
A QUERY PROCESSING STRATEGY FOR
THE DECOMPOSED STORAGE MODEL

Setrag Khoshafian George Cope land Thomas Jagodits
Haran Boral Patrick Valduriez

Microelectronics and Computer Technology Corporation
Austin, Texas

Abstract

Handling parallelism in database systems involves the
specification of a storage model, a placement strategy, and a
query processing strategy. An important goal is to determine
the appropriate combination of these three strategies in order
to obtain the best performance advantages. In this paper we
present a novel and promising query processing strategy for a
decomposed storage model. We discuss some of the qualitative
advantages of the scheme. We also compare the performance of
the proposed "pivot" strategy with conventional query
processing for the n-ary storage model. The comparison is
performed using the Wisconsin Benchmarks.

1 Introduction

It is becoming increasingly clear that in order to
maintain substantial performance improvements in
computing systems, parallel processing technology is a
must. It is also becoming increasingly clear that although it
is relatively easy to propose or even build parallel
machines, it is much harder to develop algorithms which
exploit the available parallelism. This paper addresses this
issue in database systems.

For processing database queries in a highly parallel
environment we need the specification of:

(i) the storage model which specifies the sets of internal
objects manipulated by the system,

(ii) the data placement strategies, which specify how the
objects of the storage model are distributed over the
components (i.e. the multiple repositories) of the
architecture, and

(ii) the query processing algorithms with respect to the
given architecture, data placement, and storage model.

Most database systems use an n-ary storage model
(NSM) for a set of records. This approach stores data as
seen in the conceptual schema. Also, various inverted
files or cluster indexes might be added for improved
access speeds. The key concept in NSM is that all
attributes of a conceptual schema record are stored
together.

An alternative to NSM is the Decomposed Storage
ModelS. DSM is a fully transposed storage model with
surrogates included. DSM pairs each attribute value with
the surrogate of its conceptual schema record in a binary
relati-on. Furthermore, two copies of each binary relation
are stored, one clustered (i.e. sorted or hashed with an
index) on each of the two attributes. This provides an
alternative to mirroring for data recovery, as well as
improved access times since every field has a cluster
index.

CH2407 -5/87 /0000/0636$01. 00 © 1987 IEEE
636

For data placement in a parallel environment with
multiple repositories, it has been shown 10 11 that a
declustered organization provides many advantages, both
in terms of response time and load balancing. In the
declustered placement scheme a set of records pertaining
to the same internal object is partitioned horizontally and
distributed across a prescribed number of repositories.
Declustering is orthogonal to the storage model. In other
words, it could be used with both NSM and DSM. DSM
provides more opportunities for distributing vertical
partitionings of the data. However, since the set objects in
NSM (i.e. sets of tuples storing relations) are usually
larger than those in DSM (sets of binary tuples storing
attributes), we believe declusterin� (which IS strictly a
horizontal partitioning strategy) provides more
opportunities in parallelism to NSM. It is an interesting
research issue to analyze the interplay of these two forms
of parallelism on the performance of (parallel) algorithms
for NSM and DSM.

For query processing strategies, many proposals have
been made for the efficient uni-processor execution of
some database operations. In particular, many solutions
have concentrated on the relational join because it is an
important and costly operation6. One recent proposal for
the efficient evaluation of join queries is the concept of
join indexes as presented in lS 16. A join index abstracts
the join through a binary relation using surrogates.

Overall, in a uni-processor context, query processing
strategies based on NSM are well understood12 lB.

There has been some proposals for parallel algorithms
in distributed databases3 13 and database machines2 14.
However, we believe much more work needs to be done
for developing efficient parallel algorithms for database
query evaluation.

In this paper we present what we believe to be a novel
and promising algorithm (called the pivot algoriihm), for
processing generic queries with DSM and join indexes.
The two main advantages of the pivot algorithm are 1)
provision for parallel execution in the multiple phases of
the algorithm and 2) generation of small temporary
result!!.

Our ultimate goal is to determine the storage model,
placement strategy, and query processing strategy which
gives us the best performance advantages in a parallel
system. This will entail the specification of a complete list
of reasonable approaches, with a comprehensive
comparative analysis. We find this noble goal to be too
overwhelming. There are too many combinations and
strategies. Instead, we chose to implement and compare
two representative strategies: 1) NSM with a simple
conventional query processing strategy and 2) DSM with
the pivot query processing strategy. Furthermore, our
implementation was with a uniprocessor V AX 780 system
running UNIX. Therefore the comparison will not

demonstrate the real and important comparison of the
strategies, namely their performance in a parallel
environment. Nevertheless we believe it is an important
starting point: besides telling us how these two strategies
will behave in a uniprocessor environment, it will also help
us observe relative performance changes as we increase
the parallelism (either through simulation or through
developing and running the algorithms on a parallel
machine). Also the implementation helped us validate
some of the analytical results inS.

The pivot algorithm and the DSM were implemented
on an extension of WiSS (the Wisconsin Storage System)4
called D-WiSS. WiSS itself provides an NSM storage
model. The benchmarks used to compare NSM and DSM
were the Wisconsin Benchmarks 1 .

The paper is organized as follows: Section 2 describes
how relations and queries are represented in DSM.
Section 3 describes the pivot query processing algorithm.
Section 4 describes the Wisconsin Benchmarks along with
our extensions to them. Section 5 presents and discusses
the implementation results. Section 6 provides some
conclusions.

2 Representation of Relations And Queries
In DSM

In this section we present an overall framework for the
representation of relations and queries.

We start with a number of "conceptual" relations Rl,
. . . , Rn which constitute the database. We assume each
relation is of the form:

Ri(Si,Ail, ... ,Aim),

where Si is the surrogate attribute of the relation and Ail,
... , Aim are either atomic (i.e., integer, real, string, etc.)
valued or surrogate valued attributes of Ri. There is a
unique surrogate value of the surrogate attribute for each
tuple of the relation. The surrogate is used to implement
the identity of the tupleB. The value of the surrogate
attribute of a tuple is (system-wide) unique. In most cases,
a surrogate valued attribute Aij stores the surrogate
attributes of another relation. Therefore surrogate valued
attributes are similar to "foreign key" valued attributes in
the relational model.

With NSM all the attributes Si, Ail, ... , Aim of Ri are
stored together contiguously. The relation Ri is either
clustered or hashed on the surro�ate attribute. For the
other attributes we have inverted (secondary) indexes.

With DSM, Ri is stored as m binary relations:

Ril(Si,Ail), ... ,Rim(Si,Aim).

Furthermore, there are two copies of each Rik(Si, Aik):
one clustered on the surrogate Si and the other on Aik.

Finally, whenever there are two attributes of two
relations Ri and Rj which could be joined, we shall assume
there exists a binary join relation Rij(Si,Sj) which
represents the join. More specifically, if attribute A of Ri
and attribute B of Rj are join attributes then:

637

Rij(Si,Sj) = {(Si,Sj) I ti is a tuple in Ri.
tj is a tuple in Rj.
tLA = tj.B,
Si is the surrogate of ti.
Sj Is the surrogate of tj}.

Rij is called a "join index" 1S of Ri and Rj.

For example, assume the schema of employee and
department relations is

Empl(Se: surrogate.
Name: string,
Oept: integer.
Sal: real,
SS#: integer)

Oept(Sd: surrogate.
Num: integer.
Name: string.
Budget: real).

where each Empl.Dept is equal to some Dept.Num to
establish the entity relationship that each employee works
for some department. The corresponding DSM
representation is

Empl-Name(Se: surrogate. Name: string)
Empl-Oept(Se: surrogate. Sd: surrogate)
Empl-Sal(Se: surrogate. Sal: real)
Empl-SS#(Se: surrogate. SS#: integer)

Oept-Num(Sd: surrogate. Num: integer)
Oept-Name(Sd: surrogate. Name: string)
Oept-Budget(Sd: surrogate. Budget: real)

where Empl-Dept is a join index. There are two copies of
each of these binary relations, one clustered on each of the
two attributes. For value-based relations (all except the
single join index Empl-Dept), the first copy is clustered on
the surrogate (Se or Sd) and the second copy is clustered
on the attribute value. For join index relations
(Empl-Dept), one copy is clustered on the Se surrogate
and the other on the Sd surrogate. As we shall see, the
Pivot algorithm will specify which of the copies to choose.

As an example query (in a Prolog style notation), we
will use

ANS(SS#. ON) <==
Empl(Se. Name. ONum. "1 0k". SS#).
Oept(Sd. ONum . ON. Budget).

which yields the social security number and department
name of all employees whose salary is "lOk". With DSM,
the same query is represented as

ANS(SS#. ON) <==
Empl-Oept(Se. Sd).
Empl-Sal (Se. "1 Ok").
Empl-SS#(Se. S5#).
Oept-Name(Sd. ON).

3 The Pivot Query Processing Strategy

This section describes the pivot query processing
strategy (QPS). First, we provide the rationale behind the
pivot QPS. Then, we describe the algorithm. Finally, an
example is given.

3.1 Rationale

Most QPS's are developed for single-processor
architectures using NSM. These query processing
strategies have deep and narrow query trees because they
totally order the operations. The pivot QPS is designed for
parallel se architectures using DSM. DSM provides the
opportunity to have more inter-operation parallelism, as
well as smaller intermediate relations which act as
operands for subsequent operations.

The pivot QPS has four phases: the select phase, the
pivot phase, the value materialization phase and the
composition phase. Below, we discuss the pivot QPS
advantages in each phase. We assume a declustered
placement strategy.

The select phase executes a select operation for every
predicate binding in the query, and these are done in
parallel. Operands are small because they are binary.
There is also parallelism within each select operation when
the number of qualifying objects is large (e.g. , poor
selectivity or range queries) due to declustering. In QPS's
designed for single processor machines, select operands
are small, a second select which is large (i.e., with a large
number of qualifying objects or with no index) is often
omitted, and joins are serialized starting with the first
select result. With DSM, this second select always has an
index and is done in parallel with the first select.
Parallelism within each select operation and de clustering
puts an upper bound on the time to execute large selects.

The pivot phase picks a pivot surrogate and executes
an m-way join. The pivot surrogate is any one of the
surrogates appearing on the right hand side of the query.
However, we can show the most selective surrogate
attribute of the relations in the m-way join is the optimal.

The pivot surrogate is used to group the attributes for
the final result. The join operands of the m-way join are
small because they are only unary or binary relations
containing only surrogates. In QPS's designed for single
processor machines, joins typically have large operands,
do not always have the correct indexing, and are fully
serialized. Using DSM, there is a small join index15
clustered on the desired surrogate for all entity-based
-joins, so that a full scan is avoided. Declustering causes
much parallelism within each join operation. Some join
operations can be done in parallel. Communications
between processors is minimized by having small
operands.

The value materialization phase executes several
independent joins in parallel. These join operands are
small because they are only binary relations containing
only surrogates and their cardinality has been fully
reduced due to the combination of all selects. There is
always an attribute value relation clustered on surrogate.
Declustering causes much parallelism within each join

operation. Communications between processors is
minimized by having small operands.

638

The composition join executes an m-way merge join
with a large degree of parallelism. The operands are
small because they are only binary relations containing
only surrogates and their cardinality has been fully
reduced due to the combination of all selects.

3.2 The Algorithm

To present the pivot query processing strategy, we
start with a generic query. Let

RI, . . . ,Rn

be conceptual relations. We give an informal definition of
a generic Select/JoinlProject generic query (SJP), where we
assume all the selects are exact matches and all the joins
are equijoins. A generic SJP query is of the form:

ANS(X1 , .. . ,Xp) <== R1(S1 ,
J1 1 ,J1 a,
uv1 1 " , ... , "v1 c",
X1 1 , . .. ,X1 e, ...)

Rn(Sn,
Jn1 , ... ,Jnb,
"vn1" ,''0' "vnd",
Xn1 ,Xnf, ...) .

where the Si, Jij, "vij", and Xijattributes are reordered for
convenience. The Si's are the surrogates of the relations,
the Jij's are join attributes, the "vij'''s are (exact match)
values of select attributes, and the Xij's are project
attributes. Therefore, each Jij is used to join with at least
one Ji'j', and each Xij on the right hand side corresponds
to an Xi on the left hand side.

The pivot algorithm proceeds in four phases: the
Select Phase, Pivot Phase, Value Materialization Phase,
and Composition Phase. Next, we describe the
functionalities of each of these phases.

I. The Select Phase: Performs all the selects of the tuples
through the DSM copies clustered on the selected attribute
values. The output of this phase is a collection of
temporaries, where each temporary is a set containing the
surrogates of the selected conceptual objects. Therefore,
for each attribute A of a relation R which is selected we
will evaluate (italics indicates which copy of the DSM sets;
thus an italicized value indicates the value clustered copy,
an italicized surrogate indicates the surrogate clustered
copy):

S-A(S) <== R-A(S, "v").

11. The Pivot Phase: Selects a pivot surrogate and
performs the main m-way join of the query, incorporating
selected tuples produced in the select phase, as well as
join indexes which are involved in joins for producing the
final result. The pivot surrogate could be any of the

surrogates appearmg on the right hand side of the query.
Although we have developed some heuristics, the
determination of the "optimal" pivot surrogate is still an
open issue. The pivot surrogate is used to group attributes
for the final result. Therefore the output of this phase is a
collection of temporaries where each contains a pivot
surrogate and the surrogate of a relation which has project
attributes. Therefore, if S-Al, ... , S-An constitute all the
outputs of the select phase, and JIl, ... , JIm are all the join
indexes which are needed to produce the result, then the
expression to evaluate the temporaries in the pivot phase
is:

11 (SP,S1),. . .,lk(SP,Sk) <==
S-A 1 (SS1), ... S-An(SSn),
JI1(SJ11,SJ1r), ... ,Jlm(SJml,SJmr).

where SP is the pivot surrogate, and SI, . . . , Sk are
surrogates of relations which have project attributes (note
that if any of these is SP, the corresponding Ii will be
unary). Here we have used a convenient non-first-order
notation which has several temporaries on the left hand
side of the expression. The interpretation of the
expression is that the evaluation of the right hand side
produces all the temporaries on the left hand side. Each
SSi corresponds to an SJij in a join index on the right hand
side, and each Si on the left hand side also corresponds to
an SJij on the right hand side of the expression.

We have purposefully ignored specifying two
important (and interrelated) aspects of the multiway join:
the choice of the cluster copy of the JIi(SJiI, SJir) join
indexes (i.e., the one clustered on SJiI or the one clustered
on SJir), and the ordering of the joins. This problem by
itself is quite involved and currently we are investigating a
number of recent and innovative solutions9. We should
mention, however, that this ordering and the choice of the
cluster copy of the join indexes has no bearing on the rest
of the pivot algorithm. It is just a local optimization at the
pivot phase. Also note that the pivot algorithm itself is
imposing some ordering on the choice of the base relations
due to the four phases.

Ill. The Value Materialization Phase: Materializes the
attribute values for the tuples whose surrogates were
produced in Phase IT. The pivot surrogates are maintained.
The output is a collection of temporaries where each
temporary is a binary relation containing (pivot-surrogate,
project-attribute-value) pairs. Therefore, for each
projected attribute A, we will produce a temporary V-A,
which contains the projected attribute values, as well as
the corresponding pivot 5urrogate values:

V-A(SP,A) <== Ii(SP,Si), R-A(Si,A),

where Ii was produced in the pivot phase and R-A is the
DSM copy for attribute A clustered on surrogate.

IV. The CompOSition Phase: Performs an m-way join of
all the temporaries produced in Phase Ill. The join is done
on the pivot surrogate. The result is the final answer of
the query.

ANS(A1 An)<==V-A1 (SP.A1), ... ,V-An(SP.An).

3.3 A Pivot Example

For the example in Section 2, the four phases are:

I. Select Phase:

S-Sal(Se) <- Empl-Sal(Se,"I�»).

1/. PIvot Phase:

11(Se,Sd),I2(Se) <== S-Sal(Se),
Empl-Dept(Se,Sd),

where we have chosen Se as our pivot.

Ill. Value Materialization Phase:

V-SS#(Se,SS#) <== 12(Se),
Empl-SS#(Se,SS#) .

V-DN(Se,DN) <== 11(Se,Sd),
Dept-Name(Sd,DN).

IV. CompOSition Phase:

ANS(SS#,DN) <== V-SS#(Se,SS#),
V-DN(Se,DN) .

4 The Wisconsin Benchmarks

In this section we present a brief overview of the
Wisconsin Benchmark (WB), and indicate the introduction
of an important parameter for our comparative
performance analysis. A detailed presentation of WB is
given inl.

639

The database of the WB consists of lk tuple, 2k tuple,
5k tuple and 10k tuple relations. Each relation has 15
attributes. Two of these attributes (called "uniquel" and
"unique2") have distinct values for each tuple. These
attributes take 2 byte integer values. There are also 11
other 2 byte attributes called "two" "four " "ten"
"twenty", "hundred" , "thousand< "tw�thousand" :
"fivethousand", "tenthousand", "odd", "even". The first
nine of these assume as many distinct values as indicated
by their names (of course if the cardinality of the relation
is smaller than the name of the attribute, the attribute will
assume a unique value per tuple. Finally, there are three
string valued attributes: "stringul", "stringu2", and
"string" of 52 bytes each. Hence, the total size of a tuple
is 182 bytes.

Since the DSM is a surrogate based storage model, we
chose unique 1 to be the surrogate in each of the relations.
Furthermore, we assumed the NSM relations were
clustered on uniquel. With NSM, we had inverted indexes
for selects and joins.

The Wisconsin Benchmarks include select, join,
project, as well as update, and aggregate operations. In
the select and join queries of these benchmarks the
projections were on all of the attributes of the relations.
We don't believe this is the typical case, and furthermore
this is not reasonable in comparing NSM with DSM (we
know DSM will come out a loser each time). This is an
important short-coming of these benchmarks, as they
favor non-decomposed storage models. Therefore, we
introduced an important modification to the select/project
queries of the WB: we varied the number of projected

attributes. This enabled us to identify the high watermark
value of the number of projected attributes, below which
DSM is a winner.

Finally, the 2-way joins in the WB were always �-1
joins, preceded by a select. Assuming the select�d rela�l�n
was the first relation, we augmented the bmary Jom
benchmarks with 1-10, 10-10 and 10-1 joins on 10k tuple
relations.

In APPENDIX I we present generic queries for all the
runs analyzed in this paper.

5 Implementation Results

To experiment with the pivot algorithm as well as to
substantiate some of the claims made in5, we implemented
a fully decomposed storage scheme based on DSM and
join indexes.

In 17 we summarized the relative advantages of DSM
with Join Indexes15 over NSM. Our conclusions were 1)
that DSM provides better retrieval performance when the
number of retrieved attributes is low or the number of
retrieved records is medium to high (i.e., greater than the
number stored in a disk block), while NSM provides �etter
retrieval performance when the numb�r of retrlev�d
attributes is high and the number of retneved records IS
low, and 2) the performance of single attrib�te
modification is the same for both DSM and NSM, while
NSM provides better record insert/delete performance.

The implementation results confirmed our analysis. In
Figure 1 we give the ratio for number of blocks acces�ed
by NSMlDSM for 1 % and 10% selects on 10K tuple
relations . The x-axis is the fraction of the total number of
projected attributes (the total number is 16 - 1 surrog�te
and 15 attributes). First observe that the �e!atl\:e
performance of DSM is better when the selectivity IS
worse. In fact with 10% selectivity, DSM will perform
better if the fraction of projected attributes is less o� equal
to approximat�l� 70% of. the total nUI!lber of attnbutes.
With 1 % selectivity DSM IS better only If the total number
of projected attributes is about 30% of the total number of
attributes.

To show the performance of the joins with DSM
versus NSM, we have analyzed the performance of several
types of 2-way joins, .nan:ely: 1-1, 1-10, 10-1, !l�d 10-10.
These are illustrated m Figure 2. For all these Joms, there
is a 1 % select on the first relation and both relations are
10k tuple relations. First, we note that the total number of
tuples retrieved from both relations decreases in the order
1-10 10-10 l-l,and 10-1. For example, with 1-1 a total
of 200 (lOO

'
from each relation) tuples wil! be retri�ved.

However, with 1-10 a total of 1100 tuples will be re.tneved
(100 from the first relation (Le. , the one on which the
selection is performed) and 1000 from the second). For
the 1-10 and 10-10 joins DSM performs better if the
number of projected attributes is approximately less than
or equal to 50% of the total number of attributes in both
relations. For the 1-1 and 10-1 cases DSM performs
better if the total number of projected attributes is less or
equal to approximately 30% of the . total number C?f
attributes. However, we should emphasize that the x-axIs
here is the fraction of the total number of attributes from
both relations.

The implementation runs showed the superiority of
NSM in update queries. However, the NSM implemented

640

had only three inverted indices versus fifteen for DSM.
The append query (in the Wisconsin benchmark) requires
7 page accesses with NSM versus 66 with DSM. The
delete query requires 7 page accesses with NSM versus 71
with DSM. Finally, the modify query needs 6 accesses
with NSM versus 5 with DSM. Append and delete queries
are clearly very expensive with DSM. However,
considering a fully inverted NSM (Le., 15 indices in our
benchmark) would lead to a DSM performance worse by
only a factor 2 for append and delete. DSM always
outperforms NSM for modify.

Finally, tables 1-7 provide the total CPU times for
each benchmark query (select (1%), 2-way join, 3-way
join, append, delete, modify and aggregate sum). The
numbers show that, for a given query, the CPU time of
DSM is proportionally worse than the 10 number. This is
because our implementation trades off data compression
for CPU overhead. This tradeoff is desirable since the
relative speeds of logic and RAM are increasing at a much
faster rate than disk speeds. Therefore, in drawing our
conclusions we concentrated primarily on the number of
page accesses.

6 Summary and Conclusions

In this paper we have presented a novel query
processing algorithm called the pivot algorithm.. The
algorithm is designed for parallel architectures which use
the decomposed storage model (DSM). The algorithm
consists of four phases: the select phase, the pivot phase,
the value materialization phase, and the composition
phase. Each of these phases provides opportunities for
parallelism either through the possibility of executing
multiple operations concurrently (clearly seen in the select
phase and the value materialization phase), or throu1!h
pipe lining the temporary results within an execution of
the given phase (pivot and ,?ompo�ition pha��). The
philosophy of the pivot algonthm IS to partition the
execution of a Select/JoinlProject query into numerous
operations of small operands, attempting to increase the
degree of parallelism as much as possible. The total
amount of work done could actually increase with the pivot
algorithm. With this strategy the total number of joins will
be more than that of, say, conventional query processing
strategy with the n-ary storage model (1':l"SM). However,
each join of the pivot algorithm usually mvolves smaller
operands. The performance and comparison of the pivot
algorithm with an NSM query processing strategy on a
uni-processor elucidates this point, since it is a
comparison of total time.

Therefore we implemented a DSM storage model, ran
some benchmarks with the pivot query processing strategy,
and compared it with NSM. The imple!l1entation �f DS�
and the pivot strategy was based on WISS (the Wlsconsm
Storage Systems), and the benchmarks used to compare
the two strategies were the Wisconsin Benchmarks. The
results confirmed some of our previous analytical results
comparing DSM and NSM. In fact, it is interesting to .note
that in this uni-processor environment the pivot algonthm
seems to be quite competitive with conventional NSM
based strategies. We have argued qualitatively, and we
believe that the relative advantages of DSM with the pivot
algorithm will increase in a parallel architecture. Of course
this remains to be shown. This exercise provides just the
starting point in determining efficient storage models,
placement strategies and algorithms for database systems
in parallel architectures. Besides specifying more

precisely the strategy tor selectmg the pivot surrogate and
ordering the m-way join in the pivot phase, we need to
analyze the performance of the pivot algorithm in a
parallel architecture. Finally, we shall attempt to extend
the pivot algorithm to more complex storage models.

Acknowledgement

We would like to thank Marc Smith for his helpful
comments on an initial draft of this paper.

Appendix I

In this appendix we present representatives of the queries
and updates analyzed in the paper, in an SQL syntax. In
these examples we have two 10,000 tuple relations
tenktupl and tenktup2 and one 1,000 tuple relation
onektup. For each of these relations uniquel is the
surrogate. All joins are preceded by selects

(a) 1% select with project on 10 attributes:

range of t is tenktup1

retrieve into ANS(t.uniqu2, t.two, t.four, t.ten,
t.twenty, t.hundred,
t.thousand, t.twothousand, t.string1,

t.string2)
where (t.unique2 > 301) and (t.unique2 <

402)

(b) I-I, 2-way join query with project on 5 attributes of

each relation:

range of t is tenktup1
range of w is tenktup2

retrieve into ANS(t.uniqu2, t.two, t.four, t.ten,
t.twenty, t.hundred,
t.thousand, t.twothousand, t.string1,

t.string2, w.uniqu2, w.two, w.four, w.ten,
w.twenty, w.hundred,

w.thousand, w.twothousand,
w.string1, w.string2)

where (t.unique2 = w.unique2) and
(t.unique2 < 1000)

(c) 1-10 join with project on 2 attributes :

range of t is tenktup1
range of x is tenktup2

retrieve into ANS (t.unique2, t.two, x.unique2,
x.two)

where (t.unique2 = x.thousand) and
(t.unique2 < 100)

(d) 10-10 join with project on 3 attributes.

range of t is tenktup1
range of x is tenktup2.

retrieve into ANS (t.unique2, t.two, t.four,
x.unique2, x.two,
x.four)

where (t.thousand = x.thousand) and
(t.unique2 < 100)

641

(e) 10-1 join with project on 2 attributes:

range of t is tenktup1
range of w is tenktup2

retrieve into ANS (t.unique2, t.two, w.unique2,
w.two)

where (t.thousand = w.unique2) and
(t.unique2 < 100)

(f) 3-way join query with projection on 5 attributes:

range of 0 is onektup
range of t is tenktup1
range of w is tenktup2

retrieve into ANS (0. unique2 , o.two, o.four,
o.ten, 0.string1,
t.unique2, t.two, t.four, t.ten, t.string1)

where (0.unique2 = t.unique2) and
(t.unique2 = w.unique2)

and (w.unique2 < 1000) and (t.unique2 <
1000) .

(g) Append

append to tenktup2 (unique1 = 10003, unique2
10003, two = 0,
four = 2, ten = 0, twenty = 10, hundred = 50,

thousand = 688, two thous = 1950,
fivethous =
4950, tenthous = 9950, odd = 1, even = lOO,
string1 =
"MxxxxxxxxxxxxxxxxxxxxxxxxxGxxxxxxxxxxxxxxxxxxxxx
xx xC 11 ,
string2 =
"GxxxxxxxxxxxxxxxxxxxxxxxxxCxxxxxxxxxxxxxxxxxxxxx
xxxA" ,
string
"OxxxxxxxxxxxxxxxxxxxxxxxxxOxxxxxxxxxxxxxxxxxxxxx
xxxO".) .

(h) Modify

range of 1 is tenktup1

replace t(unique2 = 10001)
where (t.unique2 = 1491)

(i) Deletion

range of t is tenktup1

delete t where (t.unique2

G) Aggregate 50M

range of x is tenktup2.

1004)

retrieve into ANS (x = sum (x.twothous by
x . hundred) .

References

1. [Bitton et al. 1983] Bitton D., DeWitt D. J., Turbyfill C.,
"Benchmarking Database Systems: A Systematic
Approach", Int. Conf. on VLDB, Florence, September
1983.

2. [Bitton et al. 1983] Bitton D., Boral H., DeWitt D. J.,
Wilkinson W. K., "Parallel Algorithms for the
Execution of Relational Operations", ACM TODS, vol.
8, no. 3, September 1983.

3. [Ceri and Pelagatti 1984] Ceri S., Pelagatti G., "Distributed
Databases: Principles and Systems", McGraw-HiIl
Ed., 1984.

4. [Chou et al. 1985] Chou H. T., DeWitt D. J., Katz R., Klug
A., "Design and Implementation of the Wisconsin
Storage System", Software Practice and Experience,
vol. 15, no. 10, October 1985.

5. [Copeland and Khoshafian 1985] Copeland G., Khoshafian
S., "A Decomposition Storage Model",
ACM-SIGMOD, Austin, Texas, May 1985.

6. [DeWitt et al. 1984] DeWitt D. J., et al ., "Implementation
Techniques for Large Memory Database Systems",
ACM-SIGMOD Int. Conf., Boston, June 1984.

7. [Ibaraki 1984) Ibaraki T., Kameda T., "Optimal Nesting for
Computmg N Relational Joins", ACM TODS, vol. 9,
no. 3, September 1984.

8. [Khoshafian and Copeland 1986] Khoshafian S., Copeland
G., "Object Identity" , Proc. of ACM Conf. on
OOPSLA., Portland , Oregon, October 1986.

9. [Krishnamurthy, et a!. 1986] Krishnamurthy R., Boral H.,
Zaniolo C., "Optimization Of Nonrecursive Queries",
to appear in VLDB-1986, Kyoto, Japan, August 1986.

10. [Livny et aI. 1986] Livny M., Khoshafian S., Boral H.,
"Multi-Disk Management Algorithms", Database
Engineering, vol. 9, no. 1, March 1986.

11. [Salem and Molina] Salem K., and Garcia-Molina H., "Disk
Striping, " International Conference on Data
Engineering, Los Angeles, California, February 1986.

12. [Selinger et a!. 1979] Selinger et al., "Access Path Selection
in a Relational Database Management System",
ACM-SIGMOD Int. Conf., Boston, May 1979.

13. [Valduriez 1982] Valduriez P., "Semi-Join Algorithms for
Distributed Database Systems", 3rd Int. Symposium on
Distributed Databases, Berlin, West Germany,
September 1982.

14. [Valduriez and Gardarin 1984] Valduriez P., Gardarin G.,
"Join and Semi-Join Algorithms for a Multiprocessor
Database Machine", ACM TODS, vol. 9, no. 1, March
1984.

15. [Valduriez 1985] Valduriez P., "Join Indices", MCC Tech.
Report 1985. to appear in ACM rODS.

16.

17.

[Valduriez and Boral 1�86] V�lduri�z P.,
.

Bora
.
1 �;,

"Evaluation of RecurSIve Quenes Usmg Jam IndIces ,

Proc. of 1st Tnt. Coni. on Expert Database Systems,

Charleston, South Carolina, April 1986.

[Valduriez et a!. 1986] Valduriez: P., Khoshafian S.,

Copeland G., "Implementation Techniques of Complex
Objects", Proc. of 12th Int. Conf. on VLDB, Kyoto,

Japan, August 1986.

18. [Wong and Youssefi 1976] Wong E., Youssefi K.,
"Decomposition -- A Strategy for Query Processing",
ACM TODS, vol. 1, no. 3, September 1976.

642

o
(Tj

ID
C\J

:L 0
({) (\]
o
"-
::E If)
(() �I
Z
o 0 ·rl

....,
ttl
L

L
U1
0
"-

If)

o

U1
I

0
(Tj

U1
('IJ

0
('IJ

::;:U1
({) ..,;
z
0 0

'rl d
+'
('(]
L U1

0

ID
I

-_._-_._-.-- _ . --_. -- --_._----\

\
\
�
\
\,
\
i

\
\

""" '\
-.. \

1% Select

10% Select

--�-=-:-:: -=--�

__ L-�-�=-� --��I
0.0 0.2 0.4 0.6 0.8 1.0

Fraction Of Proj. Attrs .

Fi gure 1

----------.. ---·-l

\ 1% Select

\ 10% Select

I \
\

\

\
-.. \. , -..

-.. \

-����C�==:I
0.0 0.2 0.4 0.6 0.8 1.0

Fraction Of Proj. Attrs .

Figure 2

Approximate Time for each Selection Query

NSM DSM

2attr I 3attr I 5attr I 10attr I Allattr

1.25 0.39 I 0.74 I 1.87 I 3.73 I 6.39

Table 1

Approximate Time for each 2-Relation Join Query

NSM DSM

4attr I 6attr I 10attr I 20attr I 30attr

23.98 7.53 I 8.90 I 16.18 I 29.14 I 43.88

Table 2

Approximate Time for each 3-Relation Join Query

NSM DSM

4attr I 6attr I 10attr I 20attr I 30attr

25.08 11.16 I 14.51 I 22.41 I 43.16 I 95.75

Table 3

Approximate Time for each Append Query

NSM I DSM
0.17 I 1.41

Table 4

Approximate Time for each Deletion Query

NSM I DSM
0.20 I 8.71

Table 5

Approximate Time for each Modify Query

NSM I DSM
0.21 I 0.10

Table 6

Approximate Time for each Aggregate Sum Query

* Time is in seconds

NSM I DSM
85.98 I 18.62

Table 7

643

