Aggregation Query Model for OODBMS

J. Wenny Rahayu

Department of Computer Science and Computer Engineeing
La Trobe University, Bundoara, Victoria 3083 Australia

wenny@s. | at r obe. edu. au

David Taniar

Schod of BusinessSystems, Faculty of Information Technology
Monash University, PO Box 63B, Clayton, Victoria 380Q Australia

Davi d. Tani ar @ nf ot ech. nonash. edu. au

Xiaoyan Lu

Information Tedhnology Services
La Trobe University, Bundoara, Victoria 3083 Australia

A. Lu@ at r obe. edu. au

Abstract

Query language and querying fadliti es are aiticd fadors for
wide acceptance of Objed-Oriented Database Management
Systems (OODBMS) in the market. In this paper, we focus on
query model on an aggregation hierarchy. We cdl this query
“Aggregation Query”. Query on an aggregation hierarchy is
uniqgue and dffers from general query on asciation
relationships. The latter is often known as path expresson
query. The difference is analogaus to the distinction between
association and aggregation in objed modelling. In our
proposal, we present threeimportant elements of aggregation
query, particularly (i) aggregation query hierarchy, (ii)
shorthand path expresson for aggregation query utility, and (iii)
retrieving aggregation tree Whilst the first element above is
adopted from path expresson queries, the second element isan
extension to general path expresson query, and the third
element is unique to aggregation, as aggregation resembles a
Part-Of relationship, which is more spedali zed than association
relationships.

Keywords: Objed-Oriented Queries, OODBMS, Aggregation,
OQL, OMG, Compasite Objeds, and Path Expressons.

1 Introduction

Objed-Oriented Database (OODB) systems have great
potential to be used in a wide range of applications
(Bertino and Martino, 1993 Kim, 1990). However,
although it is more expressve, it is also insufficient to
make the OODB technology succee in the market
(Cattell, 1997). To be succes<ul, the OODB system must
also perform well. One of the key factors for achieving
goad performance is the development of a good query
processng technique similar to SQL (Bertino et al, 1992
Kim, 1989. In this paper, we propose a query modd for
composite ohjedsin an aggregation hierarchy.

Copyright © 2002 Australian Computer Society, Inc. This
paper appeaed at the 40th International Conference on
Technology of Object-Oriented Languages and Systems
(TOOLS Pacific 2002), Sydney, Australia. Conferences in
Reseach and Pradice in Information Technology, Vol. 10.
James Noble and John Potter, Eds. Reproduction for acalemic,
not-for profit purposes permitted provided thistext isincluded.

Our previous work (see Taniar and Rahayu (1999) has
classfied obect-oriented queries into two major
categories. basic queries and complex queries. Basic
queries mainly consist of single-classqueries, inheritance
queries, path expresgon queries, and explicit join queries.
Complex queries, made up of basic query components,
can be dassfied into cyclic queries, semi-cyclic queries
and acyclic-complex queries.

Becuse of the eistence of the mmposite objed (whole-
part), we redefine the objed-oriented query classfication
to include the notion of composite objeds or aggregation
— this is then caled an aggregation query. The
relationship between these types of query is down in
Figure 1. In this paper, the terms composite objeds and
aggregation are interchangeable.

SngeClass
DO Basic
K Isa Tl Queries
. . Path o
Al at
goregation [Inhentance] [Exressan] [Expllut.hn]
A 2 ¥ 2
I S S .
] : Conplex
[Cyclic Semi-Cydlic | Acydlic] Queries

Figure 1. The New Object-Oriented Query
Classification incor porating Aggr egation Query

In the same way as our original ohjed-oriented query
clasdfication (Taniar and Rahayu, 1999, the new
clasdfication forms an "is-a"' hierarchy. All features of
single-class queries, including seledion, projedion, €tc,
are appli cableto aggregation, inheritance path expresson
and explicit join queries, and further complex queries
may use the features of the basic queries and single
queries.

The rest of this paper is organized as follows. Sedion 2
describes an aggregation model and its operations on

composite objects. Section 3 presents our aggregation
query model, including aggregation query hierarchy,
shorthand path expression, and retrieving aggregation tree
hierarchy. Section 4 compares with existing work in this
area. Finally, Section 5 givesthe conclusions.

2 Aggregation Model and Operations on
Composite Objects: A Foundation

In order to define aggregation queries, it is necessary to
clearly express our understanding of composite objects
and their operations in OODBMS according to the
ODMG standard (Cattell and Barry, 1997).

2.1 Aggregation Mode

An aggregation hierarchy indicates that there is an IS
PART-OF relationship in the hierarchy (Coad and
Yourdon, 1991; Rumbaugh et al, 1991). But what is the
real structure of an aggregation hierarchy? What is the
core of the aggregation hierarchy? The answer is
composite objects (Bertino et al 1989).

A composite object has a single root object, and the root
references multiple children objects, each through an
instance variable. Each child object can in turn reference
its own children objects, again through instance variables.
A parent object may exclusively/not exclusively own

children objects, and as such the existence of children
objects is predicated on the existence of their parent.
Children objects of an object are thus dependent/not
dependent objects. The instance that constitutes a
composite object belongs to classes that are aso
organized in a hierarchy. This hierarchical collection of
classes is caled aggregation hierarchy (Liu, 1992).
Aggregation hierarchy can be represented by a composite
object schema consist of a single root class and a number
of dependent classes.

In Figure 2, we illustrate an aggregation hierarchy
schema, or composite objects schema for books. The
graphical notation for a composite object mode is
composed of two basic symbals. nodes and arcs (Taniar
and Rahayu, 1998a). Nodes represent classes, whereas
arcs represent rdationships. The ISPART-OF
relationship is shown with bold arcs from a composite
object class to a component object class. The nodes are
labelled. The label inside a node is a class nhame; the
important attributes are shown beside the node. The label
of an arc represents the domain of relationship between
the two nodes, which is not only for the association but
also for the composition. In this composite class schema,
a collection type is used, and a notation of [] is used to
represent lists.

.] publisher: Publisher
title, author:[Person], publisher:

Publisher, year, num, page,
aggregation: <perface:Perface,
chapter: <Chapter>,
bibliography: Bibliography>

))

perface:Perface

_____ > ISA
——p Association
——J Aggregation

author: [Person]

chapter: <Chapter>

section: <Section>

Name, address
Person

Hog, venue

Proceedings
book

©)

bibliography: Bibliography

Figure 2. Composite object schema for Book

An ODMG model alows the definition of arbitrarily
complex objects as nested objects of arbitrary depth
(Cattell and Barry, 1997). An object has a number of
attributes; the value of an attribute is itself an object. An
object belongs to a class; a class may be a primitive class
without any attribute (e.g. integer, string), or it may have
any number of attributes. An object with an attribute
whose value is an object that belongs to a non-primitive
class is a nested object - complex object. An object may
have any number of attributes, and any of the attributes
may take values from other non-primitive classes. The
nested object is a powerful concept. However, it does not
imply some specia relationships between objects that
may be important to a different class of applications. One
important relationship that should be superimposed on the
nested object is the IS-PART-OF relationship; that is, the
notion that an object is a part of another object.

A set of (or alist of) component objects, which form a
single logical entity has been called a composite object
(Banerjee e al, 1987). Or, a composite object is a
collection of related instances that form a hierarchica
structure that captures the IS-PART-OF rdationship
between an object and the parent.

In many applications, the aggregation hierarchy can span
an arbitrary number of levels. If a composite object
design has component objects that are themselves
composite objects, then atwo-level aggregation hierarchy
is created. This hierarchy could be repeated at severa
levels of composition/aggregation.

A composite object may be composed of different
componentsin aparticular order. The order of occurrence
of the component object in the aggregation is significant
for the modd. For example, a Book is composed of
Prefaces, Chapters and Bibliography. In Figure 2, the
order of component objects in the book aggregate
hierarchy is represented by the numbers with the
aggregate label on the arcs.

As we mentioned before, callection type can be shown in
the schema; this time the set is represented by the <>. So
Book is composed by a preface, a list of chapters and a
bibliography, which arein order. (Proceedings book isthe
subclass of Book, the relationship of which is shown by
the dash arcs).

2.2 Applying an Operation to a Composite
Object with OQL

In this section, we describe basic operations on composite
objects. These operations will become the main kernel of
query processing, particularly in retrieving aggregation
tree hierarchy (see Section 3.3).

The basic method of extracting an attribute from an
object is described as follows. For example, if e is an
expression of atype (literal or object) having an attribute
or arelationship p of typet, then e.p and e->p are
expressions of type t. These are alternate syntaxes for
extracting the property p of an object e. If e happensto
designate a deleted or a non-existing object, i.e., null, the
access to an attribute or to a relationship will return
UNDEFINED. For example, Book_A.title

Now, we apply an operation with or without parameters
to an object according to OQL. If e isan expression of a
type having amethod f without parameters and returning
aresult of typet , thene->f ande.f areexpressionsof
type t. These are alternate syntax for applying an
operation to an object. The value of the expression is the
one returned by the operation or ese the object is null, if
the operation returns nothing. For example:

Book_A- >number_of published

This applies the operation number_of _published toa
book. If e happens to designate a deleted or a non-
existing object, i.e., null, the use of this method on it will
return UNDEFINED. In this way, we have shown how to
apply an operation on a composite object with OQL. We
treat the aggregation query as querying method. The
foundation of that is the defined principle of OQL from
ODMG (Cattell and Barry, 1997). For example:

Book_A- >component [operation criterio n]
Book_A- >parent [operation criterion]
Book_A- >ancestor [operation criterion]

The operation criterion is the argument of a method.
Applying an operation with parameters can also work on
the aggregation query. If e isan expression of an object
type having a method f with parameters of type t1,
t2, ..., tn and returning a result of type t, if
ele2,...... ,en are expressions of typetl,t2,...... tn
then e- >f(el,e2,...,en) isexpression of typet that
apply operation f with parameters el,e2,....en to
object e. the value of the expression is the one returned
by the operation or €lse the object isnull, if the operation
returns nothing. For example:

Chapter_ A- >is - component - of (Book_A)

This query calls the operation is - component - of on
class Chapter for the object Chapter A . It passes on
parameter, an object Book_A of class Book. The
operation will return a Boolean value. For example:

Book_A- >is - parent - of (Chap ter_A)
Book_A- >is - ancestor - of (Section_A)

The above examples are same as the described previous
one.

The following method cal: Preface ->
order(Book_A) will call the operation Order. Assume
that class Preface is the first class component of class
Book, the above will return an integer value 1.

And the following method call: Section A ->
level (Book_ A) will call the operation Levd.
Assuming that class Section is declared two levels below
class Book, the above will return an integer value of 2.

These composite object operations are useful especially
in the retrieval of composite objects, either the whole
object or its part objects. Details can be found in our
proposed aggregation query modd.

3 Aggregation Query Mode: The Proposed
Model

Most ohed-oriented database systems provide a
dedarative database query language (Banerjee ¢ al,
1988 Bertino et a, 1992 Kim, 1989. The use of aquery
language is gill considered very important for writing
interactive ad hoc queries and for simplifying the C++
code of application programs, athough objed-oriented
databases can often be accessed through code written in
an ohjeaed-oriented programming language such as C++,
Java, the use of a query language is dill considered very
important for writing interactive ad hoc queries and for
simplifying the C++ code of application programs.
Becuse of the successand popularity of SQL relational
query language, most proposed ohjed-oriented database
query languages have adopted a syntax similar to that of
SQL, called OQL (Object Query Langua@) (Alashqur,
1989 Cattdl and Barry, 1997).

The aggregation query mode is based on OQL principles
and assumptionsin ODMG, that isthe aggregation query
relies on the ODMG objed model, which has utili zed the
ODL (Objea Definition Language), OIF (Objec
Interchange Format) extension of composite objed
(Cattell and Barry, 1997. Aggregation query aso
provides high-level primitives to deal with sets of ohjeds
but is not redricted to the lledion construct.
Aggregation query can provide primitives to deal with
structures, lists and arrays and treats such constructs with
the same dficiency. The result of an aggregation query
has a type that bel ongs to the ODMG type model and thus
can be queried again.

In general, OQL is not computationally complete, so
aggregation query is smple to use and provides easy
accessto an OODBMS. Based on the same type system,
OQL can be invoked from within programming
languages for which an ODMG hinding is defined.
Apparently, after the operations on composite objed are
defined, aggregation query can invoke operations
progranmed in C++ or Java. Because OQL provides
dedarative accessto oljeds, the aggregation query can
be easily optimized by virtue of this dedarative nature.

The detail s of our aggregation query model are explained
in the following three subsedions, particularly (i)
Aggregation Query Hierarchy, (ii) Shorthand Path
Expresson, and (iii) Retrieving Aggregation Tree The
first one is very smilar to path expresson queries
generally known in an association reationship, but the
rests are unique to aggregation query. We describe the
first oneto give a complete model for aggregation query.

3.1 Aggregation Query Hierarchy

Aggregation query is a query on an aggregation
hierarchy. They can be ategorized as forward traversal
query and revese traversal query. Although the terms
forward and reverse traversals are borrowed from ohjea-
oriented query processng (Bertino and Martino, 1993
Taniar and Rahayu, 199&), these two queries do not by
any means dictate how the query is going to ke processed.
The diredion in this case only refers to the diredion of
the query hierarchy, in which the diredion where we @an

reach the target class A target classisthe dasson which
the query focuses. A general format of single-class
queriesisasfollows:

Sel ect <projection |ist>
From <var in class>
Where <sel ection predi cates>

The main difference between single dass query and
agoregation query is that the variable var may be
dynamically bound to a composite objects
clasgcomponent ohjed class In the sdled projedion list
and sdledion predicates, we @mpare the olhjed in the
projedion list with the ojed in seledion predicates. If
the objed order from projedion list to seedion
predicates is from component objed to composite objed,
the query isaforward traversal query. In the other words,
the binding is downward, meaning that the var which
appears foll owing the FROMis sarched downward from
the omposite level to the mmponent level.

Conversdly, the opposite order is a revase traversal
query. The var is sarched from the lower level to
higher level in the aggregation hierarchy. The binding
processin OQL is basically based on the query input and
result. An OQL query isafunction that delivers an ohjed
whose type may be infered from the operator
contributing to the query expresson. Every query has an
entry point and corresponding exit point. The values of
entry-point and exit point dedde the distinction of two
different aggregation queries. The point isill ustrated with
the foll owing example (seeFigure 3).

The query schema in Figure 3 defines class Book and
class Chapter. Both of them are organized in an
aggregation hierarchy. Book is the parent of Chapter. An
example of forward traversal query is given: "Retrieve
the bodk that has a chapter, whose title is 'Advanced
Databases". The query in OQL isasfallows:

Select C
From C in B.Chapter, B in Book
Where B.title ="Advanced Dat abases"

Book o
(title=" Advanced Databases)

o

Figure 3. Retrieving “Advanced Database” booksthat
have a chapter

The entry point of thisOQL queryisinWere B.title
="Advanced Dat abases"; the it point is Sel ect
C. The graphical notation in Figure 3 is convenient for
explaining a forward traversal aggregation query. The
bdd printed node denotes the entry point, through which
the traversal route starts. The target class of the above
query is Chapter and the route sourceis from the Book.

The query scope expansion is aresult of a type cdeding
for classBook.

An example of a reverse traversal query is as foll ows:
"retrieve the bodk which has a chapter which title is 'a
taxonomy for objed-oriented query™. The OQL is:

Select B

From C in B.Chapter, B in Book

Where C.title = "A taxonomy of object -
oriented queries"

The entry point of this OQL query is from Where
C.title = "A taxonomy of object - oriented
queries"; the «it point isSelect B. The graphical
notation shown in Figure 4 is convenient for explaining a
reverse traversal aggregation query. The bdd printed
node denotes the entry point, through which the traversal
route starts. The target class of the abowve query is Book
and the route sourceis from the Chapter. The query scope
expansion isaresult of atype chedking for classChapter.
The binding in this case is promoted from a component
classto a composite dass Since a component classis
included in a composite dassin a particular hierarchy,
through the mwmposite attribute, casting from a composite
ohjed to a component ohjea is efficient.

T
e Do
(tittle=" A Taxonomy for

Objed-Criented Queries’)

Figure 4. Retrieving bodks which has a chapter which
titleis“ A Taxonomy for Objed-Oriented Queries’
3.2 Shorthand Path Expresdgon with

Aggregation Query Utility

As explained abowe, we @n enter a database through a
named ohjed. Generally, as long as we get an ohjed, we
need a way to navigate from it and reach the right data
that we neead. To do this, in OQL, adot (".") notation is
commonly used, which enables us to go inside mmplex
ohjeds, as well as to follow simple relationships (Cattell
and Barry, 1997. Path expresson queries are queries
involving multiple dasses aong the dassdomain
hierarchies. Classdomain hierarchy is where the domain
of an attribute is another class We @n use the sded-
from-where dause to handle OQL just as in SQL.A
general format of path expresson expressed in OQL as
follows:

Select <projection list>

From <var 1 in Class,
var » invar i.attr 1,
var 3 invar .attr
var n invar n.p.attr

Where <selection predicates>

n-1>

The path is explicitly shown in the From clause, and
projedion list is a list of attributes of classes along the
path expresson. The query starts from the dass
referenced by var ;. The path grows as attribute attr 1,
which hasa domain of the next class is pointed by var »,
and so on. In the ase of normal query, attr ; is of the
first class attr » is of the seaond class etc, are attributes
of a classdomain.

So far this is a basic path expresson query. In our
aggregation query modd, we simplify this by introducing
a “shorthand” path expresson, and the general format is
as foll ows.

Select <projection list>
From <var 1 in Class,

var , invar attr p>
Where <selection predicates>

Here, the attr , comes from var ,. Based on the
composite attribute of a composite objed, we an diredly
jump several levels to the target class The domain of
attr , of the first class can be a sat of ohjeds of its
component class or its grandchild class We define this
kind of path expresson asa"short-hand" path expresson.

An example of a shorthand path expresson of
aggregation query is as follows: "retrieve bods which
have a sedion titled ‘Aggregation query’ ". The OQL is
given as.

Select B
From S in B.Section, B in Book
Where S.title = "Aggregation query"

In the @rresponding query graph (seeFigure 5), we @n
seethe entry classis the Sedion, and scope of query is
expanded to the mmposite dass Bodk through jumping
over the Chapter. This example treats an aggregation
relationship. In this way, we @an navigate diredly from a
composite objed to any objed that bedongs to this
particular aggregation hierarchy.

Chapter

T

()
(title=" Aggregation Queries’)

Figure 5. Retrieving bodks which has a sedion titled
“Aggregation Queries’

3.3 Retrieving Aggregation Tree Hierarchy

An IS-PART-OF rdationship normally consists of a roat
ohjea with multi ple aomponents (or parts). Thereforeitis
critical to provide a medhanism to query the whole
composite objed tree starting from the roat objed to its
components. In this sdion, we use the operations of
composite objeds as previous explained in Sedion 2.2 to
serve this purpose. Assume we would like to retrieve the
al/part of the aggregation hierarchy tree as $iown in
Figure 6.

o
(title=" Advanced

Databases)
s m m
m

Figure 6. Retrieving “Advanced Databases’ bodk’s
components

An example is as follows. "Retrieve the Bodk's
components, the bod's nameis'advanced database™. The
OQL isfollowing:

Select B - >component()
From B in Book
Where B.title = "Advanced Databases"

By using the operation of composite ojed, according to
the schema, we know the result will retrieve the preface
chapter including sedions, and the hibli ography, for the
bodk whosetitle is“ Advanced Databases’.

Ancther example is given to retrieve the part of the
aggregation hierarchy, like: "retrieve the publication's
title, which has a chapter titled 'A taxonomy of O-O
query". Combined with the operation of composite
ohea, we perform OQL as foll ows:

Select C - >parent()

From C in Chapter

Where C.title = "A taxonomy of object -
oriented queries"

Or, "retrieve the publication, which has a sedion named
‘aggregation query’ . We perform OQL as.

Select S - >ancestor()
From S in Section
Where S.title = "Aggregation query"

So far, we have explained the way to retrieve the whole
aggoregation hierarchy for the dassBoaok.

Select B - >component(), B
From B in Book
Where B.title = "Advanced Databases"

After inspeding the dass Book, apart from the
components of B, the other attributes of B can also be
retrieved, like title, author, etc.

Database users always want to make a query with a
prerequisite like "whether a particular chapter belongs to
one particular bodk", or "whether one bodk has one
particular sedion". We included this prerequisite in the
sdedion predicates. For example: "Retrieve the chapters,
which belong to the bodk named 'Advanced Databases™.
We give OQL asfall owing:

Select C

From C in Chapter, B in Book

Where C - >is - component - of(B) = True
And B.title = "Advanced Databases"

For different data typesin OODBMS, espedally like list,
array, ..., we @n handle the queries on them as wdll.
According to the ODL, OIF spedfication on data type
list, we @an query list(). Thefollowing query retrieves the
seaond chapter of bodk “Advanced Databases’.

Select C
From C in Chapter, B in Book
Where B - >order(C) = 2

And C.title = “Advanc ed Databases”

In this ®dion, we have identified how operations on
composite ohjeds in ODMG can be used by aggregation
queries to particularly retrieve the whole @mposite
ohjea tree This facility is unique and very particular to

aggregation query only.

4 Comparisons

Most of existing obed-oriented query models
concentrate on path expresson through association
relationship. Assciation is considered dfferent from
agoregation (Rahayu et al, 1996, and therefore
aggregation query isimportant. In this ®dion, we present
a comparative study with existing works and dfferences
with path expresson queries.

4.1 Comparisonswith Existing Work

There are many papers on ohjed-oriented queries. The
papers by Banerjee ¢ a (1988 and Kim (1989 have
been remgnized as a pioneg of a modd for objed-
oriented queries, which was based on ORION. It focused
on various query models on nested attributes, also known
as path expressons. They do not differentiate between
asxciation and aggregation, and hence their path
expresson queries are general, and do not particularly
addressthe |S-PART-OF relationships.

Kifer, Kim and Sagiv (1992 extended Kim’'s work
(1989 by incorporating complex operations on path
expressons (i.e existential and universal quantifiers), and
methods into their query modd.

The query model presented in Cluet et al (1990 was
influenced by O2 (Léduse & a 1988. Mainly it covered
path expresson queries. The paper by Cluet and Delobdl
(1992 — an extension of their previouswork —introduced
join queries. The role of join operations was aso
enhanced as backward traversal of path expresson
queries, which was implemented in a semi-join. Bertino
e a (1992 presented an exhaustive study on objed-
oriented query languages. Their query models were very
much influenced by Kim (1990, where the query is based
on attribute-class hierarchy; that is assciation
relationship. No particular distinction between association
and aggregation.

The query model by Chan and Trinder (1994 was
extensively based on sets. They expressed objed-oriented
queries in term of ohjeda comprehension. Alhgjj and
Arkun (1992 focused on oljed algebra.

All of this existing work is based on path expresson
hierarchy or assciation. Aggregation has a spedal
semantics (Rumbaugh et a, 1991 and has not been
explored its existencein query models.

4.2 Comparisons with Path Expression Queries

Path expresson queries are queries whereby traversals
are made posshle from one dassto another through an
asciation relationship (Kim, 1989. This is a general
ohed-oriented query model where join operation is
avoided through the use of pointer navigations. This
medanism is regarded as unique and makes objed-
oriented query processng much faster compared with
relational query processng, which purely based on join
operations.

From an objed-oriented moddlling point of view, objed
relationship existsin variousformats, such asinheritance,
asciation, and aggregation (Rumbaugh et a 1991).
These relationships are well understood at the design
stage. However, in ohjed-oriented queries, the difference
between aswciation and aggregation has not been
considered critical. In many cases, the terms aggregation
and association are used interchangeably. Our proposal in
this paper addresses this by introducing a query mode! for
aggregation, as opposed to association.

In Sedion 3, we have described three etension of
aggregation query. The first extension is not purely for
aggregation query. It is actually originated in path
expresson (association) queries. Thisis included in our
aggregation query, smply because some features of
aggregation are the same as those of association. We have
included the notion of forward and reverse traversal in
agoregation query simply for completeness of our
proposal.

The second extension in our proposal — that is sorthand
path expresson for aggregation query utility, has not
been explored fully in path expresson queries. Like the
first extension, this extension is not isolated for
aggregation query.

The third extension in our proposal is particularly unique
to aggregation query. This is because aggregation has a
notion of whole-part (Coad and Y ourdon, 1991), which

does not exists in the asociation. Our aggregation query
model makes use of operations avail able for composite
obeds based on ODMG standard notation. In this
extension, we are able to explore the whole aggregation
tree or retrieving part components. We found that this
extension is critical to expose the notion of whole-part in
composite ohjeds.

5 Conclusions

In this paper we have described our query mode for
aggregation hierarchy. They essntially explored the full
capacity of an ODMG extension of a composite objed.
The examples of aggregation queries have shown that
applying aggregation query the semantics of composite
ohjeds will be reserved. Our aggregation query covers
from forward traversal query to reverse traversal, from
retrieving a whole omposite objed to retrieving a
component of awhole mmposite ohjed.

6 References

ALASHQUR, M. (1989, “OQL: A Query Language for
Manipulating Objed-oriented Databases’ Proceedings
of the Fifteenth International Conference on Very
Large Data, Amsterdam, The Netherlands. Morgan
Kaufmann.

ALHAJJ] R. and ARKUN, M.E. (1992, "Queries in
Objed-Oriented Database Systems', Proceedings of
the First International Conference on Information and
Knowledge Management CIKM, pp. 36-52.

BANERJEE, J, KIM, W. and KIM, K-C. (1988,
"Queries in Objed-Oriented Databases', Proceedings
of the Fourth International Conference on Data
Engineering, pp. 31-38.

BANERJEE, J., KIM, W., KIM, H-J. and KORTH, H.F.
(1987, “Semantics and Implementation of Schema
Evolution in Objed-Oriented Database’, Proceedings
of the ACM Special Interest Group on Management of
Data 1987 Annual Conference, San Francisco,
Cdlifornia, May 27-29, 1987. SSIGMOD Reaord 163).

BERTINO, E. and MARTINO, L. (1993, Object-
Oriented Database Systems. Concepts and
Architectures, Addison-Wesley.

BERTINO, E., e al. (1992, "Objed-Oriented Query
Languages. The Notion and The lIssues’, IEEE
Transactions on Knowledge and Data Engineering,
val. 4, no. 3, pp. 223-237.

BERTINO, E, KIM, W and GARZA. JF. (1989,
“Composite Objed Revisit”, Proceedings of the 1989
ACM S GMOD International Conference on
Management of Data, Portland, Oregon, May 31 - June
2.

CATTELL, R.G.G. and BARRY, D.K. (1997, The
Object Database Sandard: ODMG 2.0, Morgan
Kaufmann Publi sher.

CATTELL, R.G.G. (199)), Object Data Management:
Object-Oriented and Extended Relational Database
Systems, Addison-Wesley.

CHAN, D.K.C. and TRINDER, P.W. (1994, "Objed
Comprehensions:. A Query Notation for Objed-
Oriented Databases', Procealings of the British
Nationd Conference on Databases BNCOD 12, pp. 55
72

CLUET, S. and DELOBEL, C. (1992, "A Generd
Framework for the Optimizaion of Objed-Oriented
Queries', Procealings of the ACM S9GMOD
Conference, pp. 383392

CLUET, S, et a. (1990, "Reloop, an Algebra Based
Query Language for an Objed-Oriented Database
System"”, Deductive and Objed-Oriented Databases
DOOD Conference, W.Kim, et a. (eds), Elsevier
Science Publishers, pp. 313-332

COAD, P. and YOURDON, E. (1991, Objed-Oriented
Analysis, second edition, Prentice Hall .

KIFER, M., KIM, W. and SAGIV, Y. (1992, "Querying
Objed-Oriented Databases’, Procealings of the ACM
S GMOD Conference, pp. 393402

KIM, W. (1989, "A Modd of Queries for Objed-
Oriented Databases', Procealings of the Fifteenth
Internationd Conference on Very Large Data Bases
VLDB, pp. 423432, Amsterdam.

KIM, W. (1990, Introdwction to Objed-Oriented
Databases, The MIT Press

LECLUSE, C., RICHARD, P. and VELEZ, F. (1989,
“02, an Objea-Oriented Data Model”, Proceeadings of
the ACM SIGMOD Internationd Conference on
Management of Data, Chicago, Illi nois, June 1-3, 1988
SIGMOD Recard 173).

LIU, L. (1992, “Exploring Semantics in Aggregation
Hierarchies for Objed-Oriented Database’, INFOLAB,
Tilburg University, The Netherlands.

RAHAYU, W., CHANG, E., DILLON, T.S, and
TANIAR, D. (1996, "Aggregation versus Assciation
in Objed Moddling and Databases', Procealings of
the Seventh Australasian Conference on Information
Systems ACIS96, Hobart.

RUMBAUGH, J. et.al. (1991, Objea-Oriented Modeling
andDesign, Prentice-Hall.

TANIAR, D. and RAHAY U, JW. (1999, "Chapter 5: A
Taxonomy for Objed-Oriented Queries', Current
Trends in Data Management Techndogy, A. Dogac,
M.T.Ozsu, and O.Ulusoy (eds.), ISBN: 1-87828951-9,
Idea Group Publishing, pp. 69-96.

TANIAR, D., and RAHAY U, JW. (199&), "Complex
Objed-Oriented Queries: A Graph-Based Approach”,
Procealings of the ISCA 13th Internationd Conference
on Computers and Their Applications CATA'98,
Hawaii .

TANIAR, D. and RAHAYU, JW. (199&), "Query
Optimization Primitive for Path Expresson Queriesvia
Reversing Path Traversal Diredion”, Journal of
Computing andInformation JCI, val. 3, no. 1.

