generated strings is the same and equals the length of
the original string. Thus, maximizing the jaccard similarity
reduces to maximizing the size of the token-(multi)set inter-
section. Consider a bipartite graph where we have the set of
tokens fromr ands on either side. An edge is drawn between
two tokenstr and ts (on either side) of this graph if (1) they
are equal, or (2) there is a ruletr → ts, or (3) there is a
rule ts → tr, or (4) there is somet such that there are rules
tr → t andts → t. The size of the maximum matching in this
graph can be shown to be the maximum intersection size we
are seeking.

In the presence of single- and multi-token transformations,
we restrict the exhaustive checking to the multi-token trans-
formations.

30

40

50

60

70

N
u

m
 o

f
M

a
tc

h
e

s

1

2

3

4

0

10

20

30

N
u

m
 o

f
M

a
tc

h
e

s

4

5

5--10

>10

10

15

20

25

30

N
u

m
 o

f
M

a
tc

h
e

s

0

5

10

0
.0
8

0
.1
8

0
.2
8

0
.3
8

0
.4
8

0
.5
8

0
.6
8

0
.7
8

0
.8
8

0
.9
8

N
u

m
 o

f
M

a
tc

h
e

s

Similarity

JaccT Jacc

(a) Rank distribution of matching records (b) Similarity distribution of matching records

Fig. 4. Address dataset: Quality results

0.06

0.08

0.1

0.12

0.14

F
ra

ct
io

n
 o

f
M

a
tc

h
e

s

0

0.02

0.04

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

ct
io

n
 o

f
M

a
tc

h
e

s

Similarity

JaccT Jacc

0.15

0.2

0.25

0.3

0.35
F

ra
ct

io
n

 o
f

N
o

n
-M

a
tc

h
e

s

0

0.05

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

ct
io

n
 o

f
N

o
n

Similarity

JaccT Jacc

(a) Similarity distribution of matching records (b) Similarity distribution of non-matching records

Fig. 5. Cora dataset: Quality results

V. EXPERIMENTS

The goal of our empirical study is to investigate (1) the
impact of transformation rules on record matching quality and
(2) the execution efficiency of our algorithms.

A. Datasets and Transformation Rules

We use two datasets for our study. One is a representative
dataset based on US addresses that we refer to as the address
dataset. It consists of two tables: (1) A reference tableUSPS
of clean US addresses obtained from United States Postal
Service [3]. (2) A tableOrgAddress containing proprietary
organization addresses. Each table contains two columns, a
column containing address strings, and an integer identity
column. An address string encodes information such as the
street number, street name, city, state, and zip code. TheUSPS
table has 5 million records while theOrgAddress table has
2 million.

We use two types of transformation rules for the address
dataset. The rules of the first type are obtained using USPS
published domain knowledge as described in Section III-C.
There are about 176,000 such transformation rules. We referto

this set of rules asU. The second type of transformation rules
are edit-distance based: They are programmatically generated
and are of the formtoken1→ token2, wheretoken1andtoken2
are tokens from the input tables that are within a given edit
distance thresholdk (e.g.,califarnia → california is generated
when the threshold is 1). We can vary the edit distance
threshold to control the number of input rules and thus study
how the performance of our algorithms varies as a function
of the number of rules. We generate edit rules corresponding
to edit similarity thresholds of0.8 and0.85, which we denote
E(0.8) andE(0.85), respectively. (Edit similarity of two strings,
s1 ands2, is defined as1.0−ed(s1, s2)/min(|s1|, |s2|), where
ed(s1, s2) denotes the edit distance between the strings, and
|s1| and |s2| denote the length ofs1 ands2, respectively.)

The second dataset is theCora citation dataset from the
RIDDLE repository [27]. This consists of a single relation
with about 1300 unsegmented citation strings which we use
for record matching against itself (self-join). We use this
data set only for quality experiments. For this dataset, we
use transformation rules derived from DBLP as described in
Section III-C.

B. Quality

We now present our quality experiments to demonstrate
the value of transformation rules. We consider four previ-
ously proposed similarity functions—jaccard similarity (Jacc),
a weighted variant of jaccard similarity where tokens are
assignedidf weights (WJacc), Generalized Edit Distance [28]
(GED) that has been shown to be more effective than the
classic edit distance, and BM25 measure that is based on tf-idf
cosine similarity. These four similarity functions are fairly rep-
resentative of similarity functions used in data cleaning [29].
For both of the datasets chosen above, we study the impact
of incorporating transformation rules on the quality of record
matching for each of these similarity functions. We denote the
similarity under transformations by adding the suffixT. Thus
JaccTdenotes Jaccard similarity under transformations.

Address data:For both datasets, we manually construct the
“golden truth”. For the address dataset, the golden truth
specifies, for each record in theOrgAddress table, the
correct matching “clean” record in theUSPS table. We obtain
a subset of 100 “dirty” records by choosing the 100 records
with the least similarity (as measured by GED similarity) to
the matchingUSPS record. Therefore, these 100 records do
not contain easy matches, such as those that can be found by
string equality.

We measure record matching quality in two ways: First,
for each record inOrgAddress, we measure the rank of
the correct matchingUSPS record in terms of similarity.
Ideally, the rank of the correct USPS record should be1,
i.e., the correct record should have a higher similarity than
any other record in the USPS table. Second, we measure
the similarity score of the correct USPS record. Again, it is
desirable that this score be high; a higher similarity translates
to greater efficiency, since similarity joins and lookups have
better performance for higher similarity thresholds than for
lower thresholds.

Figure 4(a) shows the distribution of ranks of the correct
matching USPS records. For all similarity functions that
we consider, the ranks are generally lower (better) with
transformation rules than without them. In particular, forall
similarity functions, the number of matching records with rank
greater than10 is around20 without transformation rules;
with transformation rules, this number drops to around5
for all functions. We also observe that in the presence of
transformations, the gap between a simple similarity function
such as jaccard and a more sophisticated one such as BM25
drops—in fact, JaccT has more correct matches with rank
within 10 than BM25T.

Figure 4(b) shows the distribution of similarity of the
matching USPS records for jaccard similarity function, with
and without transformation rules. We can see that the similarity
of the matching records sharply increases when we include
transformation rules (the trend is the same for the other simi-
larity functions as well). Not only does this indicate a higher
confidence in the matches produced, as mentioned earlier,
it also has performance implications since the efficiency of

Transformation set Expansion No. of Rules

U + E(0.8) 228.7 220,000

U + E(0.85) 15.7 186,000

U 6.89 176,000

Fig. 6. Expansion for different transformation sets

similarity join computation is greater for higher values ofthe
similarity threshold.

Cora data: The golden truth for the Cora dataset specifies
for each pair of records if it represents a valid match or not.
Figure 5(a) shows the similarity distribution for matchingpairs
for jaccard similarity function with and without transformation
rules. We observe a behavior similar to theAddress data,
showing the impact of incorporating transformations on record
matching quality. The average similarity of matching pairs
increases from 0.65 to 0.72 when we add transformations. The
results are similar for other similarity functions as well.

We further observe that incorporating transformations leads
to a sharper separation between the similarities of matching
and non-matching pairs. Figure 5(b) shows the similarity
distribution for non-matching pairs. The average similarity
of all matched pairs is 0.72 whereas the average similarity
for non-matched pairs is 0.14 in the presence of transforma-
tions, whereas without transformations, these numbers are0.65
and 0.12 respectively. Note that the match-similarity increases
by about 0.1 whereas the increase in non-match similarity is
negligible.

C. Performance

The goal of this section is to (1) show that our algorithms
described in Section IV significantly outperform the naive
evaluation of similarity joins, and (2) study the relative con-
tributions of the various techniques proposed earlier for im-
proving the execution efficiency. We compare the performance
of the following algorithms: (1)Baseline which exploits
neither signature compression nor token clustering, (2)Comp
which leverages signature compression but not token clus-
tering, and (3)Comp + Cl which leverages both signature
compression and token clustering. All our implementationsuse
the bipartite-matching algorithm for post-processing. Wepick
subsets of theOrgAddress andUSPS consisting of 100,000
records each for these experiments.

Our implementation is based on jaccard similarity and
thus all techniques discussed in Section IV are applicable.
We use locality sensitive hashing (LSH) as our signature
scheme [30]. We pick the optimal parameters (performance-
wise) of LSH such that the accuracy is 0.95 for threshold 0.8
(that is, every record pair with similarity greater than or equal
to 0.8 is returned with probability 0.95). Our implementation
pushes most computation into a DBMS and is based on the
architecture discussed in [23].

1) Expansion from Transformations:Figure 6 shows the
number of rules in the different transformation sets and the

0

50

100

150

200

250

300

350

400
832

E
x
e

cu
ti

o
n

 T
im

e
 (

se
c)

0

E
x
e

cu
ti

o
n

 T
im

e
 (

se
c)

SigGen CPairs PostProc

1.0E+07

1.5E+07

2.0E+07

2.5E+07

1.8E+08

0.0E+00

5.0E+06

1.0E+07

U+E(0.8) U+E(0.85) U

Comp+Cl Comp Baseline

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

9.8E+06

0.0E+00

1.0E+06

Join Size Num Cpairs

(a) Execution Time (sec) (b) No. of Signatures (c) Join Size & No. of Candidate Pairs

Fig. 7. Performance of our algorithms

expansionthat results from these sets, measured as the average
number of strings generated by a single string from either
input relation. In the presence of the transformations U+E(0.8),
an input string on average generates 228.7 strings. Even
when the edit threshold is 0.85, the expansion is 15.7. This
example shows that the baseline algorithm can be prohibitively
expensive, motivating the need for the optimizations proposed
in this paper.

2) Execution Times:We measure the overall execution
time of the above algorithms for computing a similarity join
with various subsets of transformations. As noted above, the
baseline algorithm is significantly more expensive than the
other algorithms above and we do not report its execution
time here. Thus, only the execution times forComp and
Comp+Cl are reported. Recall that the similarity join proceeds
by first generating signatures for each input relation, joining
the two on equality of signatures and for each distinct pair
of records returned, checking whether the similarity predicate
holds (which we call post-processing). In the presence of
transformations, we also have two additional components
to our execution: rule-matching and token clustering. The
total time taken by rule-matching and token clustering even
with the complete set of 200,000 transformations is less
than 5 seconds. We thus focus on the total execution time of
signature-generation, signature-equi-join and post-processing.
Figure 7(a) shows these execution times (in seconds) on the
Y-axis for different rule-sets, divided up into the time taken for
each of the above components. (Note that some of the values
in Figure 7 are too high to show pictorially; we explicitly
specify the value for such cases.)

First, we observe that thebaseline evaluation of the
similarity join would proceed with the expanded relations
which are a couple of orders of magnitude larger than the
input relations (Figure 6) implying a proportional increase
in the execution time in the presence of transformations.
However, using our techniques we observe that the execution
time under transformations is within a factor of 3-6 times of
not having any transformations (indicated asNoneon the X-
axis). Thus, our techniques yield up to two orders of magnitude
improvement in performance.

Figure 7(a) also shows that token clustering yields sig-
nificant benefits over and above signature compression. For

instance, for the transformation setU+E(0.8), invoking
token clustering brings down the execution time by a factor
of about 3 times.

3) Intermediate Result Size:We also study the benefits
yielded by signature compression and token clustering by
measuring the intermediate result sizes during the similarity
join. For a signature-based algorithm such as ours, there are
three measures of the intermediate result size: (1) the number
of signatures computed, summed over both the input relations,
(2) the size of the equi-join on the signatures, and (3) the
number of distinct candidate pairs (this is different from the
size of the equi-join since the same pair of strings can have
more than one signature in common). These are plotted in
Figure 7(b) and (c) (on the Y-axis). We observe that the
number of signatures generated decreases by an order of
magnitude by using signature compression and another order
of magnitude when we also use token clustering. This again
shows the benefit of our techniques.

Finally, in Figure 7(c), we also plot the size of the signature
join and the number of candidate pairs generated for post-
filtering (Y-axis) for various combinations of transformation
rule-sets and algorithms used (X-axis). The main observation
from this plot is that the benefits of token clustering in
reducing the number of signatures generated does not come
at the expense of an increase in the size of the signature-join
(after all, we could trivially reduce the number of signatures
by clustering all tokens into a single cluster).

VI. SUMMARY

In this paper, we proposed a transformation-based frame-
work to capture string variations such as synonyms and
abbreviations. Unlike previously proposed approaches to han-
dle these variations, (1) transformations are provided as an
explicit input, and (2) the framework is expressive enough to
capture not only equivalences but also more general forms
of transformations. The semantics we proposed based on
expanding the input relations are consistent with any choice of
a similarity function. While this framework is powerful enough
to capture rich variations between strings, it also exposes
significant computational challenges which we addressed for
a large class of similarity functions that can be implemented
using signature-based algorithms. Our experiments over real

data showed that incorporating transformations significantly
enhances record matching quality and that the performance
of computing a similarity join is improved by orders of
magnitude through our techniques.

VII. A CKNOWLEDGMENTS

We thank Misha Bilenko for discussions on learnable string
similarity measures.

REFERENCES

[1] N. Koudas, S. Sarawagi, and D. Srivastava, “Record linkage: similarity
measures and algorithms,” inProc. of the 2006 ACM SIGMOD Intl.
Conf. on Management of Data, June 2006, pp. 802–803.

[2] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate
record detection: A survey,”IEEE Trans. on Knowledge and Data Engg.,
vol. 19, no. 1, pp. 1–16, 2007.

[3] United States Postal Service, http://www.usps.com.
[4] “Wikipedia,” http://en.wikipedia.org/.
[5] “DBLP,” http://www.informatik.uni-trier.de/∼ley/db/index.html.
[6] M. A. Jaro, “Advances in record linkage methodology as applied to

matching the 1985 census of tampa,”American Statistical Association,
1984.

[7] W. E. Winkler, “The state of record linkage and current research
problems.”US Bureau of Census, 1999.

[8] Trillium Software, www.trilliumsoft.com/trilliumsoft.nsf.
[9] S. B. Needleman and C. D. Wunsch, “A general method applicable to

the search for similarities in the amino acid sequences of two proteins,”
Journal of Molecular Biology, vol. 48, pp. 443–453, 1970.

[10] G. Salton and C. Buckley, “Term-weighting approaches inautomatic
text retrieval,” Information Processing and Management, 1988.

[11] D. R. H. Miller, T. Leek, and R. M. Schwartz, “A hidden markov model
information retrieval system,” inProc. of the 22nd ACM SIGIR Conf.
on Research and Development in Information Retrieval, Aug. 1999, pp.
214–221.

[12] M. Bilenko and R. Mooney, “Adaptive duplicate detection using learn-
able string similarity measures,” inProc. of the 9th ACM SIGKDD Intl.
Conf. on Knowledge Discovery and Data Mining, 2003, pp. 39–48.

[13] S. Chaudhuri, B.-C. Chen, V. Ganti, and R. Kaushik, “Example-driven
design of efficient record matching queries,” inProc. of the 33rd Intl.
Conf. on Very Large Data Bases, Sept. 2007, pp. 23–27.

[14] S. Tejada, C. Knoblock, and S. Minton, “Learning domain-independent
string transformation weights for high accuracy object identification,” in
Proc. of the 8th ACM SIGKDD Intl. Conf. on Knowledge Discovery and
Data Mining, July 2002, pp. 350–359.

[15] S. Sarawagi and A. Bhamidipaty, “Interactive deduplication using active
learning,” in Proc. of the 8th ACM SIGKDD Intl. Conf. on Knowledge
Discovery and Data Mining, July 2002, pp. 269–278.

[16] R. Ananthakrishna, S. Chaudhuri, and V. Ganti, “Eliminating fuzzy
duplicates in data warehouses,” inProc. of the 28th Intl. Conf. on Very
Large Data Bases, Aug. 2002, pp. 586–597.

[17] X. Dong, A. Y. Halevy, and J. Madhavan, “Reference reconciliation in
complex information spaces,” inProc. of the 2005 ACM SIGMOD Intl.
Conf. on Management of Data, June 2005, pp. 85–96.

[18] P. Singla and P. Domingos, “Multi-relational record linkage.” inMRDM,
2004.

[19] I. Bhattacharya and L. Getoor, “Collective entity resolution in relational
data,” IEEE Data Engineering Bulletin, vol. 29, no. 2, pp. 4–12, 2006.

[20] J. E. Hopcroft and J. D. Ullman,Introduction to Automata Theory,
Languages and Computation. Addison Wesley, 1979.

[21] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,et al., “Approx-
imate string joins in a database (almost) for free,” inProc. of the 27th
Intl. Conf. on Very Large Data Bases, Sept. 2001, pp. 491–500.

[22] S. Sarawagi and A. Kirpal, “Efficient set joins on similarity predicates,”
in Proc. of the 2004 ACM SIGMOD Intl. Conf. on Management of Data,
June 2004, pp. 743–754.

[23] A. Arasu, V. Ganti, and R. Kaushik, “Efficient exact set-similarity joins,”
in Proc. of the 32nd Intl. Conf. on Very Large Data Bases, Sept. 2006,
pp. 918–929.

[24] S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for
similarity joins in data cleaning,” inProc. of the 22nd Intl. Conf. on
Data Engineering, Apr. 2006.

[25] N. Bansal, A. Blum, and S. Chawla, “Correlation clustering,” Mach.
Learn., vol. 56, no. 1-3, pp. 89–113, 2002.

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,Introduction
to Algorithms. McGraw Hill, 2001.

[27] “RIDDLE: Repository of Information on Duplicate
Detection, Record Linkage, and Identity Uncertainty,”
http://www.cs.utexas.edu/users/ml/riddle.

[28] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani, “Robust and
efficient fuzzy match for online data cleaning,” inProc. of the 2003
ACM SIGMOD Intl. Conf. on Management of Data, June 2003, pp.
313–324.

[29] A. Chandel, O. Hassanzadeh, N. Koudas, M. Sadoghi, and D. Srivastava,
“Benchmarking declarative approximate selection predicates.” in Proc.
of the 2007 ACM SIGMOD Intl. Conf. on Management of Data, June
2007, pp. 353–364.

[30] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” inProc. of the 25th Intl. Conf. on Very Large
Data Bases, Sept. 1999, pp. 518–529.

