
Aggregation Query Model for OODBMS

J. Wenny Rahayu
Department of Computer Science and Computer Engineering

La Trobe University, Bundoora, Victoria 3083, Australia

wenny@cs.latrobe.edu.au

David Taniar

School of Business Systems, Faculty of Information Technology
Monash University, PO Box 63B, Clayton, Victoria 3800, Australia

David.Taniar@infotech.monash.edu.au

Xiaoyan Lu

Information Technology Services
La Trobe University, Bundoora, Victoria 3083, Australia

A.Lu@latrobe.edu.au

Abstract
Query language and querying faciliti es are criti cal factors for
wide acceptance of Object-Oriented Database Management
Systems (OODBMS) in the market. In this paper, we focus on
query model on an aggregation hierarchy. We call this query
“ Aggregation Query” . Query on an aggregation hierarchy is
unique and differs from general query on association
relationships. The latter is often known as path expression
query. The difference is analogous to the distinction between
association and aggregation in object modelli ng. In our
proposal, we present three important elements of aggregation
query, particularly (i) aggregation query hierarchy, (ii)
shorthand path expression for aggregation query util ity, and (iii)
retrieving aggregation tree. Whil st the first element above is
adopted from path expression queries, the second element is an
extension to general path expression query, and the third
element is unique to aggregation, as aggregation resembles a
Part-Of relationship, which is more speciali zed than association
relationships..

Keywords: Object-Oriented Queries, OODBMS, Aggregation,
OQL, OMG, Composite Objects, and Path Expressions.

1 Introduction

Object-Oriented Database (OODB) systems have great
potential to be used in a wide range of applications
(Bertino and Martino, 1993; Kim, 1990). However,
although it is more expressive, it is also insuff icient to
make the OODB technology succeed in the market
(Cattell , 1991). To be successful, the OODB system must
also perform well . One of the key factors for achieving
good performance is the development of a good query
processing technique similar to SQL (Bertino et al, 1992;
Kim, 1989). In this paper, we propose a query model for
composite objects in an aggregation hierarchy.

Copyright © 2002, Australian Computer Society, Inc. This
paper appeared at the 40th International Conference on
Technology of Object-Oriented Languages and Systems
(TOOLS Pacific 2002), Sydney, Australia. Conferences in
Research and Practice in Information Technology, Vol. 10.
James Noble and John Potter, Eds. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

Our previous work (see Taniar and Rahayu (1999)) has
classified object-oriented queries into two major
categories: basic queries and complex queries. Basic
queries mainly consist of single-class queries, inheritance
queries, path expression queries, and explicit join queries.
Complex queries, made up of basic query components,
can be classified into cycli c queries, semi-cycli c queries
and acycli c-complex queries.

Because of the existence of the composite object (whole-
part), we redefine the object-oriented query classification
to include the notion of composite objects or aggregation
– this is then called an aggregation query. The
relationship between these types of query is shown in
Figure 1. In this paper, the terms composite objects and
aggregation are interchangeable.

Single-Class

Path
Expression

Explicit Join

Cyclic Semi-Cyclic Acyclic

is_a
Basic
Queries

Complex
Queries

Inheritance Aggregation

Figure 1. The New Object-Oriented Query
Classification incorporating Aggregation Query

In the same way as our original object-oriented query
classification (Taniar and Rahayu, 1999), the new
classification forms an "is-a" hierarchy. All features of
single-class queries, including selection, projection, etc,
are applicable to aggregation, inheritance, path expression
and explicit join queries; and further complex queries
may use the features of the basic queries and single
queries.

The rest of this paper is organized as follows: Section 2
describes an aggregation model and its operations on

composite objects. Section 3 presents our aggregation
query model, including aggregation query hierarchy,
shorthand path expression, and retrieving aggregation tree
hierarchy. Section 4 compares with existing work in this
area. Finally, Section 5 gives the conclusions.

2 Aggregation Model and Operations on
Composite Objects: A Foundation

In order to define aggregation queries, it is necessary to
clearly express our understanding of composite objects
and their operations in OODBMS according to the
ODMG standard (Cattell and Barry, 1997).

2.1 Aggregation Model

An aggregation hierarchy indicates that there is an IS-
PART-OF relationship in the hierarchy (Coad and
Yourdon, 1991; Rumbaugh et al, 1991). But what is the
real structure of an aggregation hierarchy? What is the
core of the aggregation hierarchy? The answer is
composite objects (Bertino et al 1989).

A composite object has a single root object, and the root
references multiple children objects, each through an
instance variable. Each child object can in turn reference
its own children objects, again through instance variables.
A parent object may exclusively/not exclusively own

children objects, and as such the existence of children
objects is predicated on the existence of their parent.
Children objects of an object are thus dependent/not
dependent objects. The instance that constitutes a
composite object belongs to classes that are also
organized in a hierarchy. This hierarchical collection of
classes is called aggregation hierarchy (Liu, 1992).
Aggregation hierarchy can be represented by a composite
object schema consist of a single root class and a number
of dependent classes.

In Figure 2, we illustrate an aggregation hierarchy
schema, or composite objects schema for books. The
graphical notation for a composite object model is
composed of two basic symbols: nodes and arcs (Taniar
and Rahayu, 1998a). Nodes represent classes, whereas
arcs represent relationships. The IS-PART-OF
relationship is shown with bold arcs from a composite
object class to a component object class. The nodes are
labelled. The label inside a node is a class name; the
important attributes are shown beside the node. The label
of an arc represents the domain of relationship between
the two nodes, which is not only for the association but
also for the composition. In this composite class schema,
a collection type is used, and a notation of [] is used to
represent lists.

Name, address

author: [Person]

Person

Book

Preface

title, author:[Person], publisher:
Publisher, year, num, page,
aggregation: <perface:Perface,
chapter: <Chapter>,
bibliography: Bibliography>

Chapter

Publisher

publisher: Publisher

Bibliography

Proceedings
book

(1)
perface:Perface

(2)
chapter: <Chapter>

(3)
bibliography: Bibliography

ISA

Section

section:<Section>

Host, venue

Association

Aggregation

ISA

Figure 2. Composite object schema for Book

An ODMG model allows the definition of arbitrarily
complex objects as nested objects of arbitrary depth
(Cattell and Barry, 1997). An object has a number of
attributes; the value of an attribute is itself an object. An
object belongs to a class; a class may be a primitive class
without any attribute (e.g. integer, string), or it may have
any number of attributes. An object with an attribute
whose value is an object that belongs to a non-primitive
class is a nested object - complex object. An object may
have any number of attributes, and any of the attributes
may take values from other non-primitive classes. The
nested object is a powerful concept. However, it does not
imply some special relationships between objects that
may be important to a different class of applications. One
important relationship that should be superimposed on the
nested object is the IS-PART-OF relationship; that is, the
notion that an object is a part of another object.

A set of (or a list of) component objects, which form a
single logical entity has been called a composite object
(Banerjee et al, 1987). Or, a composite object is a
collection of related instances that form a hierarchical
structure that captures the IS-PART-OF relationship
between an object and the parent.

In many applications, the aggregation hierarchy can span
an arbitrary number of levels. If a composite object
design has component objects that are themselves
composite objects, then a two-level aggregation hierarchy
is created. This hierarchy could be repeated at several
levels of composition/aggregation.

A composite object may be composed of different
components in a particular order. The order of occurrence
of the component object in the aggregation is significant
for the model. For example, a Book is composed of
Prefaces, Chapters and Bibliography. In Figure 2, the
order of component objects in the book aggregate
hierarchy is represented by the numbers with the
aggregate label on the arcs.

As we mentioned before, collection type can be shown in
the schema; this time the set is represented by the <>. So
Book is composed by a preface, a list of chapters and a
bibliography, which are in order. (Proceedings book is the
subclass of Book, the relationship of which is shown by
the dash arcs).

2.2 Applying an Operation to a Composite
Object with OQL

In this section, we describe basic operations on composite
objects. These operations will become the main kernel of
query processing, particularly in retrieving aggregation
tree hierarchy (see Section 3.3).

The basic method of extracting an attribute from an
object is described as follows. For example, if e is an
expression of a type (literal or object) having an attribute
or a relationship p of type t , then e.p and e- >p are
expressions of type t . These are alternate syntaxes for
extracting the property p of an object e. If e happens to
designate a deleted or a non-existing object, i.e., null, the
access to an attribute or to a relationship will return
UNDEFINED. For example, Book_A.title

Now, we apply an operation with or without parameters
to an object according to OQL. If e is an expression of a
type having a method f without parameters and returning
a result of type t , then e- >f and e.f are expressions of
type t . These are alternate syntax for applying an
operation to an object. The value of the expression is the
one returned by the operation or else the object is null, if
the operation returns nothing. For example:

Book_A- >number_of_published

This applies the operation number_of_published to a
book. If e happens to designate a deleted or a non-
existing object, i.e., null, the use of this method on it will
return UNDEFINED. In this way, we have shown how to
apply an operation on a composite object with OQL. We
treat the aggregation query as querying method. The
foundation of that is the defined principle of OQL from
ODMG (Cattell and Barry, 1997). For example:

Book_A- >component [operation criterio n]
Book_A- >parent [operation criterion]
Book_A- >ancestor [operation criterion]

The operation criterion is the argument of a method.
Applying an operation with parameters can also work on
the aggregation query. If e is an expression of an object
type having a method f with parameters of type t1,
t2, …, tn and returning a result of type t , if
e1,e2,……,en are expressions of type t1,t2,……,tn ,
then e- >f(e1,e2,…,en) is expression of type t that
apply operation f with parameters e1,e2,…,en to
object e. the value of the expression is the one returned
by the operation or else the object is null, if the operation
returns nothing. For example:

Chapter_ A- >is - component - of (Book_A)

This query calls the operation is - component - of on
class Chapter for the object Chapter_A . It passes on
parameter, an object Book_A of class Book. The
operation will return a Boolean value. For example:

Book_A- >is - parent - of (Chap ter_A)
Book_A- >is - ancestor - of (Section_A)

The above examples are same as the described previous
one.

The following method call: Preface - >

order(Book_A) will call the operation Order. Assume
that class Preface is the first class component of class
Book, the above will return an integer value 1.

And the following method call: Section_A - >
level (Book_A) will call the operation Level.
Assuming that class Section is declared two levels below
class Book, the above will return an integer value of 2.

These composite object operations are useful especially
in the retrieval of composite objects, either the whole
object or its part objects. Details can be found in our
proposed aggregation query model.

3 Aggregation Query Model: The Proposed
Model

Most object-oriented database systems provide a
declarative database query language (Banerjee et al,
1988; Bertino et al, 1992; Kim, 1989). The use of a query
language is still considered very important for writing
interactive ad hoc queries and for simpli fying the C++
code of application programs, although object-oriented
databases can often be accessed through code written in
an objected-oriented programming language such as C++,
Java, the use of a query language is still considered very
important for writing interactive ad hoc queries and for
simpli fying the C++ code of application programs.
Because of the success and popularity of SQL relational
query language, most proposed object-oriented database
query languages have adopted a syntax similar to that of
SQL, called OQL (Object Query Language) (Alashqur,
1989; Cattell and Barry, 1997).

The aggregation query model is based on OQL principles
and assumptions in ODMG, that is the aggregation query
relies on the ODMG object model, which has utili zed the
ODL (Object Definition Language), OIF (Object
Interchange Format) extension of composite object
(Cattell and Barry, 1997). Aggregation query also
provides high-level primiti ves to deal with sets of objects
but is not restricted to the collection construct.
Aggregation query can provide primiti ves to deal with
structures, li sts and arrays and treats such constructs with
the same eff iciency. The result of an aggregation query
has a type that belongs to the ODMG type model and thus
can be queried again.

In general, OQL is not computationally complete, so
aggregation query is simple to use and provides easy
access to an OODBMS. Based on the same type system,
OQL can be invoked from within programming
languages for which an ODMG binding is defined.
Apparently, after the operations on composite object are
defined, aggregation query can invoke operations
programmed in C++ or Java. Because OQL provides
declarative access to objects, the aggregation query can
be easil y optimized by virtue of this declarative nature.

The detail s of our aggregation query model are explained
in the following three subsections, particularly (i)
Aggregation Query Hierarchy, (ii) Shorthand Path
Expression, and (iii) Retrieving Aggregation Tree. The
first one is very similar to path expression queries
generall y known in an association relationship, but the
rests are unique to aggregation query. We describe the
first one to give a complete model for aggregation query.

3.1 Aggregation Query Hierarchy

Aggregation query is a query on an aggregation
hierarchy. They can be categorized as forward traversal
query and reverse traversal query. Although the terms
forward and reverse traversals are borrowed from object-
oriented query processing (Bertino and Martino, 1993,
Taniar and Rahayu, 1998b), these two queries do not by
any means dictate how the query is going to be processed.
The direction in this case only refers to the direction of
the query hierarchy, in which the direction where we can

reach the target class. A target class is the class on which
the query focuses. A general format of single-class
queries is as follows:

Select <projection list>
From <var in class>
Where <selection predicates>

The main difference between single class query and
aggregation query is that the variable var may be
dynamicall y bound to a composite objects
class/component object class. In the select projection li st
and selection predicates, we compare the object in the
projection li st with the object in selection predicates. If
the object order from projection li st to selection
predicates is from component object to composite object,
the query is a forward traversal query. In the other words,
the binding is downward, meaning that the var which
appears following the FROM is searched downward from
the composite level to the component level.

Conversely, the opposite order is a reverse traversal
query. The var is searched from the lower level to
higher level in the aggregation hierarchy. The binding
process in OQL is basicall y based on the query input and
result. An OQL query is a function that deli vers an object
whose type may be inferred from the operator
contributing to the query expression. Every query has an
entry point and corresponding exit point. The values of
entry-point and exit point decide the distinction of two
different aggregation queries. The point is ill ustrated with
the following example (see Figure 3).

The query schema in Figure 3 defines class Book and
class Chapter. Both of them are organized in an
aggregation hierarchy. Book is the parent of Chapter. An
example of forward traversal query is given: "Retrieve
the book that has a chapter, whose title is 'Advanced
Databases'". The query in OQL is as follows:

Select C
From C in B.Chapter, B in Book
Where B.title ="Advanced Databases"

σ
 (title=” Advanced Databases)

Book

Chapter
π

Figure 3. Retr ieving “Advanced Database” books that
have a chapter

The entry point of this OQL query is in Where B.title
="Advanced Databases"; the exit point is Select
C. The graphical notation in Figure 3 is convenient for
explaining a forward traversal aggregation query. The
bold printed node denotes the entry point, through which
the traversal route starts. The target class of the above
query is Chapter and the route source is from the Book.

The query scope expansion is a result of a type checking
for class Book.

An example of a reverse traversal query is as follows:
"retrieve the book which has a chapter which title is 'a
taxonomy for object-oriented query'". The OQL is:

Select B
From C in B.Chapter, B in Book
Where C.title = "A taxonomy of object -
oriented queries"

The entry point of this OQL query is from Where
C.title = "A taxonomy of object - oriented

queries"; the exit point is Select B. The graphical
notation shown in Figure 4 is convenient for explaining a
reverse traversal aggregation query. The bold printed
node denotes the entry point, through which the traversal
route starts. The target class of the above query is Book
and the route source is from the Chapter. The query scope
expansion is a result of a type checking for class Chapter.
The binding in this case is promoted from a component
class to a composite class. Since a component class is
included in a composite class in a particular hierarchy,
through the composite attribute, casting from a composite
object to a component object is eff icient.

σ
 (title=” A Taxonomy for

Object-Oriented Queries”)

Book

Chapter

π

Figure 4. Retr ieving books which has a chapter which
title is “ A Taxonomy for Object-Or iented Queries”

3.2 Shorthand Path Expression with
Aggregation Query Utili ty

As explained above, we can enter a database through a
named object. Generall y, as long as we get an object, we
need a way to navigate from it and reach the right data
that we need. To do this, in OQL, a dot (".") notation is
commonly used, which enables us to go inside complex
objects, as well as to follow simple relationships (Cattell
and Barry, 1997). Path expression queries are queries
involving multiple classes along the class-domain
hierarchies. Class-domain hierarchy is where the domain
of an attribute is another class. We can use the select-
from-where clause to handle OQL just as in SQL.A
general format of path expression expressed in OQL as
follows:

Select <projection list>
From <var 1 in Class,
 var 2 in var 1.attr 1,
 var 3 in var 2.attr 2,
 … …
 var n in var n- 1.attr n- 1>
Where <selection predicates>

The path is expli citl y shown in the From clause, and
projection li st is a li st of attributes of classes along the
path expression. The query starts from the class
referenced by var 1. The path grows as attribute attr 1,
which has a domain of the next class, is pointed by var 2,
and so on. In the case of normal query, attr 1 is of the
first class, attr 2 is of the second class, etc, are attributes
of a class domain.

So far this is a basic path expression query. In our
aggregation query model, we simpli fy this by introducing
a “shorthand” path expression, and the general format is
as follows.

Select <projection list>
From <var 1 in Class,
 var n in var 1.attr n>
Where <selection predicates>

Here, the attr n comes from var n. Based on the
composite attribute of a composite object, we can directly
jump several levels to the target class. The domain of
attr n of the first class can be a set of objects of its
component class or its grandchild class. We define this
kind of path expression as a "short-hand" path expression.

An example of a shorthand path expression of
aggregation query is as follows: "retrieve books which
have a section titled ‘Aggregation query’ ". The OQL is
given as:

Select B
From S in B.Section, B in Book
Where S.title = "Aggregation query"

In the corresponding query graph (see Figure 5), we can
see the entry class is the Section, and scope of query is
expanded to the composite class Book through jumping
over the Chapter. This example treats an aggregation
relationship. In this way, we can navigate directly from a
composite object to any object that belongs to this
particular aggregation hierarchy.

σ
 (title=” Aggregation Queries”)

Book

Chapter

π

Section

Figure 5. Retr ieving books which has a section titled
“ Aggregation Queries”

3.3 Retr ieving Aggregation Tree Hierarchy

An IS-PART-OF relationship normally consists of a root
object with multiple components (or parts). Therefore it is
criti cal to provide a mechanism to query the whole
composite object tree starting from the root object to its
components. In this section, we use the operations of
composite objects as previous explained in Section 2.2 to
serve this purpose. Assume we would li ke to retrieve the
all/part of the aggregation hierarchy tree as shown in
Figure 6.

σ
 (title=” Advanced

Databases)
Book

Chapter

π

Preface

Section

Bibliography

π

π

π

Figure 6. Retr ieving “Advanced Databases” book’s
components

An example is as follows: "Retrieve the Book's
components, the book's name is 'advanced database'". The
OQL is following:

Select B - >component()
From B in Book
Where B.title = "Advanced Databases"

By using the operation of composite object, according to
the schema, we know the result will retrieve the preface,
chapter including sections, and the bibliography, for the
book whose title is “Advanced Databases” .

Another example is given to retrieve the part of the
aggregation hierarchy, li ke: "retrieve the publication's
title, which has a chapter titled 'A taxonomy of O-O
query'". Combined with the operation of composite
object, we perform OQL as follows:

Select C - >parent()
From C in Chapter
Where C.title = "A taxonomy of object -
oriented queries"

Or, "retrieve the publication, which has a section named
‘aggregation query’ ". We perform OQL as:

Select S - >ancestor()
From S in Section
Where S.title = "Aggregation query"

So far, we have explained the way to retrieve the whole
aggregation hierarchy for the class Book.

Select B - >co mponent(), B
From B in Book
Where B.title = "Advanced Databases"

After inspecting the class Book, apart from the
components of B, the other attributes of B can also be
retrieved, li ke title, author, etc.

Database users always want to make a query with a
prerequisite li ke "whether a particular chapter belongs to
one particular book", or "whether one book has one
particular section". We included this prerequisite in the
selection predicates. For example: "Retrieve the chapters,
which belong to the book named 'Advanced Databases'".
We give OQL as following:

Select C
From C in Chapter, B in Book
Where C - >is - component - of(B) = True
And B.title = "Advanced Databases"

For different data types in OODBMS, especiall y li ke li st,
array, ..., we can handle the queries on them as well .
According to the ODL, OIF specification on data type
li st, we can query li st(). The following query retrieves the
second chapter of book “Advanced Databases” .

Select C
From C in Chapter, B in Book
Where B - >order(C) = 2
And C.title = “Advanc ed Databases”

In this section, we have identified how operations on
composite objects in ODMG can be used by aggregation
queries to particularly retrieve the whole composite
object tree. This facilit y is unique and very particular to
aggregation query only.

4 Comparisons

Most of existing object-oriented query models
concentrate on path expression through association
relationship. Association is considered different from
aggregation (Rahayu et al, 1996), and therefore
aggregation query is important. In this section, we present
a comparative study with existing works and differences
with path expression queries.

4.1 Comparisons with Existing Work

There are many papers on object-oriented queries. The
papers by Banerjee et al (1988) and Kim (1989) have
been recognized as a pioneer of a model for object-
oriented queries, which was based on ORION. It focused
on various query models on nested attributes, also known
as path expressions. They do not differentiate between
association and aggregation, and hence their path
expression queries are general, and do not particularly
address the IS-PART-OF relationships.

Kifer, Kim and Sagiv (1992) extended Kim’s work
(1989) by incorporating complex operations on path
expressions (i.e. existential and universal quantifiers), and
methods into their query model.

The query model presented in Cluet et al (1990) was
influenced by O2 (Lécluse et al 1988). Mainly it covered
path expression queries. The paper by Cluet and Delobel
(1992) – an extension of their previous work – introduced
join queries. The role of join operations was also
enhanced as backward traversal of path expression
queries, which was implemented in a semi-join. Bertino
et al (1992) presented an exhaustive study on object-
oriented query languages. Their query models were very
much influenced by Kim (1990), where the query is based
on attribute-class hierarchy; that is association
relationship. No particular distinction between association
and aggregation.

The query model by Chan and Trinder (1994) was
extensively based on sets. They expressed object-oriented
queries in term of object comprehension. Alhajj and
Arkun (1992) focused on object algebra.

All of this existing work is based on path expression
hierarchy or association. Aggregation has a special
semantics (Rumbaugh et al, 1991) and has not been
explored its existence in query models.

4.2 Comparisons with Path Expression Queries

Path expression queries are queries whereby traversals
are made possible from one class to another through an
association relationship (Kim, 1989). This is a general
object-oriented query model where join operation is
avoided through the use of pointer navigations. This
mechanism is regarded as unique and makes object-
oriented query processing much faster compared with
relational query processing, which purely based on join
operations.

From an object-oriented modelli ng point of view, object
relationship exists in various formats, such as inheritance,
association, and aggregation (Rumbaugh et al 1991).
These relationships are well understood at the design
stage. However, in object-oriented queries, the difference
between association and aggregation has not been
considered criti cal. In many cases, the terms aggregation
and association are used interchangeably. Our proposal in
this paper addresses this by introducing a query model for
aggregation, as opposed to association.

In Section 3, we have described three extension of
aggregation query. The first extension is not purely for
aggregation query. It is actuall y originated in path
expression (association) queries. This is included in our
aggregation query, simply because some features of
aggregation are the same as those of association. We have
included the notion of forward and reverse traversal in
aggregation query simply for completeness of our
proposal.

The second extension in our proposal – that is shorthand
path expression for aggregation query utilit y, has not
been explored full y in path expression queries. Like the
first extension, this extension is not isolated for
aggregation query.

The third extension in our proposal is particularly unique
to aggregation query. This is because aggregation has a
notion of whole-part (Coad and Yourdon, 1991), which

does not exists in the association. Our aggregation query
model makes use of operations available for composite
objects based on ODMG standard notation. In this
extension, we are able to explore the whole aggregation
tree or retrieving part components. We found that this
extension is criti cal to expose the notion of whole-part in
composite objects.

5 Conclusions

In this paper we have described our query model for
aggregation hierarchy. They essentiall y explored the full
capacity of an ODMG extension of a composite object.
The examples of aggregation queries have shown that
applying aggregation query the semantics of composite
objects will be reserved. Our aggregation query covers
from forward traversal query to reverse traversal, from
retrieving a whole composite object to retrieving a
component of a whole composite object.

6 References

ALASHQUR, M. (1989), “OQL: A Query Language for
Manipulating Object-oriented Databases” Proceedings
of the Fifteenth International Conference on Very
Large Data, Amsterdam, The Netherlands. Morgan
Kaufmann.

ALHAJJ, R. and ARKUN, M.E. (1992), "Queries in
Object-Oriented Database Systems", Proceedings of
the First International Conference on Information and
Knowledge Management CIKM, pp. 36-52.

BANERJEE, J., KIM, W. and KIM, K-C. (1988),
"Queries in Object-Oriented Databases", Proceedings
of the Fourth International Conference on Data
Engineering, pp. 31-38.

BANERJEE, J., KIM, W., KIM, H-J. and KORTH, H.F.
(1987), “Semantics and Implementation of Schema
Evolution in Object-Oriented Database” , Proceedings
of the ACM Special Interest Group on Management of
Data 1987 Annual Conference, San Francisco,
Cali fornia, May 27-29, 1987. SIGMOD Record 16(3).

BERTINO, E. and MARTINO, L. (1993), Object-
Oriented Database Systems: Concepts and
Architectures, Addison-Wesley.

BERTINO, E., et al. (1992), "Object-Oriented Query
Languages: The Notion and The Issues", IEEE
Transactions on Knowledge and Data Engineering,
vol. 4, no. 3, pp. 223-237.

BERTINO, E, KIM, W and GARZA. J.F. (1989),
“Composite Object Revisit” , Proceedings of the 1989
ACM SIGMOD International Conference on
Management of Data, Portland, Oregon, May 31 - June
2.

CATTELL, R.G.G. and BARRY, D.K. (1997), The
Object Database Standard: ODMG 2.0, Morgan
Kaufmann Publisher.

CATTELL, R.G.G. (1991), Object Data Management:
Object-Oriented and Extended Relational Database
Systems, Addison-Wesley.

CHAN, D.K.C. and TRINDER, P.W. (1994), "Object
Comprehensions: A Query Notation for Object-
Oriented Databases", Proceedings of the Briti sh
National Conference on Databases BNCOD 12, pp. 55-
72.

CLUET, S. and DELOBEL, C. (1992), "A General
Framework for the Optimization of Object-Oriented
Queries", Proceedings of the ACM SIGMOD
Conference, pp. 383-392.

CLUET, S., et al. (1990), "Reloop, an Algebra Based
Query Language for an Object-Oriented Database
System", Deductive and Object-Oriented Databases
DOOD Conference, W.Kim, et al. (eds.), Elsevier
Science Publishers, pp. 313-332.

COAD, P. and YOURDON, E. (1991), Object-Oriented
Analysis, second edition, Prentice Hall .

KIFER, M., KIM, W. and SAGIV, Y. (1992), "Querying
Object-Oriented Databases", Proceedings of the ACM
SIGMOD Conference, pp. 393-402.

KIM, W. (1989), "A Model of Queries for Object-
Oriented Databases", Proceedings of the Fifteenth
International Conference on Very Large Data Bases
VLDB, pp. 423-432, Amsterdam.

KIM, W. (1990), Introduction to Object-Oriented
Databases, The MIT Press.

LÉCLUSE, C., RICHARD, P. and VÉLEZ, F. (1988),
“O2, an Object-Oriented Data Model” , Proceedings of
the ACM SIGMOD International Conference on
Management of Data, Chicago, Illi nois, June 1-3, 1988.
SIGMOD Record 17(3).

LIU, L. (1992), “Exploring Semantics in Aggregation
Hierarchies for Object-Oriented Database” , INFOLAB,
Tilburg University, The Netherlands.

RAHAYU, W., CHANG, E., DILLON, T.S., and
TANIAR, D. (1996), "Aggregation versus Association
in Object Modelli ng and Databases", Proceedings of
the Seventh Australasian Conference on Information
Systems ACIS'96, Hobart.

RUMBAUGH, J. et.al. (1991), Object-Oriented Modeling
and Design, Prentice-Hall .

TANIAR, D. and RAHAYU, J.W. (1999), "Chapter 5: A
Taxonomy for Object-Oriented Queries", Current
Trends in Data Management Technology, A. Dogac,
M.T.Ozsu, and O.Ulusoy (eds.), ISBN: 1-878289-51-9,
Idea Group Publishing, pp. 69-96.

TANIAR, D., and RAHAYU, J.W. (1998a), "Complex
Object-Oriented Queries: A Graph-Based Approach",
Proceedings of the ISCA 13th International Conference
on Computers and Their Applications CATA’98,
Hawaii .

TANIAR, D. and RAHAYU, J.W. (1998b), "Query
Optimization Primiti ve for Path Expression Queries via
Reversing Path Traversal Direction", Journal of
Computing and Information JCI, vol. 3, no. 1.

