
The Uncracked Pieces in Database Cracking

Felix Martin Schuhknecht

†
Alekh Jindal

‡⇤
Jens Dittrich

†

†
Information Systems Group, Saarland University

‡
CSAIL, MIT

http://infosys.cs.uni-saarland.de people.csail.mit.edu/alekh

ABSTRACT
Database cracking has been an area of active research in recent
years. The core idea of database cracking is to create indexes
adaptively and incrementally as a side-product of query process-
ing. Several works have proposed different cracking techniques
for different aspects including updates, tuple-reconstruction, con-
vergence, concurrency-control, and robustness. However, there is a
lack of any comparative study of these different methods by an in-
dependent group. In this paper, we conduct an experimental study
on database cracking. Our goal is to critically review several as-
pects, identify the potential, and propose promising directions in
database cracking. With this study, we hope to expand the scope of
database cracking and possibly leverage cracking in database en-
gines other than MonetDB.

We repeat several prior database cracking works including the
core cracking algorithms as well as three other works on con-
vergence (hybrid cracking), tuple-reconstruction (sideways crack-
ing), and robustness (stochastic cracking) respectively. We evaluate
these works and show possible directions to do even better. We fur-
ther test cracking under a variety of experimental settings, includ-
ing high selectivity queries, low selectivity queries, and multiple
query access patterns. Finally, we compare cracking against dif-
ferent sorting algorithms as well as against different main-memory
optimised indexes, including the recently proposed Adaptive Radix
Tree (ART). Our results show that: (i) the previously proposed
cracking algorithms are repeatable, (ii) there is still enough room to
significantly improve the previously proposed cracking algorithms,
(iii) cracking depends heavily on query selectivity, (iv) cracking
needs to catch up with modern indexing trends, and (v) different
indexing algorithms have different indexing signatures.

1. INTRODUCTION

1.1 Background
Traditional database indexing relies on two core assumptions:

(1) the query workload is available, and (2) there is sufficient idle
⇤Work done while at Saarland University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 40th International Conference on Very Large Data Bases,
September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 2
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

Column A Column A after Q1 Column A after Q2
Q1: select *

from R
 where R.A>10

 and R.A < 14

Q2: select *
from R

 where R.A>7
 and R.A <= 16

in
de

x

A <=10

10 < A <14

A >=14

in
de

x

10 < A <14

7 < A <=10

14 <= A <=16

16 < A

A <= 7

13
16
4
9
2

12
7
1

19
3

14
11
8
6

4
9
2
7
1
3
8
6

13
12
11
16
19
14

4
2
1
3
6
7
9
8

13
12
11
14
16
19

(a) (b) (c)
Figure 1: Database Cracking Example

time to create the indexes. Unfortunately, these assumptions are not
valid anymore in modern applications, where the workload is not
known or constantly changing and the data is queried as soon as it
arrives. Thus, several researchers have proposed adaptive indexing
techniques to cope with these requirements. In particular, Database
Cracking has emerged as an attractive approach for adaptive index-
ing in recent years [13, 8, 10, 9, 11, 4, 6]. Database Cracking pro-
poses to create indexes adaptively and as a side-product of query
processing. The core idea is to consider each incoming query as a
hint for data reorganisation which eventually, over several queries,
leads to a full index. Figure 1 recaps and visualizes the concept.

1.2 Our Focus
Database Cracking has been an area of active research in re-

cent years, led by researchers from CWI Amsterdam. This
research group has proposed several different indexing tech-
niques to address different dimensions of database cracking, in-
cluding updates [10], tuple-reconstruction [9], convergence [11],
concurrency-control [4], and robustness [6]. In this paper, we crit-
ically review database cracking. We repeat the core cracking al-
gorithms, i.e. crack-in-two and crack-in-three [8], as well as three
advanced cracking algorithms [9, 11, 6]. We identify the weak
spots in these algorithms and discuss extensions to fix them. Fi-
nally, we also extend the experimental parameters previously used
in database cracking by varying the query selectivities and by com-
paring against more recent, main-memory optimised indexing tech-
niques, including ART [15].

To the best of our knowledge, this is the first study by an inde-
pendent group on database cracking. Our goal is to put database
cracking in perspective by repeating several prior cracking works,
giving new insights into cracking, and offering promising direc-
tions for future work. We believe that this will help the database
community to understand database cracking better and to possi-

97

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100

In
de

xi
ng

 T
im

e
[m

s]

Relative Position of the Low Key Split Line [%]

2 x CrackInTwo
CrackInThree

(a) Comparing Single Query Indexing Time

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
[m

s]

Query Sequence

Standard Cracking
Scan

Full Index

(b) Reproducing Cracking Behaviour

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000

Ti
m

e
[m

s]

Query Sequence

Index Lookup
Data Shuffle

Index Update
Data Access

(c) Cost Breakdown

Figure 2: Revisiting Standard Cracking

bly leverage cracking for database systems other than MonetDB as
well. Our core contributions in this paper are as follows:
(1.) Revisiting Cracking. We revisit the core cracking algorithms,
i.e. crack-in-two and crack-in-three [8], and compare them for dif-
ferent positions of the pivot elements. We do a cost breakdown
analysis of the cracking algorithm into index lookup, data shuffle,
index update, and data access costs. We identify three major con-
cerns, namely convergence, tuple-reconstruction, and robustness.
In addition, we evaluate advanced cracking algorithms, namely hy-
brid cracking [11], sideways cracking [9], and stochastic crack-
ing [6] respectively, which were proposed to address these con-
cerns. Additionally, in order to put together the differences and
similarities between different cracking algorithms, we classify the
cracking algorithms based on the strategy to pick the pivot, the cre-
ation time, and the number of partitions (Section 2).
(2.) Extending Cracking Algorithms. In order to better under-
stand the cracking behaviour, we modify three advanced cracking
algorithms, namely hybrid cracking [11], sideways cracking [9],
and stochastic cracking [6]. We show that buffering the swap ele-
ments in a heap before actually swapping them (buffered swapping)
can lead to better convergence than hybrid cracking. Next, we show
that covering the projection attributes with the cracker column (cov-
ered cracking) scales better than sideways cracking in the number
of projected attributes. Finally, we show that creating more bal-
anced partitions upfront (coarse-granular indexing) achieves better
robustness in query performance than stochastic cracking. We also
map these extensions to our cracking classification (Section 3).
(3.) Extending Cracking Experiments. Finally, we extend the
cracking experiments in order to test cracking under different set-
tings. First, we compare database cracking against full indexing
using different sorting algorithms and index structures. In previ-
ous works on database cracking quick sort is used to order the data
indexed by the traditional methods that are used for comparison.
Further, the cracker index is realized by an AVL-Tree to store the
index keys. In this paper, we do a reality check with recent develop-
ments in sorting and indexing for main-memory systems. We show
that full index creation with radix sort is twice as fast as with quick
sort. We also show that ART [15] is up to 3.6 times faster than the
AVL-Tree in terms of lookup time. We also vary the query selec-
tivity from very high selectivity to medium selectivity and compare
the effects. We conclude two key observations: (i) the choice of
the index structure has an impact only for very high selectivities,
i.e. higher than 10�6 (one in a million), otherwise the data access
costs dominate the index lookup costs; and (ii) cracking creates
more balanced partitions and hence converges faster for medium
selectivities, i.e. around 10%. Furthermore, we apply a sequential
and a skewed query access pattern and analyze how the different
adaptive indexing methods cope with them. Our results show that

sequential workloads are the weak spots of query driven methods
while skewed patterns increase the overall variance (Section 4). Fi-
nally, we conclude by putting together the key lessons learned. Ad-
ditionally, we also introduce signatures to characterise the indexing
behaviour of different indexing methods and to understand as well
as differentiate them visually (Section 5).
Experimental Setup. We use a common experimental setup
throughout the paper. We try to keep our setup as close as pos-
sible to the earlier cracking works. Similar to previous cracking
works, we use an integer array with 108 uniformly distributed val-
ues. Unless mentioned otherwise, we run 1000 random queries,
each with selectivity 1%. The queries are of the form: SELECT A

FROM R WHERE A>=low AND A<high. We repeat the entire query se-
quence three times and take the average runtime of each query in
the sequence. We consider two baselines: (i) scan which reads the
entire column and post-filters the qualifying tuples, and (ii) full in-
dex which fully sorts the data using quick sort and performs binary
search for query processing. If not stated otherwise, all indexes are
unclustered and uncovered. We implemented all algorithms in a
stand-alone program written in C/C++ and compile with G++ ver-
sion 4.7 using optimization level 3. Our test bed consists of a single
machine with two Intel Xeon X5690 processors running at a clock
speed of 3.47 GHz. Each CPU has 6 cores and supports 12 threads
via Intel Hyper Threading. The L1 and L2 cache sizes are 64 KB
and 256 KB respectively for each core. The shared L3 cache has a
size of 12 MB. Our machine has 200 GB of main memory and runs
openSUSE 12.2 (Mantis) linux in the 64-bit version with kernel 3.1.

2. REVISITING CRACKING
Let us start by revisiting the original cracking algorithm [8]. Our

goal in this section is to first compare crack-in-two with crack-in-
three, then to repeat the standard cracking algorithm under similar
settings as in previous works, then to break down the costs of crack-
ing into individual components, and finally to identify the major
concerns in the original cracking algorithm.

2.1 Crack-in-two Vs Crack-in-three
crack-in-two: partition the index column into two pieces using one
end of a range query as the boundary.
crack-in-three: partition the index column into three pieces using
the two ends of a range query as the two boundaries.

The original cracking paper [8] introduces two algorithms: crack-
in-two and crack-in-three to partition (or split) a column into two
and three partitions respectively. Conceptually crack-in-two is suit-
able for one-sided range queries, e.g. A < 10, whereas crack-in-
three for two-sided range queries, e.g. 7 < A < 10. However,
we could also apply two crack-in-twos for a two-sided range query.

98

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000R
es

po
ns

e
Ti

m
e

H
ig

he
r t

ha
n

Fu
ll

In
de

x
[%

]

Query Sequence

Individual Points
Bezier Smoothed

(a) Cracking Convergence

 1

 10

 100

 1000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
[m

s]

Query Sequence

Standard Cracking
Proj. Attributes: 2
Proj. Attributes: 3
Proj. Attributes: 4
Proj. Attributes: 5
Proj. Attributes: 6
Proj. Attributes: 7
Proj. Attributes: 8
Proj. Attributes: 9

Proj. Attributes: 10

(b) Scaling Projected Attributes

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Va
ria

nc
e

Query Sequence

Individual Points (EWMA alpha = 0.1)

(c) Cracking Variance

Figure 3: Key Concerns in Standard Cracking

Let us now compare the performance of crack-in-two and crack-in-
three on two-sided range queries. We consider the cracking opera-
tions from a single query and vary the position of the split line in
the cracker column from bottom (low relative position) to top (high
relative position). A relative position of the low key split line of
p% denotes that the data is partitioned into two parts with size p%
and (100� p)%. We expect the cracking costs to be the maximum
around the center of the column (since maximum swapping will
occur) and symmetrical on either ends of the column. Figure 2(a)
shows the results. Though both 2⇥crack-in-two and crack-in-three
have maximum costs around the center, surprisingly crack-in-three
is not symmetrical on either ends. Crack-in-three is much more ex-
pensive in the lower part of the column than in the upper part. This
is because crack-in-three always starts considering elements from
the top. Another interesting observation from Figure 2(a) is that
even though 2⇥crack-in-two performs two cracking operations, it
is cheaper than crack-in-three when the split position is in the lower
70% of the column. Thus, we see that crack-in-two and crack-in-
three are very different algorithms in terms of performance and fu-
ture works should consider this when designing newer algorithms.

2.2 Standard Cracking Algorithm
standard cracking: incrementally and adaptively sort the index
column using crack-in-three when both ends of a range query fall
in the same partition and crack-in-two otherwise.

We implemented the standard cracking algorithm which uses crack-
in-three wherever two split lines lie in the same partition, and tested
it under the same settings as in previous works. As in the original
papers, we use an AVL-Tree as cracker index to be able to com-
pare the results. Figure 2(b) shows the results. We can see that
standard cracking starts with similar performance as full scan and
gradually approaches the performance of full index. Moreover, the
first query takes just 0.3 seconds compared to 0.24 seconds of full
scan1, even though standard cracking invests some indexing effort.
In contrast, full index takes 10.2 seconds to fully sort the data be-
fore it can process the first query. This shows that standard cracking
is lightweight and it puts little penalty on the first query. Overall,
we are able to reproduce the cracking behaviour of previous works.

2.3 Cost Breakdown
Next let us see the cost breakdown of original cracking algo-

rithm. The goal here is to see where the cracking query engine
spends most of the time and how that changes over time. Fig-
ure 2(c) shows the cost breakdown of the query response time into

1Note that the query time of full scan varies by as much as 4 times.
This is because of lazy evaluation in the filtering depending on the
position of low key and high key in the value domain.

four components: (i) index lookup costs to identify the partitions
for cracking, (ii) data shuffle costs of swapping the data items in
the column, (iii) index update costs for updating the index struc-
ture with the new partitions, and (iv) data access costs to actually
access the qualifying tuples. We can see that the data shuffle costs
dominate the total costs initially. However, the data shuffle costs
decrease gradually over time and match the data access costs af-
ter 1, 000 queries. This shows that standard cracking does well to
distribute the indexing effort over several queries. We can also see
that index lookup and update costs are orders of magnitude less
than the data shuffle costs. For instance, after 10 queries, the index
lookup and update costs are about 1µs whereas the shuffle costs
are more than 100 ms. This shows that standard cracking is in-
deed lightweight and has very little index maintenance overheads.
However, as the number of queries increases, the data shuffle costs
decrease while the index maintenance costs increase.

2.4 Key Concerns in Standard Cracking
Let us now take a closer look at the standard cracking algo-

rithm from three different perspectives, namely convergence to a
full index, scaling the number of projected attributes, and variance
in query performance.
Cracking Convergence. Convergence is a key concern and major
criticism for database cracking. Figure 3(a) shows the number of
queries after which the query response time of standard cracking
is within a given percentage of full index. The figure also shows a
bezier smoothened curve of the data points. From the figure we can
see that after 1, 000 queries, on average, the query response time of
standard cracking is still 40% higher than that of full index.
Scaling Projected Attributes. By default, database cracking leads
to an unclustered index, i.e. extra lookups are needed to fetch the
projected attributes. Figure 3(b) shows the query response time
with tuple reconstruction, when varying the number of projected
attributes from 1 to 10. For the ease of presentation, we show only
the bezier smoothened curves. We can see that standard cracking
does not scale well with the number of attributes. In fact, after
1, 000 queries, querying 10 attribute tuples is almost 2 orders of
magnitude slower than querying 1 attribute tuples.
Cracking Variance. Standard cracking partitions the index col-
umn based on the query ranges of the selection predicate. As a
result, skewed query range predicates can lead to skewed partitions
and thus unpredictable query performance. Figure 3(c) shows the
variance of standard cracking query response times using the ex-
ponentially weighted moving average (EWMA). The variance is
calculated as described in [3]. The degree of weighting decrease
is ↵ = 0.1. We can see that unlike full index (see Figure 2(b)),
cracking does not exhibit stable query performance. Furthermore,

99

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
[m

s]

Query Sequence

Standard Cracking
Scan

Full Index
Hybrid Crack Sort

Standard Cracking (bezier smoothed)
Hybrid Crack Sort (bezier smoothed)

(a) Hybrid Cracking

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
[m

s]

Query Sequence

Standard Cracking (# Proj. Attributes: 2)
Scan (# Proj. Attributes: 2)

Full Index (# Proj. Attributes: 2)
Clustered Full Index (# Proj. Attributes: 2)
Sideways Cracking (# Proj. Attributes: 2)

(b) Sideways Cracking

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
[m

s]

Query Sequence

Standard Cracking
Scan

Full Index
Stochastic Cracking (MDD1R)

(c) Stochastic Cracking

Figure 4: Revisiting Three Advanced Cracking Algorithms

we also see that the amount of variance for standard cracking de-
creases by five orders of magnitude.

2.5 Advanced Cracking Algorithms
Several follow-up works on cracking focussed on the key con-

cerns in standard cracking. In this section, we revisit these ad-
vanced cracking techniques.

hybrid cracking: create unsorted initial runs which are physically
reorganised and then adaptively merged for faster convergence.

Hybrid cracking [11] aims at improving the poor convergence of
standard cracking to a full index, as shown in Figure 3(a). Hybrid
cracking combines ideas from adaptive merging [5] with database
cracking in order to achieve fast convergence to a full index, while
still keeping low initialisation costs. The key problem in standard
cracking is that it creates at most two new partition boundaries per
query, and thus requires several queries to converge to a full index.
On the other hand, adaptive merging creates initial sorted runs, and
thus pays a high cost for the first query. Hybrid cracking over-
comes these problems by creating initial unsorted partitions and
later adaptively refining them with lightweight reorganisation. In
addition to reorganising the initial partitions, hybrid cracking also
moves the qualifying tuples from each initial partition into a final
partition. The authors explore different strategies for reorganising
the initial and final partitions, including sorting, standard cracking,
and radix clustering, and conclude standard cracking to be the best
for initial partitions and sorting to be the best for final partition. By
creating initial partitions in a lightweight manner and introducing
several partition boundaries, hybrid cracking converges better.

We implemented hybrid crack sort, which showed the best per-
formance in [11], as close to the original description as possible.
Figure 4(a) shows hybrid crack sort in comparison to standard
cracking, full index, and scan. We can see that hybrid crack sort
converges faster as compared to standard cracking.

sideways cracking: adaptively create, align, and crack every ac-
cessed selection-projection attribute pair for efficient tuple recon-
struction.

Sideways Cracking [9] uses cracker maps to address the issue of
inefficient tuple reconstruction in standard cracking, as shown in
Figure 3(b). A cracker map consists of two logical columns, the
cracked column and a projected column, and it is used to keep the
projection attributes aligned with the selection attributes. When a
query comes in, sideways cracking creates and cracks only those
crackers maps that contain any of the accessed attributes. As a re-
sult, each accessed column is always aligned with the cracked col-
umn of its cracker map. If the attribute access pattern changes, then
the cracker maps may reflect different progressions with respect

to the applied cracks. Sideways cracking uses a log to record the
state of each cracker map and to synchronize them when needed.
Thus, sideways cracking works without any workload knowledge
and adapts cracker maps to the attribute access patterns. Further, it
improves its adaptivity and reduces the amount of overhead by only
materializing those parts of the projected columns in the cracker
maps which are actually queried (partial sideways cracking).

We reimplemented sideways cracking similar to as described
above, except that we store cracker maps in row layout instead of
column layout. We do so because the two columns in a cracker
map are always accessed together and a row layout offers better
tuple reconstruction. In addition to the cracked column and the
projected column, each cracker map contains the rowIDs that map
the entries into the base table as well as a status column denoting
which entries of the projected column are materialized. Figure 4(b)
shows the performance of sideways cracking in comparison. In this
experiment the methods have to project one attribute while select-
ing on another. In addition to the unclustered version of full index,
we also show the clustered version (clustered full index). We can
see that sideways cracking outperforms all unclustered methods af-
ter about 100 queries and approaches the query response time of
clustered full index. Thus, sideways cracking offers efficient tuple
reconstruction.

stochastic cracking: create more balanced partitions using auxil-
iary random pivot elements for more robust query performance.

Stochastic cracking [6] addresses the issue of performance unpre-
dictability in database cracking, as seen in Figure 3(c). A key
problem in standard cracking is that the partition boundaries de-
pend heavily on the incoming query ranges. As a result, skewed
query ranges can lead to unbalanced partition sizes and successive
queries may still end up rescanning large parts of the data. To re-
duce this problem, stochastic cracking introduces additional cracks
apart from the query-driven cracks at query time. These additional
cracks help to evolve the cracker index in a more uniform manner.
Stochastic cracking proposes several variants to introduce these ad-
ditional cracks, including data driven and probabilistic decisions.
By varying the amount of auxiliary work and the crack positions,
stochastic cracking manages to introduce a trade-off situation be-
tween variance on one side and cracking overhead on the other side.

We reimplemented the MDD1R variant of stochastic cracking,
which showed the best overall performance in [6]. In this variant,
the partitions in which the query boundaries fall are cracked by
performing exactly one random split. Additionally, while perform-
ing the random split, the result of each partition at the boundary
of the queried range is materialised in a separate view. At query
time the result is built by reading the data of the boundary parti-
tions from the views and the data of the inner part from the index.

100

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000R
es

po
ns

e
Ti

m
e

H
ig

he
r t

ha
n

Fu
ll

In
de

x
[%

]

Query Sequence

Standard Cracking
Hybrid Crack Sort
Hybrid Radix Sort

Hybrid Sort Sort

(a) Convergence Speed towards Full Index

 0

 50

 100

 150

 200

 250

 300

 350

 400

1|999 10|990 100|900 1000|0

N
um

be
r o

f S
w

ap
s

[M
illi

on
]

Number Of Buffered | Unbuffered Queries

Standard Cracking
Hybrid Crack Sort

Buffered Swapping 100K
Buffered Swapping 1M

Buffered Swapping 10M

(b) Influence on Swap Count

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

Standard

HCS
Buffered 100K

Buffered 1M

Buffered 10M

 Standard

HCS
Buffered 100K

Buffered 1M

Buffered 10M

 Standard

HCS
Buffered 100K

Buffered 1M

Buffered 10M

 Standard

HCS
Buffered 100K

Buffered 1M

Buffered 10M

Ac
cu

m
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

Ti
m

e
[s

]

Number Of Buffered | Unbuffered Queries

Remaining 1000-nb Queries

1|999 10|990 100|900 1000|0

11

(c) Influence on Query Response Time

Figure 5: Comparing Convergence of Standard Cracking, Hybrid Cracking and Buffered Swapping

Figure 4(c) shows the MDD1R variant of stochastic cracking. We
can see that stochastic cracking (MDD1R) behaves very similar to
standard cracking, although the query response times are overall
slower than those of standard cracking. As the uniform random
access pattern creates balanced partitions by default, the additional
random splits introduced by stochastic cracking (MDD1R) do not
have an effect. We will come back to stochastic cracking (MDD1R)
with other access patterns in Section 4.4.

2.6 Cracking Classification
Let us now compare and contrast the different cracking algo-

rithms discussed so far with each other. The goal is to understand
what are the key differences (or similarities) between these algo-
rithms. This will possibly help us in identifying the potential for
newer cracking algorithms. Note that all cracking algorithms es-
sentially split the data incrementally. Different algorithms split
the data differently. Thus, we categorise the cracking algorithms
along three dimensions: (i) the number of split lines they introduce,
(ii) the split strategy, and (iii) the timing of the split. Table 1 shows
the classification of different cracking algorithms along these three
dimensions. Let us discuss these below.
DIMENSIONS CATEGORY NO

INDEX
STANDARD
CRACKING

HYBRID
CRACKING
(CRACK SORT)

SIDEWAYS
CRACKING

STOCHASTIC
CRACKING
(MDD1R)

FULL
INDEX

ZERO
NUMBER OF FEW
SPLIT LINES SEVERAL

ALL

NONE
SPLIT QUERY BASED
STRATEGY RANDOM

DATA BASED

NEVER
SPLIT PER QUERY
TIMING UPFRONT

Table 1: Classification of Cracking Algorithms.
Number of Split Lines. The core cracking philosophy mandates
all cracking algorithms to do some indexing effort, i.e. introduce at
least one split line, when a query arrives. However, several algo-
rithms introduce other split lines as well. We classify the cracking
algorithms into the following four categories based on the number
of split lines they introduce.
(1.) Zero: The trivial case is when a method introduces no split
line and each query performs a full scan.
(2.) Few: Most cracking algorithms introduce a few split lines at a
time. For instance, standard cracking introduces either one or two
splits lines for each incoming query. Similarly, sideways cracking
introduces split lines in all accessed cracker maps.
(3.) Several: Cracking algorithms can also introduce several split
lines at a time. For example, hybrid crack sort may introduce sev-
eral thousand initial partitions and introduce either one or two split
lines in each of them. Thus, generating several split lines in total.

(4.) All: The extreme case is to introduce all possible split lines,
i.e. fully sort the data. For example, hybrid crack sort fully sorts
the final partition, i.e. introduces all split lines in the final partition.

Split Strategy. Standard cracking chooses the split lines based
on the incoming query. However, several advanced cracking al-
gorithms employ other strategies. Below, we classify the cracking
algorithms along four splitting strategies.

(1.) Query Based: The standard case is to pick the split lines based
on the selection predicates in the query, i.e. the low and high keys
in the query range.
(2.) Data Based: We can also split data without looking at a query.
For example, full sorting creates split lines based only on the data.
(3.) Random: Another strategy is to pick the split lines randomly
as in stochastic cracking.
(4.) None: Finally, the trivial case is to not have any split strategy,
i.e. do not split the data at all and perform full scan for all queries.

Split Timing. Lastly, we consider the timing of the split to classify
the cracking algorithms. We show three time points below.

(1.) Upfront: A cracking algorithm could perform the splits before
answering any queries. Full indexing falls in this category.
(2.) Per Query: All cracking algorithms we discussed so far per-
form splits when seeing a query.
(3.) Never: The trivial case is to never perform the splits, i.e. fully
scanning the data for each query.

3. EXTENDING CRACKING
ALGORITHMS

In this section, we discuss the weaknesses in the advanced crack-
ing algorithms and evaluate possible directions on how to improve
them.

3.1 Improving Cracking Convergence
Let us see how well hybrid cracking [11] addresses the conver-

gence issue and whether we can improve upon it. First, let us com-
pare hybrid crack sort from Figure 4(a) with two other variants of
hybrid cracking: hybrid radix sort, and hybrid sort sort. Figure 5(a)
shows how quickly the hybrid algorithms approach to a full index.
We can see that hybrid radix sort converges similar to hybrid crack
sort and hybrid sort sort converges faster than both of them. This
suggests that the convergence property in hybrid algorithms comes
from the sort operations. However, keeping the final partition fully
sorted is expensive. Indeed, we can see several spikes in hybrid
crack sort in Figure 4(a). If a query range is not contained in the
final partition, all qualifying entries from all initial partitions must
be merged and sorted into the final partition. Can we do better?

101

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
[m

s]

Query Sequence

Standard Cracking
Proj. Attributes: 2
Proj. Attributes: 3
Proj. Attributes: 4
Proj. Attributes: 5
Proj. Attributes: 6
Proj. Attributes: 7
Proj. Attributes: 8
Proj. Attributes: 9

Proj. Attributes: 10

(a) Varying Number of Projected Attributes
for Sideways Cracking

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
[m

s]

Query Sequence

Proj. Attributes: 1
Proj. Attributes: 2
Proj. Attributes: 3
Proj. Attributes: 4
Proj. Attributes: 5
Proj. Attributes: 6
Proj. Attributes: 7
Proj. Attributes: 8
Proj. Attributes: 9

Proj. Attributes: 10

(b) Varying Number of Projected Attributes
for Covered Cracking

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8 9

Ac
cu

m
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

Ti
m

e
[s

]

Number of Projected Attributes

Standard Cracking
Sideways Cracking
Covered Cracking

(c) Covering Tradeoff for Tuple Reconstruction

Figure 6: Comparing Tuple Reconstruction Cost of Standard, Sideways, and Covered Cracking

Can we move data elements to their final position (as in full sort-
ing) in a fewer number of swaps, and thus improve the cracking
convergence?

buffered-swapping: Instead of swapping elements immediately af-
ter identification by the cracking algorithm, insert them into heaps
and flush them back into the index as sorted runs.

Let us look at the crack-in-two operation2 in hybrid cracking. Re-
call that the crack-in-two operation scans the dataset from both ends
until we find a pair of entries which need to be swapped (i.e. they
are in the wrong partitions). This pair is then swapped and the
algorithm continues its search until the pointers meet. Note that
there is no relative ordering between the swapped elements and they
may end up getting swapped again in future queries, thus penalis-
ing them over and over again. We can improve this by extending
the crack-in-two operation to buffer the elements identified as swap
pairs, i.e. buffered crack-in-two. Buffered crack-in-two collects the
swap pairs in two heaps: a max-heap for values that should go to
the upper partition and a min-heap for values that should go to the
lower partition. In addition to the heap structures, we maintain two
queues to store the empty positions in the two partitions. The two
heaps keep the elements in order and when the heaps are full we
swap the top-elements in the two heaps to the next available empty
position. This process is repeated until no more swap pairs can
be identified and the heaps are empty. As a result of heap order-
ing, the swapped elements retain a relative ordering in the index
after each cracking step. This order is even valid for entries that
were not in the heap at the same time, but shared presence with a
third element and hence a transitive relationship is established. Ev-
ery pair element that is ordered in this process is never swapped
in future queries and thus, the number of swaps is reduced. The
above approach of buffered crack-in-two is similar to [16], where
two heaps are used to improve the stability of the replacement se-
lection algorithm. By adjusting the maximal heap size in buffered
crack-in-two, we can tune the convergence speed of the cracked in-
dex. Larger heap size results in larger sorted runs. However, larger
heaps incur high overhead to keep its data sorted. In the extreme
case, a heap size equal to the number of (swapped) elements results
in full sorting while a heap size of 1 falls back to standard crack-
in-two. Of course buffered crack-in-two can be embedded in any
method that uses the standard crack-in-two algorithm. To separate
it from the remaining methods we integrate it into a new technique
called buffered swapping that is a mixture of buffered and stan-
dard crack-in-two. For the first n queries buffered swapping uses

2After the first few queries, cracking mostly performs a pair of
crack-in-two operations as the likelihood of two splits falling in two
different partitions increases with the number of applied queries.

buffered crack-in-two. After that buffered swapping switches to
standard cracking-in-two.

Figure 5(b) shows the number of swaps in standard cracking,
hybrid crack sort, and buffered swapping over 1000 queries. In
order to make them comparable, we force all methods to use only
crack-in-two operations. For buffered swapping we vary the num-
ber buffered queries nb along the X-axis, i.e. the first nb queries
perform buffered swapping while the remaining queries still per-
form the standard crack-in-two operation. We vary the maximal
heap size from 100K to 10M entries. From Figure 5(b), we can see
that the number of swaps decrease significantly as nb varies from 1
to 1000. Compared to standard cracking, buffered swapping saves
about 4.5 million swaps for 1 buffered query and 73 million swaps
for 1000 buffered queries and a heap size of 1M . The maximal size
of the heap is proportional to the reduction in swaps. Furthermore,
we can observe that the swap reduction for 1000 buffered queries
improves only marginally over that of 100 buffered queries. This
indicates that after 100 buffered queries the cracked column is al-
ready close to being fully sorted. Hybrid cracking performs even
more swaps than standard cracking (including moving the qualify-
ing entries from the initial partitions to the final partition).

Next let us see the actual runtimes of buffered swapping in com-
parison to standard cracking and hybrid crack sort. Figure 5(c)
shows the result. We see that the total runtime grows rapidly as
the number of buffered queries (nb) increases. However, we also
see that the query time after performing buffered swapping im-
proves. For example, after performing buffered swapping with a
maximal heap size of 1M for just 10 queries, the remaining 990
queries are 1.8 times faster than hybrid crack sort and even 5.5%
faster than standard cracking. This shows that buffered swapping
helps to converge better by reducing the number of swaps in sub-
sequent queries. Interestingly, a larger buffer size does not neces-
sarily imply a higher runtime. For 100 and 1, 000 buffered queries
the buffered part is faster for a maximum heap size of 10M entries
than for smaller heaps. This is because such a large heap size leads
to an earlier convergence towards the full sorting. Nevertheless, the
high runtime of initial buffer swapped queries is a concern. In our
experiments we implemented buffered swapping using the gheap
implementation [1] with a fan-out of 4. Each element that is in-
serted into a gheap has to sink down inside of the heap tree to get
to its position. This involves pairwise swaps and triggers many
cache-misses. Exploring more efficient buffering mechanisms in
detail opens up avenues for future work.

3.2 Improving Tuple Reconstruction
Our goal in this section is to see how well sideways cracking [9]

addresses the issue of tuple reconstruction and whether we can im-

102

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 1 10 100 1000

Va
ria

nc
e

Query Sequence

Stochastic Cracking (MDD1R)
Coarse-granular Index 10

Coarse-granular Index 100
Coarse-granular Index 1K

Coarse-granular Index 10K
Coarse-granular Index 100K

Full Index

(a) Variance in Response Time (↵ = 0.1)

 0

 2

 4

 6

 8

 10

 12

 14

Standard

Stochastic

Coarse 10

Coarse 100

Coarse 1K

Coarse 10K

Coarse 100K

Quick Sort +

Binary Search

Ac
cu

m
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

Ti
m

e
[s

]

Initialization
Query Response - Initialization

(b) Initialization Time Tradeoff

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8 9 10

Ac
cu

m
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

Ti
m

e
[s

]

Number of Projected Attributes

Standard Cracking
Sideways Cracking
Covered Cracking

Coarse-granular Index 1K
Coarse-granular Index 100

(c) Extending 6(c) by Nearby Clustering

Figure 7: Comparing Robustness of Standard Cracking, Stochastic Cracking, Coarse-granular Index, and Full Index

prove upon it. Let us first see how the sideways cracking from
Figure 4(b) scales with the number of attributes. Figure 6(a) shows
the performance of sideways cracking for the number of projected
attributes varying from 1 to 10. We see that in contrast to standard
cracking (see Figure 3(b)), sideways cracking scales more grace-
fully with the number of projected attributes. However, still the
performance varies by up to one order of magnitude. Furthermore,
sideways cracking duplicates the index key in all cracker maps. So
the question now is, can we have a cracking approach which is less
sensitive to the number of projected attributes?

covered-cracking: group multiple non-key attributes with the
cracked column in a cracker map. At query time, crack all cov-
ered non-key attributes along with the key column for even more
efficient tuple reconstruction.

Note that with sideways cracking all projected columns are aligned
with each other. However, the query engine still needs to fetch
the projected attribute values from different columns in different
cracker maps. These lookup costs turn out to be very expensive
in addition to the overhead of cracking n replicas of the indexed
column for n projected attributes. To solve this problem, we gen-
eralize sideways cracking to cover the n projected attributes in a
single cracker map. In the following we term this approach covered
cracking. While cracking, all covered attributes of a cracker map
are reorganized with the cracked column. As a result, all covered
attributes are aligned and stored in a consecutive memory region,
i.e. no additional fetches are involved if the accessed attribute is
covered. However, the drawback of this approach is that we need
to specify which attributes to cover. If we want to be on the safer
side, we may cover all table attributes. However, this means that we
will need to copy the entire table for indexing and we might cover
unrequested columns. On the other hand, if the set of covered at-
tributes is too small or poorly chosen, external lookups might be
triggered. Thus, choosing a suitable set of covered attributes based
on the observed workload is crucial. The decision which attributes
to cover is similar to computing the optimal vertical partitioning for
a table. Various applicable algorithms are presented in [12].

Figure 6(b) shows the performance of covered cracking over dif-
ferent numbers of projected attributes. Here we show the results
from covered cracking which copies the data of all covered at-
tributes in the beginning. We can see that covered cracking re-
mains stable when varying the number of projected attributes from
1 to 10. Thus, covered cracking scales well with the number of
attributes. Figure 6(c) compares the accumulated costs of standard,
sideways, and covered cracking. We can see that while the accu-
mulated costs of standard and sideways cracking grow linearly with
the number of attributes, the accumulated costs of covered crack-
ing remain pegged at under 40 seconds. We also see that sideways

cracking outperforms covered cracking for only up to 4 projected
attributes. For more than 4 projected attributes, sideways cracking
becomes increasingly expensive whereas covered cracking remains
stable. Thus, we see that covering offers huge benefits.

3.3 Improving Cracking Robustness
In this section we look at how well stochastic cracking [6] ad-

dresses the issue of query robustness and whether we can improve
upon it. In Figure 4(c) we can observe that stochastic cracking is
more expensive (for first as well as subsequent queries) than stan-
dard cracking. On the other hand, the random splits in stochas-
tic cracking (MDD1R) create uniformly sized partitions. Thus,
stochastic cracking trades performance for robustness. So the key
question now is: can we achieve robustness without sacrificing per-
formance? Can we have high robustness and efficient performance
at the same time?

coarse-granular index: create balanced partitions using range
partitioning upfront for more robust query performance. Apply
standard cracking later on.

Stochastic cracking successively refines the accessed data regions
into smaller equal sized partitions while the non-accessed data re-
gions remain as large partitions. As a result, when a query touches
a non-accessed data region it still ends up shuffling large portions
of the data. To solve this problem, we extend stochastic cracking to
create several equal-sized3 partitions upfront, i.e. we pre-partition
the data into smaller range partitions. With such a coarse-granular
index we shuffle data only inside a range partition and thus the shuf-
fling costs are within a threshold. Note that in standard cracking,
the initial queries have to anyways read huge amounts of data, with-
out gathering any useful knowledge. In contrast, the coarse gran-
ular index moves some of that effort to a prepare step to create
meaningful initial partitions. As a result, the cost of the first query
is slightly higher than standard cracking but still significantly less
than full indexing. With such a coarse-granular index users can
choose to allow the first query to be a bit slower and witness stable
performance thereafter. Also, note that the first query in standard
cracking is anyways slower than a full scan since it partitions the
data into three parts. Coarse-granular index differs from standard
cracking in that it allows for creating any number of initial parti-
tions, not necessarily three. Furthermore, by varying the number of
initial partitions, we can trade the initialization time for more robust
query performance. This means that, depending upon their appli-
cation, users can adjust the initialisation time in order to achieve a

3Please note that our current implementation relies on a uniform
key distribution to create equal-sized partitions. Handling skewed
distributions would require the generation of equi-depth partitions.

103

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 4000 8000 12000 16000 20000

Ac
cu

m
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

Ti
m

e
[s

]

Query Sequence

Standard Cracking
Hybrid Crack Sort

Quick Sort
Quick_Insert Sort

Radix Sort
Radix_Insert Sort

 0
 2
 4
 6
 8

 10
 12

 0 250 500 750 1000

First 1000 Queries

(a) Comparing Different Sort Algorithms

 1

 10

 100

Radix_Insert Sort + Index Creation

Ac
cu

m
ul

at
ed

 T
im

e
[s

]

Standard Cracking
Binary Search

AVL-Tree
B+Tree

B+Tree (bulk loaded)
ART

(b) Indexing Effort of Diff. Indexes

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
[m

s]

Query Sequence

Standard Cracking
Scan

Binary Search
AVL-Tree

B+Tree
B+Tree (bulk loaded)

ART

(c) Per-Query Response Time of Diff. Indexes

Figure 8: Comparing Standard Cracking with Different Sort and Index Baselines

corresponding robustness level. This is important in several scenar-
ios in order to achieve customer SLAs. In the extreme case, users
can create as many partitions as the number of distinct data items.
This results in a full index, has a very high initialisation time, and
offers the most robust query performance. The other extreme is to
create only a single initial partition. This is equivalent to standard
cracking scenario, i.e. very low initialisation time and least robust
query performance. Thus, coarse-granular index covers the entire
robustness spectrum between standard cracking and full indexing.

Figure 7(a) shows the variance in query response time of dif-
ferent indexing methods, including stochastic cracking (MDD1R),
coarse-granular index, and full index (quick sort + binary search),
computed in the same way as in Figure 3(c). We vary the num-
ber of initial partitions, which are created in the first query by the
coarse-granular index from 10 to 100, 000. While stochastic crack-
ing (MDD1R) shows a variance similar to that of standard crack-
ing, as observed in Figure 3(c), coarse-granular index reduces the
performance variance significantly. In fact, for different number of
partitions, coarse-granular index covers the entire space between
the high-variance standard cracking and low-variance full index.
Figure 7(b) shows the results. We can see that the initialisation time
of stochastic cracking (MDD1R) is very similar to that of standard
cracking. This means that stochastic cracking (like standard crack-
ing) shifts most of the indexing effort to the query time. On the
other extreme, full sort does the entire indexing effort upfront, and
thus has the highest initialisation time. Coarse-granular index fills
the gap between these two extremes, i.e. by adjusting the number of
initial partitions we can trade the indexing effort at the initialisation
time and the query time. For instance, for 1, 000 initial partitions,
the initialization time of coarse-granular index is 65% less than full
index, while still providing more robust as well as more efficient
query performance than stochastic cracking (MDD1R). In fact, the
total query time of coarse-granular index with 1, 000 initial parti-
tions is 41% less than stochastic cracking (MDD1R) and even 26%
less than standard cracking. Thus, coarse-granular index allows us
to combine the best of both worlds.

We can also extend the coarse-granular index and pre-partition
the base table along with the cracker column. This means that
we range partition the source table in exactly the same way as the
adaptive index during the initialisation step. Though, we still re-
fine only the cracked column for each incoming query. The source
table is left untouched. If the partition is small enough to fit into
the cache, then the tuple reconstruction costs are negligible because
of no cache misses. Essentially, we decrease the physical distance
between external random accesses, i.e. the index entry and the cor-
responding tuple are nearby clustered. This increases the likelihood
that tuple reconstruction does not incur any cache misses. Thus, as
a result of pre-partitioning the source table, we can achieve more

robust tuple reconstruction without covering the adaptive index it-
self, as in covered cracking in Section 3.2. However, we need to
pick the partition size judiciously. Larger partitions do not fit into
the cache, while smaller partitions result in high initialisation time.
Note that if the data is stored in row layout, then the source ta-
ble is anyways scanned completely during index initialisation and
so pre-partition is not too expensive. Furthermore, efficient tuple
reconstruction using nearby clustering is limited to one index per
table, same as for all primary indexes.

Figure 7(c) shows the effect of pre-partitioning the source ta-
ble. We create both 100 and 1, 000 partitions. The cost of pre-
partitioning the source table is included in the accumulated query
response time of coarse-granular index. Both standard cracking and
coarse-granular index in Figure 7(c) start with perfectly aligned tu-
ples. However, in standard cracking, the locality between index
entry and corresponding tuple decreases gradually and soon the
cache misses caused by random accesses destroy the performance.
Coarse-granular index, on the other hand, exploits the nearby clus-
tering between the index entry and the corresponding tuple. Since
tuples are never swapped across partitions, the maximum distance
between an index entry and the corresponding tuple is at most the
size of a partition. Thus, we can see from Figure 7(c) that coarse-
granular index has a much more stable performance when scaling
the number of projected attributes, without reorganising the base
table at query time. In fact, coarse-granular index 1K even out-
performs covered cracking for any number of projected attributes.
For example, when projecting all 10 attributes, coarse-granular in-
dex 1K is 1.7 times faster than covered cracking, 3.7 times faster
than sideways cracking, and 4.3 times faster than standard crack-
ing. However, for 1, 000 table partitions, each partition has a size
of 8MB and thus fits completely in the CPU cache. For 100 par-
titions the partition size increases to 80MB and thus, it is over 6.5
times larger than the cache. The results show that the concept still
works. Although coarse-granular index 100 is slower than cov-
ered cracking for more than 4 attributes, it is still faster than side-
ways and standard cracking for more than 3 attributes. It holds:
the fewer partitions that we create the closer is the performance to
that of standard cracking. To strengthen the robustness evaluation,
we scale all experiments from Figure 7 to a dataset containing 1
billion entries. As we want to inspect how well the methods scale
with the data size, Table 2 shows the factor of increase in time when
switching from 100 million to 1 billion entries. For an increase in
data size by factor 10, an algorithm that scales linearly is 10 times
slower. Obviously, all tested methods scale very well. As expected,
only nearby clustering suffers from larger partitions which exceed
the cache size by far. Overall, we see that coarse-granular index
offers more robust query performance both over arbitrary selection
predicates as well as over arbitrary projection attributes.

104

 1

 10

 100

 1000

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

Ac
cu

m
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

Ti
m

e
[s

]

Selectivity

Standard Cracking
Binary Search

AVL-Tree
B+Tree

B+Tree (bulk loaded)
ART

(a) Accumulated Query Response Time

 1

 10

 100

 1000

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

Ac
cu

m
ul

at
ed

 In
de

xi
ng

 T
im

e
[s

]

Selectivity

Standard Cracking
Binary Search

AVL-Tree
B+Tree

B+Tree (bulk loaded)
ART

(b) Accumulated Indexing Time

 0.1

 1

 10

 100

 1000

 10000

 100000

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100Ac
cu

m
ul

at
ed

 In
de

x
Lo

ok
up

 +
 D

at
a

Ac
ce

ss
 T

im
e

[m
s]

Selectivity

Standard Cracking
Binary Search

AVL-Tree
B+Tree

B+Tree (bulk loaded)
ART

Data Access

(c) Acc. Index Lookup + Data Access Time

Figure 9: Comparing Standard Cracking with Index Baselines while Varying Selectivity (Note that: (a) = (b) + (c))
FACTOR SLOWER (FROM 100M to 1B) INITIALIZATION REMAINING TOTAL

STANDARD CRACKING 10.01 9.92 9.93
STOCHASTIC CRACKING (MDD1R) 12.92 9.57 9.75
COARSE GRANULAR INDEX 10 11.73 9.92 10.56
COARSE GRANULAR INDEX 100 11.72 9.81 10.79
COARSE GRANULAR INDEX 1K 11.69 9.96 11.09
COARSE GRANULAR INDEX 10K 11.31 9.94 10.95
COARSE GRANULAR INDEX 100K 10.90 10.02 10.73
FULL INDEX 11.48 9.97 11.29

SIDEWAYS CRACKING - - 11.92
COVERED CRACKING - - 9.98
COARSE GRANULAR INDEX 100 (NEARBY CLUSTERED) - - 11.64
COARSE GRANULAR INDEX 1K (NEARBY CLUSTERED) - - 13.33

Table 2: Scalability under Datasize Increase by Factor 10

Finally, Table 3 classifies the three cracking extensions discussed
above — buffered swapping, covered cracking, and coarse-granular
index — along the same dimensions as discussed in Section 2.6.
Please note that the entry of coarse-granular index classifies only
the initial partitioning step as it can be combined with various other
cracking methods as well.

DIMENSIONS CATEGORY NO
INDEX

BUFFERED
SWAPPING

COVERED
CRACKING

COARSE
GRANULAR
INDEX

FULL
INDEX

ZERO
NUMBER OF FEW
SPLIT LINES SEVERAL

ALL

NONE
SPLIT QUERY BASED
STRATEGY RANDOM

DATA BASED

NEVER
SPLIT PER QUERY
TIMING UPFRONT

Table 3: Classification of Extended Cracking Algorithms.

4. EXTENDING CRACKING
EXPERIMENTS

In this section, we compare cracking with different sort and in-
dex baselines in detail. Our goal here is to understand how good or
bad cracking is in comparison to different full indexing techniques.
In the following, we first consider different sort algorithms, then
different index structures, and finally the effect of query selectivity.

4.1 Extending Sorting Baselines
The typical baseline used in previous cracking works was a full

index wherein the data is fully sorted using quick sort and queries
are processed using binary search to find the qualifying tuples.
Sorting is an expensive operation and as a result the first fully sorted
query is up to 30 times slower than the first cracking query (See
Figure 2(b)). So let us consider different sort algorithms.

Quick sort is a reasonably good (and cache-friendly) algorithm,
better than other value-based sort algorithms such as insertion sort
and merge sort. But what about radix-based sort algorithms [7]?

We compared quick sort with an in-place radix sort implementa-
tion [2]. This recursive radix sort implementation switches to in-
sertion sort (lets call this radix insert) when the run length becomes
smaller than 64. We applied a similar switching to quick sort as
well (lets call it quick insert). Figure 8(a) shows the accumulated
query response times for binary search in combination with several
sorting algorithms. We compare these with standard cracking and
hybrid crack sort. The initialization times (i.e. the time to sort) for
quick sort, quick insert sort, and pure radix sort around 10 seconds
are included in the first query. However, the initialisation time for
radix insert sort drops by half to around 5 seconds. As a result,
the first query with radix insert is only 14 times slower, compared
to 30 times slower with quick sort, than the first standard cracking
query. Furthermore, we can clearly identify the number of queries
at which one methods pays off over another. Already after 600
queries radix insert sort shows the smaller accumulated query re-
sponse times than standard cracking. For the two quick sort variants
it takes 12,000 queries to beat standard cracking.

4.2 Extending Index Baselines
Let us now consider different index structures and contrast them

with simple binary search on sorted data. The goal is to see whether
or not it makes sense to use a sophisticated index structure as a
baseline for cracking. We consider three index structures: (i) AVL-
Tree, (ii) B+-Tree, and (iii) the very recently proposed ART [15].
We choose ART since it outperforms other main-memory opti-
mised search trees such as CSB+-Tree [17] and FAST [14].

Let us first see the total indexing effort of different indexing
methods over 1000 queries. For binary search, we simply sort
the data (radix insert sort) while for other full indexing methods
(i.e. AVL-Tree, B+-Tree, and ART) we load the data into an in-
dex structure in addition to sorting (radix insert sort). Standard
cracking self-distributes the indexing effort over the 1, 000 queries
while the remaining methods perform their sorting and indexing
work in the first query. For the B+-Tree we present two different
variants: one that is bulk loaded and one that is tuple-wise loaded.
Figure 8(b) shows the results. We can see that AVL-Tree is the
most expensive while standard cracking is the least expensive in
terms of indexing effort. The indexing efforts of binary search and
B+-Tree (bulk loaded) are very close to standard cracking. How-
ever, the other B+-Tree as well as ART do more indexing effort,
since both of them load the index tuple-by-tuple4. The key thing to
note here is that bulk loading an index structure adds only a small
overhead to the pure sorting. Let us now see the query performance
of the different index structures. Figure 8(c) shows the per-query
response times of different indexing methods. Surprisingly, we see

4The available ART implementation does not support bulk loading.

105

 0

 0.2

 0.4

 0.6

 0.8

 1

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

C
os

t B
re

ak
do

w
n

of
 In

de
x

Lo
ok

up
 +

 D
at

a
Ac

ce
ss

 T
im

e

Selectivity

Index Lookup Data Access

(a) Cost Breakdown of Index Lookup and Data
Access Time of ART

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

Ac
cu

m
ul

at
ed

 In
de

x
Lo

ok
up

 T
im

e
[m

s]

Selectivity

Standard Cracking
Binary Search

AVL-Tree
B+Tree

B+Tree (bulk loaded)
ART

(b) Accumulated Index Lookup Time in
Isolation

 0.0001

 0.001

 0.01

 0.1

 1

 10

101 102 103 104 105 106

Av
er

ag
e

In
de

x
Lo

ok
up

 T
im

e
[m

s]

Number Of Queries

Standard Cracking
Binary Search

AVL-Tree
B+Tree

B+Tree (bulk loaded)
ART

Stochastic Cracking (MDD1R)
Coarse-granular Index 1K

Hybrid Crack Sort

(c) Average Index Lookup Time (Sel. 10�8)

Figure 10: Lookup and Data Access of Standard Cracking and Index Baselines under Variation of Selectivity

that using a different index structure has barely an impact on query
performance. This is contrary to what we expected and in the fol-
lowing let us understand this in more detail.

4.3 Effect of Varying Selectivity
To better understand this effect let us now vary the tuple selec-

tivity of queries. Recall that we used a selectivity of 1% in all
previous experiments. Selectivity is given as fraction of all entries.
Figure 9(a) shows the accumulated query response times of differ-
ent methods when varying the selectivity. We can see that the accu-
mulated query response times change over varying selectivity for
standard cracking, binary search, B+-Tree (bulk loaded), and ART.
However, there is little relative difference between these methods
over different selectivities. To dig deeper, let us split the query re-
sponse time into two components: (i) the indexing costs to sort the
data and to build the structure, and (ii) the index lookup and data
access costs to retrieve the result.

Figure 9(b) shows the accumulated indexing time for different
methods when varying selectivity. Obviously, the indexing time is
constant for all full indexing methods. However, the total indexing
time of standard cracking changes over varying query selectivity.
In fact, the indexing effort of standard cracking decreases by 45%
when the selectivity changes from 10�5 to 10�1. As a result, the
indexing effort by standard cracking surpasses even the effort of bi-
nary search (more than 18%) and B+-Tree (bulk loaded) (more than
5%), both based on radix insert sort for as little as 1, 000 queries.
The reason standard cracking depends on selectivity is that with
high selectivity the two partition boundaries of a range query are
located close together and the index refinement per query is small.
As a result several data items are shuffled repeatedly over and over
again. This increases the overall indexing effort as well as the time
to converge to a full index.

Figure 9(c) shows the accumulated index lookup and data access
costs of different methods over varying selectivity. We can see that
the difference in the querying costs of different methods grows for
higher selectivity. For instance, AVL-Tree is more than 5 times
slower than ART for a selectivity of 10�8. We also see that stan-
dard cracking is the most lightweight method in terms of the index
lookup and data access costs and is closely followed by ART. How-
ever, for high selectivities, the index lookup and data access costs
are small compared to the indexing costs. As a result, the differ-
ence in the index lookup and data access costs of different methods
is not reflected in the total costs in Figure 9(a).

Let us now investigate the index lookup costs and the data ac-
cess costs in comparison. Figure 10(a) shows the index lookup and
data access costs as a fraction of the costs of Figure 9(c) for ART.
We can see that the data access costs dominate the total time for

a selectivity lower than 10�6. This means that using better opti-
mised index structures make sense only for very high query selec-
tivities. Figure 10(b) shows only the index lookup costs without
the data access costs of different methods when varying selectivity.
We can see that the index lookup costs vary with selectivity, in-
dicating different cache behaviour for different query selectivities.
Furthermore, we see that ART has the best index lookup times. For
a selectivity of 10�8, ART performs 30% faster index lookups than
standard cracking. This is even though cracking has a much smaller
index (created over just 1, 000 queries) whereas ART creates a full
index over 100M data entries.

Finally, we also vary the number of queries to see how the index
lookup times of standard cracking change in comparison to other
indexing methods. Figure 10(c) shows the average per-query in-
dex lookup times for different methods when increasing the num-
ber of queries in the query sequence from 10 to 1M . We fix the
query selectivity to 10�8. Furthermore, we show stochastic crack-
ing (MDD1R), coarse granular index 1K, and hybrid crack sort as
they introduce additional split lines or handle them differently. We
can see that the average index lookup time of standard cracking
increases by almost one order of magnitude when the number of
queries increase from 10 to 1M . This is because the cracker in-
dex grows with the number of queries5. Coarse-granular index
and stochastic cracking (MDD1R) differ from standard cracking by
showing a higher average index lookup time in the beginning as the
additional splits weigh in that early phase. Hybrid crack sort shows
the overall highest average lookup time which even increases with
the number of queries6. The high selectivity leads to slow conver-
gence and triggers repeatedly expensive lookups into the 10, 000
initial partitions. In contrast to that, the average per-query index
lookup time of other indexing methods remains stable (or even im-
proves slightly due to better cache performance) with the number of
queries. Consequently, for 1M queries, the average index lookup
time of ART is 3.6 times smaller than the average index lookup
time of standard cracking.

To conclude, the take-away message from this section is three-
fold: (i) using a better index structure makes sense only for very
high selectivities, e.g. one in a million, (ii) cracking depends on
query selectivity in terms of indexing effort, and (ii) although
cracking creates the indexes adaptively, it still needs to catch up
with full indexing in terms of the quality of the index.

5[8] proposed to stop cracking if a sufficiently small partition size
is reached. However, this pays off only for a very large number of
queries. As we apply 1, 000 queries in nearly all experiments, we
use unbounded algorithms throughout this paper.
6The point for 106 queries is missing as the space consumption of
10K AVL-Trees each storing up to 1M entries exceeds capacity.

106

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
[m

s]

Query Sequence

Standard Cracking
Hybrid Crack Sort

Stochastic Cracking (MDD1R)
Coarse-granular Index 1K

(a) Sequential Access Pattern

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
[m

s]

Query Sequence

Standard Cracking
Hybrid Crack Sort

Stochastic Cracking (MDD1R)
Coarse-granular Index 1K

(b) Skewed Access Pattern

 0

 10

 20

 30

 40

 50

Sequential Skewed

Ac
cu

m
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e

Ti
m

e
[s

] Standard Cracking
Hybrid Crack Sort

Stochastic Cracking (MDD1R)
Coarse-granular Index 1K

(c) Accumulated Query Response Times

Figure 11: Effect of Query Access Pattern on Adaptive Methods

4.4 Effect of Query Access Pattern
So far, all experiments applied a uniform random access pattern
to test the methods. However, in reality, queries are often logi-
cally connected with each other and follow certain non-random and
non-uniform patterns. To evaluate the methods under such patterns,
we pick two representatives: the sequential access pattern and the
skewed access pattern.

We create the sequential access pattern as follows: starting from
the beginning of the value domain, the queried range is moved for
each query by half of its size towards the end of the domain to
guarantee overlapping query predicates. When the end is reached,
the query range restarts from the beginning. The position to be-
gin is randomly set in the first 0.01% of the domain to avoid rep-
etition of the same sequence in subsequent rounds. Figure 11(a)
shows the query response time under the sequential access pattern
for standard cracking, stochastic cracking, coarse-granular index
with 1,000 partitions, and hybrid crack sort. We can clearly sep-
arate the figure into the first 200 queries and the remaining 800
queries. As the selectivity is 1% and the query range moves by
half of its size per query, it takes 200 queries until the entire data
set has been accessed. Within that period the query response time
of standard cracking and hybrid crack sort decreases only gradu-
ally. Large parts of the data are scanned repeatedly and the unin-
dexed upper part decreases only slightly per query. Furthermore,
hybrid crack sort is considerably slower than standard cracking in
this phase. Stochastic cracking reduces this problem significantly
by applying additional splits to the unindexed upper area. Coarse-
granular index shows the most stable performance. After the initial
partitioning in the first query, the query response time does not sig-
nificantly vary. Additionally, the query response time is the lowest
of all methods (except for the first query). For the remaining 800
queries the performance differences between all methods decrease
as the entire data set has been queried and is therefore cracked more
or less. Now, stochastic cracking is slower than standard cracking
as the additional effort of random cracking and materializing the
result is no more necessary to provide a decent performance.

Finally, let us investigate how the methods perform under a
skewed access pattern. We create the skewed access pattern in
the following way: first, a zipfian distribution is generated over
n values, where n corresponds to the number of queries. Based
on that distribution the domain around the hotspot, which is the
middle of the domain in our case, is divided into n parts. Af-
ter that the query predicates are set according to the frequencies
in the distribution. The k values with the l highest frequency
in the distribution lead to k query predicates lying in the l-th
nearest area around the hotspot. Figure 12 shows the generated
predicates for ↵ = 2.0. These predicates are randomly shuf-
fled before they are used in the query sequence. Figure 11(b)

shows the query response time for the skewed pattern. We can ob-
serve a high variance in all methods except coarse-granular index.

 0

 20000

 40000

 60000

 80000

 100000

 0 500 1000 1500 2000

Pr
ed

ic
at

e
R

an
ge

Predicate Sequence

Skewed Predicates (Alpha = 2.0)

Figure 12: Skewed Predicates

Between accessing the
hotspot area and regions that
are far off, the query response
time varies by almost 3 or-
ders of magnitude. Early on,
all methods index the hotspot
area heavily as most query
predicates fall into that region.
Stochastic cracking manages
to reduce the negative impact
of predicates that are far off the hotspot area. However, it is slower
than standard cracking if the hotspot area is hit. Hybrid crack sort
copies the hotspot area early on to its final partition and exhibits the
fastest query response times in the best case. However, if a pred-
icate requests a region that has not been queried before, copying
from the initial partitions to the final partition is expensive.

Finally, Figure 11(c) shows the accumulated query response time
for both sequential and skewed access patterns. Obviously han-
dling sequential patterns is challenging for all adaptive methods.
Especially hybrid crack sort suffers from large repetitive scans in
all initial partitions and is therefore by far the slowest method in
this scenario. Stochastic cracking (MDD1R) manages to reduce
the problems of standard cracking significantly and thus fulfills its
purpose by providing a workload robust query answering. In to-
tal, coarse-granular index is the fastest method under this pattern.
Overall, for the skewed access pattern the difference between the
methods is significantly smaller than for the sequential pattern.

5. LESSONS LEARNED & CONCLUSION
Let us now put together the major lessons learned in this paper.

1. Database cracking is a mature field of research. Database
cracking is a simple yet effective technique for adaptive index-
ing. In contrast to full indexing, database cracking is lightweight,
i.e. it does not penalise the first query heavily. Rather, it incre-
mentally performs at most one quick sort step for each query and
nicely distributes the indexing effort over several queries. More-
over, database cracking indexes only those data regions which are
actually touched by incoming queries. As a result, database crack-
ing fits perfectly to the modern needs of adaptive data manage-
ment. Furthermore, apart from the incremental index creation in
standard cracking, several other follow-up works have looked into
other aspects of adaptive indexing as well. These include updat-
ing a cracked database, convergence of database cracking to a full
index, efficient tuple reconstruction, and robustness over unpre-
dictable changes in query workload. Thus, we can say that database
cracking has come a long way and is a mature field of research.

107

2. Database cracking is repeatable. In this paper, we repeated
four previous database cracking works, including standard crack-
ing using crack-in-two and crack-in-three [8], hybrid cracking [11],
sideways cracking [9], and stochastic cracking [6]. We reimple-
mented the algorithms from each of these works and tested them
under similar settings as in the previous works. Our results match
very closely to the results presented in the previous works and we
can confirm the findings of those works, i.e. hybrid cracking indeed
improves in terms of convergence to full index, sideways cracking
allows for more efficient tuple reconstruction, and stochastic crack-
ing offers more predictable query performance than standard crack-
ing. Thus, we can say that database cracking is repeatable in any
ad-hoc query engine, other than MonetDB as well.
3. Still, lot of potential to improve database cracking. Several
aspects of database cracking are still improvable, including faster
convergence to full index, more efficient tuple reconstruction, and
more robust query performance. For example, by buffering the
elements to be swapped in a heap, we can reduce the number of
swaps and thus have better convergence. Similarly, by covering the
cracked index we can achieve better scalability in the number of
projected attributes. Likewise, we can trade the initialisation time
to create a coarse-granular index which improves the query robust-
ness. Based on these promising directions, we believe that even
though cracking has come a long way, it still has a lot more to go.
4. Database cracking depends heavily on the query access pat-
tern. As the presented techniques are adaptive due to their query
driven nature, each of them is more of less sensitive to the applied
query access pattern. A uniform random access pattern can be con-
sidered the best case for all methods as it leads to uniform partition
sizes. In contrast to that sequential patterns crack the index in small
steps and the algorithms rescan large parts of the data. Skewed pat-
terns lead to a high variance in runtime depending on whether the
predicate hits the hotspot area or not. Overall, stochastic cracking
and coarse-granular index, which extend their query driven charac-
ter by data driven influences, are less sensitive to the access pattern
than the methods that take only the seen queries into account.
5. Database cracking needs to catch up with modern index-
ing trends. We saw that for sorting radix sort is twice as fast
as quick sort. After 600 queries the total query response time of
binary search based on radix sorted data is even faster than stan-
dard cracking. This means that a full sorting pays-off over standard
cracking in less than 1000 queries. Thus, we need to explore more
lightweight techniques for database cracking to be competitive with
radix sort. Furthermore, several recent works have proposed main-
memory optimised index structures. The recently proposed ART
has 1.8 times faster lookups than standard cracking after 1000
queries and 3.6 times faster lookups than standard cracking after
1M queries. We note two things here: (i) the cracker index of-
fers much slower lookups than modern main-memory indexes, and
(ii) the cracker index gets even worse as the number of queries in-
crease. Thus, we need to look into the index structures used in
database cracking and catch up with modern indexing trends.
6. Different indexing methods have different signatures. We
looked at several indexing techniques in this paper. Let us now
contrast the behaviour of different indexing methods in a nutshell.
To do so, we introduce a way to fingerprint different indexing meth-
ods. We measure the progress of index creation over the progress
of query processing, i.e. how different indexing methods index the
data over time as the queries are being processed. This measure acts
as a signature of different indexing methods. Figure 13 shows the
indexing progress against the querying progress of different meth-
ods. The x-axis shows the normalised accumulated lookup and data

0
0.2
0.4
0.6
0.8

1
Standard Cracking Scan

Quick Sort
+ Binary Search Hybrid Crack Sort Hybrid Sort Sort

0
0.2
0.4
0.6
0.8

1

 0
 0

.2
 0

.4
 0

.6
 0

.8 1

Stochastic Cracking

 0
 0

.2
 0

.4
 0

.6
 0

.8 1

Coarse-granular
Index 1K

 0
 0

.2
 0

.4
 0

.6
 0

.8 1

Buffered Swapping
10|990

 0
 0

.2
 0

.4
 0

.6
 0

.8 1

Sideways Cracking
(# Proj. Attributes: 5)

 0
 0

.2
 0

.4
 0

.6
 0

.8 1

Covered Cracking
(# Proj. Attributes: 5)

Querying Progress

In
de

xi
ng

 P
ro

gr
es

s

Figure 13: Signatures of Indexing Methods.
access time (the querying progress) and the y-axis shows the nor-
malised accumulated data shuffle and index update time (the index-
ing progress). Obviously, different indexing methods have different
curves. For example, standard cracking gradually builds the index
as the queries are processed whereas full index (quick sort + binary
search) builds the entire index before processing any queries. Hy-
brid crack sort and hybrid sort sort have steeper curves than stan-
dard cracking, indicating that they build the index more quickly.
On the other hand, stochastic cracking has a smoother curve. Side-
ways and covered cracking perform large parts of their querying
process already in the first query by copying table columns into
the index to speed up tuple reconstruction. It is interesting to see
that each method has a unique curve which characterises its index-
ing behaviour. Furthermore, there is still room to design adaptive
indexing algorithms with even more different indexing signatures.
Acknowledgments. We would like to thank Stratos Idreos for
helping us to understand the hybrid cracking algorithms. Research
partially supported by BMBF.

6. REFERENCES
[1] Generalized Heap Implementation. https://github.com/valyala/gheap.
[2] O. R. Birkeland. Searching Large Data Volumes with MISD

Processing. PhD thesis.
[3] T. Finch. Incremental calculation of weighted mean and variance.

University of Cambridge Computing Service, 2009.
[4] G. Graefe, F. Halim, S. Idreos, et al. Concurrency Control for

Adaptive Indexing. In PVLDB, pages 656–667, 2012.
[5] G. Graefe and H. Kuno. Self-selecting, Self-tuning, Incrementally

Optimized Indexes. In EDBT, pages 371–381, 2010.
[6] F. Halim, S. Idreos, et al. Stochastic Database Cracking: Towards

Robust Adaptive Indexing in Main-Memory Column-Stores. In
PVLDB, pages 502–513, 2012.

[7] P. Hildebrandt and H. Isbitz. Radix Exchange - An Internal Sorting
Method for Digital Computers. J. ACM, pages 156–163, 1959.

[8] S. Idreos et al. Database Cracking. In CIDR, pages 68–78, 2007.
[9] S. Idreos, M. Kersten, et al. Self-organizing Tuple Reconstruction In

Column-stores. In SIGMOD, pages 297–308, 2009.
[10] S. Idreos, M. Kersten, and S. Manegold. Updating a Cracked

Database. In SIGMOD, pages 413–424, 2007.
[11] S. Idreos, S. Manegold, H. Kuno, and G. Graefe. Merging What’s

Cracked, Cracking What’s Merged: Adaptive Indexing in
Main-Memory Column-Stores. In PVLDB, pages 585–597, 2011.

[12] A. Jindal, E. Palatinus, V. Pavlov, and J. Dittrich. A Comparison of
Knives for Bread Slicing. In PVLDB, pages 361–372, 2013.

[13] M. Kersten et al. Cracking the Database Store. In CIDR, pages
213–224, 2005.

[14] C. Kim et al. FAST: Fast Architecture Sensitive Tree Search on
Modern CPUs and GPUs. In SIGMOD, pages 339–350, 2010.

[15] V. Leis et al. The Adaptive Radix Tree: ARTful Indexing for
Main-Memory Databases. In ICDE, pages 38–49, 2013.

[16] X. Martinez-Palau, D. Dominguez-Sal, and J. L. Larriba-Pey.
Two-way Replacement Selection. In PVLDB, pages 871–881, 2010.

[17] J. Rao and K. A. Ross. Making B+-Trees Cache Conscious in Main
Memory. In SIGMOD, pages 475–486, 2000.

108

