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Abstract 

Handling parallelism in database systems involves the 
specification of a storage model, a placement strategy, and a 
query processing strategy. An important goal is to determine 
the appropriate combination of these three strategies in order 
to obtain the best performance advantages. In this paper we 
present a novel and promising query processing strategy for a 
decomposed storage model. We discuss some of the qualitative 
advantages of the scheme. We also compare the performance of 
the proposed "pivot" strategy with conventional query 
processing for the n-ary storage model. The comparison is 
performed using the Wisconsin Benchmarks. 

1 Introduction 

It is becoming increasingly clear that in order to 
maintain substantial performance improvements in 
computing systems, parallel processing technology is a 
must. It is also becoming increasingly clear that although it 
is relatively easy to propose or even build parallel 
machines, it is much harder to develop algorithms which 
exploit the available parallelism. This paper addresses this 
issue in database systems. 

For processing database queries in a highly parallel 
environment we need the specification of: 

(i) the storage model which specifies the sets of internal 
objects manipulated by the system, 

(ii) the data placement strategies, which specify how the 
objects of the storage model are distributed over the 
components (i.e. the multiple repositories) of the 
architecture, and 

(ii) the query processing algorithms with respect to the 
given architecture, data placement, and storage model. 

Most database systems use an n-ary storage model 
(NSM) for a set of records. This approach stores data as 
seen in the conceptual schema. Also, various inverted 
files or cluster indexes might be added for improved 
access speeds. The key concept in NSM is that all 
attributes of a conceptual schema record are stored 
together. 

An alternative to NSM is the Decomposed Storage 
ModelS. DSM is a fully transposed storage model with 
surrogates included. DSM pairs each attribute value with 
the surrogate of its conceptual schema record in a binary 
relati-on. Furthermore, two copies of each binary relation 
are stored, one clustered (i.e. sorted or hashed with an 
index) on each of the two attributes. This provides an 
alternative to mirroring for data recovery, as well as 
improved access times since every field has a cluster 
index. 
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For data placement in a parallel environment with 
multiple repositories, it has been shown 10 11 that a 
declustered organization provides many advantages, both 
in terms of response time and load balancing. In the 
declustered placement scheme a set of records pertaining 
to the same internal object is partitioned horizontally and 
distributed across a prescribed number of repositories. 
Declustering is orthogonal to the storage model. In other 
words, it could be used with both NSM and DSM. DSM 
provides more opportunities for distributing vertical 
partitionings of the data. However, since the set objects in 
NSM (i.e. sets of tuples storing relations) are usually 
larger than those in DSM (sets of binary tuples storing 
attributes), we believe declusterin� (which IS strictly a 
horizontal partitioning strategy) provides more 
opportunities in parallelism to NSM. It is an interesting 
research issue to analyze the interplay of these two forms 
of parallelism on the performance of (parallel) algorithms 
for NSM and DSM. 

For query processing strategies, many proposals have 
been made for the efficient uni-processor execution of 
some database operations. In particular, many solutions 
have concentrated on the relational join because it is an 
important and costly operation6. One recent proposal for 
the efficient evaluation of join queries is the concept of 
join indexes as presented in lS 16. A join index abstracts 
the join through a binary relation using surrogates. 

Overall, in a uni-processor context, query processing 
strategies based on NSM are well understood12 lB. 

There has been some proposals for parallel algorithms 
in distributed databases3 13 and database machines2 14. 
However, we believe much more work needs to be done 
for developing efficient parallel algorithms for database 
query evaluation. 

In this paper we present what we believe to be a novel 
and promising algorithm (called the pivot algoriihm), for 
processing generic queries with DSM and join indexes. 
The two main advantages of the pivot algorithm are 1) 
provision for parallel execution in the multiple phases of 
the algorithm and 2) generation of small temporary 
result!!. 

Our ultimate goal is to determine the storage model, 
placement strategy, and query processing strategy which 
gives us the best performance advantages in a parallel 
system. This will entail the specification of a complete list 
of reasonable approaches, with a comprehensive 
comparative analysis. We find this noble goal to be too 
overwhelming. There are too many combinations and 
strategies. Instead, we chose to implement and compare 
two representative strategies: 1) NSM with a simple 
conventional query processing strategy and 2) DSM with 
the pivot query processing strategy. Furthermore, our 
implementation was with a uniprocessor V AX 780 system 
running UNIX. Therefore the comparison will not 



demonstrate the real and important comparison of the 
strategies, namely their performance in a parallel 
environment. Nevertheless we believe it is an important 
starting point: besides telling us how these two strategies 
will behave in a uniprocessor environment, it will also help 
us observe relative performance changes as we increase 
the parallelism (either through simulation or through 
developing and running the algorithms on a parallel 
machine). Also the implementation helped us validate 
some of the analytical results inS. 

The pivot algorithm and the DSM were implemented 
on an extension of WiSS (the Wisconsin Storage System)4 
called D-WiSS. WiSS itself provides an NSM storage 
model. The benchmarks used to compare NSM and DSM 
were the Wisconsin Benchmarks 1 . 

The paper is organized as follows: Section 2 describes 
how relations and queries are represented in DSM. 
Section 3 describes the pivot query processing algorithm. 
Section 4 describes the Wisconsin Benchmarks along with 
our extensions to them. Section 5 presents and discusses 
the implementation results. Section 6 provides some 
conclusions. 

2 Representation of Relations And Queries 
In DSM 

In this section we present an overall framework for the 
representation of relations and queries. 

We start with a number of "conceptual" relations Rl, 
. . .  , Rn which constitute the database. We assume each 
relation is of the form: 

Ri(Si,Ail, ... ,Aim), 

where Si is the surrogate attribute of the relation and Ail, 
... , Aim are either atomic (i.e., integer, real, string, etc.) 
valued or surrogate valued attributes of Ri. There is a 
unique surrogate value of the surrogate attribute for each 
tuple of the relation. The surrogate is used to implement 
the identity of the tupleB. The value of the surrogate 
attribute of a tuple is (system-wide) unique. In most cases, 
a surrogate valued attribute Aij stores the surrogate 
attributes of another relation. Therefore surrogate valued 
attributes are similar to "foreign key" valued attributes in 
the relational model. 

With NSM all the attributes Si, Ail, ... , Aim of Ri are 
stored together contiguously. The relation Ri is either 
clustered or hashed on the surro�ate attribute. For the 
other attributes we have inverted (secondary) indexes. 

With DSM, Ri is stored as m binary relations: 

Ril(Si,Ail), ... ,Rim(Si,Aim). 

Furthermore, there are two copies of each Rik(Si, Aik): 
one clustered on the surrogate Si and the other on Aik. 

Finally, whenever there are two attributes of two 
relations Ri and Rj which could be joined, we shall assume 
there exists a binary join relation Rij(Si,Sj) which 
represents the join. More specifically, if attribute A of Ri 
and attribute B of Rj are join attributes then: 
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Rij(Si,Sj) = {(Si,Sj) I ti is a tuple in Ri. 
tj is a tuple in Rj. 
tLA = tj.B, 
Si is the surrogate of ti. 
Sj Is the surrogate of tj}. 

Rij is called a "join index" 1S of Ri and Rj. 

For example, assume the schema of employee and 
department relations is 

Empl(Se: surrogate. 
Name: string, 
Oept: integer. 
Sal: real, 
SS#: integer) 

Oept(Sd: surrogate. 
Num: integer. 
Name: string. 
Budget: real). 

where each Empl.Dept is equal to some Dept.Num to 
establish the entity relationship that each employee works 
for some department. The corresponding DSM 
representation is 

Empl-Name(Se: surrogate. Name: string) 
Empl-Oept(Se: surrogate. Sd: surrogate) 
Empl-Sal(Se: surrogate. Sal: real) 
Empl-SS#(Se: surrogate. SS#: integer) 

Oept-Num(Sd: surrogate. Num: integer) 
Oept-Name(Sd: surrogate. Name: string) 
Oept-Budget(Sd: surrogate. Budget: real) 

where Empl-Dept is a join index. There are two copies of 
each of these binary relations, one clustered on each of the 
two attributes. For value-based relations (all except the 
single join index Empl-Dept), the first copy is clustered on 
the surrogate (Se or Sd) and the second copy is clustered 
on the attribute value. For join index relations 
(Empl-Dept), one copy is clustered on the Se surrogate 
and the other on the Sd surrogate. As we shall see, the 
Pivot algorithm will specify which of the copies to choose. 

As an example query (in a Prolog style notation), we 
will use 

ANS(SS#. ON) <== 
Empl(Se. Name. ONum. "1 0k". SS#). 
Oept(Sd. ONum . ON. Budget). 

which yields the social security number and department 
name of all employees whose salary is "lOk". With DSM, 
the same query is represented as 

ANS(SS#. ON) <== 
Empl-Oept(Se. Sd). 
Empl-Sal (Se. "1 Ok"). 
Empl-SS#(Se. S5#). 
Oept-Name(Sd. ON). 



3 The Pivot Query Processing Strategy 

This section describes the pivot query processing 
strategy (QPS). First, we provide the rationale behind the 
pivot QPS. Then, we describe the algorithm. Finally, an 
example is given. 

3.1 Rationale 

Most QPS's are developed for single-processor 
architectures using NSM. These query processing 
strategies have deep and narrow query trees because they 
totally order the operations. The pivot QPS is designed for 
parallel se architectures using DSM. DSM provides the 
opportunity to have more inter-operation parallelism, as 
well as smaller intermediate relations which act as 
operands for subsequent operations. 

The pivot QPS has four phases: the select phase, the 
pivot phase, the value materialization phase and the 
composition phase. Below, we discuss the pivot QPS 
advantages in each phase. We assume a declustered 
placement strategy. 

The select phase executes a select operation for every 
predicate binding in the query, and these are done in 
parallel. Operands are small because they are binary. 
There is also parallelism within each select operation when 
the number of qualifying objects is large (e.g. , poor 
selectivity or range queries) due to declustering. In QPS's 
designed for single processor machines, select operands 
are small, a second select which is large (i.e., with a large 
number of qualifying objects or with no index) is often 
omitted, and joins are serialized starting with the first 
select result. With DSM, this second select always has an 
index and is done in parallel with the first select. 
Parallelism within each select operation and de clustering 
puts an upper bound on the time to execute large selects. 

The pivot phase picks a pivot surrogate and executes 
an m-way join. The pivot surrogate is any one of the 
surrogates appearing on the right hand side of the query. 
However, we can show the most selective surrogate 
attribute of the relations in the m-way join is the optimal. 

The pivot surrogate is used to group the attributes for 
the final result. The join operands of the m-way join are 
small because they are only unary or binary relations 
containing only surrogates. In QPS's designed for single 
processor machines, joins typically have large operands, 
do not always have the correct indexing, and are fully 
serialized. Using DSM, there is a small join index15 
clustered on the desired surrogate for all entity-based 
-joins, so that a full scan is avoided. Declustering causes 
much parallelism within each join operation. Some join 
operations can be done in parallel. Communications 
between processors is minimized by having small 
operands. 

The value materialization phase executes several 
independent joins in parallel. These join operands are 
small because they are only binary relations containing 
only surrogates and their cardinality has been fully 
reduced due to the combination of all selects. There is 
always an attribute value relation clustered on surrogate. 
Declustering causes much parallelism within each join 

operation. Communications between processors is 
minimized by having small operands. 
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The composition join executes an m-way merge join 
with a large degree of parallelism. The operands are 
small because they are only binary relations containing 
only surrogates and their cardinality has been fully 
reduced due to the combination of all selects. 

3.2 The Algorithm 

To present the pivot query processing strategy, we 
start with a generic query. Let 

RI, . . .  ,Rn 

be conceptual relations. We give an informal definition of 
a generic Select/JoinlProject generic query (SJP), where we 
assume all the selects are exact matches and all the joins 
are equijoins. A generic SJP query is of the form: 

ANS(X1 , .. . ,Xp) <== R1(S1 , 
J1 1 .... ,J1 a, 
uv1 1 "  , ... , "v1 c", 
X1 1 , . .. ,X1 e, ... ) 

Rn(Sn, 
Jn1 , ... ,Jnb, 
"vn1" ,''0' "vnd", 
Xn1 . ... ,Xnf, ... ) . 

where the Si, Jij, "vij", and Xijattributes are reordered for 
convenience. The Si's are the surrogates of the relations, 
the Jij's are join attributes, the "vij'''s are (exact match) 
values of select attributes, and the Xij's are project 
attributes. Therefore, each Jij is used to join with at least 
one Ji'j', and each Xij on the right hand side corresponds 
to an Xi on the left hand side. 

The pivot algorithm proceeds in four phases: the 
Select Phase, Pivot Phase, Value Materialization Phase, 
and Composition Phase. Next, we describe the 
functionalities of each of these phases. 

I. The Select Phase: Performs all the selects of the tuples 
through the DSM copies clustered on the selected attribute 
values. The output of this phase is a collection of 
temporaries, where each temporary is a set containing the 
surrogates of the selected conceptual objects. Therefore, 
for each attribute A of a relation R which is selected we 
will evaluate (italics indicates which copy of the DSM sets; 
thus an italicized value indicates the value clustered copy, 
an italicized surrogate indicates the surrogate clustered 
copy): 

S-A(S) <== R-A(S, "v"). 

11. The Pivot Phase: Selects a pivot surrogate and 
performs the main m-way join of the query, incorporating 
selected tuples produced in the select phase, as well as 
join indexes which are involved in joins for producing the 
final result. The pivot surrogate could be any of the 



surrogates appearmg on the right hand side of the query. 
Although we have developed some heuristics, the 
determination of the "optimal" pivot surrogate is still an 
open issue. The pivot surrogate is used to group attributes 
for the final result. Therefore the output of this phase is a 
collection of temporaries where each contains a pivot 
surrogate and the surrogate of a relation which has project 
attributes. Therefore, if S-Al, ... , S-An constitute all the 
outputs of the select phase, and JIl, ... , JIm are all the join 
indexes which are needed to produce the result, then the 
expression to evaluate the temporaries in the pivot phase 
is: 

11 (SP,S1),. . .,lk(SP,Sk) <== 
S-A 1 (SS1), ... S-An(SSn), 
JI1(SJ11,SJ1r), ... ,Jlm(SJml,SJmr). 

where SP is the pivot surrogate, and SI, . . . , Sk are 
surrogates of relations which have project attributes (note 
that if any of these is SP, the corresponding Ii will be 
unary). Here we have used a convenient non-first-order 
notation which has several temporaries on the left hand 
side of the expression. The interpretation of the 
expression is that the evaluation of the right hand side 
produces all the temporaries on the left hand side. Each 
SSi corresponds to an SJij in a join index on the right hand 
side, and each Si on the left hand side also corresponds to 
an SJij on the right hand side of the expression. 

We have purposefully ignored specifying two 
important (and interrelated) aspects of the multiway join: 
the choice of the cluster copy of the JIi(SJiI, SJir) join 
indexes (i.e., the one clustered on SJiI or the one clustered 
on SJir), and the ordering of the joins. This problem by 
itself is quite involved and currently we are investigating a 
number of recent and innovative solutions9. We should 
mention, however, that this ordering and the choice of the 
cluster copy of the join indexes has no bearing on the rest 
of the pivot algorithm. It is just a local optimization at the 
pivot phase. Also note that the pivot algorithm itself is 
imposing some ordering on the choice of the base relations 
due to the four phases. 

Ill. The Value Materialization Phase: Materializes the 
attribute values for the tuples whose surrogates were 
produced in Phase IT. The pivot surrogates are maintained. 
The output is a collection of temporaries where each 
temporary is a binary relation containing (pivot-surrogate, 
project-attribute-value) pairs. Therefore, for each 
projected attribute A, we will produce a temporary V-A, 
which contains the projected attribute values, as well as 
the corresponding pivot 5urrogate values: 

V-A(SP,A) <== Ii(SP,Si), R-A(Si,A), 

where Ii was produced in the pivot phase and R-A is the 
DSM copy for attribute A clustered on surrogate. 

IV. The CompOSition Phase: Performs an m-way join of 
all the temporaries produced in Phase Ill. The join is done 
on the pivot surrogate. The result is the final answer of 
the query. 

ANS(A1 ..... An)<==V-A1 (SP.A1), ... ,V-An(SP.An). 

3.3 A Pivot Example 

For the example in Section 2, the four phases are: 

I. Select Phase: 

S-Sal(Se) <- Empl-Sal(Se,"I�»). 

1/. PIvot Phase: 

11(Se,Sd),I2(Se) <== S-Sal(Se), 
Empl-Dept(Se,Sd), 

where we have chosen Se as our pivot. 

Ill. Value Materialization Phase: 

V-SS#(Se,SS#) <== 12(Se), 
Empl-SS#(Se,SS#) . 

V-DN(Se,DN) <== 11(Se,Sd), 
Dept-Name(Sd,DN). 

IV. CompOSition Phase: 

ANS(SS#,DN) <== V-SS#(Se,SS#), 
V-DN(Se,DN) . 

4 The Wisconsin Benchmarks 

In this section we present a brief overview of the 
Wisconsin Benchmark (WB), and indicate the introduction 
of an important parameter for our comparative 
performance analysis. A detailed presentation of WB is 
given inl. 
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The database of the WB consists of lk tuple, 2k tuple, 
5k tuple and 10k tuple relations. Each relation has 15 
attributes. Two of these attributes (called "uniquel" and 
"unique2") have distinct values for each tuple. These 
attributes take 2 byte integer values. There are also 11 
other 2 byte attributes called "two" "four " "ten" 
"twenty", "hundred" , "thousand< "tw�thousand" : 
"fivethousand", "tenthousand", "odd", "even". The first 
nine of these assume as many distinct values as indicated 
by their names (of course if the cardinality of the relation 
is smaller than the name of the attribute, the attribute will 
assume a unique value per tuple. Finally, there are three 
string valued attributes: "stringul", "stringu2", and 
"string" of 52 bytes each. Hence, the total size of a tuple 
is 182 bytes. 

Since the DSM is a surrogate based storage model, we 
chose unique 1 to be the surrogate in each of the relations. 
Furthermore, we assumed the NSM relations were 
clustered on uniquel. With NSM, we had inverted indexes 
for selects and joins. 

The Wisconsin Benchmarks include select, join, 
project, as well as update, and aggregate operations. In 
the select and join queries of these benchmarks the 
projections were on all of the attributes of the relations. 
We don't believe this is the typical case, and furthermore 
this is not reasonable in comparing NSM with DSM (we 
know DSM will come out a loser each time). This is an 
important short-coming of these benchmarks, as they 
favor non-decomposed storage models. Therefore, we 
introduced an important modification to the select/project 
queries of the WB: we varied the number of projected 



attributes. This enabled us to identify the high watermark 
value of the number of projected attributes, below which 
DSM is a winner. 

Finally, the 2-way joins in the WB were always �-1 
joins, preceded by a select. Assuming the select�d rela�l�n 
was the first relation, we augmented the bmary Jom 
benchmarks with 1-10, 10-10 and 10-1 joins on 10k tuple 
relations. 

In APPENDIX I we present generic queries for all the 
runs analyzed in this paper. 

5 Implementation Results 

To experiment with the pivot algorithm as well as to 
substantiate some of the claims made in5, we implemented 
a fully decomposed storage scheme based on DSM and 
join indexes. 

In 17 we summarized the relative advantages of DSM 
with Join Indexes15 over NSM. Our conclusions were 1) 
that DSM provides better retrieval performance when the 
number of retrieved attributes is low or the number of 
retrieved records is medium to high (i.e., greater than the 
number stored in a disk block), while NSM provides �etter 
retrieval performance when the numb�r of retrlev�d 
attributes is high and the number of retneved records IS 
low, and 2) the performance of single attrib�te 
modification is the same for both DSM and NSM, while 
NSM provides better record insert/delete performance. 

The implementation results confirmed our analysis. In 
Figure 1 we give the ratio for number of blocks acces�ed 
by NSMlDSM for 1 % and 10% selects on 10K tuple 
relations . The x-axis is the fraction of the total number of 
projected attributes (the total number is 16 - 1 surrog�te 
and 15 attributes). First observe that the �e!atl\:e 
performance of DSM is better when the selectivity IS 
worse. In fact with 10% selectivity, DSM will perform 
better if the fraction of projected attributes is less o� equal 
to approximat�l� 70% of. the total nUI!lber of attnbutes. 
With 1 % selectivity DSM IS better only If the total number 
of projected attributes is about 30% of the total number of 
attributes. 

To show the performance of the joins with DSM 
versus NSM, we have analyzed the performance of several 
types of 2-way joins, .nan:ely: 1-1, 1-10, 10-1, !l�d 10-10. 
These are illustrated m Figure 2. For all these Joms, there 
is a 1 % select on the first relation and both relations are 
10k tuple relations. First, we note that the total number of 
tuples retrieved from both relations decreases in the order 
1-10 10-10 l-l,and 10-1. For example, with 1-1 a total 
of 200 (lOO

' 
from each relation) tuples wil! be retri�ved. 

However, with 1-10 a total of 1100 tuples will be re.tneved 
(100 from the first relation (Le. , the one on which the 
selection is performed) and 1000 from the second). For 
the 1-10 and 10-10 joins DSM performs better if the 
number of projected attributes is approximately less than 
or equal to 50% of the total number of attributes in both 
relations. For the 1-1 and 10-1 cases DSM performs 
better if the total number of projected attributes is less or 
equal to approximately 30% of the . total number C?f 
attributes. However, we should emphasize that the x-axIs 
here is the fraction of the total number of attributes from 
both relations. 

The implementation runs showed the superiority of 
NSM in update queries. However, the NSM implemented 
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had only three inverted indices versus fifteen for DSM. 
The append query (in the Wisconsin benchmark) requires 
7 page accesses with NSM versus 66 with DSM. The 
delete query requires 7 page accesses with NSM versus 71 
with DSM. Finally, the modify query needs 6 accesses 
with NSM versus 5 with DSM. Append and delete queries 
are clearly very expensive with DSM. However, 
considering a fully inverted NSM (Le., 15 indices in our 
benchmark) would lead to a DSM performance worse by 
only a factor 2 for append and delete. DSM always 
outperforms NSM for modify. 

Finally, tables 1-7 provide the total CPU times for 
each benchmark query (select (1%), 2-way join, 3-way 
join, append, delete, modify and aggregate sum). The 
numbers show that, for a given query, the CPU time of 
DSM is proportionally worse than the 10 number. This is 
because our implementation trades off data compression 
for CPU overhead. This tradeoff is desirable since the 
relative speeds of logic and RAM are increasing at a much 
faster rate than disk speeds. Therefore, in drawing our 
conclusions we concentrated primarily on the number of 
page accesses. 

6 Summary and Conclusions 

In this paper we have presented a novel query 
processing algorithm called the pivot algorithm.. The 
algorithm is designed for parallel architectures which use 
the decomposed storage model (DSM). The algorithm 
consists of four phases: the select phase, the pivot phase, 
the value materialization phase, and the composition 
phase. Each of these phases provides opportunities for 
parallelism either through the possibility of executing 
multiple operations concurrently (clearly seen in the select 
phase and the value materialization phase), or throu1!h 
pipe lining the temporary results within an execution of 
the given phase (pivot and ,?ompo�ition pha��). The 
philosophy of the pivot algonthm IS to partition the 
execution of a Select/JoinlProject query into numerous 
operations of small operands, attempting to increase the 
degree of parallelism as much as possible. The total 
amount of work done could actually increase with the pivot 
algorithm. With this strategy the total number of joins will 
be more than that of, say, conventional query processing 
strategy with the n-ary storage model (1':l"SM). However, 
each join of the pivot algorithm usually mvolves smaller 
operands. The performance and comparison of the pivot 
algorithm with an NSM query processing strategy on a 
uni-processor elucidates this point, since it is a 
comparison of total time. 

Therefore we implemented a DSM storage model, ran 
some benchmarks with the pivot query processing strategy, 
and compared it with NSM. The imple!l1entation �f DS� 
and the pivot strategy was based on WISS (the Wlsconsm 
Storage Systems), and the benchmarks used to compare 
the two strategies were the Wisconsin Benchmarks. The 
results confirmed some of our previous analytical results 
comparing DSM and NSM. In fact, it is interesting to .note 
that in this uni-processor environment the pivot algonthm 
seems to be quite competitive with conventional NSM 
based strategies. We have argued qualitatively, and we 
believe that the relative advantages of DSM with the pivot 
algorithm will increase in a parallel architecture. Of course 
this remains to be shown. This exercise provides just the 
starting point in determining efficient storage models, 
placement strategies and algorithms for database systems 
in parallel architectures. Besides specifying more 



precisely the strategy tor selectmg the pivot surrogate and 
ordering the m-way join in the pivot phase, we need to 
analyze the performance of the pivot algorithm in a 
parallel architecture. Finally, we shall attempt to extend 
the pivot algorithm to more complex storage models. 
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Appendix I 

In this appendix we present representatives of the queries 
and updates analyzed in the paper, in an SQL syntax. In 
these examples we have two 10,000 tuple relations 
tenktupl and tenktup2 and one 1,000 tuple relation 
onektup. For each of these relations uniquel is the 
surrogate. All joins are preceded by selects 

(a) 1% select with project on 10 attributes: 

range of t is tenktup1 

retrieve into ANS(t.uniqu2, t.two, t.four, t.ten, 
t.twenty, t.hundred, 
t.thousand, t.twothousand, t.string1, 

t.string2) 
where (t.unique2 > 301) and (t.unique2 < 

402) 

(b) I-I, 2-way join query with project on 5 attributes of 

each relation: 

range of t is tenktup1 
range of w is tenktup2 

retrieve into ANS(t.uniqu2, t.two, t.four, t.ten, 
t.twenty, t.hundred, 
t.thousand, t.twothousand, t.string1, 

t.string2, w.uniqu2, w.two, w.four, w.ten, 
w.twenty, w.hundred, 

w.thousand, w.twothousand, 
w.string1, w.string2) 

where (t.unique2 = w.unique2) and 
(t.unique2 < 1000) 

(c) 1-10 join with project on 2 attributes : 

range of t is tenktup1 
range of x is tenktup2 

retrieve into ANS (t.unique2, t.two, x.unique2, 
x.two) 

where (t.unique2 = x.thousand) and 
(t.unique2 < 100) 

(d) 10-10 join with project on 3 attributes. 

range of t is tenktup1 
range of x is tenktup2. 

retrieve into ANS (t.unique2, t.two, t.four, 
x.unique2, x.two, 
x.four) 

where (t.thousand = x.thousand) and 
(t.unique2 < 100) 
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(e) 10-1 join with project on 2 attributes: 

range of t is tenktup1 
range of w is tenktup2 

retrieve into ANS (t.unique2, t.two, w.unique2, 
w.two) 

where (t.thousand = w.unique2) and 
(t.unique2 < 100) 

(f) 3-way join query with projection on 5 attributes: 

range of 0 is onektup 
range of t is tenktup1 
range of w is tenktup2 

retrieve into ANS (0. unique2 , o.two, o.four, 
o.ten, 0.string1, 
t.unique2, t.two, t.four, t.ten, t.string1) 

where (0.unique2 = t.unique2) and 
(t.unique2 = w.unique2) 

and (w.unique2 < 1000) and (t.unique2 < 
1000) . 

(g) Append 

append to tenktup2 (unique1 = 10003, unique2 
10003, two = 0, 
four = 2, ten = 0, twenty = 10, hundred = 50, 

thousand = 688, two thous = 1950, 
fivethous = 
4950, tenthous = 9950, odd = 1, even = lOO, 
string1 = 
"MxxxxxxxxxxxxxxxxxxxxxxxxxGxxxxxxxxxxxxxxxxxxxxx 
xx xC 11 , 
string2 = 
"GxxxxxxxxxxxxxxxxxxxxxxxxxCxxxxxxxxxxxxxxxxxxxxx 
xxxA" , 
string 
"OxxxxxxxxxxxxxxxxxxxxxxxxxOxxxxxxxxxxxxxxxxxxxxx 
xxxO".) . 

(h) Modify 

range of 1 is tenktup1 

replace t(unique2 = 10001) 
where (t.unique2 = 1491) 

(i) Deletion 

range of t is tenktup1 

delete t where (t.unique2 

G) Aggregate 50M 

range of x is tenktup2. 

1004) 

retrieve into ANS (x = sum (x.twothous by 
x . hundred) . 
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Approximate Time for each Selection Query 

NSM DSM 

2attr I 3attr I 5attr I 10attr I Allattr 

1.25 0.39 I 0.74 I 1.87 I 3.73 I 6.39 

Table 1 

Approximate Time for each 2-Relation Join Query 

NSM DSM 

4attr I 6attr I 10attr I 20attr I 30attr 

23.98 7.53 I 8.90 I 16.18 I 29.14 I 43.88 

Table 2 

Approximate Time for each 3-Relation Join Query 

NSM DSM 

4attr I 6attr I 10attr I 20attr I 30attr 

25.08 11.16 I 14.51 I 22.41 I 43.16 I 95.75 

Table 3 

Approximate Time for each Append Query 

NSM I DSM 
0.17 I 1.41 

Table 4 

Approximate Time for each Deletion Query 

NSM I DSM 
0.20 I 8.71 

Table 5 

Approximate Time for each Modify Query 

NSM I DSM 
0.21 I 0.10 

Table 6 

Approximate Time for each Aggregate Sum Query 

* Time is in seconds 

NSM I DSM 
85.98 I 18.62 

Table 7 
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