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ABSTRACT
MapReduce has emerged as a viable competitor to database sys-
tems in big data analytics. MapReduce programs are being written
for a wide variety of application domains including business data
processing, text analysis, natural language processing, Web graph
and social network analysis, and computational science. However,
MapReduce systems lack a feature that has been key to the his-
torical success of database systems, namely, cost-based optimiza-
tion. A major challenge here is that, to the MapReduce system, a
program consists of black-box map and reduce functions written
in some programming language like C++, Java, Python, or Ruby.
We introduce, to our knowledge, the first Cost-based Optimizer
for simple to arbitrarily complex MapReduce programs. We fo-
cus on the optimization opportunities presented by the large space
of configuration parameters for these programs. We also introduce
a Profiler to collect detailed statistical information from unmodified
MapReduce programs, and a What-if Engine for fine-grained cost
estimation. All components have been prototyped for the popular
Hadoop MapReduce system. The effectiveness of each component
is demonstrated through a comprehensive evaluation using repre-
sentative MapReduce programs from various application domains.

1. INTRODUCTION
MapReduce is a relatively young framework—both a program-

ming model and an associated run-time system—for large-scale
data processing [7]. Hadoop is a popular open-source implemen-
tation of MapReduce that many academic, government, and indus-
trial organizations use in production deployments. Hadoop is used
for applications such as Web indexing, data mining, report gener-
ation, log file analysis, machine learning, financial analysis, sci-
entific simulation, and bioinformatics research. Cloud platforms
make MapReduce an attractive proposition for small organizations
that need to process large datasets, but lack the computing and hu-
man resources of a Google or Yahoo! to throw at the problem.
Elastic MapReduce, for example, is a hosted platform on the Ama-
zon cloud where users can provision Hadoop clusters instantly to
perform data-intensive tasks; paying only for the resources used.
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A MapReduce program p expresses a computation over input
data d through two functions: map(k1, v1) and reduce(k2, list(v2)).
The map(k1, v1) function is invoked for every key-value pair 〈k1, v1〉
in the input data d to output zero or more key-value pairs of the
form 〈k2, v2〉. The reduce(k2, list(v2)) function is invoked for ev-
ery unique key k2 and corresponding values list(v2) in the map
output. reduce(k2, list(v2)) outputs zero or more key-value pairs
of the form 〈k3, v3〉. The keys k1, k2, and k3 as well as the values
v1, v2, and v3 can be of different and arbitrary types.

A MapReduce program p is run on input data d and cluster re-
sources r as a MapReduce job j = 〈p, d, r, c〉. Figure 1 illustrates
the execution of a MapReduce job. A number of choices have
to be made in order to fully specify how the job should execute.
These choices, represented by c in 〈p, d, r, c〉, come from a high-
dimensional space of configuration parameter settings that include
(but are not limited to):
1. The number of map tasks in job j. Each task processes one par-

tition (split) of the input data d. These tasks may run in multiple
waves depending on the number of map execution slots in r.

2. The number of reduce tasks in j (which may also run in waves).
3. The amount of memory to allocate to each map (reduce) task to

buffer its outputs (inputs).
4. The settings for multiphase external sorting used by most MapRe-

duce frameworks to group map output values by key.
5. Whether the output data from the map (reduce) tasks should be

compressed before being written to disk (and if so, then how).
6. Whether a program-specified Combiner function should be used

to preaggregate map outputs before their transfer to reduce tasks.
Table 4 lists configuration parameters whose settings can have a
large impact on the performance of MapReduce jobs in Hadoop.1

The response surface in Figure 2(a) shows the impact of two con-
figuration parameters on the running time of a Word Co-occurrence
program in Hadoop. This program is popular in Natural Language
Processing to compute the word co-occurrence matrix of a large
text collection [19]. The parameters varied affect the number and
size of map output chunks (spills) that are sorted and written to disk
(see Figure 1); which, in turn, affect the merging phase of external
sorting that Hadoop uses to group map output values by key.

Today, the burden falls on the user who submits the MapReduce
job to specify settings for all configuration parameters. The com-
plexity of the surface in Figure 2(a) highlights the challenges this
user faces. For any parameter whose value is not specified explic-
itly during job submission, default values—either shipped with the
system or specified by the system administrator—are used. Higher-
level languages for MapReduce like HiveQL and Pig Latin have
developed their own hinting syntax for setting parameters.

1Hadoop has more than 190 configuration parameters out of which
10-20 parameters can have significant impact on job performance.



Figure 1: (a) Execution of a MapReduce job with 4 map tasks (executing in 2 waves) and 2 reduce tasks, (b) zoomed-in version of a
map task execution showing the map-side phases, (c) zoomed-in version of a reduce task execution showing the reduce-side phases.

Figure 2: (a) Actual response surface showing the running time
of a MapReduce program (Word Co-occurrence) in Hadoop,
(b) the same surface as estimated by our What-if Engine.

The impact of various parameters as well as their best settings
vary depending on the MapReduce program, input data, and clus-
ter resource properties. In addition, cross-parameter interactions
exist: an interaction between parameters x1 and x2 causes the per-
formance impact of varying x1 to differ across different settings
of x2. Personal communication, our own experience [3, 15], and
plenty of anecdotal evidence on the Web indicate that finding good
configuration settings for MapReduce jobs is time consuming and
requires extensive knowledge of system internals. Automating this
process would be a critical and timely contribution.

1.1 Cost-based Optimization to Select Config-
uration Parameter Settings Automatically

Consider a MapReduce job j = 〈p, d, r, c〉 that runs program p on
input data d and cluster resources r using configuration parameter
settings c. Job j’s performance can be represented as:

perf = F (p, d, r, c) (1)
Here, perf is some performance metric of interest for jobs (e.g.,
execution time) that is captured by the cost model F . Optimizing
the performance of program p for given input data d and cluster
resources r requires finding configuration parameter settings that
give near-optimal values of perf.

MapReduce program optimization poses new challenges com-
pared to conventional database query optimization:
• Black-box map and reduce functions: Map and reduce func-

tions are usually written in programming languages like Java,
Python, C++, and R that are not restrictive or declarative like
SQL. Thus, the approach of modeling a small and finite space
of relational operators will not work for MapReduce programs.
• Lack of schema and statistics about the input data: Almost no

information about the schema and statistics of input data may
be available before the MapReduce job is submitted. Further-
more, keys and values are often extracted dynamically from the
input data by the map function, so it may not be possible to
collect and store statistics about the data beforehand.
• Differences in plan spaces: The execution plan space of con-

figuration parameter settings for MapReduce programs is very
different from the plan space for SQL queries.

This paper introduces a Cost-based Optimizer for finding good con-
figuration settings automatically for arbitrary MapReduce jobs. We

also introduce two other components: a Profiler that instruments
unmodified MapReduce programs dynamically to generate concise
statistical summaries of MapReduce job execution; and a What-if
Engine to reason about the impact of parameter configuration set-
tings, as well as data and cluster resource properties, on MapRe-
duce job performance. We have implemented and evaluated these
three components for Hadoop. To the best of our knowledge, all
these contributions are being made for the first time.
Profiler: The Profiler (discussed in Section 2) is responsible for
collecting job profiles. A job profile consists of the dataflow and
cost estimates for a MapReduce job j = 〈p, d, r, c〉: dataflow esti-
mates represent information regarding the number of bytes and key-
value pairs processed during j’s execution, while cost estimates
represent resource usage and execution time.

The Profiler makes two important contributions. First, job pro-
files capture information at the fine granularity of phases within the
map and reduce tasks of a MapReduce job execution. This fea-
ture is crucial to the accuracy of decisions made by the What-if
Engine and the Cost-based Optimizer. Second, the Profiler uses
dynamic instrumentation to collect run-time monitoring informa-
tion from unmodified MapReduce programs. The dynamic nature
means that monitoring can be turned on or off on demand; an ap-
pealing property in production deployments. By supporting un-
modified MapReduce programs, we free users from any additional
burden on their part to collect monitoring information.
What-if Engine: The What-if Engine (discussed in Section 3) is
the heart of our approach to cost-based optimization. Apart from
being invoked by the Cost-based Optimizer during program opti-
mization, the What-if Engine can be invoked in standalone mode
by users or applications to answer questions like those in Table 1.
For example, consider question WIF1 from Table 1. Here, the per-
formance of a MapReduce job j = 〈p, d, r, c〉 is known when 20
reduce tasks are used. The number of reduce tasks is one of the job
configuration parameters. WIF1 asks for an estimate of the execu-
tion time of job j′ = 〈p, d, r, c′〉 whose configuration c′ is the same
as c except that c′ specifies using 40 reduce tasks. The MapReduce
program p, input data d, and cluster resources r remain unchanged.

The What-if Engine’s novelty and accuracy come from how it
uses a mix of simulation and model-based estimation at the phase
level of MapReduce job execution. Figure 2(b) shows the response
surface as estimated by the What-if Engine for the true response
surface in Figure 2(a). Notice how the trends and the regions with
good/bad performance in the true surface are captured correctly.
Cost-based Optimizer (CBO): For a given MapReduce program
p, input data d, and cluster resources r, the CBO’s role (discussed in
Section 4) is to enumerate and search efficiently through the high-
dimensional space of configuration parameter settings, making ap-
propriate calls to the What-if Engine, in order to find a good con-
figuration setting c. The CBO uses a two-step process: (i) subspace
enumeration, and (ii) search within each enumerated subspace. The
number of calls to the What-if Engine has to be minimized for
efficiency, without sacrificing the ability to find good configura-



What-if Questions on MapReduce Job Execution
WIF1 How will the execution time of job j change if I increase the

number of reduce tasks from the current value of 20 to 40?
WIF2 What is the new estimated execution time of job j if 5 more

nodes are added to the cluster, bringing the total to 20 nodes?
WIF3 How much less/more local I/O will job j do if map output com-

pression is turned on, but the input data size increases by 40%?

Table 1: Example questions the What-if Engine can answer.
tion settings. Towards this end, the CBO clusters parameters into
lower-dimensional subspaces such that the globally-optimal param-
eter setting in the high-dimensional space can be generated by com-
posing the optimal settings found for the subspaces.

2. PROFILER
A MapReduce job executes as map tasks and reduce tasks. As

illustrated in Figure 1, map task execution consists of the phases:
Read (reading map inputs), Map (map function processing), Col-
lect (buffering map outputs before spilling), Spill (sorting, com-
bining, compressing, and writing map outputs to local disk), and
Merge (merging sorted spill files). Reduce task execution consists
of the phases: Shuffle (transferring map outputs to reduce tasks,
with decompression if needed), Merge (merging sorted map out-
puts), Reduce (reduce function processing), and Write (writing re-
duce outputs to the distributed file-system). Additionally, both map
and reduce tasks have Setup and Cleanup phases.

2.1 Job Profiles
A MapReduce job profile is a vector in which each field captures

some unique aspect of dataflow or cost during job execution at the
task level or the phase level within tasks. The fields in a profile
belong to one of four categories:
• Dataflow fields (Table 5) capture the number of bytes and records

(key-value pairs) flowing through the different tasks and phases
of a MapReduce job execution. An example field is the number
of map output records.
• Cost fields (Table 6) capture the execution time of tasks and

phases of a MapReduce job execution. An example field is the
execution time of the Spill phase of map tasks.
• Dataflow Statistics fields (Table 7) capture statistical informa-

tion about the dataflow, e.g., the average number of records
output by map tasks per input record (Map selectivity) or the
compression ratio of the map output.
• Cost Statistics fields (Table 8) capture statistical information

about execution time, e.g., the average time to execute the map
function per input record.

Intuitively, the Dataflow and Cost fields in the profile of a job j help
in understanding j’s behavior. On the other hand, the Dataflow
Statistics and Cost Statistics fields in j’s profile are used by the
What-if Engine to predict the behavior of hypothetical jobs that
run the same MapReduce program as j. Space constraints preclude
the discussion of all fields. Instead, we will give a running example
(based on actual experiments) that focuses on the Spill and Merge
phases of map task execution. This example serves to illustrate the
nontrivial aspects of the Profiler and What-if Engine.

2.2 Using Profiles to Analyze Job Behavior
Suppose a company runs the Word Co-occurrence MapReduce

program periodically on around 10GB of data. A data analyst at
the company notices that the job runs in around 1400 seconds on
the company’s production Hadoop cluster. Based on the standard
monitoring information provided by Hadoop, the analyst also no-
tices that map tasks in the job take a large amount of time and do
a lot of local I/O. Her natural inclination—which is also what rule-
based tools for Hadoop would suggest (see Appendix A.2)—is to

increase the map-side buffer size (namely, the io.sort.mb parameter
in Hadoop as shown in Table 4). However, when she increases the
buffer size from the current 120MB to 200MB, the job’s running
time degrades by 15%. The analyst may be puzzled and frustrated.

By using our Profiler to collect job profiles, the analyst can vi-
sualize the task-level and phase-level Cost (timing) fields as shown
in Figure 3. It is obvious immediately that the performance degra-
dation is due to a change in map performance; and the biggest con-
tributor is the change in the Spill phase’s cost. The analyst can drill
down to the values of the relevant profile fields, which we show in
Figure 4. The values shown report the average across all map tasks.

The interesting observation from Figure 4 is that changing the
map-side buffer size from 120MB to 200MB improves all aspects
of local I/O in map task execution: the number of spills reduced
from 12 to 8, the number of merges reduced from 2 to 1, and the
Combiner became more selective. Overall, the amount of local I/O
(reads and writes combined) per map task went down from 349MB
to 287MB. However, the overall performance still degraded.

We will revisit this example in Section 3 to show how the What-if
Engine correctly captures an underlying nonlinear effect that caused
this performance degradation; enabling the Cost-based Optimizer
to find the optimal setting of the map-side buffer size.

2.3 Generating Profiles via Measurement
Job profiles are generated in two distinct ways. We will first de-

scribe how the Profiler generates profiles from scratch by collect-
ing monitoring data during full or partial job execution. Section 3
will describe how the What-if Engine generates new profiles from
existing ones using estimation techniques based on modeling and
simulation of MapReduce job execution.
Monitoring through dynamic instrumentation: When a user-
specified MapReduce program p is run, the MapReduce framework
is responsible for invoking the map, reduce, and other functions in
p. This property is used by the Profiler to collect run-time moni-
toring data from unmodified programs running on the MapReduce
framework. The Profiler applies dynamic instrumentation to the
MapReduce framework—not to the MapReduce program p—by
specifying a set of event-condition-action (ECA) rules.

The space of possible events in the ECA rules corresponds to
events arising during program execution such as entry or exit from
functions, memory allocation, and system calls to the operating
system. If the condition associated with the event holds when the
event fires, then the associated action is invoked. An action can in-
volve, for example, getting the duration of a function call, examin-
ing the memory state, or counting the number of bytes transferred.

The BTrace dynamic instrumentation tool is used in our current
implementation of the Profiler for the Hadoop MapReduce frame-
work which is written in Java [5]. To collect monitoring data for
a program being run by Hadoop, the Profiler uses ECA rules (also
specified in Java) to dynamically instrument the execution of se-
lected Java classes within Hadoop. This process intercepts the cor-
responding Java class bytecodes as they are executed, and injects
additional bytecodes to run the associated actions in the ECA rules.

Apart from Java, Hadoop can run a MapReduce program p writ-
ten in various programming languages such as Python, R, or Ruby
using Streaming or C++ using Pipes [27]. Hadoop executes Stream-
ing and Pipes programs through special map and reduce tasks that
each communicate with an external process to run the user-specified
map and reduce functions [27]. The MapReduce framework’s role
remains the same irrespective of the language in which p is speci-
fied. Thus, the Profiler can generate a profile for p by (only) instru-
menting the framework; no changes to p are required.
From raw monitoring data to profile fields: The raw monitoring



Figure 3: Map and reduce time break-
down for two Word Co-occurrence
jobs run with different settings for
io.sort.mb.

Information in Job Profile io.sort.mb
120 200

Number of spills 12 8
Number of merge rounds 2 1
Combiner selectivity (size) 0.70 0.67
Combiner selectivity (records) 0.59 0.56
Map output compression ratio 0.39 0.39
File bytes read in map task 133 MB 102 MB
File bytes written in map task 216 MB 185 MB

Figure 4: Subset of the job profile fields for
two Word Co-occurrence jobs run with dif-
ferent settings for io.sort.mb.

Figure 5: (a) Total map execution time, (b)
Spill time, and (c) Merge time for a repre-
sentative Word Co-occurrence map task as
we vary the setting of io.sort.mb.

data collected through dynamic instrumentation of job execution at
the task and phase levels includes record and byte counters, tim-
ings, and resource usage information. For example, during each
spill, the exit point of the sort function is instrumented to collect
the sort duration as well as the number of bytes and records sorted.
A series of post-processing steps involving aggregation and extrac-
tion of statistical properties (recall Section 2.1) is applied to the raw
data in order to generate the various fields in the job profile.

The raw monitoring data collected from each task is first pro-
cessed to generate the fields in a task profile. For example, the raw
sort timings are added as part of the overall spill time, whereas the
Combiner selectivity from each spill is averaged to get the task’s
Combiner selectivity. The task profiles are further processed to give
a concise job profile consisting of representative map and reduce
task profiles. The job profile contains one representative map task
profile for each logical input. For example, Word Co-occurrence
accepts a single logical input (be it a single file, a directory, or a set
of files), while a two-way Join accepts two logical inputs. The job
profile contains a single representative reduce task profile.
Task-level sampling to generate approximate profiles: Another
valuable feature of dynamic instrumentation is that it can be turned
on or off seamlessly at run-time, incurring zero overhead when
turned off. However, it does cause some task slowdown when
turned on. We have implemented two techniques that use task-
level sampling in order to generate approximate job profiles while
keeping the run-time overhead low:
1. If the intent is to profile a job j during a regular run of j on the

production cluster, then the Profiler can collect task profiles for
only a sample of j’s tasks.

2. If the intent is to collect a job profile for j as quickly as possi-
ble, then the Profiler can selectively execute (and profile) only
a sample of j’s tasks.

Consider a job with 100 map tasks. With the first approach and a
sampling percentage of 10%, all 100 tasks will be run, but only 10
of them will have dynamic instrumentation turned on. In contrast,
the second approach will run only 10 of the 100 tasks. Section 5
will demonstrate how small sampling percentages are sufficient to
generate job profiles based on which the What-if Engine and Cost-
based Optimizer can make fairly accurate decisions.

3. WHAT-IF ENGINE
A what-if question has the following form:

Given the profile of a job j = 〈p, d1, r1, c1〉 that runs a
MapReduce program p over input data d1 and cluster
resources r1 using configuration c1, what will the per-
formance of program p be if p is run over input data d2
and cluster resources r2 using configuration c2? That
is, how will job j′ = 〈p, d2, r2, c2〉 perform?

Section 2 discussed the information available in a job profile. The
information available on an input dataset d includes d’s size, the

block layout of files that comprise d in the distributed file-system,
and whether d is stored compressed. The information available
on cluster resources r includes the number of nodes and network
topology of r, the number of map and reduce task execution slots
per node, and the maximum memory available per task slot.

As listed in Table 1, the What-if Engine can answer questions on
real and hypothetical input data as well as cluster resources. For
questions involving real data and a live cluster, the user does not
need to provide the information for d2 and r2; the What-if Engine
can collect this information automatically from the live cluster.

The What-if Engine executes the following two steps to answer
a what-if question (note that job j′ is never run in these steps):
1. Estimating a virtual job profile for the hypothetical job j′.
2. Using the virtual profile to simulate how j′ will execute.

We will discuss these steps in turn.

3.1 Estimating the Virtual Profile
This step, illustrated in Figure 6, estimates the fields in the (vir-

tual) profile of the hypothetical job j′ = 〈p, d2, r2, c2〉. Apart from
the information available on the input data d2, cluster resources r2,
and configuration parameter settings c2, the Dataflow Statistics and
Cost Statistics fields from the profile for job j are used as input. The
overall estimation process has been broken down into smaller steps
as shown in Figure 6. These steps correspond to the estimation of
the four categories of fields in the profile for j′.
Estimating Dataflow and Cost fields: The What-if Engine’s main
technical contribution is a detailed set of analytical (white-box)
models for estimating the Dataflow and Cost fields in the virtual
job profile for j′. The current models were developed for Hadoop,
but the overall approach applies to any MapReduce framework. Be-
cause of space constraints, the full set of models is described in a
technical report available online [13]. Appendix B gives the models
used for the Map Spill phase.

As Figure 6 shows, these models require the Dataflow Statistics
and Cost Statistics fields in the virtual job profile to be estimated
first. The good accuracy of our what-if analysis—e.g., the close
correspondence between the actual and predicted response surfaces
in Figure 2—and cost-based optimization come from the ability of
the models to capture the subtleties of MapReduce job execution at
the fine granularity of phases within map and reduce tasks.

Recall our running example from Section 2. Figure 5 shows the
overall map execution time, and the time spent in the map-side Spill
and Merge phases, for a Word Co-occurrence program run with
different settings of the map-side buffer size (io.sort.mb). The input
data and cluster resources are identical for the runs. Notice the
map-side buffer size’s nonlinear effect on cost. Unless the What-if
Engine’s models can capture this effect—which they do as shown
by the predicted times in Figure 5—the Cost-based Optimizer will
fail to find near-optimal settings of the map-side buffer size.

The nonlinear effect of the map-side buffer size in Figure 5 comes
from an interesting tradeoff: a larger buffer lowers overall I/O size



Figure 6: Overall process for estimating virtual job profiles.

and cost (Figure 4), but increases the computational cost nonlin-
early because of sorting. Figure 5 shows that the What-if Engine
tracks this effect correctly. The fairly uniform gap between the ac-
tual and predicted costs is due to overhead added by BTrace while
measuring function timings at nanosecond granularities.2 Because
of its uniformity, the gap does not affect the accuracy of what-if
analysis which, by design, is about relative changes in performance.
Estimating Dataflow Statistics fields: Database query optimiz-
ers use data-level statistics such as histograms to estimate the cost
of execution plans for declarative queries. However, MapReduce
frameworks lack the declarative query semantics and structured
data representations of database systems. Thus, the common case
in the What-if Engine is to not have detailed statistical informa-
tion about the input data d2 for the hypothetical job j′. By default,
the What-if Engine makes a dataflow proportionality assumption
which says that the logical dataflow sizes through the job’s phases
are proportional to the input data size. It follows from this assump-
tion that the Dataflow Statistics fields (Table 7) in the virtual profile
of j′ will be the same as those in the profile of job j given as input.

When additional information is available, the What-if Engine al-
lows the default assumption to be overridden by providing Dataflow
Statistics fields in the virtual profile directly as input. For example,
when higher layers like Hive or Pig submit a MapReduce job like a
join for processing, they can input Dataflow Statistics fields in the
profile based on statistics available at the higher layer.
Estimating Cost Statistics fields: By default, the What-if Engine
makes a cluster node homogeneity assumption which says that the
CPU and I/O (both local and remote) costs per phase of MapReduce
job execution are equal across all the nodes in the clusters r1 and
r2. It follows from this assumption that the Cost Statistics fields
(Table 8) in the virtual profile of job j′ will be the same as those in
the profile of job j given as input.

The cluster node homogeneity assumption is violated when the
CPU and I/O resources available in r1 differ significantly from
those in r2. An example scenario is when the profile for job j
is collected on a test or development cluster that contains nodes of
a different type compared to the production cluster where j′ has to
be run. We have developed relative black-box models to address
such scenarios where the cluster resource properties of r1 differ
from those of r2 in questions posed to the What-if Engine. These
relative models are trained to estimate how the Cost Statistics fields
will change from one cluster to another based on profiles collected
for previous jobs run on these clusters. Further details are in [14].

3.2 Simulating the Job Execution
The virtual job profile contains detailed dataflow and cost infor-

mation estimated at the task and phase level for the hypothetical
job j′. The What-if Engine uses a Task Scheduler Simulator, along
with the models and information on the cluster resources r2, to sim-
2We expect to close this gap using commercial Java profilers that
have demonstrated vastly lower overheads than BTrace [24].

ulate the scheduling and execution of map and reduce tasks in j′.
The Task Scheduler Simulator is a pluggable component. Our cur-
rent implementation is a lightweight discrete event simulation of
Hadoop’s default FIFO scheduler. For instance, a job with 60 tasks
to be run on a 16-node cluster can be simulated in 0.3 milliseconds.

The output from the simulation is a complete description of the
(hypothetical) execution of job j′ in the cluster. The desired an-
swer to the what-if question—e.g., estimated job completion time,
amount of local I/O, or even a visualization of the task execution
timeline—is computed from the job’s simulated execution.

4. COST-BASED OPTIMIZER (CBO)
MapReduce program optimization can be defined as:

Given a MapReduce program p to be run on input data
d and cluster resources r, find the setting of configu-
ration parameters copt = argmin

c∈S
F (p, d, r, c) for the

cost model F represented by the What-if Engine over
the full space S of configuration parameter settings.

The CBO addresses this problem by making what-if calls with set-
tings c of the configuration parameters selected through an enumer-
ation and search over S. Recall that the cost model F represented
by the What-if Engine is implemented as a mix of simulation and
model-based estimation. F is high-dimensional, nonlinear, non-
convex, and multimodal [3, 15]. For providing both efficiency and
effectiveness, the CBO must minimize the number of what-if calls
while finding near-optimal configuration settings.

The What-if Engine needs as input a job profile for the MapRe-
duce program p. In the common case, this profile is already avail-
able when p has to be optimized. The program p may have been
profiled previously on input data d0 and cluster resources r0 which
have the same properties as the current d and r respectively. Pro-
files generated previously can also be used when the dataflow pro-
portionality and cluster node homogeneity assumptions can be made.
Such scenarios are common in companies like Facebook, LinkedIn,
and Yahoo! where a number of MapReduce programs are run pe-
riodically on log data collected over a recent window of time (e.g.,
see [9, 10]).

Recall from Section 3 that the job profile input to the What-if
Engine can also come fully or in part from an external module like
Hive or Pig that submits the job. This feature is useful when the
dataflow proportionality assumption is expected to be violated sig-
nificantly, e.g., for repeated job runs on input data with highly dis-
similar statistical properties. In addition, we have implemented two
methods for the CBO to use for generating a new profile when one
is not available to input to the What-if Engine:
1. The CBO can decide to forgo cost-based optimization for the

current job execution. However, the current job execution will
be profiled to generate a job profile for future use.

2. The Profiler can be used in a just-in-time mode to generate a
job profile using sampling as described in Section 2.3.

Once a job profile to input to the What-if Engine is available, the
CBO uses a two-step process, discussed next.

4.1 Subspace Enumeration
A straightforward approach the CBO can take is to apply enu-

meration and search techniques to the full space of parameter set-
tings S. (Note that the parameters in S are those whose perfor-
mance effects are modeled by the What-if Engine.) However, the
high dimensionality of S affects the scalability of this approach.
More efficient search techniques can be developed if the individ-
ual parameters in c can be grouped into clusters, denoted c(i), such
that the globally-optimal setting copt in S can be composed from
the optimal settings c(i)opt for the clusters. That is:



Abbr. MapReduce Program Dataset Description
CO Word Co-occurrence 10GB of documents from Wikipedia
WC WordCount 30GB of documents from Wikipedia
TS Hadoop’s TeraSort 30GB data from Hadoop’s TeraGen
LG LinkGraph 10GB compressed data from Wikipedia
JO Join 30GB data from the TPC-H Benchmark

Table 2: MapReduce programs and corresponding datasets.

copt=
l⊙

i=1

argmin
c(i)∈S(i)

F (p, d, r, c(i)), with c = c(1) · c(2) · · · c(l) (2)

Here, S(i) denotes the subspace of S consisting of only the param-
eters in c(i).

⊙
denotes a composition operation.

Equation 2 states that the globally-optimal setting copt can be
found using a divide and conquer approach by: (i) breaking the
higher-dimensional space S into the lower-dimensional subspaces
S(i), (ii) considering an independent optimization problem in each
smaller subspace, and (iii) composing the optimal parameter set-
tings found per subspace to give the setting copt.

MapReduce gives a natural clustering of parameters into two
clusters: parameters that predominantly affect map task execution,
and parameters that predominantly affect reduce task execution.
For example, Hadoop’s io.sort.mb parameter only affects the Spill
phase in map tasks, while mapred.job.shuffle.merge.percent only
affects the Shuffle phase in reduce tasks. The two subspaces for
map tasks and reduce tasks respectively can be optimized indepen-
dently. As we will show in Section 5, the lower dimensionality of
the subspaces decreases the overall optimization time drastically.

Some parameters have small and finite domains, e.g., Boolean.
At the other extreme, the CBO has to narrow down the domain of
any parameter whose domain is unbounded. In these cases, the
CBO relies on information from the job profile and the cluster re-
sources. For example, the CBO uses the maximum heap memory
available for map task execution, along with the program’s mem-
ory requirements (predicted based on the job profile), to bound the
range of io.sort.mb values that can contain the optimal setting.

4.2 Search Strategy within a Subspace
The second step of the CBO involves searching within each enu-

merated subspace to find the optimal configuration in the subspace.
Gridding (Equispaced or Random): Gridding is a simple tech-
nique to generate points in a space with n parameters. The do-
main dom(ci) of each configuration parameter ci is discretized
into k values. The values may be equispaced or chosen randomly
from dom(ci). Thus, the space of possible settings, DOM ⊆∏n

i=0 dom(ci), is discretized into a grid of size kn. The CBO
makes a call to the What-if Engine for each of these kn settings,
and selects the setting with the lowest estimated job execution time.
Recursive Random Search (RRS): RRS is a fairly recent tech-
nique developed to solve black-box optimization problems [28].
RRS first samples the subspace randomly to identify promising
regions that contain the optimal setting with high probability. It
then samples recursively in these regions which either move or
shrink gradually to locally-optimal settings based on the samples
collected. RRS then restarts random sampling to find a more promis-
ing region to repeat the recursive search. We adopted RRS for three
important reasons: (a) RRS provides probabilistic guarantees on
how close the setting it finds is to the optimal setting; (b) RRS is
fairly robust to deviations of estimated costs from actual perfor-
mance; and (c) RRS scales to a large number of dimensions [28].

In summary, there are two choices for subspace enumeration:
Full or Clustered that deal respectively with the full space or smaller
subspaces for map and reduce tasks; and three choices for search
within a subspace: Gridding (Equispaced or Random) and RRS.

Conf. Parameter (described in Table 4) RBO Settings CBO Settings
io.sort.factor 10 97
io.sort.mb 200 155
io.sort.record.percent 0.08 0.06
io.sort.spill.percent 0.80 0.41
mapred.compress.map.output TRUE FALSE
mapred.inmem.merge.threshold 1000 528
mapred.job.reduce.input.buffer.percent 0.00 0.37
mapred.job.shuffle.input.buffer.percent 0.70 0.48
mapred.job.shuffle.merge.percent 0.66 0.68
mapred.output.compress FALSE FALSE
mapred.reduce.tasks 27 60
min.num.spills.for.combine 3 3
Use of the Combiner TRUE FALSE

Table 3: MapReduce job configuration settings in Hadoop sug-
gested by RBO and CBO for the Word Co-occurrence program.

5. EXPERIMENTAL EVALUATION
The experimental setup used is a Hadoop cluster running on 16

Amazon EC2 nodes of the c1.medium type. Each node runs at
most 2 map tasks and 2 reduce tasks concurrently. Thus, the clus-
ter can run at most 30 map tasks in a concurrent map wave, and
at most 30 reduce tasks in a concurrent reduce wave. Table 2 lists
the MapReduce programs and datasets used in our evaluation. We
selected representative MapReduce programs used in different do-
mains: text analytics (WordCount), natural language processing
(Word Co-occurrence), creation of large hyperlink graphs (Link-
Graph), and business data processing (Join, TeraSort) [19, 27].

Apart from the Cost-based Optimizers (CBOs) in Section 4, we
implemented a Rule-based Optimizer (RBO) to suggest configura-
tion settings. RBO is based on rules of thumb used by Hadoop
experts to tune MapReduce jobs. Appendix A.2 discusses the RBO
in detail. RBO needs information from past job execution as input.
CBOs need job profiles as input which were generated by the Pro-
filer by running each program using the RBO settings. Our default
CBO is Clustered RRS. Our evaluation methodology is:
1. We evaluate our cost-based approach against RBO to both vali-

date the need for a CBO and to provide insights into the nontriv-
ial nature of cost-based optimization of MapReduce programs.

2. We evaluate the predictive power of the What-if Engine to meet
the CBO’s needs as well as in more trying scenarios where pre-
dictions have to be given for a program p running on a large
dataset d2 on the production cluster r2 based on a profile learned
for p from a smaller dataset d1 on a small test cluster r1.

3. We evaluate the accuracy versus efficiency tradeoff from the
approximate profile generation techniques in the Profiler.

4. We compare the six different CBOs proposed.
Space constraints mandate the partitioning of experimental results
between this section and Appendix C. For clarity of presentation,
Sections 5.1-5.3 focus on the results obtained using the Word Co-
occurrence program. Appendix C contains the (similar) results for
all other MapReduce programs from Table 2.

5.1 Rule-based Vs. Cost-Based Optimization
We ran the Word Co-occurrence MapReduce program using the

configuration parameter settings shown in Table 3 as suggested by
the RBO and the (default) CBO. Jobs JRBO and JCBO denote re-
spectively the execution of Word Co-occurrence using the RBO and
CBO settings. Note that the same Word Co-occurrence program is
processing the same input dataset in either case. While JRBO runs
in 1286 seconds, JCBO runs in 636 seconds (around 2x faster).

Figure 7 shows the task time breakdown from the job profiles
collected by running Word Co-occurrence with the RBO- and CBO-
suggested configuration settings. (The times shown in Figure 7
include additional overhead from profiling which we explore fur-



Figure 7: Map and reduce time break-
down for two CO jobs run with configura-
tion settings suggested by RBO and CBO.

Figure 8: Map and reduce time breakdown
for CO jobs from (A) an actual run and (B)
as predicted by the What-if Engine.

Figure 9: Actual Vs. Predicted (by What-
if Engine) running times for CO jobs run
with different configuration settings.

Figure 10: (a) Overhead to measure the (approximate) profile,
and (b) corresponding speedup given by CBO over RBO as the
percentage of profiled tasks is varied for Word Co-occurrence.

ther in Section 5.3.) Our first observation from Figure 7 is that the
map tasks in Job JCBO completed on average much faster com-
pared to the map tasks in JRBO . The higher settings for io.sort.mb
and io.sort.spill.percent in JRBO (see Table 3) resulted in a small
number of large spills. The data from each spill was processed by
the Combiner and the Compressor in JRBO , leading to high data
reduction. However, the Combiner and the Compressor together
caused high CPU contention, negatively affecting all the compute
operations in JRBO’s map tasks (executing the user-provided map
function, serializing, and sorting the map output).

CBO, on the other hand, chose to disable both the use of the
Combiner and compression (see Table 3) in order to alleviate the
CPU-contention problem. Consequently, the CBO settings caused
an increase in the amount of intermediate data spilled to disk and
shuffled to the reducers. CBO also chose to increase the number
of reduce tasks in JCBO to 60 due to the increase in shuffled data,
causing the reducers to execute in two waves. However, the addi-
tional local I/O and network transfer costs in JCBO were dwarfed
by the huge reduction in CPU costs; effectively, giving a more bal-
anced usage of CPU, I/O, and network resources in the map tasks of
JCBO . Unlike CBO, the RBO is not able to capture such complex
interactions among the configuration parameters and the cluster re-
sources, leading to significantly suboptimal performance.

5.2 Accuracy of What-if Analysis
For the RBO-suggested settings from Figure 7, Figure 8 com-

pares the actual task and phase timings with the corresponding
predictions from the What-if Engine. Even though the predicted
timings are slightly different from the actual ones, the relative per-
centage of time spent in each phase is captured fairly accurately.
To evaluate the accuracy of the What-if Engine in predicting the
overall job execution time, we ran Word Co-occurrence under 40
different configuration settings. We then asked the What-if Engine
to predict the job execution time for each setting. Figure 9 shows a
scatter plot of the actual and predicted times for these 40 jobs. Ob-
serve the proportional correspondence between the actual and pre-
dicted times, and the clear identification of settings with the top-k
best and worst performance (indicated by dotted circles).

As discussed in Section 3, the fairly uniform gap between the

actual and predicted timings is due to the profiling overhead of
BTrace. Since dynamic instrumentation mainly needs additional
CPU cycles, the gap is largest when the MapReduce program runs
under CPU contention (caused in Figure 9 by the RBO settings used
to generate the profile for Word Co-occurrence). The gap is much
lower for other MapReduce programs as shown in Appendix C.4.

5.3 Approximate Profiles through Sampling
As the percentage of profiled tasks in a Word Co-occurrence

job is varied, Figure 10(a) shows the slowdown compared to run-
ning the job with profiling turned off; and Figure 10(b) shows the
speedup achieved by the CBO-suggested settings based on the (ap-
proximate) profile generated. Profiling all the map and reduce tasks
in the job adds around 30% overhead to the job’s execution time.
However, Figure 10(b) shows that the CBO’s effectiveness in find-
ing good configuration settings does not require all tasks to be pro-
filed. In fact, by profiling just 10% of the tasks, the CBO can
achieve the same speedup as by profiling 100% of the tasks.

It is particularly encouraging to note that by profiling just 1%
of the tasks—with near-zero overhead on job execution—the CBO
finds a configuration setting that provides a 1.5x speedup over the
job run with the RBO settings. Appendix C.3 gives more results
that show how, by profiling only a small random fraction of the
tasks, the profiling overhead remains low while achieving high ac-
curacy in the information collected.

5.4 Efficiency and Effectiveness of CBO
We now evaluate the efficiency and effectiveness of our six CBOs

and RBO in finding good configuration settings for all the MapRe-
duce programs in Table 2. Figure 11(a) shows running times for
MapReduce programs run using the job configuration parameter
settings from the respective optimizers. RBO settings provide an
average 4.6x and maximum 8.7x improvement over Hadoop’s De-
fault settings (shown in Table 4) across all programs. Settings sug-
gested by our default Clustered RRS CBO provide an average 8.4x
and maximum 13.9x improvement over Default settings, and an av-
erage 1.9x and maximum 2.2x improvement over RBO settings.

Figure 11(a) shows that the RRS Optimizers—and Clustered RRS
in particular—consistently lead to the best performance for all the
MapReduce programs. All the Gridding Optimizers enumerate up
to k=3 values from each parameter’s domain. The Gridding Eq-
uispaced (Full or Clustered) Optimizers perform poorly sometimes
because using the minimum, mean, and maximum values from each
parameter’s domain can lead to poor coverage of the configuration
space. The Gridding Random Optimizers perform better.

Figures 11(b) and 11(c) respectively show the optimization time
and the total number of what-if calls made by each CBO. (Note
the log scale on the y-axis.) The Gridding Optimizers make an
exponential number of what-if calls, which causes their optimiza-
tion times to range in the order of a few minutes. For Word Co-
occurrence, the Full Gridding Optimizers explore settings for n=14
parameters, and make 314,928 calls to the What-if Engine. Clus-



Figure 11: (a) Running times for all MapReduce jobs running with Hadoop’s Default, RBO-suggested, and CBO-suggested settings;
(b) Optimization time, and (c) Number of what-if calls made (unique configuration settings considered) by the six CBOs.

tering parameters into two lower-dimensional subspaces decreases
the number of what-if calls drastically, reducing the overall opti-
mization times down to a few seconds. For Word Co-occurrence,
the Clustered Gridding Optimizers made only 6,480 what-if calls.

The RRS Optimizers explore the least number of configuration
settings due to the targeted sampling of the search space. Their op-
timization time is typically less than 2 seconds. Our default Clus-
tered RRS CBO found the best configuration setting for Word Co-
occurrence in 0.75 seconds after exploring less than 2,000 settings.

6. DISCUSSION AND FUTURE WORK
The lack of cost-based optimization in MapReduce frameworks

is a major limiting factor as MapReduce usage grows beyond large
Web companies to new application domains as well as to organi-
zations with few expert users. In this paper, we introduced a Cost-
based Optimizer for simple to arbitrarily complex MapReduce pro-
grams. We focused on the optimization opportunities presented by
the large space of configuration parameters for these programs.

Our approach is applicable to optimizing the execution of indi-
vidual MapReduce jobs regardless of whether the jobs are submit-
ted directly by the user or come from a higher-level system like
Hive, Jaql, or Pig. Several new research challenges arise when we
consider the full space of optimization opportunities provided by
these higher-level systems. These systems submit several jobs to-
gether in the form of job workflows. Workflows exhibit data depen-
dencies that introduce new challenges in enumerating the search
space of configuration parameters. In addition, the optimization
space now grows to include logical decisions such as selecting the
best partitioning function, join operator, and data layout.

We proposed a lightweight Profiler to collect detailed statistical
information from unmodified MapReduce programs. The Profiler,
with its task-level sampling support, can be used to collect pro-
files online while MapReduce jobs are executed on the production
cluster. Novel opportunities arise from storing these job profiles
over time, e.g., tuning the execution of MapReduce jobs adaptively
within a job execution and across multiple executions. New poli-
cies are needed to decide when to turn on dynamic instrumentation
and which stored profile to use as input for a given what-if question.

We also proposed a What-if Engine for the fine-grained cost es-
timation needed by the Cost-based Optimizer. A promising direc-
tion for future work is to integrate the What-if Engine with tools
like data layout and cluster sizing advisors [14], dynamic and elas-
tic resource allocators, resource-aware job schedulers, and progress
estimators for complex MapReduce workflows.
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APPENDIX
A. RELATED WORK

MapReduce is now a viable competitor to existing systems for
big data analytics. While MapReduce currently trails existing sys-
tems in peak query performance, a number of ongoing research
projects are addressing this issue [1, 6, 8, 17]. Our work fills a dif-
ferent void by enabling MapReduce users and applications to get
good performance automatically without any need on their part to
understand and manipulate the many optimization knobs available.
This work is part of the Starfish self-tuning system [15] that we are
developing for large-scale data analytics.

In a position paper [3], we showed why choosing configuration
parameter settings for good job performance is a nontrivial problem
and a heavy burden on users. This section describes the existing
profiling capabilities provided by Hadoop, current approaches that
users take when they are forced to optimize MapReduce job ex-
ecution manually, and work related to automatic MapReduce and
black-box optimization.

A.1 Current Approaches to Profiling in Hadoop
Monitoring facilities in Hadoop—which include logging, coun-

ters, and metrics—provide historical data that can be used to mon-
itor whether the cluster is providing the expected level of perfor-
mance, and to help with debugging and performance tuning [27].

Hadoop counters and metrics are useful channels for gathering
statistics about a job for quality control, application-level statistics,
and problem diagnosis. Counters are similar to the Dataflow fields
in a job profile, and can be useful in setting some job configura-
tion parameters. For example, the total number of records spilled
to disk may indicate that some memory-related parameters in the
map task need adjustment; but the user cannot automatically know
which parameters to adjust or how to adjust them. Even though
metrics have similar uses to counters, they represent cluster-level
information and their target audience is system administrators, not
regular users. Information similar to counters and metrics forms
only a fraction of the information in the job profiles (Section 2).

A.2 Rule-based Optimization in Hadoop
Today, when users are asked to find good configuration settings

for MapReduce jobs, they have to rely on their experience, intu-
ition, knowledge of the data being processed, rules of thumb from
human experts or tuning manuals, or even guesses to complete the
task. Table 3 shows the settings of various Hadoop configuration
parameters for the Word Co-occurrence job based on popular rules
of thumb [20, 27]. For example, mapred.reduce.tasks is set to
roughly 0.9 times the total number of reduce slots in the cluster.
The rationale is to ensure that all reduce tasks run in one wave
while leaving some slots free for reexecuting failed or slow tasks.

Rules of thumb form the basis for the implementation of the
Rule-based Optimizer (RBO) introduced in Section 5. It is impor-
tant to note that the Rule-based Optimizer still requires information
from past job executions to work effectively. For example, setting
io.sort.record.percent requires calculating the average map output
record size based on the number of records and size of the map
output produced during a job execution.

Information collected from previous job executions is also used
by performance analysis and diagnosis tools for identifying perfor-
mance bottlenecks. Hadoop Vaidya [12] and Hadoop Performance
Monitoring UI [11] execute a small set of predefined diagnostic
rules against the job execution counters to diagnose various perfor-
mance problems, and offer targeted advice. Unlike our optimizers,
the recommendations given by these tools are qualitative instead
of quantitative. For example, if the ratio of spilled records to total

map output records exceeds a user-defined threshold, then Vaidya
will suggest increasing io.sort.mb, but without specifying by how
much to increase. On the other hand, our cost-based approach au-
tomatically suggests concrete configuration settings to use.

A.3 Hadoop Simulation
As discussed in Section 3, after the virtual job profile is com-

puted, the What-if Engine simulates the execution of tasks in the
MapReduce job. Mumak [21] and MRPerf [25] are existing Hadoop
simulators that perform discrete event simulation to model MapRe-
duce job execution. Mumak needs a job execution trace from a pre-
vious job execution as input. Unlike our What-if Engine, Mumak
cannot simulate job execution for a different cluster size, network
topology, or even different numbers of map or reduce tasks from
what the execution trace contains.

MRPerf is able to simulate job execution at the task level like our
What-if Engine. However, MRPerf uses an external network sim-
ulator to simulate the data transfers and communication among the
cluster nodes; which leads to a per-job simulation time on the order
of minutes. Such a high simulation overhead prohibits MRPerf’s
use by a cost-based optimizer that needs to perform hundreds to
thousands of what-if calls per job.

A.4 MapReduce Optimization
A MapReduce program has semantics similar to a Select-Project-

Aggregate (SPA) in SQL with user-defined functions (UDFs) for
the selection and projection (map) and the aggregation (reduce).
This equivalence is used in recent work to perform semantic opti-
mization of MapReduce programs [4, 16, 22, 23]. Manimal per-
forms static analysis of MapReduce programs written in Java in
order to extract selection and projection clauses. This information
is used to perform optimizations like the use of B-Tree indexes,
avoiding reads of unneeded data, and column-aware compression
[16]. Manimal does not perform profiling, what-if analysis, or
cost-based optimization; it uses rule-based optimization instead.
MRShare performs multi-query optimization by running multiple
SPA programs in a single MapReduce job [22]. MRShare pro-
poses a (simplified) cost model for this application. SQL joins over
MapReduce have been proposed in the literature (e.g., [2, 4]), but
cost-based optimization is either missing or lacks comprehensive
profiling and what-if analysis.

Apart from the application domains considered in our evalua-
tion, MapReduce is useful in the scientific analytics domain. The
SkewReduce system [18] focuses on applying some specific opti-
mizations to MapReduce programs from this domain. SkewReduce
includes an optimizer to determine how best to partition the map-
output data to the reduce tasks. Unlike our CBOs, SkewReduce re-
lies on user-specified cost functions to estimate job execution times
for the various different ways to partition the data.

In summary, previous work related to MapReduce optimization
targets semantic optimizations for MapReduce programs that cor-
respond predominantly to SQL specifications (and were evaluated
on such programs). In contrast, we support simple to arbitrarily
complex MapReduce programs expressed in whatever program-
ming language the user or application finds convenient. We focus
on the optimization opportunities presented by the large space of
MapReduce job configuration parameters.

A.5 Black-box Optimization
There is an extensive body of work on finding good settings in

complex response surfaces using techniques like simulated anneal-
ing and genetic algorithms [26]. The Recursive Random Search
technique used in our default Cost-based Optimizer is a state-of-
the-art technique taken from this literature [28].



MapReduce Conf. Parameter in Hadoop Brief Description and Use Default
Value

io.sort.mb Size (MB) of map-side buffer for storing and sorting key-value pairs produced by the map function 100
io.sort.record.percent Fraction of io.sort.mb for storing metadata for every key-value pair stored in the map-side buffer 0.05
io.sort.spill.percent Usage threshold of map-side memory buffer to trigger a sort and spill of the stored key-value pairs 0.8
io.sort.factor Number of sorted streams to merge at once during multiphase external sorting 10
mapreduce.combine.class The (optional) Combiner function to preaggregate map outputs before transfer to reduce tasks null
min.num.spills.for.combine Minimum number of spill files to trigger the use of Combiner during the merging of map output data 3
mapred.compress.map.output Boolean flag to turn on the compression of map output data false
mapred.reduce.slowstart.completed.maps Proportion of map tasks that need to be completed before any reduce tasks are scheduled 0.05
mapred.reduce.tasks Number of reduce tasks 1
mapred.job.shuffle.input.buffer.percent % of reduce task’s heap memory used to buffer output data copied from map tasks during the shuffle 0.7
mapred.job.shuffle.merge.percent Usage threshold of reduce-side memory buffer to trigger reduce-side merging during the shuffle 0.66
mapred.inmem.merge.threshold Threshold on the number of copied map outputs to trigger reduce-side merging during the shuffle 1000
mapred.job.reduce.input.buffer.percent % of reduce task’s heap memory used to buffer map output data while applying the reduce function 0
mapred.output.compress Boolean flag to turn on the compression of the job’s output false

Table 4: MapReduce job configuration parameters in Hadoop whose settings can affect job performance significantly. These param-
eters are handled by our implementation of the What-if Engine, Cost-based Optimizers, and Rule-based Optimizer for Hadoop.

B. MODELS FOR THE MAP SPILL PHASE
OF JOB EXECUTION IN HADOOP

The Map Spill Phase includes sorting, using the Combiner if any,
performing compression if specified, and writing to local disk to
create spill files. This process may repeat multiple times depend-
ing on the configuration parameter settings and the amount of data
output by the map function.

The amount of data output by the map function is calculated
based on the map input size, the byte-level and key-value-pair-level
(per record) selectivities of the map function, and the width of the
input key-value pairs to the map function. The map input size is
available from the properties of the input data. The other values are
available from the Data Statistics fields of the job profile (Table 7).

mapOutputSize = mapInputSize ×mapSizeSelectivity (3)

mapOutputPairs =
mapInputSize ×mapPairsSelectivity

mapInputPairWidth
(4)

mapOutputPairWidth =
mapOutputSize

mapOutputPairs
(5)

The map function outputs key-value pairs (records) that are placed
in the map-side memory buffer of size io.sort.mb. See Table 4 for
the names and descriptions of all configuration parameters. For
brevity, we will denote io.sort.mb as ISM, io.sort.record.percent as
ISRP, and io.sort.spill.percent as ISSP. The map-side buffer con-
sists of two disjoint parts: the accounting part (of size ISM×ISRP)
that stores 16 bytes of metadata per key-value pair, and the serial-
ization part that stores the serialized key-value pairs. When either
of these two parts fills up to the threshold determined by ISSP, the
spill process begins. The maximum number of pairs in the serial-
ization buffer before a spill is triggered is:

maxSerPairs =

⌊
ISM × 2 20 × (1 − ISRP)× ISSP

mapOutputPairWidth

⌋
(6)

The maximum number of pairs in the accounting buffer before a
spill is triggered is:

maxAccPairs =

⌊
ISM × 2 20 × ISRP × ISSP

16

⌋
(7)

Hence, the number of pairs in the buffer before a spill is:

spillBufferPairs =

Min{maxSerPairs,maxAccPairs,mapOutputPairs} (8)

The size of the buffer included in a spill is:

spillBufferSize =

spillBufferPairs ×mapOutputPairWidth (9)

The overall number of spills will be:

numSpills =

⌈
mapOutputPairs

spillBufferPairs

⌉
(10)

The number of pairs and size of each spill file (i.e., the amount of
data that will be written to disk) depend on the width of each pair,
the possible use of the Combiner, and the possible use of com-
pression. The Combiner’s pair and size selectivities as well as the
compression ratio are part of the Data Statistics fields of the job
profile (see Table 7). If no Combiner is used, then the selectivities
are set to 1 by default. If map output compression is disabled, then
the compression ratio is set to 1.
Hence, the number of pairs and size of a spill file will be:

spillFilePairs = spillBufferPairs × combinerPairSel (11)

spillFileSize = spillBufferSize × combinerSizeSel

×mapOutputCompressRatio (12)

The Cost Statistics fields of the job profile (see Table 8) contain
the I/O cost, as well as the CPU costs for the various operations
performed during the Spill phase: sorting, combining, and com-
pression. The total CPU and local I/O costs of the Map Spill phase
are computed as follows. We refer the reader to [13] for a compre-
hensive description.

IOCostSpill = numSpills × spillFileSize × localIOCost (13)

CPUCostSpill = numSpills × spillBufferPairs

× log2 (
spillBufferPairs

numReducers
)× sortCPUCost

+ numSpills × spillBufferPairs × combineCPUCost

+ numSpills × spillBufferSize × combinerSizeSel

×mapOutputCompressCPUCost (14)

C. ADDITIONAL EXPERIMENTAL RESULTS
In this section, we provide additional experimental results to

evaluate the effectiveness of the Cost-based Optimizers under dif-
ferent use-cases. In addition, we evaluate the effect of using ap-
proximate profiles generated through task-level sampling, and the
accuracy of the What-if Engine for all the MapReduce programs
listed in Table 2 in Section 5.



Profile Field (Unless otherwise stated, all fields Depends On
represent information at the level of tasks) d r c

Number of map tasks in the job X X
Number of reduce tasks in the job X
Map input records X X
Map input bytes X X
Map output records X X
Map output bytes X X
Number of spills X X
Number of merge rounds X X
Number of records in buffer per spill X X
Buffer size per spill X X
Number of records in spill file X X
Spill file size X X
Shuffle size X X
Reduce input groups (unique keys) X X
Reduce input records X X
Reduce input bytes X X
Reduce output records X X
Reduce output bytes X X
Combiner input records X X
Combiner output records X X
Total spilled records X X
Bytes read from local file system X X
Bytes written to local file system X X
Bytes read from HDFS X X
Bytes written to HDFS X X

Table 5: Dataflow fields in the profile of job j = 〈p,d,r,c〉.

Profile Field (All fields represent Depends On
information at the level of tasks) d r c

Setup phase time in a task X X X
Cleanup phase time in a task X X X
Read phase time in the map task X X X
Map phase time in the map task X X X
Collect phase time in the map task X X X
Spill phase time in the map task X X X
Merge phase time in map/reduce task X X X
Shuffle phase time in the reduce task X X X
Reduce phase time in the reduce task X X X
Write phase time in the reduce task X X X

Table 6: Cost fields in the profile of job j = 〈p,d,r,c〉.
Profile Field (All fields represent Depends On
information at the level of tasks) d r c

Width of input key-value pairs X
Number of records per reducer’s group X
Map selectivity in terms of size X
Map selectivity in terms of records X
Reducer selectivity in terms of size X
Reducer selectivity in terms of records X
Combiner selectivity in terms of size X X
Combiner selectivity in terms of records X X
Input data compression ratio X
Map output compression ratio X X
Output compression ratio X X
Setup memory per task X
Memory per map’s record X
Memory per reducer’s record X
Cleanup memory per task X

Table 7: Dataflow Statistics fields in the profile of job j =
〈p,d,r,c〉.

C.1 Profile on Small Data, Execute on Large
Data

Many organizations run the same MapReduce programs over
datasets with similar data distribution but different sizes [10]. For
example, the same report generation program may be used to gen-

Profile Field (All fields represent Depends On
information at the level of tasks) d r c

I/O cost for reading from HDFS per byte X
I/O cost for writing to HDFS per byte X
I/O cost for reading from local disk per byte X
I/O cost for writing to local disk per byte X
Cost for network transfers per byte X
CPU cost for executing the Mapper per record X
CPU cost for executing the Reducer per record X
CPU cost for executing the Combiner per record X
CPU cost for partitioning per record X
CPU cost for serializing/deserializing per record X
CPU cost for sorting per record X
CPU cost for merging per record X
CPU cost for uncompressing the input per byte X
CPU cost for uncompressing map output per byte X X
CPU cost for compressing map output per byte X X
CPU cost for compressing the output per byte X X
CPU cost of setting up a task X
CPU cost of cleaning up a task X

Table 8: Cost Statistics fields in the profile of job j = 〈p,d,r,c〉.

Figure 12: The job execution times for TeraSort (TS) when run
with (a) RBO-suggested settings, (b) CBO-suggested settings
using a job profile obtained from running the job on the cor-
responding data size, and (c) CBO-suggested settings using a
job profile obtained from running the job on 5GB of data.

erate daily, weekly, and monthly reports. Or, the daily log data
collected and processed may be larger for a weekday than the data
for the weekend. For the experiments reported here, we profiled the
TeraSort MapReduce program executing on a small dataset of size
5GB. Then, we used the generated job profile prof(J5GB) as input
to the Clustered RRS Optimizer to find good configuration settings
for TeraSort jobs running on larger datasets.

Figure 12 shows the running times of TeraSort jobs when run
with the CBO settings using the job profile prof(J5GB). For com-
parison purposes, we also profiled each TeraSort job when run over
the larger actual datasets, and then asked the CBO for the best con-
figuration settings. We observe from Figure 12 that, in all cases,
the performance improvement achieved over the RBO settings is
almost the same; irrespective of whether the CBO used the job pro-
file from the small dataset or the job profile from the actual dataset.
Thus, when the dataflow proportionality assumption holds—as it
does for TeraSort—obtaining a job profile from running a program
over a small dataset is sufficient for the CBO to find good configu-
ration settings for the program when it is run over larger datasets.

C.2 Profile on Test Cluster, Execute on Pro-
duction Cluster

The second common use-case we consider in our evaluation is
the use of a test cluster for generating job profiles. In many compa-
nies, developers use a small test cluster for testing and debugging
MapReduce programs over small (representative) datasets before



Figure 13: The job execution times for MapReduce programs
when run with (a) RBO-suggested settings, (b) CBO-suggested
settings using a job profile obtained from running the job on
the production cluster, and (c) CBO-suggested settings using a
job profile obtained from running the job on the test cluster.

Figure 14: Percentage overhead of profiling on the execution
time of MapReduce jobs as the percentage of profiled tasks in
a job is varied.

running the programs, possibly multiple times, on the production
cluster. For the experiments reported here, our test cluster was a
Hadoop cluster running on 4 Amazon EC2 nodes of the c1.medium
type. We profiled all MapReduce programs listed in Table 2 on the
test cluster. For profiling purposes, we used 10% of the original
dataset sizes from Table 2 that were used on our 16-node (produc-
tion) cluster of c1.medium nodes from Section 5.

Figure 13 shows the running times for each MapReduce job j
when run with the CBO settings that are based on the job profile ob-
tained from running j on the test cluster. For comparison purposes,
we also profiled the MapReduce jobs when run on the production
cluster, and then asked the CBO for the best configuration settings.
We observe from Figure 13 that, in most cases, the performance
improvement achieved over the RBO settings is almost the same;
irrespective of whether the CBO used the job profile from the test
cluster or the production cluster.

Therefore, when the dataflow proportionality and the cluster node
homogeneity assumptions hold, obtaining a job profile by running
the program over a small dataset in a test cluster is sufficient for
the CBO to find good configuration settings for when the program
is run over larger datasets in the production cluster. We would like
to point out that this property is very useful in elastic MapReduce
clusters, especially in cloud computing settings: when nodes are
added or dropped, the job profiles need not be regenerated.

C.3 Approximate Profiles through Sampling
Profiling causes some slowdown in the running time of a MapRe-

duce job j (see Figure 10). To minimize this overhead, the Profiler
can selectively profile a random fraction of the tasks in j. For this
experiment, we profiled the MapReduce jobs listed in Table 2 while
enabling profiling for only a sample of the tasks in each job. As we
vary the percentage of profiled tasks in each job, Figure 14 shows

Figure 15: Speedup over the job run with RBO settings as the
percentage of profiled tasks used to generate the job profile is
varied.

Figure 16: Actual Vs. Predicted running times for WordCount
(WC) and TeraSort (TS) jobs running with different configura-
tion parameter settings.

the profiling overhead by comparing against the same job running
with profiling turned off. For all MapReduce jobs, as the percent-
age of profiled tasks increases, the overhead added to the job’s run-
ning time also increases (as expected). It is interesting to note that
the profiling overhead varies significantly across different jobs. The
magnitude of the profiling overhead depends on whether the job is
CPU-bound, uses a Combiner, uses compression, as well as the job
configuration settings.

Figure 15 shows the speedup achieved by the CBO-suggested
settings over the RBO settings as the percentage of profiled tasks
used to generate the job profile is varied. In most cases, the set-
tings suggested by CBO led to nearly the same job performance im-
provements; showing that the CBO’s effectiveness in finding good
configuration settings does not require that all tasks be profiled.

C.4 Evaluating the What-if Engine
Section 5.2 presented the predictive power of the What-if En-

gine when predicting overall job execution times for Word Co-
occurrence jobs. This section presents the corresponding results
for WordCount and TeraSort. Figure 16 shows two scatter plots of
the actual and predicted running times for several WordCount and
TeraSort jobs when run using different configuration settings.

We observe that the What-if Engine can clearly identify the set-
tings that will lead to good and bad performance (indicated in Fig-
ure 16 by the green and red dotted circles respectively). Unlike the
case of Word Co-occurrence in Figure 9, the predicted values in
Figure 16 are closer to the actual values; indicating that the profil-
ing overhead is reflected less in the costs captured in the job profile.
As mentioned earlier, we expect to close this gap using commercial
Java profilers that have demonstrated vastly lower overheads than
BTrace [24]. Overall, the What-if Engine is capable of capturing
the performance trends when varying the configuration parameters,
and can identify the configuration parameter settings that will lead
to near-optimal performance.


