
Operand Size Reconfiguration for Big Data
Processing in Memory

Paulo C. Santos†, Geraldo F. Oliveira†, Diego G. Tomé‡, Marco A. Z. Alves‡, Eduardo C. Almeida‡, Luigi Carro†
†Informatics Institute – Federal University of Rio Grande do Sul – Porto Alegre, Brazil

‡Department of Informatics – Federal University of Paraná – Curitiba, Brazil
Email: †{pcssjunior, gfojunior, carro}@inf.ufrgs.br ‡{dgtome, mazalves, eduardo}@inf.ufpr.br

Abstract—Nowadays, applications that predominantly per-
form lookups over large databases are becoming more popular
with column-stores as the database system architecture of choice.
For these applications, Hybrid Memory Cubes (HMCs) can
provide bandwidth of up to 320 GB/s and represents the best
choice to keep the throughput for these ever increasing databases.
However, even with the high available memory bandwidth and
processing power, in order to achieve the peak performance,
data movements through the memory hierarchy consumes an
unnecessary amount of time and energy. In order to accelerate
database operations, and reduce the energy consumption of
the system, this paper presents the Reconfigurable Vector Unit
(RVU) that enables massive and adaptive in-memory processing,
extending the native HMC instructions and also increasing its
effectiveness. RVU enables the programmer to reconfigure it
to perform as a large vector unit or multiple small vectors
units to better adjust for the application needs during different
computation phases. Due to its adaptability, RVU is capable of
achieving performance increase of 27× on average and reduce
the DRAM energy consumption in 29% when compared to an
x86 processor with 16 cores. Compared with the state-of-the-
art mechanism capable of performing large vector operations
with fixed size, inside the HMC, RVU performed up to 12%
better in terms of performance and improve in 53% the energy
consumption.

Keywords—In-Memory Processing, Big Data, Database, Recon-
figurable, Vector Instructions, Hybrid Memory Cube

I. INTRODUCTION

The amount of data being created and stored by modern
applications is ever increasing, such large data sets so-called
big data need to be available with fast access to be searched,
analyzed and modified when it is necessary, supporting a large
number of parallel operations. Such rapid availability becomes
a key to productivity and innovation growth in the industry [1].
Although storage space in the big data scenario is not a critical
problem for modern systems, to efficiently operate over those
big portions of data can be a challenging task for both hardware
and software designers. In a processor-based system, data has
to travel over the whole memory hierarchy, passing through
the disk, main memory, cache memories and registers until it
can be processed by the functional units inside the processing
cores. In addition, modern processors are composed of tens or
hundreds of cores, imposing high pressure in the main memory.

Traditional main memory technologies, as DDR memories,
have a series of constraints associated with its architecture,
from high latency to reduced bandwidth. For that reason,

The authors gratefully acknowledge the support of CNPq and CAPES.

hardware designers have recently proposed new memory tech-
nologies and architectures, such as the Hybrid Memory Cube
(HMC). They are turning out as an attractive alternative over
traditional memory architectures [2] since it can be used to
mitigate those limitations. HMC devices are based on the 3D
stack technology, where layers of DRAM and logic elements
are stacked on the same chip. It uses Through-Silicon Vias
(TSVs) [3] technology to communicate through layers [4], [5].
The internal HMC architecture is formed by 32 vaults that
can independently access DRAM banks. That increases overall
available parallelism, providing both higher performance and
considerably lower energy consumption in comparison to the
current memory systems.

The logic layer inside the HMC implements the vault
controller plus several Functional Units (FUs) capable of
performing arithmetic and logical atomic instructions with
operands size of up 16 bytes. Each vault has its indepen-
dent FUs enabling in-memory processing. Previous research
showed that HMC working as a memory device only, can be
inefficient when executing streaming applications and some
database operations due to traditional memory hierarchy and
processors architecture. However, even when considering the
in-memory processing capabilities, the HMC instructions are
also inefficient for such stream applications, due to the re-
duced operand size supported. Thus, previous work proposed
different ways to overcome such limitation, with large vector
instructions for instance. Such large vector instructions can
handle homogeneous applications, however, it waste resources
for applications with dynamic behavior, such data lookups in
database systems.

In this paper, we propose Reconfigurable Vector Unit
(RVU), a mechanism that performs in-memory operations
inside HMC devices, extending and improving the instruction
set available inside these memories. Our mechanism adapts
its vector units to handle each computation phase inside the
applications better. RVU presents flexibility to operate over 1×
vector of 8 KB of contiguous data, or 32× vectors of 256 B,
where each vector can operate over different data ranges.

Compared to regular x86 operations, we avoid data move-
ments among memory and processor for streaming applications
by performing in memory computation. Thus, reducing the
energy consumed by the cache hierarchy while increasing
the overall system performance, once cache pollution is also
reduced. Compared to related work that performs fixed size
vector operations inside the memory [6], RVU is capable
of reducing unnecessary computation. Considering a scenario
where only parts of a large vector are required to be computed,

previous work needs to allocate a full-width vector unit to that
memory area. Meanwhile, our mechanism can be reconfigured
to break the large vector unit into multiple smaller units
performing operations over different data chunks, increasing
the system efficiency.

Experimental results executing database predicates show
that RVU performs on average 22× better than traditional
x86 architectures with 16 cores and HMC memory. It also
has improved performance over the previous state-of-the-art
mechanism by 12% on average.

II. BACKGROUND

Columnar Database System (CDBS) or column-stores for
short were originated from the Decomposed Storage Manage
(DSM) during the early 80’s as an alternative for traditional
row-oriented database systems [7]. During the recent years,
the increasing amount of data being generated put column-
stores under the spotlight again. In particular, decision support
systems (DSS) require querying large amounts of data, where
queries are less predictable, longer lasting, more read-oriented,
and more attribute-focused than before with modifications in
batch processing [8]. These are also common characteristics
of big data programs that made column-stores as the database
system architecture of choice. In fact, [9] shows from an
interview with 357 Big Data experts that 33% of DBMS
used among them are already column-store ones, and others
34% expect to adopt column-store systems in the next three
years. In addition, several commercial and non-commercial
column-store DBMS have become popular in the past years
as MonetDB, HP Vertica, VectorWise and Infobright.

Column-stores create vertical even partitions of a table,
where each partition maps to an attribute. The goal is to store
the partitions contiguously in a block of data and only scan
over the required attributes, instead of the whole tuple of the
row-stores [10], as illustrated in Figure 1. Query processing
requires joining partitions to reconstruct the output tuple and
to apply filters. We stick to the implicit method of tuple
reconstruction from MonetDB [11], where each partition is
an array with the index matching each tuple in any other array
(e.g., partitions Column1 and Column2 of equal lengths i
for which Column1[i] = Column2[i]). To apply filters, when
a partition Column1 is scanned to validate a query filter,
only the matching indices are used to scan the next partition
Column2. This process is called “late materialisation” and its
goal is to avoid computing unwanted data and speedup reads
(Figure 2).

Besides, column-stores enhance compression with parti-
tions storing the same data type, speedup aggregation queries,
and expose parallelism in the system to fetch partitions con-
currently [12]. On the other hand, inserting and updating from
such databases systems are expensive operations. Multiple
memory requests are needed to recover a single tuple of the
table, since attributes are spread all over the storage device
[13]. Therefore, this database implementation is not a suitable
choice for heavily transaction-based applications.

III. PERFORMING DATABASE OPERATIONS IN HMCS

The primary focus of this work is to improve the overall
performance and reduce energy consumption of traditional

database operations. Our mechanism uses the Processor-in-
Memory (PIM) approach taking advantage of the logic layer
provided by Hybrid Memory Cube (HMC). The PIM strat-
egy enables reducing energy consumption by decreasing the
number of data movements between the main memory and
host processors. Moreover, since the PIM layer is capable of
processing database requests with similar performance to the
host device, it is possible to achieve a significant speedup for
the whole system. To achieve these goals, we focus on column-
structured databases, which allow vector operations.

In a traditional system composed of the host processor,
several levels of caches, main memory and disk, during full
column scans a Database Management System (DBMS) will
spend a significant amount of time requesting data from
memory. First, it will load all data from each column into the
memory hierarchy (i.e. caches L3, L2, and L1). Once data
is available, it will compute the query and return selected
data. These steps suffer from two major problems. First, the
collected data have a streaming behavior and presents poor
temporal locality, which hurts cache efficiency [14]. This
happens because it is likely that the DBMS will load a large
amount of data before the materialization, when some data will
get reused. Second, for a query that involves more than one
column, the host processor will have to move unnecessary data
through the system to check whether its value is relevant to the
computation or not. Figure 2 illustrates a query over 3 columns,
showing that for the second and third columns, some portions
of data are not relevant, since they represent a mismatch in
the previous column. In a composed database query, data
movements can be reduced by checking the previous predicate
before requesting data from memory. However, in this case, the
cache line size defines the minimum aligned chunk of data to
be accessed.

On the other hand, using a near-data approach like the one
proposed by [6] would possibly mitigate the first issue cited
above. However, the static nature of the [6] will not solve the
second issue. The reason is that [6] always operates over 8 KB
of contiguous data at the time, accessing, in many cases, large
portions of data not required.

In contrast, our mechanism Reconfigurable Vector Unit
(RVU) aims at solving both issues by enabling the applications
to configure the appropriate data block size, and also by
reducing the total amount of data being transferred between
memory and processor. It is important to notice that, if RVU
is configured with the same size of HMC Instruction Vector
Extensions (HIVE) (i.e. 8 KB), it can achieve similar results.
However, if reconfigured to use smaller vector sizes, it can
be better adjusted for the application needs. RVU works as

Region Key

000
001
010

Language

German
German
Italian

Country

Germany
Switzerland

Italy

010 Italian Italy2

001 German Switzerland1

000 German Germany0

Row-storage Database

010

Italian

Italy2

001

German

Switzerland

1

000

German

Germany

0

Column-storage Database

Fig. 1: Storage model alternatives for the logical database.

Unknown
Match

Column 0

Col.0
Scan

Unknown
Match

Column 1

Unwanted
Data

Unknown
Match

Unwanted
Data

1
1
…
1
0
…
0
1
…
1
0
…
0

Col. 0 bitmap
of matches

Column 2

Unknown
Match

Unwanted
Data

Unknown
Match

Unwanted
Data

1
…
1
0
0
0
…
0
1
…
0
…
0

Col.1
Scan

1
…
0
0
0
…
0
0
0
1
0
…
0

Col.2
Scan

Col. 1 bitmap
of matches

Col. 2 bitmap
of matches

Fig. 2: Late materialization of tuples in query processing over
column-stores.

follows:

1. The host device sends a configuration parameter to RVU.
This configuration parameter will dictate the appropriate vector
size, ranging between 8 KB to 256 bytes. A large vector is
suitable when the data being accessed is contiguous through
the memory. On the other hand, small vectors will benefit from
a sparse memory request. The application can decide the most
suitable vector size for one column by analyzing the previously
one.

2. Once configured, RVU will access and operate over data
blocks of the defined size. Furthermore, it will compute the
requests and return to the host device a bitmap vector that
represents the results. This bitmap is the simplest form to
inform for each entry if there was a match or not, reducing
thus the amount of data being transmitted to the processor.

3. Based on how zeros and ones are distributed over the
resultant bitmap vector, the application can reconfigure RVU
with the appropriated size for the next step.

For example, consider the following query against the table
in Figure 1:
1 SELECT
2 sum (l_extendedprice * l_discount)
3 FROM
4 lineitem
5 WHERE
6 l_shipdate < date ’1995-01-01’
7 AND [0.06] + 0.01-01
8 AND l_quantity < 24

First, the application does not have any information about
data pattern, so it will likely configure our mechanism to
operate over the maximum vector size supported, i.e., 8 KB.
RVU will compute all data from the l shipdate column inside
RVU checking for dates before 1995-01-01, and returning
to the host the bitmap corresponding to the matches in that
column. Secondly, based on the previous bitmap, the host
can generate a proper RVU configuration for the next search,
for instance 2 vectors of 4 KB. Then, only requests for the
appropriate memory address will be created for the l discount
column. In this stage, RVU will check for discounts ranging
between 0.07 and 0.05, and return to the host the bitmap
corresponding to that second column. For the third column,
RVU can be reconfigured again to a smaller size and will
access the requested addresses and return the last query result

bitmap. Thus, during the query execution, RVU could be
adapted to reduce the waste of resources and reduce the access
over unwanted data.

A. Processor to Memory Interface

When the application needs to perform a data search
through the database, it makes the processor to trigger special
instructions to the memory system. These instructions are
similar to the HMC or HIVE instructions proposed by [6].
RVU operates as a load-store architecture, where the internal
registers can be used during computations. For each instruc-
tion, the processor can add the base read address or register.
Like in the HMC, some operations will return their status
to the processor after being executed, for instance, during
comparisons a bitmap is returned to the processor as part of
the status.

The processor also adds within each instruction the vector
size to be used. This information dictates the memory window
size. For example, if the processor decides that one small
vector is enough to perform the actual computation, the vector
size will be 256 bytes. In other words, it means that only one
RVU unit will read and operate through 256 bytes of data
at the time. Otherwise, if the processor issues an instruction
where it is necessary to use 32 vectors, all available RVUs will
be enabled, each one reading 256 bytes of data, in a total of
8 KB of data at the time.

Once the memory computation finishes, the processor will
receive an acknowledge signal from our device. Then, the
processor can either emit another special instruction or read the
resultant bitmap vector from the store address it has indicated.
With the bitmap information, the processor can also decide
how many PIMs units it should use at the next request by
checking how sparse or dense the resulted bitmap vector is.

Likewise, the processor is responsible for deciding how
many RVU instructions it needs to trigger to compute the
whole database column. For example, if the target column
has a size of 80 KB of data, and it has been decided that
the most suitable vector size to use during the computation
was 8 KB, the processor will need to issue 10 instructions
for our device over time. Also, the processor needs to manage
the address fields in the instruction, doing appropriate memory
calculation at each new instruction, until it reaches the end of
the column. We consider that the compiler can generate code
for our mechanism in a similar way it generates code to use
different AVX vector sizes.

B. Memory Interface

Figure 3 depicts our proposed design. RVU only adds
elements to the logic layer of the HMC device. In total, we
have added 32 RVU units. Each unit is composed simply of
a small register bank and a set of Functional Units (FUs).
The register bank has 8 internal registers, used to store data
from memory partitions (working as input register), or to store
temporary computation results (working as an output register).
Each register is 256 bytes wide, being able to read all elements
of the memory row buffer at once. In our design we consider
to use the FUs as the related work in order not to restrict the
applications handled by RVU. Finally, each RVU is connected
directly to the HMC vaults.

Cross-bar switch

Vault 0
logic

16
lanes

16
lanes

16
lanes

16
lanesLinks

Vault 1
logic

Vault 31
logic

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

DRAM
layers

...
Logic
layer

Read
buffer

Write
buffer

DRAM sequencer

Vault controller
HMC vaults

PIM

PIM
Small

Register
bank

Simple
Processing Units

PIM
sequencer

Stat. Inst.

Data

Stat/Rqst

PIM inst.

PIM PIM

Fig. 3: RVU architecture.

Once a vector unit receives an RVU load instruction from
the host processor, it will issue load requests to the vault logic.
When the vault responds to the request, the loaded data will
be stored in the register file. Thus, the next instructions can
perform operations over data inside the register file, and also
store the data whenever it is necessary. After each operation
finishes, RVU sends an acknowledge signal to the host pro-
cessor, in a similar way performed by AVX instructions. For
each 8192 byes of data requested, only 2048 bits of data will
be generated as a result. Therefore, at the end of the operation,
less data needs to be send to the processor.

The reconfigurable nature of our mechanism can be accom-
plished due to an extra field in the instruction. Once the host
processor decides the appropriate vector size to work with, it
triggers the instruction to RVU indicating how many vector
units are suitable for the actual computation.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, the methodology and evaluation results are
presented. To evaluate RVU we used a cycle-accurate simulator
[15]. This simulator allows us to model our custom hardware
inside the HMC providing the necessary consideration about
all timing issues to simulate our mechanism accurately.

A. Baselines and Configuration Parameters

To compare with our design, two baselines were chosen.
The first baseline considered was inspired by the Intel Sandy
Bridge processor microarchitecture. The Sandy Bridge was
configured with 16 cores and AVX512 instruction set capabil-
ities, and in all cases, the main memory used was HMC which
provides high bandwidth. The second baseline was the related
work HIVE mechanism, presented in [6]. HIVE is capable of
processing 8192 bytes per operation in-memory.

We focused our experiments on TPC-H [16], a decision
support database benchmark widely adopted to assess the
performance of column-stores. TPC-H consists of a suite of
twenty-two business oriented ad-hoc queries that have broad
industry-wise relevance and examine large volumes of data. In
our experiments, we stick to a mix of three particular queries:
TPC-H 04, 06 and 22. Due to the target in near-data processing,
these queries were chosen by their feature in expression

TABLE I: Baseline, HMC and PIM configurations.

OoO Execution Cores 16 cores @ 2.0 GHz, 32 nm; 6-wide out-of-order;
Buffers: 18-entry fetch, 28-entry decode; 168-entry ROB;
MOB entries: 64-read, 36-write; 1-load and 1-store units (1-1 cycle);
3-alu, 1-mul. and 1-div. integer units (1-3-32 cycle);
1-alu, 1-mul. and 1-div. floating-point units (3-5-10 cycle);
Branch predictor: Two-level GAs. 4,096 entry BTB; 1 branch per fetch;

L1 Data + Inst. Cache 32 KB, 8-way, 2-cycle; 64 B line; LRU policy;
MSHR size: 10-request, 10-write, 10-eviction; Stride prefetch: 1-degree;

L2 Cache Private 256 KB, 8-way, 4-cycle; 64 B line; LRU policy; ;
MSHR size: 20-request, 20-write, 10-eviction; Stream prefetch: 2-degree;

L3 Cache Shared 40 MB (16-banks), 2.5 MB per bank, 16-way, 6-cycle;
64 B line; LRU policy; Bi-directional ring; Inclusive; MOESI protocol;
MSHR size: 64-request, 64-write, 64-eviction;

HMC v2.0 Module 32 vaults, 8 DRAM banks/vault, 256 B Row buffer;
8 GB total size; DRAM@166 MHz; 4-links@8 GHz; Inst. lat. 1 CPU cycle
8 B burst width at 2:1 core-to-bus freq. ratio; Closed-row policy;
DRAM: CAS, RP, RCD, RAS and CWD latency (9-9-9-24-7 cycles);

HIVE Processing Logic Operation frequency: 1 GHz;
Up to 2,048 functional units (integer + floating-point);
Latency (cycles): INT: 1-alu, 3-mul, 20-div; FP: 5-alu, 5-mul, 20-div;
Register bank with 8 registers of 8,192 bytes each;

RVU Processing Logic Operation frequency: 1 GHz;
Up to 32x 64 functional units (integer + floating-point);
Vector sizes (bytes): 32x 256, 16x 512, 8x 1024, 4x 2048, 2x 4096, 1x 8192
Latency (cycles): INT: 1-alu, 3-mul, 20-div; FP: 5-alu, 5-mul, 20-div;
Register bank: 8 sets of 32 composable registers of 256 bytes each;

calculation and data access locality [17]. They implement
complex boolean expressions consisting of conjunctions and
disjunctions in large volume tables without join operations
between tables. We let join operations for future work as it
requires understanding the impact of each one of the many
different join algorithms on HMC.

Moreover, we did not implement all of the columns of
the TPC-H database. However, this does not bring about any
influence on the results as column-stores only access the
required columns to solve a query, as discussed in Section II.
In our experiments, we are limited to the columns accessed
by our query-mix. Although our experiments focus only on
database systems, we consider that regarding other applications
our mechanism would behave with similar performance than
previous proposals when using the same vector size.

B. Performance Results

The performance results for the baselines and RVU execut-
ing the TPC-H query 06 are presented on Figure 4. To better
detail the explanation, the results are divided on a column
basis.

In this case, column 0 is entirely scanned and its results
are used to guide the search in the next column, as previously
explained in Section III. In this way, as this first column needs
to be fully scanned the maximum vector instruction size are
adopted, that is the reason why RVU performance is equivalent
to HIVE. It means that both operated over 8192 bytes. At this
first step, it is possible to see the pure performance of the in-
memory approach compared to the multi-core x86 processor.

After processing the column 0, the host processor can
analyze the resulting bitmap and determine the new operand

1.0

16.7 16.7

1.0

9.7 10.8

1.0

6.1
9.2

0

5

10

15

20

16 Cores HIVE RVU 1x 16 Cores HIVE RVU 4x 16 Cores HIVE RVU 8x

Column 0 Column 1 Column 2

Sp
ee

d
u

p

Fig. 4: Detailed performance results for TPC-H query 06.

size, while HIVE architecture keeps the same operation size.
The best configuration to access column 1 from the analysis
of the bitmap is 2048 bytes. Thus, four vectors of 2048 bytes
may access different memory ranges. That reduces the load
footprint from the main memory, reducing the amount of
unwanted data accessed and also providing acceleration to the
column search. On the conclusion of the column 1 search, a
new bitmap is available, so the main processor can use that
information. For the column 2, eight operands of 1024 bytes
each represents the optimal configuration.

Figure 5 presents the performance results for queries 04,
06 and 22 from TPC-H. For query 04, the small gain shown by
RVU occurs due to the fact that most of the entries in the first
column did not match the predicate. Thus, a limited number
of accesses are required to scan all remaining addresses,
which reduces the possibilities of acceleration. In this way,
our mechanism executing query 04 could achieve a speedup
of 18× compared to 16 cores and 8% when compared to HIVE.
For query 06, RVU performed 13× better than 16 cores and
16% better than HIVE. For query 22, it was possible to achieve
a speedup of 50× compared to 16 cores, and to accelerate 13%
when compared to HIVE.

C. Energy Results

This subsection presents the impact of our mechanism on
the DRAM memory energy consumption. Regardless of PIM
approach, our reconfigurable techniques presents a substantial
reduction in data access, compared to the related work. RVU
contribution can be translated into a reduction of the un-
wanted data access, exploring the near-optimal operand size for
each operation. To evaluate the energy consumption from the
DRAM layers of HMC we used the Cacti 6.5P tool available
inside the McPAT toolset [18]. Considering both data accesses
from each application and RVU configuration, we evaluate the
impact of our mechanism on energy reduction.

1.0

16.7 18.0

1.0

10.9 12.7

1.0

44.3
50.2

0

10

20

30

40

50

60

1
6

 C
o

re
s

H
IV

E

R
V

U
1

x-
1

6
x-

3
2

x

1
6

 C
o

re
s

H
IV

E

R
V

U
1

x-
4

x-
8

x

1
6

 C
o

re
s

H
IV

E

R
V

U
1

x-
4

x-
3

2
x

TPC-H Query 04 TPC-H Query 06 TPC-H Query 22

Sp
ee

d
u

p

Fig. 5: Performance results for TPC-H queries.

100.0% 100.0%

52.7%

100.0%

153.5%

67.3%

100.0%
116.2%

91.3%

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

1
6

 C
o

re
s

H
IV

E

R
V

U
1

x-
1

6
x-

3
2

x

1
6

 C
o

re
s

H
IV

E

R
V

U
1

x-
4

x-
8

x

1
6

 C
o

re
s

H
IV

E

R
V

U
1

x-
4

x-
3

2
x

TPC-H Query 04 TPC-H Query 06 TPC-H Query 22

N
o

rm
al

iz
ed

 D
R

A
M

 E
n

er
gy

Fig. 6: Energy consumption results for TPC-H queries.

Figure 6 presents the normalized energy results for queries
04, 06, and 22 from TPC-H. In this figure, we can observe
mainly two aspects of vector operations. First, since they
operate over large chunks of data, in the case of a column
with few entries of interest split among the column, the
x86 operations will have a smaller footprint, consuming thus
less DRAM energy. In the case of RVU this overhead can
be reduced by using smaller vectors. The second aspect is
regarding the memory alignment. Since the caches operate
aligned in the cache line size factor, the vector units inside the
memory do not have such constraint, enabling the program to
reduce the memory footprint of data accessed by the vectors.

Energy results for query 04 show that both baselines,
with 16 cores or with HIVE had the same DRAM energy
consumption. However, the better adjustment of RVU for each
phase will reduce the amount of unwanted data accessed, hence
reducing the energy consumption by 48 %. For query 06, HIVE
accessed more data than required by the 16 core system, due
to the fixed large operand size. In contrast, RVU was capable
of reducing the amount of access to unused data reducing
the energy consumption by 22%. Finally, for query 22, RVU
reduced by 9% the energy consumed compared to the 16 core
system.

V. RELATED WORK

A significant portion of efforts to mitigate the so-called
memory wall addresses the different speeds between traditional
Dynamic Random Access Memory (DRAM) memories and
today’s CPU cores. One could categorize all these related
works into two broad classes, one that places logic inside
the DRAM structure, and another one outside the memory.
In the former one, [19] proposes to increase the number of
memory ports and data buses. Then, a vector processing unit
can be added inside the DRAM module to take advantage of
the extra bandwidth. On the other hand, [20] places several
functional units together with the memory sensor amplifiers.
Each functional unit can operate at the bit level. Similar
to [19], [20], Alves et. al [21] implement vector extensions
inside the memory with a set of vector units per devices,
sharing resources through row buffers. The main problem with
all these approaches is to merge logic together within the
already challenging DDR development task. In the latter class
of related work, one could find studies such as [22], [23],
and [24]. In the first one, Farmahini-Farahani et. al. present a
3D DRAM-processor accelerator that connects a lightweight
CPU-core with a 2D DRAM die using Through-Silicon Via
(TSV). Similarly, [23] proposes a Coarse-Grain Reconfigurable

Array (CGRA) on the top the memory, also connecting both
systems by TSV. Finally, in JAFAR [24], a simple functional
unit designed to compute relational operations, is connected
to the memory I/O buffer, aiming to accelerate column-stores
database systems. In brief, those methodologies suffer from not
taking full advantage of the internal memory bandwidth and
relying on the programmer to decide the application portion
to be optimized.

In the past years, the now feasible implementation of 3D-
DRAM stacked memories has motivated several new studies
in the Near-Data Processing (NDP) field. For instance, [25]
adds to the logic layer of a HMC device, sixteen ARM A5-like
processors to improve MapReduce workloads. [26] introduces
a sophisticated pipelined processor in the HMC logic layer. In
[6], the authors present HIVE, a vector processor instruction
extension that allows the HMC system to perform vector
operations. Finally, [27] shows an accelerator system to speed
up graph-based databases. It uses sixteen HMC devices to store
and compute graphs operands. All HMC modules are seen as
an accelerator by the system, and computation is scheduled
explicitly using a proposed programming model.

All those works mentioned, whether based on 2D-DRAM
memories or 3D-HMC technology, have one major issue
in common: they assume that the in-memory computation
will mostly have a streaming style behavior. The number of
computational resources is decided during the design phase,
expecting to make use of all internal or external provided
bandwidth. However, this methodology can cause a waste of
logic elements, since applications have different needs for
data at a given period. Without our provided reconfiguration,
unnecessary power dissipation due to unmatched bandwidth
is required from the system, decreasing also the overall sys-
tem performance. Our approach aims to eliminate this static
behavior by dynamically deciding the appropriate number of
accelerator units and their necessary data bus width.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented RVU, a reconfigurable mecha-
nism that is capable of better matching different application
phases. Due to its reconfigurability, RVU can operate over
either large or small chunks of data, being suitable for ap-
plications that have such dynamic behavior, like column-store
databases. When compared to another state-of-the-art vector-
processing mechanism, RVU shows a significant performance
improvement of 12%. Our system can enhance overall perfor-
mance by reducing the number of operations over unnecessary
data while enabling its functional units to perform the required
computation using only wanted data. As a future work, we
plan to propose a metric to remove from the software layer
the responsibility of choosing the best size to reconfigure the
vector units during the runtime.

REFERENCES

[1] M. Stonebraker, S. Madden, and P. Dubey, “Intel big data science and
technology center vision and execution plan,” ACM SIGMOD Record,
vol. 42, 2013.

[2] Altera, “Hybrid memory cube controller IP core user guide,” 2015,
https://www.altera.com/solutions/technology.html.

[3] J. V. Olmen, A. Mercha, G. Katti et al., “3D stacked IC demonstration
using a through silicon via first approach,” in Int. Electron Devices
Meeting, 2008.

[4] Hybrid Memory Cube Consortium, “Hybrid memory cube specification
rev. 2.0,” 2013, http://www.hybridmemorycube.org/.

[5] J. Jeddeloh and B. Keeth, “Hybrid memory cube new DRAM architec-
ture increases density and performance,” in Symp. on VLSI Technology,
2012.

[6] M. A. Z. Alves, M. Diener, P. C. Santos, and L. Carro, “Large vector
extensions inside the HMC,” in Conf. on Design, Automation & Test in
Europe, 2016.

[7] G. P. Copeland and S. N. Khoshafian, “A decomposition storage model,”
SIGMOD Rec., vol. 14, no. 4, May 1985.

[8] P. B. S. K. Dhindsa, “A comparative study of database systems,” Int.
Journal of Engineering and Innovative Technology, pp. 267–269, 2012.

[9] P. Russom, Managing big data, The Data Warehousing Institute, 2013.
[10] S. Manegold, P. A. Boncz, and M. L. Kersten, “Optimizing database ar-

chitecture for the new bottleneck: Memory access,” The VLDB Journal,
vol. 9, no. 3, Dec. 2000.

[11] P. Boncz, M. Zukowski, and N. Nes, “MonetDB/X100: hyper-pipelining
query execution,” in Conf. on Innovative Data Systems Research, 2005.

[12] P. Russom, Analytic Database for Big Data, The Data Warehousing
Institute, 2012.

[13] D. J. Abadi, P. A. Boncz, and S. Harizopoulos, “Column-oriented
database systems,” VLDB Endowment, vol. 2, no. 2, Aug. 2009.

[14] P. C. Santos, M. A. Z. Alves, M. Diener et al., “Exploring cache size and
core count tradeoffs in systems with reduced memory access latency,”
in Euromicro Int. Conf. on Parallel, Distributed, and Network-Based
Processing, 2016.

[15] M. A. Z. Alves, M. Diener, F. B. Moreira et al., “SiNUCA: a validated
micro-architecture simulator,” in High Performance Computation Conf.,
2015.

[16] TPC BENCHMARK H, 2nd ed., Transaction Processing Performance
Council (TPC), 2014.

[17] P. A. Boncz, T. Neumann, and O. Erling, “TPC-H analyzed: hidden
messages and lessons learned from an influential benchmark,” in TPC
Technology Conf. Performance Evaluation Benchmarking, 2013.

[18] S. Li, J. H. Ahn, R. D. Strong et al., “The McPAT Framework
for Multicore and Manycore Architectures: Simultaneously Modeling
Power, Area, and Timing,” Transactions on Architecture and Code
Optimization, vol. 10, no. 1, p. 5, 2013.

[19] D. Patterson, T. Anderson, N. Cardwell et al., “A case for intelligent
RAM,” IEEE Micro, vol. 17, no. 2, pp. 34–44, Mar. 1997.

[20] D. G. Elliott, M. Stumm, W. M. Snelgrove et al., “Computational RAM:
Implementing Processors in Memory,” Design and Test of Computers,
vol. 16, no. 1, pp. 32–41, Jan. 1999.

[21] M. A. Z. Alves, P. C. Santos, F. B. Moreira, and opthers, “Saving
memory movements through vector processing in the dram,” in Int.
Conf. on Compilers, Architecture and Synthesis for Embedded Systems,
2015.

[22] A. Farmahini-Farahani, J. H. Ahn, K. Compton, and N. S. Kim,
“DRAMA: an architecture for accelerated processing near memory,”
Computer Architecture Letters, no. 99, 2014.

[23] H. Asghari-Moghaddam, A. Farmahini-Farahani, K. Morrow et al.,
“Near-DRAM acceleration with single-ISA heterogeneous processing
in standard memory modules,” IEEE Micro, vol. 36, no. 1, Jan. 2016.

[24] S. L. Xi, O. Babarinsa, M. Athanassoulis, and S. Idreos, “Beyond the
wall: Near-data processing for databases,” in Int. Workshop on Data
Management on New Hardware, 2015.

[25] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian et al., “NDC:
analyzing the impact of 3D-stacked memory+logic devices on MapRe-
duce workloads,” in Int. Symp. on Performance Analysis of Systems and
Software, 2014.

[26] R. Nair, S. F. Antao, C. Bertolli, P. Bose et al., “Active memory cube: A
processing-in-memory architecture for exascale systems,” IBM Journal
of Research and Development, vol. 59, no. 2/3, 2015.

[27] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in Int. Symp. on
Computer Architecture, 2015.

