
Investigating Automatic Parameter Tuning for SQL-on-Hadoop
Systems
Edson Ramiro Lucas Filhoa,?, Eduardo Cunha de Almeidab, Stefanie Scherzingera and
Herodotos Herodotouc

aUniversity of Passau, Germany
bFederal University of Paraná, Brazil
cCyprus University of Technology

ART ICLE INFO

Keywords:
SQL-on-Hadoop
Parameter Tuning
Self-Tuning

ABSTRACT
SQL-on-Hadoop engines such as Hive provide a declarative interface for processing
large-scale data over computing frameworks such as Hadoop. The underlying frame-
works contain a large number of configuration parameters that can significantly impact
performance, but which are hard to tune. The problem of automatic parameter tuning
has become a lively research area and several sophisticated tuning advisors have been
proposed for Hadoop. In this paper, we conduct an experimental study to explore the
impact of Hadoop parameter tuning on Hive. We reveal that the performance of Hive
queries does not necessarily improve when using Hadoop-focused tuning advisors out-
of-the-box, at least when following the current approach of applying the same tuning
setup uniformly for evaluating the entire query. After extending the Hive query process-
ing engine, we propose an alternative tuning approach and experimentally show how
current Hadoop tuning advisors can now provide good and robust performance for Hive
queries, as well as improved cluster resource utilization. We share our observations with
the community and hope to create an awareness for this problem as well as to initiate
new research on automatic parameter tuning for SQL-on-Hadoop systems.

1. Introduction
The increasing need to process analytical queries

over large-scale semi-structured data has led to the de-
velopment of SQL-on-Hadoop engines [17, 9]. These
systems evaluate SQL-like queries over data stored in
distributed file systems such as the Hadoop Distributed
File System (HDFS) [47]. Hive [53] was the first SQL-
on-Hadoop system to provide an SQL-like query lan-
guage, namely HiveQL, and can use MapReduce or
Tez as its underlying framework for executing queries.
Shark [59] and Spark SQL [2] also support HiveQL but
use the Spark framework as their runtime instead of
MapReduce. On the other hand, Impala [29] uses its
own processing framework to execute queries, bypass-
ing the MapReduce computing model in order to pro-
vide better support for interactive queries. Similar to
Impala, the big data engines Apache Tajo [50], Presto
[43], and Drill [14] also use a custom runtime to ex-
ecute SQL queries following a shared-nothing parallel
database architecture.

The performance of the underlying computing frame-
works (such as MapReduce and Spark) and custom run-
times (e.g., of Impala, Tajo) is governed via a large

?Corresponding author
edson.lucas@uni-passau.de (E.R.L. Filho);

eduardo@inf.ufpr.br (E.C.d. Almeida);
stefanie.scherzinger@uni-passau.de (S. Scherzinger);
herodotos.herodotou@cut.ac.cy (H. Herodotou)

orcid(s): 0000-0002-0536-5506 (E.R.L. Filho);
0000-0002-6644-956X (E.C.d. Almeida); 0000-0002-8717-1691
(H. Herodotou)

number of configuration parameters that control mem-
ory distribution, I/O optimization, task parallelism,
and data compression [22, 13, 5, 21]. Both MapRe-
duce and Spark have over 200 parameters each, out of
which 20–30 can have significant impact on the per-
formance and stability of the cluster. Several stud-
ies have shown that jobs can experience up to an or-
der of magnitude difference in execution time between
good and bad parameter settings [3, 26]. However,
regular users and even expert administrators struggle
to understand and tune them to achieve good perfor-
mance. A recent report highlights that the prolifera-
tion of MapReduce goes hand-in-hand with continuous
lamentations regarding the lack of professionals who
can tune a Hadoop cluster [23]. This skills gap has
given rise to a successful line of research on automat-
ically tuning MapReduce and Spark parameters using
a variety of techniques such as cost models, simulation,
and machine learning [37, 35, 46, 38, 6, 34, 5, 55, 22, 15],
including techniques for tuning SQL-on-Hadoop sys-
tems and virtual machines together [39].

In this paper, we conduct an experimental study
focused on Hive over Hadoop MapReduce because (i)
Hive is a good representative of native SQL-on-Hadoop
systems; (ii) both Hive and Hadoop are highly popu-
lar for analytical processing; and (iii) Hadoop parame-
ter tuning has been studied extensively in recent years
[17, 9, 37, 6]. Our goals are to (i) explore the impact
of Hadoop parameter tuning on Hive, (ii) identify the
potential use of existing Hadoop tuning advisors for
optimizing Hive performance, and (iii) propose promis-

E.R. Lucas Filho, E.C. De Almeida, S. Scherzinger, and H. Herodotou: Preprint submitted to Elsevier Page 1 of 18

Investigating Automatic Parameter Tuning for SQL-on-Hadoop Systems

ing directions in parameter tuning for SQL-on-Hadoop
systems. For tuning Hadoop, we used Starfish [22, 19],
the first cost-based optimizer for finding (near-) opti-
mal configuration parameter settings and the only pub-
licly available tuning advisor for academic research pur-
poses. In addition, Starfish achieves higher reported
speedups compared to other tuning advisors (see Ta-
ble 4, Appendix A). Finally, since we did not modify the
Starfish Optimizer when implementing our approach, it
would be straightforward to replace Starfish with an-
other Hadoop tuning advisor.

Our results show that Hadoop parameter tuning
can have a drastic impact on both the performance of
HiveQL queries and the efficient utilization of cluster
resources. Given that Hive compiles HiveQL queries
into a workflow of MapReduce jobs, it would be straight-
forward to assume that by tuning the underlying Hadoop
framework, HiveQL queries would benefit as well. How-
ever, we show that this assumption does not hold when
using an existing Hadoop tuning advisor naively, due
to the architecture and design choices of Hive, Hadoop,
and the tuning advisors as well. This in turn has lead
us to extend Hive for automatically tuning each gen-
erated MapReduce job individually. Even though this
study focuses on Hive, we believe that the presented
problem generalizes to other SQL-on-Hadoop systems
as well (discussed in Section 7).

To the best of our knowledge, this is the first study
on parameter tuning for SQL-on-Hadoop systems. Two
previous studies [17, 9] compared the execution time of
TPC-H and TPC-DS like queries across different SQL-
on-Hadoop offerings, namely Hive, Impala, Stringer,
Presto, and Shark. However, none of them considered
parameter tuning nor investigated cluster resource uti-
lization patterns.

Our core contributions in this paper are as follows:
1. We study the impact of parameter tuning on SQL-

on-Hadoop systems (namely Hive) and show that
the approach taken by current Hadoop tuning ad-
visors is not directly applicable for tuning Hive.

2. We explore an alternative approach and experi-
mentally show how a current Hadoop tuning ad-
visor can be made to provide good and robust
performance for HiveQL queries.

3. We investigate the impact of parameter tuning to
cluster resource utilization and observe that our
proposed tuning strategy can significantly reduce
the resource usage of HiveQL queries.

4. We present open research problems and a research
agenda towards automatic parameter tuning for
SQL-on-Hadoop systems.

The rest of the paper is organized as follows: Section
2 reviews query execution in Hive and Hadoop, with
a focus on tuning. Section 3 presents our execution
environment. Sections 4, 5, and 6 present and analyze
the experimental results, while Section 7 outlines key
lessons learned and discusses promising directions for

future work.

2. Preliminaries
We review the preliminaries of Hive query execution

and the current state-of-the-art in Hadoop parameter
tuning.

2.1. Query Execution in Hive
Hive [53], an open source project originally devel-

oped at Facebook, was the first SQL-on-Hadoop query
engine built on top of Hadoop MapReduce to leverage
its scalability, fault tolerance, and scheduling features.
Hive also introduced HiveQL, a SQL-like query lan-
guage that has become the standard SQL interface for
large-scale data [17].

Hive internally uses a query optimizer that resem-
bles traditional relational optimizers to translate a given
HiveQL statement to a workflow of MapReduce jobs, to
be executed on Hadoop. Specifically, a HiveQL state-
ment is first parsed and validated against the data dic-
tionary, compiled into a tree of logical operators, and
finally optimized to produce a physical query execution
plan [17, 53]. This allows for various logical optimiza-
tions, such as selection and projection pushdown, as
well as join reordering and physical join operator se-
lection. Physical tuning, such as partition pruning, is
also performed when an input table is split over several
HDFS folders, to avoid processing unnecessary data
[24]. The final execution plan has the form of a Di-
rected Acyclic Graph (DAG) of MapReduce jobs. Each
job is executed on the cluster as a set of parallel Map
and Reduce tasks.

As a further, MapReduce-specific optimization, the
query optimizer merges jobs by applying chain fold-
ing and job merging, which are both considered generic
MapReduce design patterns [40]. As a simple example,
chain folding collapses sequences of Map-only jobs into
a single Map-only job1. Job merging further merges
jobs that process the same input data, such as joins
applying a common join predicate. Hence, each result-
ing MapReduce job will typically evaluate several query
operators. Similar optimizations have also been pro-
posed in Stubby [36], YSmart [32], and MRShare [41],
as they are very effective in speeding up query execu-
tion by reducing the number of intermediate files that
are written out to HDFS in between MapReduce jobs.
In MapReduce processing, such communication costs
can dominate execution times [44].

Figure 1 presents the query execution plan for TPC-
H query 7 consisting of a DAG of six MapReduce jobs.
This particular DAG has the form of a tree, where
jobs 1 and 2 are the leaves and the final job 6 is the root.
As can be seen, each MapReduce job evaluates several
query operators (e.g., Job 2 contains two TableScans

1In Hive and Spark terminology, merged jobs are stages. We
follow the convention of Hadoop processing and use the general
term job.

E.R. Lucas Filho, E.C. De Almeida, S. Scherzinger, and H. Herodotou: Preprint submitted to Elsevier Page 2 of 18

Investigating Automatic Parameter Tuning for SQL-on-Hadoop Systems

Table 1
Selected parameter values generated by Starfish for each job of TPC-H query 7 and the de-
fault (out-of-the-box) tuning values shown on the right. (?Job-1 is a map-only job; hence,
mapred.reduce.tasks is not set. †By default, Hive overrides mapred.reduce.task based
on the input size of each job.)

Tuning Knob Description Job-1 Job-2 Job-3 Job-4 Job-5 Job-6 Def.
io.sort.mb Buffer size for sorting map output 100 879 593 593 1050 547 100
io.sort.factor Number of streams to merge during map-side sorting 10 32 64 64 71 22 10
io.sort.record.percent Fraction of io.sort.mb for storing metadata 0.05 0.02 0.01 0.01 0.40 0.23 0.05
io.sort.spill.percent Threshold usage of io.sort.mb for beginning sort 0.80 0.60 0.78 0.78 0.64 0.51 0.80
mapred.inmem.merge.threshold Map-side threshold for merging data during shuffle 1000 470 651 651 698 568 1000
mapred.job.reduce.input.buffer.percent % of memory used to buffer map output during reduce 0.00 0.17 0.30 0.30 0.44 0.24 0.00
mapred.job.shuffle.input.buffer.percent % of memory used to buffer map output during shuffle 0.70 0.30 0.38 0.38 0.40 0.51 0.70
mapred.job.shuffle.merge.percent Reduce-side threshold for merging data during shuffle 0.66 0.68 0.82 0.82 0.48 0.51 0.66
mapred.reduce.tasks Number of reduce tasks –? 36 36 36 8 8 1†

and a Join, among others). The output of each job is
written to a temporary HDFS file, to be processed by
the next upstream job in the workflow.

2.2. Tuning Advisors for Hadoop
The execution behavior of MapReduce jobs in Hadoop

is governed by over 200 configuration parameters, out of
which 20 can have a significant impact on performance
[22, 13, 5, 21]. Table 1 lists some of the most impor-
tant Hadoop parameters that control memory settings,
thread scheduling, and task parallelism. A notable
amount of work has been done over the last decade on
automating the selection process, i.e., tuning of Hadoop
parameters. This lead to the creation of several tuning
advisors, as listed in Table 4 (see Appendix A). Note
that this work does not aim at benchmarking or com-
paring tuning advisors, but rather, at analyzing how to
best apply them for tuning SQL-on-Hadoop systems.

The high level goal of a Hadoop tuning advisor is to
propose a set of parameter values that minimizes exe-
cution time and/or improve resource utilization of the
cluster. For brevity, we will refer to a set of specific val-
ues for Hadoop parameters as a tuning setup. Tuning
advisors consider the data flow, processing times, and
access costs to resources, e.g., tracking job counters [35,
34], real-time statistics [13], job execution times [5]
or the execution times of the MapReduce phases [6],
instrumentation of the JVM [37, 22], and execution
logs [46, 51] for proposing tuning setups. We will col-
lectively call such information the execution profile of
a MapReduce job. For this study, we utilize the execu-
tion profiles collected by Starfish, described in [19].

Given an execution profile, the tuning advisor em-
ploys a modeling technique (e.g., cost/analytical mod-
eling, machine learning) to estimate the execution time
of the given job under a given tuning setup [18, 63,
49, 20, 10]. Next, the tuning advisor will enumerate
and search over the high-dimensional space of parame-
ter values in order to identify the tuning setup that will
produce the smallest execution time. Different advisors
will employ different search strategies, ranging from
grid search and exhaustive enumeration to recursive
random search, hill climbing, and genetic algorithms

Figure 1: Hive query plan for TPC-H query 7.

(see Table 4).
The workloads chosen for evaluating Hadoop tuning

advisors typically consist of simple jobs such as Sort,
Word Count, and Grep, whereas very few systems re-
port the use of handcrafted HiveQL queries or employ a
small subset of TPC-H and TPC-DS (listed in Table 4,
Appendix A). Hence, most experiments evaluate advi-

E.R. Lucas Filho, E.C. De Almeida, S. Scherzinger, and H. Herodotou: Preprint submitted to Elsevier Page 3 of 18

Investigating Automatic Parameter Tuning for SQL-on-Hadoop Systems

sors for MapReduce jobs that implement or mimic a
single SQL operator. Such microbenchmarking means
that only a single scenario is examined, whereas the
workloads generated by the Hive query optimizer imple-
ment several query operators per MapReduce job. Con-
sequently, it is not clear how well tuning advisors per-
form against complex SQL-like analytical workloads.
In this paper, we explore a macrobenchmark examina-
tion of query execution that includes the evaluation of
query plans with many HiveQL operators.

2.3. Parameter Tuning in Hive
For tuning, a Hive administrator may configure up

to 200 parameters for the underlying Hadoop system.
The authors in [42, 45] show how sensitive these set-
tings are to the software and hardware stack. Even
different implementations of the JVM (e.g., OpenJVM
vs. IBM JVM) impact performance [11]. Yet, the prob-
lem of automatically setting these parameters for Hive
(or other SQL-on-Hadoop systems) remains largely un-
explored today.

A Hive administrator can assign a tuning setup to
a query plan in the query code, or when submitting the
query via the command line. The Hive query processing
engine then propagates this tuning setup to all MapRe-
duce jobs in the query plan, i.e., at the level of individ-
ual HiveQL queries, all MapReduce jobs that consti-
tute a query plan are executed with identical Hadoop
configuration settings. Hence, when administrators are
tasked with tuning a query, they must find a single set-
ting of Hadoop parameter values to use on a per-query
basis, or even for the complete query workload. Even
with the help of a Hadoop tuning advisor, the same
tuning setup will still be replicated to the entire query
plan. The overall workflow of uniform tuning is shown
in Figure 5(a). Out-of-the-box, Hive does not support
a more fine-grained tuning (e.g., on a per-job basis).
We refer to this approach as uniform tuning and will
discuss it in more detail in Section 4.

3. Experimental Setup
Our execution environment is a cluster of ten (10)

m5.2xlarge machines2 hosted at Amazon Web Services
(AWS), each one with 8 CPU cores, 32 GiB of RAM,
and 500 GiB of dedicated EBS disk with up to 4750
Mbps bandwidth. The cluster runs Ubuntu 16.04 with
Hive 0.13.1, Hadoop 0.22.2, and Starfish 0.33. These
specific Hadoop and Hive versions are those supported
by the latest version of Starfish. The HDFS replication
factor is set to 3 and the default block size is 128MB.
The maximum number of Map and Reduce tasks that
can be started on each node is set to fit the maximum
capacity of the CPU (8 threads per node).

For our evaluation, we use TPC-H [54], a standard
decision support benchmark consisting of 22 queries

2https://aws.amazon.com/ec2/instance-types/m5/
3https://www.cs.duke.edu/starfish/release.html

Table 2
TPC-H queries with their HiveQL Operators (aggregated),
number of MapReduce jobs, number of Map and Reduce tasks,
input data size, and run time in our setup.

HiveQL Operators Runtime information

Q
ue
ry

Ex
tr
ac
t

Fi
le

Si
nk

Fi
lte

r
G
ro
up

B
y

Jo
in

Li
m
it

M
ap

Jo
in

Re
du

ce
Si
nk

Se
le
ct

Ta
bl
e
Sc
an

Jo
bs

M
ap

Ta
sk
s

Re
du

ce
Ta

sk
s

In
pu

t
(G

B
)

T
im

e
(s
ec
)

1 1 2 1 2 0 0 0 2 3 2 2 608 162 149.44 231.0
2 1 6 1 2 1 1 4 4 4 7 6 153 38 27.71 123.7
3 1 4 3 2 2 1 0 6 2 6 4 772 205 187.35 349.3
4 1 4 2 4 1 0 0 5 5 5 4 758 202 182.76 323.7
5 1 7 1 2 2 0 3 6 6 9 7 822 56 187.62 348.0
6 0 1 1 2 0 0 0 1 2 1 1 601 1 149.44 125.3
7 1 6 3 2 3 0 3 8 8 10 6 972 259 187.62 620.0
8 1 8 2 2 2 0 5 6 8 10 8 817 209 192.20 503.5
9 1 7 1 2 3 0 2 8 6 10 7 1473 390 210.47 1321.0

10 1 5 2 2 2 1 1 6 2 7 5 794 207 187.35 347.5
11 1 5 1 4 0 0 3 3 5 5 5 108 3 23.13 90.7
12 1 3 1 2 1 0 0 4 3 4 3 745 199 182.76 240.7
13 1 4 1 4 1 0 0 5 4 5 4 164 44 37.91 185.0
14 0 2 1 2 1 0 0 3 2 3 2 629 167 154.02 196.3
15 1 3 1 4 0 0 2 3 5 3 4 618 164 149.70 206.7
16 1 5 3 2 1 0 1 4 5 6 6 181 38 27.71 141.3
17 0 4 2 4 1 0 1 4 5 5 4 1240 330 154.02 678.8
18 1 5 1 4 2 1 0 8 4 8 5 1463 389 187.35 709.7
19 0 2 1 2 1 0 0 3 2 3 2 630 167 154.02 408.0
20 1 6 3 6 0 0 4 4 8 6 6 743 171 177.15 370.0
21 1 9 5 6 3 1 2 10 10 12 9 2015 376 183.02 964.5
22 1 7 4 6 0 0 2 4 9 7 7 169 40 37.91 204.3

over 8 tables. Even though TPC-H was developed for
evaluating traditional relational database systems, it is
now widely used for evaluating SQL-on-Hadoop engines
[17]. The TPC-H queries contain operations ranging
from simple selection to complex joins and aggrega-
tions; thus, the generated MapReduce jobs exhibit a
wide variety of characteristics. We generated the data
with scale factor of 200, which yields 200GB.

We used the TPC-H benchmark queries in the ver-
sion issued for Hive4. Some TCP-H queries consist of
several HiveQL statements (e.g., Q15). In this case, we
report the aggregated values. Table 2 summarizes the
information for the 22 TPC-H queries executed with
the default Hadoop configuration, listing the number
of relevant HiveQL operators executed, the number of
MapReduce jobs generated5, the number of Map and
Reduce tasks, the input data size, and the overall run
time (i.e., the aggregated run times taken by Hadoop
to execute the jobs of the query plan). As required
by Starfish, all queries were profiled once using the de-
fault Hadoop configuration. All reported run times and
statistics are averaged over 3 runs. In the remainder of
the paper, all speedups are reported as the percentage
of the run times w.r.t. the default configuration (our
baseline), shown in the last column of Table 1.

4https://issues.apache.org/jira/browse/HIVE-600
5Hive can evaluate parts of a query using local jobs rather

than MapReduce jobs. We ignore such local jobs in our discus-
sion.

E.R. Lucas Filho, E.C. De Almeida, S. Scherzinger, and H. Herodotou: Preprint submitted to Elsevier Page 4 of 18

https://aws.amazon.com/ec2/instance-types/m5/
https://www.cs.duke.edu/starfish/release.html
https://issues.apache.org/jira/browse/HIVE-600

Investigating Automatic Parameter Tuning for SQL-on-Hadoop Systems

4. Uniform Parameter Tuning
In this section, we present the impact of uniform

tuning on the execution of queries. In uniform tuning,
all MapReduce jobs for evaluating a HiveQL query are
run with the same, identical tuning setup (except for
setting the number of reduce tasks, as we will discuss
shortly).

4.1. Experimental Methodology
The goal of uniform tuning is to find a good tuning

setup to use for all MapReduce jobs that comprise a
given HiveQL query. However, current Hadoop tuning
advisors, such as Starfish, only propose tuning setups
for individual MapReduce jobs. Hence, an intuitive
strategy is to use Starfish to generate one good tuning
setup for each job in the query plan, and then select one
of those tuning setups for executing the entire query.
The key rationale here is that the selected tuning setup
will improve the performance of at least one MapRe-
duce job and, hopefully, of the query as a whole.

For instance, let us consider query 7, with the query
plan shown in Figure 1. Starfish produces six candi-
date tuning setups (shown in Table 1) based on the six
MapReduce jobs of the query plan. Note that job-1
is a map-only job and, since the parameters listed in
Table 1 apply only to jobs with both Map and Reduce
phases, Starfish does not propose specific values for any
of these parameters. We analyze the performance in-
duced by all candidate tuning setups in Section 4.2,
and discuss alternative strategies for selecting a tuning
setup for a query in Section 4.3.

4.2. Performance of Candidate Tuning
Setups

We begin our discussion by focusing on the impact
of the six candidate tuning setups on query-7’s perfor-
mance, which ranges from a 35.2% slowdown to an 11%
speedup in query execution time (as shown in Figure 2).
To better understand the effect of the parameter val-
ues in the different tuning setups, let us examine the
number of reduce tasks for query 7, one of the most
impactful Hadoop parameters [1]. In the baseline con-
figuration, Hadoop by default sets the number of reduce
tasks to 1 (see Table 1). However, Hive overrides the
Hadoop default configuration and sets the number of
reduce tasks per job to the size of its input data, di-
vided by 256MB.6 The number of reduce tasks is the
only parameter that Hive controls at the granularity
of single jobs. In the execution of query 7, Hive does
not set the number of reduce tasks for job-1, because
it is a map-only job. Hive further sets 197, 25, 19, 17,
and 1 reduce tasks for jobs 2–6, respectively. With this
configuration, Hive executes query 7 in 620 seconds.

Next, let us consider the tuning setups generated
by Starfish. Starfish recommends 36 reduce tasks for

6https://github.com/apache/hive/blob/master/ql/src/
java/org/apache/hadoop/hive/ql/exec/Utilities.java#L3090

q1
q2
q3
q4
q5
q6
q7
q8
q9

q10
q11
q12
q13
q14
q15
q16
q17
q18
q19
q20
q21
q22

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗
∗

∗
∗

∗
∗

∗
∗

∗
∗
∗

-110.3

-171.1

-71

22.3
-34.6 1.3

-9.1 11.1
16.1

2
2.9

-35.2 11
-18.5 13.7

2.8
-0.4 17.6

20.6
15.4

-2.7 14.1
27.7

24.8
-12.9 3.4
-12.0 11.5

-19.6 14
3.8

-8.9 20.1
-11.9 17.4

-3.8 18.8
Speedup (%).

Figure 2: Speedups of TPC-H queries achieved by uniform
tuning (in %) for each candidate tuning setup (listed in Ta-
bles 5 and 6 in Appendix A). The tuning setups generated for
the dominant job (in terms of run time) are marked by *.

jobs 2–4, and 8 reduce tasks for jobs 5 and 6 (see
Table 1). The number of reduce tasks recommended
by Starfish diverges considerably from the estimation
made by Hive, as Starfish uses more fine-grained infor-
mation to calculate the tuning setups.

Following our experimental methodology, we apply
each tuning setup generated by Starfish in turn. We
will address the tuning setup generated for job-1 as
tuning-1, for job-2 as tuning-2, and so on. When ap-
plying tuning-1 for executing the entire query, the num-
ber of reduce tasks is not set by Starfish because job-1
is a map-only job. Consequently, Hive estimates the
same number of reduce tasks as in the default config-
uration (presented above). Tuning-1 achieves 1.37% of
speedup, which is negligible and predictably close to
the baseline. Tuning-2 achieves 11% of speedup and is
the best case for query 7. Job-2 runs in 300 seconds
using default settings, it is the longest running job in
query 7, and accounts for 48.4% of the overall query
run time. Interestingly, we have observed that using
the tuning setup for the job with the longest running
time is the best option for query 7. However, as com-
mon with heuristics, this strategy does not work for all
queries, as we demonstrate in Section 4.3. Tuning-3 and
tuning-4 achieve about 6% of speedup. Both jobs take
about 125 seconds each and together make up around
40% of the overall run time. Tuning-2, 3, and 4 set the
number of reducers to 36, but the resulting run times
are different due to the fine-grained configuration of
the other parameters. The performance of the queries
does not rely on the number of reduce tasks alone, but

E.R. Lucas Filho, E.C. De Almeida, S. Scherzinger, and H. Herodotou: Preprint submitted to Elsevier Page 5 of 18

https://github.com/apache/hive/blob/master/ql/src/java/org/apache/hadoop/hive/ql/exec/Utilities.java#L3090
https://github.com/apache/hive/blob/master/ql/src/java/org/apache/hadoop/hive/ql/exec/Utilities.java#L3090

Investigating Automatic Parameter Tuning for SQL-on-Hadoop Systems

on the tuning setup as a whole. Finally, both tuning-5
and tuning-6 set the number of reducers to 8, degrading
performance by 32.5% and 35.24%, respectively.

We replicated this process for all 22 TPC-H queries,
and present in Figure 2 the speedup of each tuning
setup relative to the default configuration. Query 6 is
the only query comprising a single job. All other queries
have more than one job and, consequently, more than
one tuning setup. In Figure 2, we represent the speedup
of each tuning setup by a black vertical bar. The aster-
isk (¡) marks the speedup of the tuning setup generated
for the job with the longest run time within a query,
i.e., the dominant job (elaborated further in Section
4.3). As observed in Figure 2, the run times vary con-
siderably with uniform tuning. Speedups range from
1.3% in query 2 to 27% in query query 14. Slowdowns
range from -171.1% in query 9 to -0.4% in query 10. It
is interesting to note that there are a total of 39 tuning
setups (out of 107) that degrade performance, for 15
out of the 22 queries.

4.3. Strategies for Selecting a Tuning Setup
System administrators have several options for as-

signing tuning setups to Hive queries: (1) to rely on
intuition (or chance) for selecting a good tuning setup;
(2) to rely on heuristics, such as selecting the tuning
setup of the longest running job in the query; or (3) to
exhaustively test-run all candidate tuning setups.
(1) Feeling lucky: Although selecting a tuning setup
at random is not a realistic strategy, it highlights that
selecting the wrong tuning setup—even from the tuning
setups generated for the query plan by an optimizer—
can severely degrade performance. For instance, tuning-
6 of query 7 degrades performance by 35.24%, while the
worse-case scenario for query 9 is -171.1% (i.e., 2.7×
slower). On the one hand, the probability of degrading
performance is the number of bad tuning setups divided
by the number of available tuning setups, which is 33%
in the case of query 7. On the other hand, the proba-
bility of selecting the (near-) optimal tuning setup is 1
divided by the number of available tuning setups, which
is only 16% in the case of query 7.

The 22 TPC-H queries produce 107 jobs in total
with a 20% probability of selecting the (near-) optimal
tuning setups for each query. Thus, relying on chance
in selecting a tuning setup is likely to produce a tun-
ing setup where query execution will under-perform, or
even significantly degrade.
(2) Tuning the dominant job: One natural strategy
is to select the tuning setup generated for the job domi-
nating the runtime. The intuition behind this strategy
is that the query runtime would improve by decreas-
ing the runtime of the longest running job, even if the
performance of some of the smaller jobs degrade. In
Figure 2, the runtimes achieved with this strategy are
marked with an asterisk (*). As this figure illustrates,
the speedup achieved with this strategy can vary sig-

0 0.2 0.4 0.6 0.8 1

q1
q2
q3
q4
q5
q6
q7
q8
q9

q10
q11
q12
q13
q14
q15
q16
q17
q18
q19
q20
q21
q22

94.81
70.35
89.69
92.58
76.53
100.0
89.62
81.26
90.08
76.21
92.65
90.03
87.03
93.72
78.87
80.66
88.95
96.62
97.06
78.65
78.75
81.40

% of each job in the execution time

Case A Case B Case C

%
of

th
e

do
m

in
an

t
jo

b(
s)

in
qu

er
y

ex
ec

ut
io

n
ti

m
e

Figure 3: Execution breakdown of jobs in the query run time
(run with default configuration). Right: Percentage of the
dominant job(s) in the query run time. Jobs are classified into
cases A–C, depending on their share of query run time.

nificantly as in some cases tuning the dominant job
leads to the best case of uniform tuning, while in oth-
ers it actually degrades performance. As a mid-case
example, let us consider query 21, the query with the
highest number of jobs (nine jobs in total7). The dom-
inant job in query 21 is job-1, which consumes 32%
of the total run time. The tuning setup generated for
job-1 achieves only 10% of speedup. However, the tun-
ing setup generated for job-2 performs better, achieving
18.8% of speedup, even though job-2 amounts to 24%
of the total run time (and thus less than job-1).

To further study this strategy, we organize the TPC-
H queries into 3 different cases, when the query: (A)
has one job that dominates query execution time. (B)
has 2 jobs, where the sum of their run times dominates
the query execution time, and (C) has 3 or more jobs,
where the sum of their run times dominates query ex-
ecution time. For this experiment, we say that a job
or jobs dominate query execution time when their to-
tal run time constitutes at least 70% of the total query
execution time. Figure 3 visualizes the share of individ-
ual jobs in the query execution time and presents the
percentage of the dominant job (or jobs) in the total
query execution time. The cases A, B, and C contain
6, 9, and 7 queries, respectively. Thus, the cases are of
roughly similar size.

Figure 4 summarizes the maximum, average, and
minimum speedup achieved via uniform tuning (using
the tuning setup of the dominant job) for the three
cases. Observe that uniform tuning tends to be very
effective in case A, because most of the queries in this

7Run times of each job of query 21 (seconds): job-1: 309,
job-2: 240, job-3: 6, job-4: 111, job-5: 84, job-6: 99, job-7: 91,
job-8: 12, job-9: 12, total of 964 seconds.

E.R. Lucas Filho, E.C. De Almeida, S. Scherzinger, and H. Herodotou: Preprint submitted to Elsevier Page 6 of 18

Investigating Automatic Parameter Tuning for SQL-on-Hadoop Systems

1 job 2 jobs ≥3 jobs
−10

−5

0

5

10

15

20

25

30
24.5

18.7

12.7
15

11.4

6.4

2.9
0.4

−5.5

Number of jobs dominating query execution

Sp
ee

du
p

(%
)

Maximum Average Minimum

Figure 4: Maximum, average, and minimum speedup of uni-
form tuning (using Option 2) for queries with 1, 2, 3, or 4
dominant (i.e., long running) jobs within the same query plan.

case have one single job dominating even over 90% of
query execution time. Queries in case A resemble single
MapReduce jobs for which Starfish can generate good
tuning setups. However, only 6 out of the 22 TPC-H
queries fall into case A. The dashed trend line indi-
cates that as the number of long-running jobs increases
in a query, the strategy of uniform tuning based on the
longest running job becomes less effective. Note that
the average speedup decreases by about half from case
B to C. In case C, tuning setups generated for the dom-
inant jobs may even degrade performance (observed for
queries 9 and 16). Hence, one tuning setup generated
for a specific job is not necessarily effective for other
jobs. It is a clear case of “one size does not fit all”.
(3) Exhaustive test-run: The last option for select-
ing a tuning setup is to exhaustively test-run all can-
didate tuning setups, as we did in our experiments.
We profile the queries (a first complete execution) for
generating the tuning setups and then we test-run all
setups. For instance, query 21 with 9 jobs requires 10
executions: one for profiling and generating the tuning
setups, and 9 runs for testing. In total, the 22 TPC-
H queries produce 107 jobs and require 129 test runs.
The test-runs take 7.5× more time than running with
the default configuration, which is rather impractical,
as also confirmed in discussions with Hive practition-
ers. In a few specific scenarios, such as running an an-
alytics workload repeatedly in a static environment, it
may be acceptable to spend so much time in test-runs.
However, dynamic aspects like the growth/change of
data sets as well as updates in the hardware and soft-
ware stacks are common in the life cycle of SQL-on-
Hadoop systems and would require administrators to
re-evaluate the test-runs frequently.

Figure 5: (a) Uniform and (b) Non-uniform tuning workflow.

5. Non-uniform Parameter Tuning
In this section, we present non-uniform tuning as an

alternative to uniform tuning: Each MapReduce job in
a HiveQL query is executed with its own tuning setup.
We also present the impact of non-uniform tuning on
query runtime, and compare both approaches.

5.1. Non-uniform Tuning Methodology
As of today, there is no mechanism in Hive for

applying tuning setups at the level of individual jobs
within the same query plan, even though MapReduce
jobs can be configured individually when submitted
separately to Hadoop. We thus extended the Hive
query processing engine to switch tuning setups be-
tween jobs, executing each job with its own tuning
setup. Our extension does not change the current query
processing workflow, described in Section 2.1. Instead,
it consults with the tuning advisor and rewrites the
configuration of every job right before it is queued in
Hadoop for execution. Our fork of Hive is fully func-
tional, to the point where a Hive administrator can
enable our extension by merely setting a single, new
parameter (hive.optimize.selftuning) to true. The
implementation effort required was modest and amounted
to adding 5k lines of Java code to Hive.

Figure 5(b) shows the high-level workflow of the
non-uniform tuning approach. When a query is sub-
mitted (say query 7), it is processed and optimized by
the Hive query processing engine: All its jobs have been
created and all Hive optimizations have been performed
with the query plan looking as depicted in Figure 1.
At this point, our extension calls Starfish to profile and
optimize every job of query 7 (recall Section 2.2), and
stores the recommended tuning setups in a cache repos-
itory. The cache associates the code signature of each
job with its recommended tuning setup [16]. A code sig-

E.R. Lucas Filho, E.C. De Almeida, S. Scherzinger, and H. Herodotou: Preprint submitted to Elsevier Page 7 of 18

Investigating Automatic Parameter Tuning for SQL-on-Hadoop Systems

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22

−40

−20

0

20

40

-1
10

.3

-1
71

.1

-7
0.

922
.1

−
34

.6

−
9.

1

7.
6

2.
9

−
35

.2

−
18

.5

−
0.

4

5.
2

3 −
2.

7

22
.1

18
.5

−
12

.9

−
12

−
19

.6

−
8.

9

−
11

.9

−
3.

8

22
.3

1.
4 11

.1 16
.1

2 2.
9 11 13

.7

2.
8

17
.6 20
.6

15
.4

14
.1 27

.7

24
.8

3.
4 11

.5

14

3.
8

20
.1

17
.4

18
.8

20
.2

9.
3 13

.8 16
.7

3.
5

2.
9 11

.9 17
.3

4.
6 14

.7

13
.4

15
.7

15
.5 25

17
.9

0.
1

13 13
.9

4.
2

20
.5

14
.3

13
.1

Sp
ee

d
up

(%
)

Uniform (worst case) Uniform (best case) Non-uniform

Figure 6: Speedup of uniform and non-uniform tuning approaches relative to the default configuration.

nature is a set of annotations generated during query
compilation that capture the query operators executed
as part of a job, along with some basic data proper-
ties (similar to the information contained in Figure 1).
The code signature can be used to uniquely identify a
job within the same query plan. When query 7 is sub-
mitted again, the code signature of each job is used as
a key to look up the corresponding tuning setup from
the cache and apply it to the job. In case the dataset
size changes, Starfish supports an online optimization
mode that takes the new data size into account and
generates a new tuning setup on the fly. Hence, each
job in the query is submitted with its own optimized
tuning setup.

5.2. Uniform vs. Non-Uniform Performance
The uniform and non-uniform tuning approaches

can both optimize queries, however, with different im-
pact on performance. Figure 6 presents the speedups
for both approaches, including the best and worst cases
of uniform tuning. On the one hand, the best case of
uniform tuning optimizes queries up to 27.7% (query 14)
and does not degrade the performance of any query.
The best case of uniform tuning optimizes the runtime
of the entire TPC-H workload by 12.1%. Non-uniform
tuning achieves a similar overall speedup of 12.2% for
the entire TPC-H workload, and is as good as the best
case of uniform tuning. On the other hand, the worst
case of uniform tuning degrades the performance of 14
out of the 22 queries, with severe slowdowns for queries
5, 9, and 19. The worst case of uniform tuning de-
grades the performance of the overall TPC-H workload
by 40.8%. Hence, non-uniform tuning presents a great
and robust advantage over uniform tuning.

To further understand the impact of non-uniform
tuning on query performance and compare it to uni-
form tuning, let us consider query 7 again. The best
case of uniform tuning applies the recommended pa-
rameters of job-2 (see Table 1) to all jobs in query 7
and achieves an 11% speedup. The non-uniform tun-
ing approach assigns each job its very own tuning setup
and thereby achieves a 12% speedup. Even though
the difference in speedup is small, there are significant

advantages to non-uniform tuning with regards to im-
proved resource utilization, as we will see shortly. The
increased performance is attributed mainly to the ad-
ditional speedup achieved for jobs 4 and 5. In partic-
ular, the higher values for parameters mapred.job.-
reduce.input.buffer.percent and mapred.job.shu-
ffle.input.buffer.percent enable the reduce tasks
to buffer more intermediate data in memory, spilling
less data to disk, and thereby reducing the amount of
both write and read disk I/O performed. In fact, the
tuning setup for job-4 completely avoids data spills on
the reduce side and eliminates a total of 15.1 GB of
local disk I/O. As for the remaining jobs, 1 and 6 are
short-running and unaffected by the particular choices
of parameters. Job 2 is executed with the same settings
in both cases, while the performance of job 3 is similar
in both cases.

Overall, non-uniform tuning avoids degrading per-
formance by allocating job-specific resources, while the
uniform tuning allocates the same amount of resources
to all jobs in the query plan. In the strategy of tuning
the dominant job, the uniform tuning loses its effective-
ness when queries have more than one job dominating
query execution. As we have seen in Section 4.3, uni-
form tuning is effective for optimizing queries in case
(A), and ineffective on queries in cases (B) and (C).
Non-uniform tuning, however, is effective in all three
cases. Another advantage of non-uniform tuning is the
self-tuning nature of the approach. Human interven-
tion becomes impractical when ordinary OLAP work-
loads generate tens to hundreds of jobs and many more
possible tuning setups.

In our experiments, optimizing jobs individually (non-
uniform tuning) always leads to better performance but
not always the best. As we can observe from Figure 6,
the best-case of uniform approach is a little better (0.1–
7.2% higher speedup) than the non-uniform one for 9
out of the 22 TPC-H queries. There are two main rea-
sons for this behavior. First, almost all Hadoop tuning
advisors (including Starfish) treat the Map and Reduce
functions as black boxes and make simplifying model-
ing assumptions. For example, some make the propor-

E.R. Lucas Filho, E.C. De Almeida, S. Scherzinger, and H. Herodotou: Preprint submitted to Elsevier Page 8 of 18

Investigating Automatic Parameter Tuning for SQL-on-Hadoop Systems

CPU
(User)

CPU
(System)

CPU
(Wait)

CPU
(Idle)

Memory
(Used)

Memory
(Page In)

Memory
(Page Out)

Network
(Transmited)

Inode
(Open)

Inode
(Used)

−100

0

100

32
.7

38
.1

24
.7

32
.3

36
.5

27
.4

25
.8

32
.1

28
.3 77

.8

−
12

.9

−
11

.3

−
13

.3

−
9.

8

−
11

.9

−
12

.1

−
7.

2

−
12

.7

−
14

.1

19
.0

−
34

.6

−
24

.3

−
30

.2

−
38

.8

−
39

.9

−
36

.2

−
39

.9

−
39

.2

−
35

.7

−
28

.0

A
cc

um
ul

at
ed

C
on

su
m

pt
io

n
(%

)
Uniform (worst case) Uniform (best case) Non-Uniform

Figure 7: The accumulated resource consumption percentage of uniform and non-uniform tuning relative to the default config-
uration (baseline). Less is better.

tionality assumption [19], based on which the execution
time of a function will double if its input size is doubled.
This assumption may hold for simple jobs like Word-
Count or Sort, but it is not true for jobs that contain
multiple relational algebra operators like joins and ag-
gregators. Hence, the modeling, and consequently the
tuning recommendations, might not be optimal. Sec-
ond, performance dependencies between jobs compli-
cate the task of a tuning advisor. For example, setting
the number of reduce tasks or enabling output compres-
sion for one MapReduce job will affect the performance
of the subsequent job as it will affect the number of
Map tasks and the need for decompression for the sec-
ond job, respectively. Hence, it is harder to generate
optimal tuning setups for later jobs in a query execu-
tion plan. Overall, there is a dire need for: (1) better
modeling techniques for MapReduce jobs generated by
SQL-on-Hadoop systems, especially since there is inside
knowledge of which operations the jobs will perform,
(2) better optimizers that can take into consideration
the interdependencies of jobs and holistically optimize
the entire workflow.

6. Impact on Resource Utilization
Apart from execution time speedup, Hadoop pa-

rameter tuning can have a significant impact on the
physical resources that are consumed during the exe-
cution of HiveQL queries. In this section, we study
and compare the impact of uniform and non-uniform
tuning on resource utilization.

6.1. Experimental Methodology
During our experiments, we employed the Collectl

tool8 to track the consumption of CPU, memory, net-
work, and disk. We monitored the resource consump-
tion of each query from its submission until its comple-
tion. Collectl runs a light-weight monitoring service on
each machine of the cluster, and reads runtime system
information from the Linux’s /proc virtual file system
with negligible overhead9. When required in our analy-

8http://collectl.sourceforge.net/
9http://collectl.sourceforge.net/Performance.html

sis, we also use information from the Hadoop job coun-
ters, which are automatically collected by the Hadoop
framework during the execution of MapReduce jobs.

In order to compute the overall resource consump-
tion of the TPC-H workload (to ease our analysis), we:
(1) calculate the average consumption per second for
each resource from the aggregated values collected on
all machines in the cluster; and (2) sum up the averages
for each resource, for all queries, to produce the accu-
mulated consumption. We compare the resource usage
of uniform and non-uniform tuning in Section 6.2 and
provide an in-depth analysis of query 7 in Section 6.3.

6.2. Uniform vs. Non-uniform Tuning
Figure 7 depicts the relative percentage of the accu-

mulated resource consumption of the TPC-H workload
running with uniform and non-uniform tuning, com-
pared against the default configuration (our baseline).
Overall, non-uniform tuning consumes significantly less
computing resources across all relevant metrics. For in-
stance, non-uniform tuning leads to 35% less CPU uti-
lization and 40% less memory usage than the baseline,
whereas the best case of uniform tuning leads to 13%
and 12% reductions, respectively. To better understand
these results, we discuss next the effect of the number of
MapReduce tasks as well as other relevant parameters
to the execution behavior of the TPC-H queries.

Under default configuration, the 22 TPC-H queries
are executed with 107 MapReduce jobs comprising 16,475
map and 3,817 reduce tasks (yielding 20,292 tasks in
total). The number of map tasks is determined by the
input data size and typically equals the number of in-
put blocks. Consequently, both the uniform and the
non-uniform tuning create almost the same number of
map tasks as the default configuration, differing by less
than 1%. The number of reduce tasks, however, varies
considerably among the different approaches (as can be
seen on Figure 8), revealing an interesting trade-off: On
the one hand, if the number is set too high, the many
short-running reduce tasks increase the scheduling and
launching overheads. On the other hand, if the number
is set too low, the tasks fail to exploit the potential for
cluster parallelization. Rather, each reduce task will

E.R. Lucas Filho, E.C. De Almeida, S. Scherzinger, and H. Herodotou: Preprint submitted to Elsevier Page 9 of 18

http://collectl.sourceforge.net/
http://collectl.sourceforge.net/Performance.html

Investigating Automatic Parameter Tuning for SQL-on-Hadoop Systems

Default Non
Uniform

Uniform
(best)

Uniform
(worst)

0

200

400

600

800

0

1K

2K

3K

4K3,817

2,157
1,928

698

Ex
ec
ut
io
n
T
im

e
(s
ec
.)

(o
fR

ed
uc
e
Ta

sk
s) #

Reduce
Tasks

Average 53.79 81.37 88.55 109.21
Std.Dev. 64.97 76.39 95.12 167.33

Range 255.11 246.10 462.17 2,136.51
Max 264.11 255.10 468.17 2,145.51

Figure 8: Distribution of execution time and counts of reduce
tasks for each tuning approach. High number of tasks leads
to low execution time per task but higher overheads. Low
number of tasks leads to low degree of parallelism and cluster
utilization. Both lead to overall higher query run times.

need to process a large amount of intermediate data
that will probably not fit in the memory buffers. This
leads to an increased number of disk spills. Therefore,
setting the appropriate number of reduce tasks for each
job (along with a few other important parameters) is
crucial for a balanced resource utilization and overall
performance.

Figure 8 presents the distribution of the execution
time of the reduce tasks for each tuning approach. First,
we observe the (expected) inverse relationship between
the average execution time and the number of reduce
tasks. Interestingly, the non-uniform tuning and the
best case of uniform tuning decrease the number of re-
duce tasks by 1.8× and 2.0×, respectively, but each
task on average takes only 1.5× and 1.6× more time
to complete, compared to the default configuration.
Nonetheless, the most important difference is the vari-
ability in task execution time. Both uniform tuning
approaches exhibit stretched distributions, with worst-
case outliers that are almost 20×larger than the corre-
sponding average execution time. Non-uniform tuning,
on the other hand, leads to the smallest range of exe-
cution time values, showcasing once again the robust-
ness of this method. Finally, the default configuration
uses a large number of reduce tasks with shorter execu-
tion times (and naturally low variability). Even though
the execution times of the individual reduce tasks are
shorter, there are more tasks and their management
overheads increase the execution time of the overall job.
Thus, the actual query execution times are generally in-
ferior to non-uniform tuning, as shown in Figure 6 and
also discussed in Section 5.2.

Another positive artifact of reduced execution time
variability is the reduction or elimination of straggler
tasks, i.e., tasks that make slower progress compared
to other tasks. When Hadoop detects a straggler task,
it will run a speculative copy of that task on another
node to finish computation faster. As soon as one of

the two tasks completes, the other one is killed. In one
execution run of the TPC-H queries with the default
configuration, we observed that 191 reduce tasks were
killed. This implies that there are 5% more reduce tasks
than needed that are being launched and scheduled10.
Non-uniform tuning and the best case of uniform tuning
decrease the number of failed reduce tasks to less than
1%, thereby reducing the number of straggler tasks by
5×.

In addition to setting the number of reduce tasks
correctly, several other parameters (e.g., mapred.job.-
reduce.input.buffer.percent and mapred.job.shu-
ffle.input.buffer.percent) can regulate the amount
of memory used to buffer map outputs during shuffle
and reduce phases. When these buffers fill up, Hadoop
starts to write the map outputs to the local file sys-
tem. The amount of memory given to map and reduce
tasks directly impacts the amount of data spills (on
the map or reduce side, respectively). Note that the
data written between jobs in a query plan and the fi-
nal results of the queries are written to the distributed
file system and are not affected by parameter settings.
Figure 9 presents the accumulated data written to the
local and distributed file systems during the shuffle and
reduce phases. Considering the total amount of data
materialized to the local file system, non-uniform tun-
ing writes 5.3× (584.4GB) less than the default con-
figuration. In fact, the non-uniform tuning completely
eliminates data spills on the reduce side from 92 out of
the 107 jobs generated from the TPC-H, which yields
4.2× more jobs without data spills on the reduce side
than the default configuration. The best-case of uni-
form tuning writes 1.9× (340.7GB) less data, while the
worst-case of uniform tuning writes only 8.8% (63.4GB)
less.

As a consequence of writing less data to the local file
system, non-uniform tuning is more parsimonious with
other resources as well (see Figure 7). For instance,
setting job buffers with non-uniform tuning (e.g., io.-
sort.mb, mapred.job.reduce.input.buffer.percent)
leads to 39.9% fewer page outs, and, consequently, the
CPU waits 30.2% less. The decrease in memory page
outs as well as the reduced data spills are instrumental
in reducing the number of open files by 35.7%. Other
parameters such as io.sort.spill.percent and map-
red.job.shuffle.merge.percent, when properly set,
enable better overlapping between CPU processing and
I/O, contributing to lower CPU waits.

6.3. In-Depth Analysis for Query 7
Figure 10 presents the utilization of CPU, memory,

and network for query 7. Table 3 further presents the
average run time for each job of query 7, during its
execution with the default configuration, non-uniform

10This effect is consistently reproducible across repeated runs.
Across our three runs, we observed an average number of failed
reduce tasks of 185.33, and a standard deviation of 6.03.

E.R. Lucas Filho, E.C. De Almeida, S. Scherzinger, and H. Herodotou: Preprint submitted to Elsevier Page 10 of 18

Investigating Automatic Parameter Tuning for SQL-on-Hadoop Systems

Default Non-Uniform Uniform
(best case)

Uniform
(worst case)

0

0.5k

1k

72
1.

0

13
6.

6 38
0.

3 65
7.

6

26
5.

8

26
5.

8

26
5.

8

26
5.

8

D
at

a
W

ri
tt

en
(G

B
)

Local File System Distributed File System

Figure 9: The total amount of data written to the local and
distributed file system during the shuffle and reduce phases of
the 22 TPC-H queries.

tuning, and best and worst cases of uniform tuning.
In Figure 10, solid black lines indicate the beginning
of each job in the sequential query plan schedule, and
dashed lines indicate the end of query execution. The
submission of the jobs follows a sequential order derived
from the query plan in Figure 1. The data presented is
an average of the data from 10 machines in the cluster,
measured during a single execution. Note that job-1 is
a small job that executes in only about 6 seconds across
all configurations (and hence almost not visible in Fig-
ure 10), because it is a map-only job executing on the
small table nations. Similarly, job-6 is also a small job
that materializes the query results to the final table,
running in 12 seconds on average across all configura-
tions. In our discussion below, we will focus on jobs 2,
3, and 4, which perform one join operation each and to-
gether constitute more than 90% of the total execution
time of query 7.

We first analyze the effect of the tuning approaches
to CPU utilization. Consider job-2, which filters table
orders (34GB) and scans table lineitem (150GB) during
the map phase, and performs a join during the reduce
phase. Our first observation from Figure 10 is that
the default configuration and the worst case of uniform
tuning exhibit low CPU utilization during the first half
of the job (i.e., the map phase), whereas the opposite
is true for the non-uniform tuning and the best case of
uniform tuning. The explanation is traced to the set-
tings of io.sort.mb, which determines the map output
buffer size, and io.sort.spill.percent, which sets a
threshold for when to sort and spill the buffered data
(see Table 1). The small buffer size (100MB and 547MB
in default configuration and worse case of uniform tun-
ing, respectively) in combination with the small thresh-
old (0.51) in the worse case of uniform tuning, leads job-
2 to sort and spill small chunks of data more frequently
during the map phase, which, consequently, induces low
CPU utilization.

Another interesting observation is the lower varia-
tion in CPU utilization for non-uniform tuning com-
pared to the other cases, especially for job-4. In the
best case of uniform tuning, the low values for io.-

sort.spill.percent, mapred.inmem.merge.thres-
hold, and mapred.job.shuffle.merge.percent cause
frequent rounds of sort-spill-merge operations, leading
to variability in CPU usage. The settings used in the
non-uniform tuning case, on the other hand, achieve
a better overlap between the CPU processing and I/O
spills, leading to higher CPU utilization and to a lower
job run time.

Let us consider memory utilization next, also shown
in Figure 10. Our first observation is the low mem-
ory usage of job-2 during default configuration, which
is attributed to the low io.sort.mb setting (100MB).
The map functions of job-2 perform only scan and filter
operations, which do not require much execution mem-
ory. Even though there is a lot of available memory,
only 100MB can be used by each map task for buffer-
ing map output data, leading to a significant under-
utilization of memory. On the contrary, the high io.-
sort.mb settings used by the other approaches (ranging
from 547MB to 1050MB) enable map tasks to buffer
more output data and better utilize memory.

The memory consumption of job-3 in the best case
of uniform tuning experiences a noticeable drop during
the reduce phase. The low setting of mapred.reduce.-
input.buffer.percent at 0.17 means that only a small
percentage of memory is used to buffer map output data
during the reduce execution. In addition, job-3, which
joins the table customer (4.6GB) with the output of
job-2 (20GB), uses 36 reduce tasks. Hence, each re-
duce task processes approximately 0.6GB of data. The
combined effect of the two aforementioned factors con-
tribute to the reduced memory usage of job-3.

Finally, let us now observe network consumption.
Recall that Figure 10 shows an average of data from 10
machines, so when one machine is transmitting data,
another machine is receiving it. Thus, the amount of
data transmitted and received through the network at a
given point in time are congruent. Network consump-
tion may be affected by many factors, including how
the data is distributed across the nodes of the cluster,
how balanced the tasks are scheduled to each node, and
the replication degree of data. Hence, individual con-
figuration parameters have a lower impact on network
utilization compared to other resources. Nonetheless,
the overall settings used by non-uniform tuning lead
to a smoother network consumption compared to other
approaches, which occasionally suffer from big network
spikes.

7. Lessons Learned & Conclusion
While there has been a significant amount of re-

search on automatic parameter tuning for distributed
computing platforms such as Hadoop and Spark (e.g.,
[22, 37, 46, 56, 4]), there has been very little work on (i)
how these parameters affect the execution and perfor-
mance of SQL-on-Hadoop systems, and (ii) how to tune

E.R. Lucas Filho, E.C. De Almeida, S. Scherzinger, and H. Herodotou: Preprint submitted to Elsevier Page 11 of 18

Investigating Automatic Parameter Tuning for SQL-on-Hadoop Systems

20%
40%
60%
80%

100%
D

ef
au

lt
co

nfi
g. CPU User CPU System

10GB

20GB

30GB

Memory Used

100MB/s
200MB/s
300MB/s
400MB/s

Net. Received Net. Transmitted

20%
40%
60%
80%

100%

N
on

-u
ni

fo
rm

10GB

20GB

30GB

100MB/s
200MB/s
300MB/s
400MB/s

20%
40%
60%
80%

100%

U
ni

fo
rm

(b
es

t)

10GB

20GB

30GB

100MB/s
200MB/s
300MB/s
400MB/s

0 300 600 900

20%
40%
60%
80%

100%

Execution Time (sec.)

U
ni

fo
rm

(w
or

st
)

0 300 600 900

10GB

20GB

30GB

Execution Time (sec.)
0 300 600 900

100MB/s
200MB/s
300MB/s
400MB/s

Execution Time (sec.)

Figure 10: Average resource consumption of the 10 machines of the cluster during a single execution of TPC-H query 7. Solid
black lines indicate the beginning of each of the 6 jobs in the query plan, and dashed black lines indicate the end of query
execution.

these parameters within the context of SQL-on-Hadoop
workloads. In this paper, we attempt to bridge this gap
by studying how current Hadoop tuning advisors can
be employed for optimizing the performance of the pop-
ular SQL-on-Hadoop engine Hive. The major lessons
learned from our experimental study are:

1. Parameter tuning is important. Tuning the
underlying Hadoop parameters can have a significant
impact on the execution time and the resource utiliza-
tion of queries executing on SQL-on-Hadoop systems.
In particular, our results reveal that different parameter
settings can cause run time variations between -171%
(i.e., 2.8× slower) and 25% speedup over default set-
tings. Also, different settings can influence resource uti-
lization and lead to better CPU utilization, improved
memory usage, reduced disk usage, and more evenly
distributed network utilization (i.e., fewer spikes).

Reduced resource consumption can have major ben-
efits for customers and providers of Infrastructure-as-
a-Service products. From the customer’s perspective,
non-uniform tuning allows for more efficient resource
consumption, which directly translates to lower charges
depending on the pricing model. For instance, stor-
age costs in Amazon AWS Elastic Block Store (EBS)
are $0.10/GB for general purpose (gp2) volumes. The
amount of data spilled to disk for intermediate data, as
depicted by Figure 9, will be directly reflected in bill-

Table 3
Average run time (in seconds) per job of query 7 with the
default configuration, non-uniform, and uniform tuning.

Default
config.

Non-
uniform

Uniform
best-case

Uniform
worst-case

job-1 6.0 6.0 5.5 5.0
job-2 300.0 252.0 248.0 371.5
job-3 123.7 145.0 144.0 203.0
job-4 132.0 100.0 105.5 214.5
job-5 46.3 31.0 37.0 32.5
job-6 12.0 12.0 12.0 12.0
Total 620.0 546.0 552.0 838.5

able costs. With reduced data spills, customers could
also provision for lower (and cheaper) I/O per second
(IOPS) rates. In addition, lower resource utilization
allows for increased query throughput because more
queries can be executed in the same amount of time, po-
tentially reducing the cost of cloud deployments. From
the provider’s perspective, non-uniform tuning has the
potential to reduce infrastructure costs, such as air
cooling with more efficient disk usage and less data
movement, and to increase machine throughput with
less resource consumption and more concurrent clients.

2. Uniform tuning is problematic. The cur-
rent practice of using one tuning setup per query suf-
fers from two main limitations. First, finding a tun-
ing setup that equally benefits all jobs is difficult, if

E.R. Lucas Filho, E.C. De Almeida, S. Scherzinger, and H. Herodotou: Preprint submitted to Elsevier Page 12 of 18

Investigating Automatic Parameter Tuning for SQL-on-Hadoop Systems

not impossible, since current Hadoop tuning advisors
are designed for tuning one MapReduce job at-a-time.
Hence, even though a particular tuning setup can speed
up one job significantly, it may damage other jobs in the
same query, leading to a sub-optimal speedup or even
an overall slowdown. Second, the process of selecting
a good tuning setup is time-consuming, as it typically
relies on trial-and-error. Even intuitive strategies such
as tuning for the dominant job (i.e., the longest run-
ning job) are not always effective and can actually slow
down a query.

3. Non-uniform tuning is robust. Tuning each
job in a query independently has been shown to provide
run time speedups that are similar to the best-observed
speedups in our experiments. Unlike uniform tuning,
the non-uniform tuning approach does not suffer from
any serious run time variations and, consequently, re-
duces the need for speculative execution. Most impor-
tantly, the non-uniform tuning leads to better resource
utilization. For instance, both CPU usage and mem-
ory paging were reduced by over 40%, while the to-
tal amount of data written to and read from the lo-
cal file system was reduced by 5× when compared to
default settings. The aforementioned benefits are not
bound to Starfish but rather are a consequence of the
non-uniform tuning methodology that optimizes each
job independently. We are confident that any Hadoop
tuning advisor could be used in place of Starfish, with
similar results. Moreover, non-uniform tuning enables
plugging other types of tuning advisors that optimize
for specific resources (e.g., disk I/O) or energy rather
than execution time, as those metrics might be more
important for some public or hybrid cloud scenarios.

4. Challenges apply to other SQL-on-Hadoop
systems. Even though we focus on tuning Hadoop pa-
rameters for Hive queries, we believe that our results
and conclusions generalize to other SQL-on-Hadoop sys-
tems as many of them fork the Hive project, like Shark,
or share some key architectural and processing design
choices. First, such systems accept SQL-like queries
and break them down to individual jobs for execu-
tion on the underlying framework (e.g., Hadoop, Tez,
Spark). These jobs are all affected by parameters that
control the degree of parallelism for tasks, various mem-
ory settings, etc. In addition, SQL-on-Hadoop queries
have a single point of configuration (e.g., command line,
query code), that makes it impossible for developers to
manually determine and set a specific tuning setup per
job. Even with the help of tuning advisors, this single
point of configuration will force all jobs in the query
plan to share the same tuning setup, which can lead to
performance degradation.

The issues with uniform tuning apply to other types
of systems as well, like Impala, Drill, and Spark. For in-
stance, Impala distributes a query for processing among
the available cluster nodes in a way that resembles jobs
and tasks. Impala updates system health information

across all the nodes through a “statestore” component
(in Impala terminology) and keeps all changes in the
metadata of the SQL statements in “catalog” daemons.
The non-uniform approach would leverage both dae-
mons to swap tuning parameters according to the pro-
cessing needs.

In Spark, a job consists of a directed acyclic graph
of stages, where each stage comprises a collection of
tasks. Yet, all parameters that affect resource configu-
ration and scheduling (such as number of cores to use,
memory sizes, etc.) are set at the level of jobs and
apply uniformly to all stages and tasks. This prob-
lem has already been identified and efforts are made
towards setting task resource requirements and config-
uration at the stage level [52]. Currently, Spark tuning
advisors such as [56, 48, 4] recommend parameters only
at the level of individual jobs.

5. New research opportunities await. Most
Hadoop tuning advisors (e.g., [35, 37, 13]), including
Starfish, treat the Map and Reduce functions as black-
boxes. However, when the MapReduce jobs are gen-
erated from SQL-on-Hadoop engines, the information
regarding the actual operators comprising the tasks is
available. Such information can significantly improve
the performance modeling employed by the tuning ad-
visors, which in turn can improve the tuning setup
recommendations. At the same time, current tuning
advisors are designed for optimizing each job in isola-
tion. However, SQL-on-Hadoop engines typically gen-
erate directed acyclic graphs of MapReduce jobs, with
various inter-dependencies, as discussed in Section 5.2.
Hence, a new line of tuning advisors that will incorpo-
rate query-specific modeling and workflow-aware tun-
ing is necessary for catering to the specific requirements
of SQL-on-Hadoop engines. Another interesting re-
search direction would be to push physical tuning de-
cisions into the cost optimizer of an SQL-on-Hadoop
engine. At optimization time, there is access to vari-
ous statistics such as cardinality estimates and possible
access paths, which can be used to (i) improve the ef-
fectiveness of the tuning choices, and to (ii) apply the
selected tuning choices to the individual jobs (i.e., in
a non-uniform way). The push towards non-uniform
tuning also implies a push towards a fully automated
tuning solution. Otherwise, it would be hard, if not im-
possible, for an administrator to manually specify pa-
rameters for individual jobs that are generated during
a query execution. Overall, as the clusters are growing
in size and the workloads are becoming more complex,
it becomes ever more essential for SQL-on-Hadoop sys-
tems to offer self-managing features such as automatic
performance tuning.

With this experimental study, we share our observa-
tions with the systems research community. We hope
to create an awareness for this problem as well as to
initiate new research on automatic parameter tuning
for SQL-on-Hadoop systems.

E.R. Lucas Filho, E.C. De Almeida, S. Scherzinger, and H. Herodotou: Preprint submitted to Elsevier Page 13 of 18

Investigating Automatic Parameter Tuning for SQL-on-Hadoop Systems

Table 4
Hadoop tuning advisors along with the reported speedup against default configuration, the
search strategy employed, and the workloads used for evaluation.

Workloads

Tuning Advisor Speedup Search Strategy Ad
ja
ce
nt

lis
t

B
ia
gr
am

G
re
p

H
ist
og

ra
m

In
ve
rt
ed

In
de
x

K
-C
or
e

K
-M

ea
ns

Li
nk

G
ra
ph

N
ut
ch

Pa
ge
Ra

nk
Pi

Es
tim

at
io
n

So
rt

Te
ra
So

rt
Te

xt
Cl
as
sifi

ca
tio

n
W
ea
kl
y
Co

nn
.
Co

m
p.

W
or
d
Co

-O
cc
ur
re
nc
e

W
or
dC

ou
nt

Cu
st
om

W
or
kl
oa
d

H
iv
e
A
gg

re
ga
tio

n
Jo
in

O
rd
er

B
y

T
PC

-D
S
(S
ub

se
t)

T
PC

-H
(S
ub

se
t)

Starfish [19, 22] 13.9x Random Recursive Search 3 3 3 3 3

Predator [57] 5x Grid Hill Climbing 3 3

Panacea [38] 3x Exhaustive Search 3 3 3 3 3

SVR [60] 3x Exhaustive Search 3 3

PPABS [58] 38.40% Simulated Annealing 3 3 3

Gunther [35] 33.00% Genetic Algorithm 3 3 3 3

AutoTune [62] - - 3 3

MRTuner [46] 4.41x Producer, Transporter, Consumer 3 3 3

MROnline [34] 30.00% Smart Hill Climbing 3 3 3 3 3 3

AACT [33] 10x Exhaustive Search 3 3 3

JellyFish [13] 74.00% Hill Climbing 3 3 3 3 3 3

Chen [8] 8x Stochastic Hill Climbing 3 3 3 3

MR-COF [37] 35.00% Genetic Algorithm 3 3 3

RFHOC [6] 7.4x Genetic Algorithm 3 3 3 3 3

Zhang [61] 40.00% Double-Threshold Heuristic 3 3 3

Lee [31] 29.00% Fuzzy Inference 3 3 3

Khan [28] 71.00% Particle Swarm Optimization 3 3

Kumar [30] 66.00% Stochastic Approximation 3 3 3 3 3 3

Jain [25] 38.51% Exhaustive Search 3

MEST [5] - Genetic Algorithm 3 3 3 3 3

Prasad [12] - Exhaustive Search 3 3

mrEtalon [7] 30.00% Simulated Annealing 3 3 3 3 3 3 3 3 3 3

Khaleel [27] 73.39% Genetic Algorithm 3 3

8. Acknowledgments
This work was supported by the AWS Cloud Credits

for Research program and CAPES Brazil.

A. Appendix A
Table 4 lists several Hadoop tuning advisors along

with their reported speedups, employed search strate-
gies, and the workloads used for evaluation. All re-
ported speedups are against run times using Hadoop’s
default configuration (i.e., our baseline). Tables 5 and 6
list selected parameter values generated by Starfish for
each MapReduce job compiled from the TPC-H queries.

E.R. Lucas Filho, E.C. De Almeida, S. Scherzinger, and H. Herodotou: Preprint submitted to Elsevier Page 14 of 18

Investigating Automatic Parameter Tuning for SQL-on-Hadoop Systems

Table 5
Selected parameter values for each MapReduce job of TPC-H queries 1-11.

Query Job
Id

io.sort.m
b

io.sort.fact
or

io.sort.rec
ord.perce

nt

io.sort.sp
ill.percen

t

mapred.i
nmem.m
erge.thre

shold

mapred.j
ob.reduc
e.input.b
uffer.perc

ent

mapred.jo
b.shuffle.i
nput.buffe
r.percent

mapred.jo
b.shuffle.
merge.per

cent

mapred.
reduce.t

asks

Query-1 1 568 100 0.090 0.776 675 0.035 0.638 0.853 8
2 100 10 0.050 0.800 1000 0.000 0.700 0.660 1

Query-2 1 100 10 0.050 0.800 1000 0.000 0.700 0.660 0
2 100 10 0.050 0.800 1000 0.000 0.700 0.660 0
3 655 82 0.010 0.683 110 0.261 0.490 0.468 25
4 668 57 0.016 0.574 969 0.441 0.461 0.475 25
5 1126 53 0.351 0.716 928 0.772 0.278 0.420 8
6 758 76 0.500 0.726 916 0.181 0.560 0.203 8

Query-3 1 809 42 0.011 0.526 818 0.124 0.515 0.416 24
2 618 97 0.011 0.665 710 0.726 0.721 0.778 36
3 1212 24 0.012 0.528 558 0.065 0.657 0.424 8
4 818 16 0.012 0.589 673 0.759 0.375 0.749 8

Query-4 1 579 25 0.015 0.548 641 0.697 0.590 0.730 23
2 1254 34 0.010 0.514 163 0.716 0.726 0.613 25
3 572 93 0.024 0.742 222 0.101 0.482 0.611 8
4 914 15 0.188 0.841 952 0.318 0.550 0.367 8

Query-5 1 100 10 0.050 0.800 1000 0.000 0.700 0.660 0
2 100 10 0.050 0.800 1000 0.000 0.700 0.660 0
3 100 10 0.050 0.800 1000 0.000 0.700 0.660 0
4 959 39 0.011 0.747 936 0.712 0.309 0.855 30
5 715 76 0.010 0.534 432 0.232 0.553 0.545 21
6 1131 42 0.431 0.673 727 0.583 0.212 0.563 8
7 1239 99 0.176 0.811 615 0.740 0.621 0.833 8

Query-6 1 874 75 0.402 0.719 758 0.335 0.550 0.738 8
Query-7 1 100 10 0.050 0.800 1000 0.000 0.700 0.660 0

2 879 32 0.015 0.605 470 0.174 0.299 0.675 36
3 593 64 0.010 0.785 651 0.304 0.381 0.818 36
4 593 64 0.010 0.785 651 0.304 0.381 0.818 36
5 1050 71 0.405 0.638 698 0.441 0.397 0.479 8
6 547 22 0.230 0.510 568 0.240 0.510 0.510 8

Query-8 1 100 10 0.050 0.800 1000 0.000 0.700 0.660 0
2 100 10 0.050 0.800 1000 0.000 0.700 0.660 0
3 665 56 0.013 0.553 734 0.147 0.544 0.418 23
4 931 47 0.011 0.576 974 0.680 0.543 0.806 36
5 741 33 0.011 0.527 258 0.154 0.697 0.627 22
6 100 10 0.050 0.800 1000 0.000 0.700 0.660 0
7 910 54 0.172 0.742 594 0.444 0.615 0.563 8
8 1230 41 0.262 0.582 241 0.659 0.604 0.270 8

Query-9 1 100 10 0.050 0.800 1000 0.000 0.700 0.660 0
2 555 67 0.011 0.682 750 0.318 0.770 0.809 180
3 555 67 0.011 0.682 750 0.318 0.770 0.809 180
4 616 67 0.010 0.571 912 0.433 0.775 0.632 144
5 569 25 0.012 0.714 713 0.563 0.817 0.599 36
6 1107 18 0.166 0.780 744 0.129 0.896 0.243 8
7 1038 30 0.034 0.672 648 0.664 0.282 0.702 8

Query-10 1 1220 36 0.358 0.697 568 0.580 0.737 0.633 25
2 100 10 0.050 0.800 1000 0.000 0.700 0.660 0
3 587 83 0.011 0.677 621 0.576 0.605 0.382 36
4 632 99 0.012 0.500 848 0.295 0.400 0.349 20
5 765 40 0.010 0.706 325 0.000 0.637 0.727 21

Query-11 1 100 10 0.050 0.800 1000 0.000 0.700 0.660 0
2 100 10 0.050 0.800 1000 0.000 0.700 0.660 0
3 618 42 0.013 0.506 675 0.091 0.300 0.622 8
4 618 42 0.013 0.506 675 0.091 0.300 0.622 8
5 1292 68 0.325 0.873 962 0.170 0.777 0.591 3

E.R. Lucas Filho, E.C. De Almeida, S. Scherzinger, and H. Herodotou: Preprint submitted to Elsevier Page 15 of 18

Investigating Automatic Parameter Tuning for SQL-on-Hadoop Systems

Table 6
Selected parameter values for each MapReduce job of TPC-H queries 12-22.

Query Job
Id

io.sort.m
b

io.sort.fact
or

io.sort.rec
ord.perce

nt

io.sort.sp
ill.percen

t

mapred.i
nmem.m
erge.thre

shold

mapred.j
ob.reduc
e.input.b
uffer.perc

ent

mapred.jo
b.shuffle.i
nput.buffe
r.percent

mapred.jo
b.shuffle.
merge.per

cent

mapred.
reduce.t

asks

Query-12 1 592 42 0.016 0.646 925 0.403 0.713 0.357 28
2 100 10 0.050 0.800 1000 0.000 0.700 0.660 1
3 1028 40 0.332 0.832 211 0.047 0.394 0.325 7

Query-13 1 551 21 0.011 0.729 332 0.389 0.665 0.709 27
2 604 39 0.016 0.502 215 0.363 0.723 0.874 8
3 1279 62 0.489 0.692 314 0.461 0.838 0.717 8
4 946 11 0.107 0.706 908 0.593 0.618 0.277 8

Query-14 1 645 48 0.455 0.662 673 0.293 0.348 0.585 21
2 100 10 0.050 0.800 1000 0.000 0.700 0.660 1

Query-15 1 745 63 0.257 0.885 745 0.610 0.362 0.230 8
2 669 16 0.223 0.696 30 0.156 0.252 0.827 8
3 516 48 0.011 0.713 964 0.639 0.513 0.617 8
4 532 84 0.334 0.845 36 0.614 0.343 0.427 2

Query-16 1 100 10 0.050 0.800 1000 0.000 0.700 0.660 0
2 100 10 0.050 0.800 1000 0.000 0.700 0.660 0
3 538 81 0.011 0.695 703 0.644 0.535 0.867 25
4 100 10 0.050 0.800 1000 0.000 0.700 0.660 0
5 520 31 0.016 0.515 289 0.144 0.896 0.688 20
6 1261 98 0.014 0.515 952 0.316 0.571 0.318 8

Query-17 1 547 78 0.010 0.678 913 0.606 0.724 0.594 72
2 543 57 0.011 0.560 840 0.172 0.740 0.689 72
3 745 57 0.010 0.550 786 0.251 0.471 0.482 8
4 830 56 0.134 0.776 88 0.288 0.634 0.519 7

Query-18 1 549 26 0.024 0.751 964 0.250 0.869 0.520 27
2 624 97 0.012 0.731 752 0.486 0.663 0.414 36
3 644 79 0.013 0.544 707 0.510 0.607 0.775 72
4 539 59 0.129 0.848 525 0.011 0.419 0.406 8
5 622 87 0.125 0.521 473 0.309 0.706 0.824 8

Query-19 1 612 88 0.012 0.574 405 0.263 0.452 0.898 144
2 1192 27 0.026 0.539 24 0.130 0.495 0.601 8

Query-20 1 980 50 0.463 0.890 346 0.244 0.265 0.648 8
2 856 47 0.011 0.550 888 0.341 0.568 0.484 25
3 100 10 0.050 0.800 1000 0.000 0.700 0.660 0
4 555 67 0.013 0.594 704 0.288 0.561 0.501 21
5 638 49 0.012 0.665 863 0.490 0.439 0.442 8
6 1256 94 0.224 0.579 536 0.273 0.306 0.407 8

Query-21 1 513 29 0.013 0.632 776 0.794 0.571 0.508 72
2 647 61 0.015 0.527 798 0.702 0.529 0.854 36
3 100 10 0.050 0.800 1000 0.000 0.700 0.660 0
4 100 10 0.050 0.800 1000 0.000 0.700 0.660 0
5 714 25 0.011 0.626 483 0.391 0.422 0.341 23
6 539 81 0.012 0.596 777 0.169 0.414 0.568 28
7 633 86 0.015 0.549 460 0.359 0.865 0.856 25
8 1209 47 0.423 0.614 550 0.590 0.599 0.599 8
9 1260 51 0.138 0.736 70 0.000 0.370 0.277 8

Query-22 1 100 10 0.050 0.800 1000 0.000 0.700 0.660 0
2 100 10 0.050 0.800 1000 0.000 0.700 0.660 0
3 1297 82 0.273 0.654 877 0.053 0.338 0.859 8
4 665 24 0.012 0.748 234 0.000 0.347 0.896 24
5 605 40 0.011 0.561 384 0.200 0.334 0.294 8
6 861 68 0.321 0.656 854 0.750 0.237 0.719 8
7 726 29 0.443 0.509 458 0.591 0.709 0.295 8

E.R. Lucas Filho, E.C. De Almeida, S. Scherzinger, and H. Herodotou: Preprint submitted to Elsevier Page 16 of 18

Investigating Automatic Parameter Tuning for SQL-on-Hadoop Systems

References
[1] Afrati, F., Dolev, S., Korach, E., Sharma, S., Ullman,

J.D., 2016. Assignment Problems of Different-Sized In-
puts in MapReduce. ACM Trans. Knowl. Discov. Data 11,
18:1–18:35. URL: http://doi.acm.org/10.1145/2987376,
doi:10.1145/2987376.

[2] Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D.,
Bradley, J.K., Meng, X., Kaftan, T., Franklin, M.J., Ghodsi,
A., Zaharia, M., 2015. Spark SQL: Relational Data Process-
ing in Spark, in: Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, ACM.
pp. 1383–1394. doi:10.1145/2723372.2742797.

[3] Babu, S., 2010. Towards Automatic Optimization of
MapReduce Programs, in: Proceedings of the 1st ACM
Symposium on Cloud Computing, ACM. pp. 137–142.
doi:10.1145/1807128.1807150.

[4] Bao, L., Liu, X., Chen, W., 2018. Learning-based Automatic
Parameter Tuning for Big Data Analytics Frameworks, in:
Proc. of the IEEE Intl. Conf. on Big Data, IEEE. pp. 181–
190.

[5] Bei, Z., Yu, Z., Liu, Q., Xu, C., Feng, S., Song, S., 2017.
MEST: A Model-Driven Efficient Searching Approach for
MapReduce Self-Tuning. IEEE Access 5, 3580–3593. doi:10.
1109/ACCESS.2017.2672675.

[6] Bei, Z., Yu, Z., Zhang, H., Xiong, W., Xu, C., Eeckhout,
L., Feng, S., 2016. RFHOC: A Random-Forest Approach to
Auto-Tuning Hadoop’s Configuration. IEEE Transactions
on Parallel and Distributed Systems 27, 1470–1483. doi:10.
1109/TPDS.2015.2449299.

[7] Cai, L., Qi, Y., Li, J., 2017. A Recommendation-Based
Parameter Tuning Approach for Hadoop, in: Proceedings
of the IEEE 7th International Symposium on Cloud and
Service Computing (SC2), pp. 223–230. doi:10.1109/SC2.
2017.41.

[8] Chen, C.O., Zhuo, Y.Q., Yeh, C.C., Lin, C.M., Liao, S.W.,
2015. Machine Learning-Based Configuration Parameter
Tuning on Hadoop System, in: Proceedings of the 2015
IEEE International Congress on Big Data, IEEE Computer
Society. pp. 386–392. doi:10.1109/BigDataCongress.2015.
64.

[9] Chen, Y., Qin, X., Bian, H., Chen, J., Dong, Z., Du, X.,
Gao, Y., Liu, D., Lu, J., Zhang, H., 2014. A Study of
SQL-on-Hadoop Systems, in: Proceedings of the Workshop
on Big Data Benchmarks, Performance Optimization, and
Emerging Hardware, Springer. pp. 154–166.

[10] Cherkasova, L., 2011. Performance Modeling in MapRe-
duce Environments: Challenges and Opportunities, in: Pro-
ceedings of the 2nd ACM/SPEC International Conference
on Performance Engineering, ACM. pp. 5–6. doi:10.1145/
1958746.1958752.

[11] Chiba, T., Yoshimura, T., Horie, M., Horii, H., 2018. To-
wards Selecting Best Combination of SQL-on-Hadoop Sys-
tems and JVMs, in: Proceedings of the 11th IEEE Inter-
national Conference on Cloud Computing (CLOUD), pp.
245–252. doi:10.1109/CLOUD.2018.00038.

[12] Deshpande, P.M., Margoor, A., Venkatesh, R., 2018. Auto-
matic Tuning of SQL-on-Hadoop Engines on Cloud Plat-
forms, in: Proceedings of the IEEE 11th International
Conference on Cloud Computing (CLOUD), pp. 508–515.
doi:10.1109/CLOUD.2018.00071.

[13] Ding, X., Liu, Y., Qian, D., 2015. JellyFish: Online Per-
formance Tuning with Adaptive Configuration and Elastic
Container in Hadoop Yarn, in: Proceedings of the IEEE 21st
International Conference on Parallel and Distributed Sys-
tems (ICPADS), pp. 831–836. doi:10.1109/ICPADS.2015.
112.

[14] Drill, 2021. Apache Drill: Schema-free SQL Query Engine
for Hadoop, NoSQL and Cloud Storage. https://drill.

apache.org/. 2021 [Online; accessed 25-Feb-2021].
[15] Ead, M., Herodotou, H., Aboulnaga, A., Babu, S., 2014.

PStorM: Profile Storage and Matching for Feedback-Based
Tuning of MapReduce Jobs, in: Proceedings of the 17th Intl.
Conf. on Extending Database Technology (EDBT), pp. 1–
12.

[16] Filho, E.R.L., de Almeida, E.C., Scherzinger, S., 2019.
Don’t Tune Twice: Reusing Tuning Setups for SQL-on-
Hadoop Queries, in: Conceptual Modeling, Springer Inter-
national Publishing. pp. 93–107.

[17] Floratou, A., Minhas, U.F., Özcan, F., 2014. SQL-on-
Hadoop: Full Circle Back to Shared-nothing Database Ar-
chitectures. Proc. of VLDB Endowment (PVLDB) 7, 1295–
1306. doi:10.14778/2732977.2733002.

[18] Glushkova, D., Jovanovic, P., Abelló, A., 2019. MapReduce
Performance Model for Hadoop 2.x. Inf. Syst. 79, 32–43.

[19] Herodotou, H., Babu, S., 2011. Profiling, What-if Analy-
sis, and Cost-based Optimization of MapReduce Programs.
Proc. of VLDB Endowment (PVLDB) 4, 1111–1122.

[20] Herodotou, H., Babu, S., 2013. A What-if Engine for Cost-
based MapReduce Optimization. IEEE Data Eng. Bull. 36,
5–14.

[21] Herodotou, H., Chen, Y., Lu, J., 2020. A Survey on Auto-
matic Parameter Tuning for Big Data Processing Systems.
ACM Computing Surveys (CSUR) 53, 1–37.

[22] Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L.,
Cetin, F.B., Babu, S., 2011. Starfish: A Self-tuning System
for Big Data Analytics, in: Proceedings of the 5th Biennial
Conf. on Innovative Data Systems Research (CIDR), pp.
261–272.

[23] Heudecker, N., Adrian, M., 2015. Survey Analysis: Hadoop
Adoption Drivers and Challenges. Gartner, Inc.

[24] Huai, Y., Chauhan, A., Gates, A., Hagleitner, G., Han-
son, E.N., O’Malley, O., Pandey, J., Yuan, Y., Lee, R.,
Zhang, X., 2014. Major Technical Advancements in Apache
Hive, in: Proceedings of the ACM SIGMOD International
Conference on Management of Data, ACM. pp. 1235–1246.
doi:10.1145/2588555.2595630.

[25] Jain, A., Choudhary, M., 2017. Analyzing & optimizing
Hadoop performance, in: Proceedings of the 2017 Interna-
tional Conference on Big Data Analytics and Computational
Intelligence (ICBDAC), pp. 116–121. doi:10.1109/ICBDACI.
2017.8070820.

[26] Jiang, D., Ooi, B.C., Shi, L., Wu, S., 2010. The Perfor-
mance of MapReduce: An In-depth Study. Proc. of VLDB
Endowment (PVLDB) 3, 472–483.

[27] Khaleel, A., Al-Raweshidy, H., 2018. Optimization of Com-
puting and Networking Resources of a Hadoop Cluster
Based on Software Defined Network. IEEE Access .

[28] Khan, M., Huang, Z., Li, M., Taylor, G.A., Khan, M.,
2017. Optimizing Hadoop parameter settings with gene
expression programming guided PSO. Concurrency Com-
putation URL: http://doi.wiley.com/10.1002/cpe.3786,
doi:10.1002/cpe.3786.

[29] Kornacker, M., Behm, A., Bittorf, V., Bobrovytsky, T.,
Ching, C., Choi, A., Erickson, J., Grund, M., Hecht, D.,
Jacobs, M., et al., 2015. Impala: A Modern, Open-Source
SQL Engine for Hadoop., in: Proceedings of the 7th Bien-
nial Conf. on Innovative Data Systems Research (CIDR),
p. 9.

[30] Kumar, S., Padakandla, S., Chandrashekar, L., Parihar,
P., Gopinath, K., Bhatnagar, S., 2017. Scalable Perfor-
mance Tuning of Hadoop MapReduce: A Noisy Gradient
Approach, in: Proceedings of the IEEE 10th International
Conference on Cloud Computing (CLOUD), pp. 375–382.

[31] Lee, G.J., Fortes, J.A.B., 2016. Hadoop Performance Self-
Tuning Using a Fuzzy-Prediction Approach, in: Proceedings
of the IEEE International Conference on Autonomic Com-
puting (ICAC), pp. 55–64.

E.R. Lucas Filho, E.C. De Almeida, S. Scherzinger, and H. Herodotou: Preprint submitted to Elsevier Page 17 of 18

http://doi.acm.org/10.1145/2987376
http://dx.doi.org/10.1145/2987376
http://dx.doi.org/10.1145/2723372.2742797
http://dx.doi.org/10.1145/1807128.1807150
http://dx.doi.org/10.1109/ACCESS.2017.2672675
http://dx.doi.org/10.1109/ACCESS.2017.2672675
http://dx.doi.org/10.1109/TPDS.2015.2449299
http://dx.doi.org/10.1109/TPDS.2015.2449299
http://dx.doi.org/10.1109/SC2.2017.41
http://dx.doi.org/10.1109/SC2.2017.41
http://dx.doi.org/10.1109/BigDataCongress.2015.64
http://dx.doi.org/10.1109/BigDataCongress.2015.64
http://dx.doi.org/10.1145/1958746.1958752
http://dx.doi.org/10.1145/1958746.1958752
http://dx.doi.org/10.1109/CLOUD.2018.00038
http://dx.doi.org/10.1109/CLOUD.2018.00071
http://dx.doi.org/10.1109/ICPADS.2015.112
http://dx.doi.org/10.1109/ICPADS.2015.112
https://drill.apache.org/
https://drill.apache.org/
http://dx.doi.org/10.14778/2732977.2733002
http://dx.doi.org/10.1145/2588555.2595630
http://dx.doi.org/10.1109/ICBDACI.2017.8070820
http://dx.doi.org/10.1109/ICBDACI.2017.8070820
http://doi.wiley.com/10.1002/cpe.3786
http://dx.doi.org/10.1002/cpe.3786

Investigating Automatic Parameter Tuning for SQL-on-Hadoop Systems

[32] Lee, R., Luo, T., Huai, Y., Wang, F., He, Y., Zhang, X.,
2011. YSmart: Yet Another SQL-to-MapReduce Transla-
tor, in: Proceedings of the 31st International Conference on
Distributed Computing Systems, IEEE. pp. 25–36.

[33] Li, C., Zhuang, H., Lu, K., Sun, M., Zhou, J., Dai, D., Zhou,
X., 2014. An Adaptive Auto-configuration Tool for Hadoop,
in: Proceedings of the 19th International Conference on En-
gineering of Complex Computer Systems, pp. 69–72.

[34] Li, M., Zeng, L., Meng, S., Tan, J., Zhang, L., Butt,
A.R., Fuller, N., 2014. MRONLINE: MapReduce Online
Performance Tuning, in: Proceedings of the 23rd Interna-
tional Symposium on High-Performance Parallel and Dis-
tributed Computing, Association for Computing Machinery.
p. 165–176. doi:10.1145/2600212.2600229.

[35] Liao, G., Datta, K., Willke, T.L., 2013. Gunther: Search-
based Auto-tuning of MapReduce, in: Proceedings of the
European Conference on Parallel Processing, Springer. pp.
406–419.

[36] Lim, H., Herodotou, H., Babu, S., 2012. Stubby: A
Transformation-based Optimizer for MapReduce Work-
flows. Proc. of VLDB Endowment (PVLDB) 5, 1196–1207.

[37] Liu, C., Zeng, D., Yao, H., Hu, C., Yan, X., Fan, Y., 2015.
MR-COF: A Genetic MapReduce Configuration Optimiza-
tion Framework, in: Wang, G., Zomaya, A., Martinez, G.,
Li, K. (Eds.), Proceedings of Algorithms and Architectures
for Parallel Processing, Springer International Publishing.
pp. 344–357.

[38] Liu, J., Ravi, N., Chakradhar, S., Kandemir, M., 2012.
Panacea: Towards Holistic Optimization of MapReduce Ap-
plications, in: Proceedings of the Tenth International Sym-
posium on Code Generation and Optimization, Association
for Computing Machinery. p. 33–43. doi:10.1145/2259016.
2259022.

[39] Mahgoub, A., Medoff, A., Kumar, R., Mitra, S., Klimovic,
A., Chaterji, S., Bagchi, S., 2020. OPTIMUSCLOUD:
heterogeneous configuration optimization for distributed
databases in the cloud, in: Gavrilovska, A., Zadok,
E. (Eds.), 2020 USENIX Annual Technical Conference,
USENIX ATC 2020, July 15-17, 2020, USENIX Associa-
tion. pp. 189–203.

[40] Miner, D., Shook, A., 2012. MapReduce Design Patterns:
Building Effective Algorithms and Analytics for Hadoop and
Other Systems. 1st ed., O’Reilly Media, Inc.

[41] Nykiel, T., Potamias, M., Mishra, C., Kollios, G., et al.,
2010. MRShare: Sharing across multiple queries in MapRe-
duce. Proc. of VLDB Endowment (PVLDB) 3, 494–505.

[42] Poggi, N., Berral, J.L., Fenech, T., Carrera, D., Blakeley, J.,
Minhas, U.F., Vujic, N., 2016. The state of SQL-on-Hadoop
in the cloud, in: Proceedings of the 2016 IEEE International
Conference on Big Data (Big Data), pp. 1432–1443.

[43] Presto, 2019. Presto: Distributed SQL Query Engine for Big
Data. https://prestodb.github.io/. [Online; accessed 25-
Feb-2021].

[44] Rajaraman, A., Ullman, J.D., 2011. Mining of Massive
Datasets. Cambridge University Press.

[45] Sarma, A.D., Afrati, F.N., Salihoglu, S., Ullman, J.D., 2013.
Upper and Lower Bounds on the Cost of a Map-Reduce
Computation. Proc. of VLDB Endowment (PVLDB) 6.

[46] Shi, J., Zou, J., Lu, J., Cao, Z., Li, S., Wang, C., 2014.
MRTuner: A Toolkit to Enable Holistic Optimization for
MapReduce Jobs. Proc. of VLDB Endowment (PVLDB) 7,
1319–1330.

[47] Shvachko, K., Kuang, H., Radia, S., Chansler, R., et al.,
2010. The Hadoop Distributed File System, in: Proceedings
of the IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), pp. 1–10.

[48] Singhal, R., Singh, P., 2017. Performance Assurance Model
for Applications on SPARK Platform, in: Proceedings of
the Technology Conference on Performance Evaluation and

Benchmarking (TPCTC), Springer. pp. 131–146.
[49] Song, G., Meng, Z., Huet, F., Magoules, F., Yu, L., Lin,

X., 2013. A Hadoop MapReduce Performance Prediction
Method, in: Proceedings of the IEEE 10th International
Conference on High Performance Computing and Commu-
nications, pp. 820–825.

[50] Tajo, 2021. Tajo: A Big Data Warehouse System on
Hadoop. https://tajo.apache.org/. [Online; accessed 25-
Feb-2021].

[51] The Apache Software Foundation, 2020. Rumen:
A tool to extract job characterization data form.
https://hadoop.apache.org/docs/r1.2.1/rumen.html. [On-
line; accessed 25-Feb-2021].

[52] The Apache Software Foundation, 2021. SPIP: Sup-
port Stage level resource configuration and scheduling.
https://issues.apache.org/jira/browse/SPARK-27495. [On-
line; accessed 25-Feb-2021].

[53] Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., et al., 2009.
Hive: A warehousing solution over a Map-Reduce frame-
work. Proc. of VLDB Endowment (PVLDB) 2, 1626–1629.

[54] TPC, 2021. TPC Benchmark H Standard Specifica-
tion. http://tpc.org/TPC_Documents_Current_Versions/
pdf/tpc-h_v2.18.0.pdf. [Online; accessed 25-Feb-2021].

[55] Van Aken, D., Pavlo, A., Gordon, G.J., Zhang, B., 2017.
Automatic Database Management System Tuning Through
Large-Scale Machine Learning, in: Proceedings of the 2017
ACM SIGMOD International Conference on Management of
Data, Association for Computing Machinery. p. 1009–1024.
URL: https://doi.org/10.1145/3035918.3064029, doi:10.
1145/3035918.3064029.

[56] Wang, G., Xu, J., He, B., 2016. A Novel Method for Tuning
Configuration Parameters of Spark based on Machine Learn-
ing, in: Proc. of the 18th Intl. Conf. on High Performance
Computing and Communications, IEEE. pp. 586–593.

[57] Wang, K., Lin, X., Tang, W., 2012. Predator — An expe-
rience guided configuration optimizer for Hadoop MapRe-
duce, in: Proceedings of the 4th IEEE International Con-
ference on Cloud Computing Technology and Science, pp.
419–426.

[58] Wu, D., Gokhale, A., 2013. A self-tuning system based on
application Profiling and Performance Analysis for optimiz-
ing Hadoop MapReduce cluster configuration, in: Proceed-
ings of the 20th Annual International Conference on High
Performance Computing, pp. 89–98.

[59] Xin, R.S., Rosen, J., Zaharia, M., Franklin, M.J., Shenker,
S., Stoica, I., 2013. Shark: SQL and rich analytics at scale,
in: Proceedings of the 2013 ACM SIGMOD International
Conference on Management of data, ACM. pp. 13–24.

[60] Yigitbasi, N., Willke, T.L., Liao, G., Epema, D., 2013. To-
wards machine learning-based auto-tuning of mapreduce, in:
Proceedings of the 2013 IEEE 21st International Sympo-
sium on Modelling, Analysis and Simulation of Computer
and Telecommunication Systems, pp. 11–20.

[61] Zhang, B., Křikava, F., Rouvoy, R., Seinturier, L., 2016.
Self-balancing job parallelism and throughput in hadoop, in:
Jelasity, M., Kalyvianaki, E. (Eds.), Proceedings of the Dis-
tributed Applications and Interoperable Systems, Springer.
pp. 129–143.

[62] Zhang, Z., Cherkasova, L., Loo, B.T., 2013a. AutoTune:
Optimizing Execution Concurrency and Resource Usage in
MapReduce Workflows, in: Proceedings of the 10th Inter-
national Conference on Autonomic Computing (ICAC), pp.
175–181.

[63] Zhang, Z., Cherkasova, L., Loo, B.T., 2013b. Benchmarking
Approach for Designing a MapReduce Performance Model,
in: Proceedings of the 4th ACM/SPEC International Con-
ference on Performance Engineering, ACM. pp. 253–258.
doi:10.1145/2479871.2479906.

E.R. Lucas Filho, E.C. De Almeida, S. Scherzinger, and H. Herodotou: Preprint submitted to Elsevier Page 18 of 18

http://dx.doi.org/10.1145/2600212.2600229
http://dx.doi.org/10.1145/2259016.2259022
http://dx.doi.org/10.1145/2259016.2259022
https://prestodb.github.io/
https://tajo.apache.org/
http://tpc.org/TPC_Documents_Current_Versions/pdf/tpc-h_v2.18.0.pdf
http://tpc.org/TPC_Documents_Current_Versions/pdf/tpc-h_v2.18.0.pdf
https://doi.org/10.1145/3035918.3064029
http://dx.doi.org/10.1145/3035918.3064029
http://dx.doi.org/10.1145/3035918.3064029
http://dx.doi.org/10.1145/2479871.2479906

