
How and Why False Denial Constraints are Discovered
Albert Martin

Universitat Politècnica de Catalunya
Barcelona, Spain

albert.martin.g@upc.edu

Eduardo C. de Almeida
Federal University of Paraná

Curitiba, Brazil
eduardo@inf.ufpr.br

Oscar Romero
Universitat Politècnica de Catalunya

Barcelona, Spain
oscar.romero@upc.edu

Anna Queralt
Universitat Politècnica de Catalunya

Barcelona, Spain
anna.queralt@upc.edu

ABSTRACT
Denial Constraints (DCs) are a flexible formalism to express many
types of data rules, making them a widely adopted tool for many
applications. This flexibility led to the development of numerous
algorithms to automatically discover DCs directly from data. How-
ever, few studies have been conducted on the quality of the discov-
ered DCs. We experimentally quantify the lack of quality in the
results obtained by state-of-the-art algorithms, showing how the
proportion of discovered DCs that are false is rarely below 95%. We
hypothesize that the common source of these erroneous DCs stems
from the adoption of the current DC validity definition. We use
a statistical approach to explain the mechanism leading to these
results, and propose a redefinition of DC validity properties to avoid
the acceptance of false DCs. We validate this redefinition experi-
mentally, showing that it exclusively accepts true constraints of
the data, and is reliable enough to discover DCs missed by domain
experts. Additionally, we provide curated sets of golden DCs for
each dataset used in our study, those generated by domain experts
and those discovered using our approach.

PVLDB Reference Format:
Albert Martin, Eduardo C. de Almeida, Oscar Romero, and Anna Queralt.
How and Why False Denial Constraints are Discovered . PVLDB, 18(10):
XXX-XXX, 2025.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/nosocalgroc/DCValidity.

1 INTRODUCTION
Database data models provide constraints to define limitations on
acceptable data values. These constraints can range from basic re-
strictions on attribute domain values to complex rules involving
multiple predicates. Suppose we want to express the rule “No two
records agree on the Social Security Number (SSN)” meaning the
SSN must be unique within the database. This rule can be formal-
ized as a Denial Constraint (DC) that is a mathematical notation

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 10 ISSN 2150-8097.
doi:XX.XX/XXX.XX

that could be automatically manipulated to high-level languages.
Informally, a DC is a statement of a situation that can not be true.
For example, we express the SSN uniqueness constraint as the DC
¬(𝑡𝑥 .𝑆𝑆𝑁 = 𝑡𝑦 .𝑆𝑆𝑁), where the predicate cannot be true for any
pair of distinct records 𝑡𝑥 and 𝑡𝑦 . The main advantage of DCs lies in
their flexibility, subsuming a wide variety of data constraints. This
flexibility has made DCs a popular tool for various applications, in-
cluding data cleaning [11, 27], integration [1], privacy [20], stream-
ing [30], database design [19] and query optimization [25, 34]. As
a result, datasets containing high-quality DCs are highly valuable
for both research and practical applications.

Providing high-quality DCs is a challenging task, and their man-
ual generation by domain experts proves to be expensive. This
has prompted significant research into developing automated solu-
tions [3, 5, 8, 17, 22–24, 26, 33], referred to as DC discovery algo-
rithms. While these studies focus on improving the efficiency of DC
discovery, they rarely analyze the quality of the discovered DCs.
Some of the studies who do, comment on the discovery of overly
contrived DCs that fail to represent any generalizable relationship
of the data [8, 17, 23], and highlight how erroneous data can be
one of the causes [8, 17, 23, 24, 33]. These are called overfit DCs,
and Table 2 shows an example (𝜑6) identified by all algorithms in a
15,000-record sample of the Tax dataset, with some records shown
in Table 1. The main techniques proposed to avoid their discovery
are ranking metrics that penalize superfluous complexity [8] and
the acceptance of approximate DCs [17, 23, 24, 33]. However, these
techniques promote the discovery of short and concise DCs that are
not true [8, 23]. They are called underfit DCs, and Table 2 shows
𝜑 (2−5) as examples of underfit DCs accepted by all algorithms. De-
signing techniques to reduce the number of discovered DCs that
are erroneous remains an open problem.

In this paper, we present a comprehensive experimental evalua-
tion about the quality of the DCs discovered by several state-of-the-
art algorithms. We provide results indicating that these algorithms
discover thousands of long and contrived DCs, and how approxi-
mation is not able to reliably improve their quality. We also analyze
how the discovered DCs compare to a set of golden DCs generated
by domain experts, as done previously in the literature [8, 17]. This
analysis indicates the proportion of discovered DCs that are false
is often above 95%. We highlight how the techniques designed to
prevent the acceptance of false DCs fail at improving the quality of
the results.

https://doi.org/XX.XX/XXX.XX
https://github.com/nosocalgroc/DCValidity
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

Table 1: Tax data records.

TID FN LN GD AC PH CT ST ZIP MS CH SAL TR STX MTX CTX
t1 Mark Ballin M 304 232-7667 Anthony WV 25813 S Y 5000 3 2000 0 2000
t2 Chunho Black M 719 154-4816 Denver CO 80290 M N 60000 4.63 0 0 0
t3 Annja Rebizant F 636 604-2692 Cyrene MO 64739 M N 40000 6 0 4200 0
t4 Annie Puerta F 501 378-7304 West Crossett AR 72045 M N 85000 7.22 0 40 0
t5 Anthony Landram M 319 150-3642 Gifford IA 52404 S Y 15000 2.48 40 0 40
t6 Mark Murro M 970 190-3324 Denver CO 80251 S Y 60000 4.63 0 0 0
t7 Ruby Billinghurst F 501 154-4816 Kremlin AR 72045 M Y 70000 7 0 35 1000
t8 Marcelino Nuth F 304 540-4707 Kyle WV 25813 M N 10000 4 0 0 0
First Name (FN), Last Name (LN), Gender (GD), Area Code (AC), Phone Number (PH), City (CT), State (ST), ZIP Code (ZIP), Marital Status (MS), Children Status (CH),

Salary (SAL), Tax Rate (TR), Single Tax Exemption (STX), Marital Tax Exemption (MTX), Children Tax Exemption (CTX)

Table 2: Examples of DCs discovered from the 15000 first rows of the Tax dataset with the given approximation factors, and a
comment on their meaning and trustworthiness.

DC Aprox. Semantics
𝜑1 : ¬(𝑡𝑥 .𝑆𝑇 = 𝑡𝑦 .𝑆𝑇 ∧ 𝑡𝑥 .𝑆𝐴𝐿 < 𝑡𝑦 .𝑆𝐴𝐿

∧ 𝑡𝑥 .𝑇𝑅 > 𝑡𝑦 .𝑇𝑅)
0% True constraint of the data. One person cannot have lower salary (SAL) and higher tax rate

(TR) than another on the same state (ST).
𝜑2 : ¬(𝑡𝑥 .𝑍𝐼𝑃 = 𝑡𝑦 .𝑍𝐼𝑃)
𝜑3 : ¬(𝑡𝑥 .𝐿𝑁 = 𝑡𝑦 .𝐿𝑁)
𝜑4¬(𝑡𝑥 .𝐴𝐶 = 𝑡𝑦 .𝐴𝐶)

𝜑5 : ¬(𝑡𝑥 .𝑆𝑇 = 𝑡𝑦 .𝑆𝑇 ∧ 𝑡𝑥 .𝐺𝐷 ≠ 𝑡𝑦 .𝐺𝐷)

1%
Underfit constraints. It is easy to verify that ZIP codes (ZIP), last names (LN), and area codes
(AC) are not unique, and the state where an individual lives (ST) clearly does not determine
their gender (GD).

𝜑6 : ¬(𝑡𝑥 .𝐺𝐷 = 𝑡𝑦 .𝐺𝐷 ∧ 𝑡𝑥 .𝑃𝐻 = 𝑡𝑦 .𝑃𝐻

∧ 𝑡𝑥 .𝐶𝑇 = 𝑡𝑦 .𝐶𝑇 ∧ 𝑡𝑥 .𝑀𝑆 = 𝑡𝑦 .𝑀𝑆

∧ 𝑡𝑥 .𝐶𝐻 ≠ 𝑡𝑦 .𝐶𝐻 ∧ 𝑡𝑥 .𝑇𝑅 ≠ 𝑡𝑦 .𝑇𝑅

∧ 𝑡𝑥 .𝑆𝑇𝑋 = 𝑡𝑦 .𝑆𝑇𝑋 ∧ 𝑡𝑥 .𝑀𝑇𝑋 ≥ 𝑡𝑦 .𝑀𝑇𝑋

∧ 𝑡𝑥 .𝐶𝑇𝑋 ≤ 𝑡𝑦 .𝐶𝑇𝑋)

0% Overfit constraint. Too complex to represent any actual relationship of the data, in addition
to being comprised of seemingly unrelated predicates.

We hypothesize that the common source of these erroneous DCs
stems from the properties of the current DC validity definition [7, 8]
adopted by the existing discovery algorithms. Our analysis shows
that these properties are inadequate for rejecting sets of indepen-
dent predicates (i.e. DCs that do not represent real relationships of
the data), and we experimentally show how they often comprise
over 30% of the output of the DC discovery algorithms. In light of
this, we present a statistical approach to redefine the properties
that constitute a valid DC. Our goal is to ensure no DC can be
discovered without capturing some relationship of the data. We
experimentally validate our redefined DC validity by showing how
our modification decreases the number of discovered DCs that are
not golden by over 95%. Furthermore, DCs valid under our new
definition appear to be true constraints of the data even if they are
not golden. This means our method generalizes well, as it is able to
automatically detect complex true DCs missed by domain experts.
In summary, our main contributions in this paper are as follows:

Experimental Analysis:We present a comprehensive experi-
mental analysis of five DC discovery algorithms that rely on the
current DC validity definition presented in Section 2. While we
focus on these five algorithms due to space limitations, our findings
can be generalized to any DC discovery algorithm that adheres to
this DC validity definition. We empirically analyze the quality of
the DCs discovered by these algorithms in Section 3 and partially
explain them by statistically modeling sets of independent pred-
icates in Section 4. We describe the full mechanism behind their

discovery in Section 5, and show experimental results to support it
in Section 6.

Definition of DC validity: We provide modifications to the
current DC validity definition to ensure that the discovered DCs
always correspond to true relationships between the data attributes
in Section 5. Finally, we analyze the quality of the DCs that are
valid under our new definition in Section 6.

Reproducibility and DC datasets: We provide source code to
reproduce all the experiments with the main state-of-the-art DC
discovery algorithms. The reproducibility artifacts include datasets,
algorithms1, compiled executables and saved intermediate results
from the experiments. We also provide two sets of golden DCs for
each dataset used, those generated by domain experts and those
obtained using our approach.

In Section 2, we review the current DC definition and related
work, and we present our conclusions in Section 7.

2 BACKGROUND
This section presents the original definition of a DC and the DC dis-
covery problem, as formalised respectively in [7, 8]. We also provide
an overview of a non-exhaustive list of DC discovery algorithms. To
the best of our knowledge, all existing DC discovery algorithms in
the literature adhere to the same definition and properties discussed
in this section, resulting in similar outputs.
1Source codes for the algorithms have been modified to accept a common input format.

2.1 Denial Constraints
The fundamental components of DCs are predicates, which can be
represented as boolean functions defined over pairs of tuples 𝑃 :
𝐷𝑥𝐷 → {0, 1}. We consider predicates taking the form 𝑃 (𝑡𝑥 , 𝑡𝑦) =
𝑡𝑥 .𝐴𝜙𝑡𝑦 .𝐵, with 𝜙 being an operator among the set {=,≠, ≥, ≤, >
, <} and 𝐴 and 𝐵 attributes of relation 𝐷 . Formally, a DC 𝜑 is a
first-order logic formula that asserts no pair of distinct tuples can
simultaneously satisfy all predicates 𝑃𝑖 . This can be expressed as:

∀𝑡𝑥 , 𝑡𝑦 ∈ 𝐷,¬(𝑃1 ∧ 𝑃2 ∧ · · · ∧ 𝑃𝑚)
This is a very flexible language, able to express a variety of

rules, like Unique Column Combination (UCC) [4, 12, 15], Func-
tional Dependencies (FDs) [15, 18, 21] and Order Dependencies
(ODs) [16, 29]. For example, a UCC on attribute 𝐴 would take the
form ¬(𝑡𝑥 .𝐴 = 𝑡𝑦 .𝐴), indicating no pair of tuples share the same
value. A constant restriction would take the form ¬(𝑡𝑥 .𝐴 ≠ 𝑡𝑦 .𝐴),
implying all values of the column are the same. More complex re-
lationships may be represented, like the FD 𝐴 → 𝐵, as ¬(𝑡𝑥 .𝐴 =

𝑡𝑦 .𝐴∧𝑡𝑥 .𝐵 ≠ 𝑡𝑦 .𝐵), which implies it is impossible to find two tuples
with the same determinant 𝐴 and different dependent 𝐵. The OD
¬(𝑡𝑥 .𝐶 < 𝑡𝑦 .𝐶 ∧ 𝑡𝑥 .𝐷 ≥ 𝑡𝑦 .𝐷) states the tuple with a smaller value
in attribute 𝐶 also has a smaller value in attribute 𝐷 .

2.2 Denial Constraint Discovery Problem
DCs subsume many kinds of integrity rules, making them highly
valuable for numerous data processing tasks. However, it is essential
to define what qualifies a set of predicates as a valid DC, thus
determining which DCs are to be discovered and which are not.
The properties that define a valid DC utilized in the DC discovery
literature, are:
• Satisfiability: The DC must be satisfied for 100% of tuple pairs.

To increase robustness against inconsistent data [17, 23, 24, 33],
this condition may be relaxed by introducing an approximation
factor 𝜖 , allowing the DC to be valid if this tuple pair satisfaction
is above 100% − 𝜖 .

• Symmetry: The satisfaction of a DC for a pair of tuples 𝑡𝑥 and
𝑡𝑦 is invariant to swapping 𝑡𝑥 with 𝑡𝑦 .

• Minimality: Removing a predicate from the DC makes it an
invalid DC.

• Non-triviality: The DC is not satisfied by every possible data.
This property prevents the acceptance of DCs like ¬(𝑃 ∧ ¬𝑃),
which are always satisfied.
In [8], the DC discovery problem was formalized as the task

of reporting all DCs that satisfy these properties within a given
dataset.

2.3 Discovery Algorithms
Several algorithms have been published with the goal of discovering
DCs from a given dataset [3, 5, 8, 17, 22–24, 26, 33]. Each of them
presented novel approaches to optimize the discovery process, but
they all share the common goal of discovering every set of predi-
cates fulfilling the DC validity definition described in Section 2.2.

Indeed, the structure of the algorithms has evolved greatly from
the initial discovery algorithm FastDC [8]. For instance, the Ev-
idence Inversion algorithm from Hydra [5] offers an efficient al-
ternative to FastDC’s DFS when it comes to exploring the space

of candidate exact DCs. FastADC [33] modifies the Hydra algo-
rithm to accommodate approximation. Alternative techniques like
Position List Indexes from DCFinder [23], MMCS based DC enu-
meration from ADCMiner [17] or sophisticated inverted indices
from ECP [24] can be combined due to each optimizing different
stages of the discovery process. Similarly important and novel im-
provements are presented in all other publications to greatly speed
up the DC discovery, yet the goal of this search (the DC validity
definition) has remained unchanged through the years of research.
While our experimental analysis focuses on the algorithms whose
source code we have been able to obtain, our findings and conclu-
sions are applicable to all DC discovery algorithms based on this
DC validity definition.

3 CHALLENGES IN DC DISCOVERY
The field of DC discovery has seen success in optimizing the effi-
ciency of their algorithms. However, there has been little research
analyzing the quality of the results yielded by these algorithms.
Several publications mention how some discovered DCs fulfill all
properties necessary to be deemed valid, but fail to represent any
kind of useful data relationship [8, 22–24, 33]. This section summa-
rizes the challenges the community has faced with respect to the
quality of the discovered DCs, in addition to providing experimental
evidence highlighting the severity of these issues.

3.1 Overfit DCs
In the context of DCs, overfitting refers to a DC being too specific
to represent a general rule of the data [8]. Some previous work
discussed that many discovered DCs are too complex2 because they
focus on a specific subset of the data instead of representing re-
lationships that are general on the overall dataset. Table 2 shows
an example of an overfit constraint discovered by all the previous
algorithms on the Tax dataset, 𝜑6. While no definitive set of prop-
erties exists to unequivocally determine if a constraint is overfit,
the general intuition is that a constraint is considered overfit when
it is overly complex. The reason behind their appearance on clean
data is provided in Section 4, and a full categorization and detection
method for the general case is provided in Section 5.

Most publications presenting DC discovery algorithms talk about
overfit DCs in the context of erroneous data [8, 22, 24, 33]. An
intuitive example similar to the one presented in [33] is provided
next: Consider the Tax dataset from Table 1, and let ¬(𝑡𝑥 .𝐶𝑇 =

𝑡𝑦 .𝐶𝑇 ∧ 𝑡𝑥 .𝑆𝑇 ≠ 𝑡𝑦 .𝑆𝑇) be a DC that holds on the data. If a new
tuple containing an erroneous City (CT) or State (ST) is introduced,
this DC will no longer hold, as there will be tuple pairs with the
same city and different state. If the First Name (FN) attribute of
this new tuple was not present in the data, the DC ¬(𝑡𝑥 .𝐶𝑇 =

𝑡𝑦 .𝐶𝑇 ∧ 𝑡𝑥 .𝑆𝑇 ≠ 𝑡𝑦 .𝑆𝑇 ∧ 𝑡𝑥 .𝐹𝑁 = 𝑡𝑦 .𝐹𝑁) will be accepted instead,
as none of the tuple pairs that failed to fulfill the true DC will
share names. This behavior generalizes for any possible source of
erroneous values in the data, leading to the true DC being rejected
2In the context of DCs, the terms complexity and generality refer to the number of
predicates of a DC [8, 17, 23]. As an intuitive example, DC 𝜑6 would be considered
complex/not general because it consists of many predicates, restricting highly specific
data states. On the other hand DC 𝜑2 is not complex/general as it contains only a single
predicate, imposing less specific states of the data.

in favor of an alternative with additional random predicates, like
the equality predicate on the FN attribute.

In practice, however, this is not the only form overfit DCs take,
as they also appear for data completely free of errors. In fact, all al-
gorithms yield large amounts of extremely long and contrived DCs,
like 𝜑6. This DC seems too complex to represent a real relationship
of the data, yet it lies within the current DC validity definition.
These two types of erroneous DCs might seem to belong to entirely
different families, since one appears exclusively for erroneous data,
but later sections of this paper discuss how they share the same
generation mechanism. While they both constitute “overly complex
DCs”, we will focus on overfit DCs on clean data at first, and deal
with the general case where data may be erroneous in Section 5.

The presence of large amounts of these overfit DCs in the results
has been pointed out in the first publication exploring the discovery
of DCs [8]. It discusses how there is a large amount of long DCs that
fulfill the DC validity definition yet have little usefulness, leading
to sets of discovered DCs lacking in value. To address this issue, the
concept of DC ranking was proposed to organize the DCs based
on an objective metric and facilitate top-k ranking. The literature
identified the following metrics for this purpose:
• Succinctness: Measures the complexity of a DC 𝜑 in terms of

its length 𝐿𝑒𝑛(𝜑), as the ratio between the length of the DC and
the length of the smallest DC: 𝑀𝑖𝑛{ (𝐿𝑒𝑛 (𝜑 ′) |∀𝜑 ′ }

𝐿𝑒𝑛 (𝜑) . Length can be
defined as the number of predicates or the number of symbols
needed to express a DC. This metric penalizes overly complex
constraints, preventing overfit DCs from ranking highly.

• Coverage: The satisfaction of a DC 𝜑 measures the proportion
of tuple pairs (𝑡𝑥 , 𝑡𝑦) that do not satisfy all predicates at the same

time as
∑︁

∀𝑡𝑥 ,𝑡𝑦
1𝜑 (𝑡𝑥 ,𝑡𝑦)∑︁

∀𝑡𝑥 ,𝑡𝑦
1 . Coverage instead weights the contribu-

tion of every tuple pair by the proportion of satisfied predicates

𝑤 (𝑡𝑥 , 𝑡𝑦) =
| {𝑃 |𝑃 (𝑡𝑥 ,𝑡𝑦),𝑃 ∈𝜑 } |+1

|𝜑 | , as
∑︁

∀𝑡𝑥 ,𝑡𝑦
1𝜑 (𝑡𝑥 ,𝑡𝑦)𝑤 (𝑡𝑥 ,𝑡𝑦)∑︁

∀𝑡𝑥 ,𝑡𝑦
1 . This

metric aims to measure statistical significance by penalizing DCs
composed of predicates that are satisfied in isolation.

• Interestingness: Both Succinctness and Coverage were deemed
desirable properties of discovered DCs, so this metric was defined
to be a linear combination of the two in order to allow the user
to choose the ideal balance for their particular case.
These metrics succeed in ranking long overfit constraints lower

in the top-k, but fail to rank only the true constraints higher in the
top-k [8, 23], as we show shortly in Section 3.3. The most commonly
proposed solution to overfit constraints is the use of aproximate
constraints [17, 23, 24, 33]. Approximate constraints would pre-
vent overfitting by allowing the acceptance of more general rules,
rather than introducing complexity to accommodate outliers or
erroneous data. Furthermore, approximation has been shown to be
a reliable method to deal with overfitting for many other Integrity
Rule languages [6, 10, 13, 15, 31], proving its potential to improve
the quality and usefulness of discovered DCs.

3.2 Underfit DCs
Previous work [8, 23] describes multiple short and concrete con-
straints, yet considered false, when ranking discovered DCs accord-
ing to the previous metrics. They attribute their appearance on

“under-fitting the data”, hence the name, and examples like 𝜑 (2−5)
from Table 2 are easy to find when running any algorithm with
approximation. These DCs are concise enough to be easily inter-
pretable as uniqueness constraints and functional dependencies,
yet none of them are actually true. As before, there is no concrete
set of rules able to qualify a DC as underfit, but the general intuition
is that a DC is underfit if it is overly simplistic. The reason behind
their discovery is provided in Section 4, and a full categorization
and detection method is provided in Section 5.

Table 3: Succinctness and Coverage of underfit constraints
from Table 2, showing how the ranking metrics proposed in
[8] fail at only ranking high true DCs.

𝜑 𝑆𝑢𝑐𝑐𝑖𝑛𝑐𝑡𝑛𝑒𝑠𝑠 (𝜑) 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (𝜑)
𝜑2 1 0.99996
𝜑3 1 0.9999
𝜑4 1 0.9912
𝜑5 0.5 0.75

Table 3 shows how all metrics proposed score high for underfit
constraints, explaining why the experiments of [8] and [23] pre-
sented false constraints in the set of top-k highest ranked. There
has been no further research using these metrics, as they do not
appear to rank only the true constraints high in the top-k. This
leaves the issue of filtering out underfit constraints as an open
problem. In essence, the only accepted solution to deal with overfit
constraints is approximation, but this leads to the acceptance of
underfit constraints for which no solution has been presented yet.

3.3 Analysis of current algorithms
The presence of erroneous DCs is well known in the community,
but they are referenced less frequently in the most recent publica-
tions. Research focuses on improving the efficiency of the discovery
algorithms, rather than on the actual quality or usefulness of the dis-
covered DCs. This is because there is no formal definition for what
constitutes an overfit or underfit DC. One can look at a long/short
DC that makes no sense and call it overfit/underfit, but there is
no way to accurately classify a set of DCs into these categories
according to a deterministic set of rules.

We now present experimental evidence to demonstrate that the
quality of DC discovery is just as critical as discovery efficiency, as
a lack of either can undermine the power of the formalism. We have
collected the DCs discovered by several algorithms [5, 8, 17, 23, 33]
on a variety of datasets and approximation factors. For every such
combination, Figure 1 shows the proportion of discovered DCs
with a specific number of predicates. Our experiments with no
approximation reveal the same flaws discussed in the literature:
over 95% of discovered DCs have 5 or more predicates for half of the
datasets, and this proportion of long DCs is never below 20% for the
remaining datasets. While it is impossible to claim that there exists
no true constraint of this length, it is unlikely they account for such
large amount of discovered DCs. The literature describes these long
DCs as overly complex and too specific to a very small subset of
the data, and presents approximation as a way to prevent them.
However, our experiments show that this is not the general case,

0

FastDC

0

Hydra

0
10 −

8
10 −

6
10 −

4
10 −

2

DCFinder
0

10 −
8

10 −
6

10 −
4

10 −
2

ADCMiner

0
10 −

8
10 −

6
10 −

4
10 −

2

FastADC

airport

0%

100%

flights

0%

100%

food

0%

100%

H
ospital

0%

100%

ncvoter

0%

100%

tax500k

0%

100%

|𝜑 | : 1 2 3 4 5 6 7 8+

Figure 1: Number of predicates from DCs discovered by each
algorithm (column) on each dataset (row) and with the given
approximation factor 𝜖 (inner column), showing the large
complexity of most discovered constraints in addition to the
inability of approximation in reliably decreasing it.

as several datasets do not substantially reduce their proportion of
overly complex DCs after increasing approximation.

Instead, we can see how the use of approximation can some-
times exacerbate this issue, leading to larger and more complex
DCs despite the attempts at making them more general. This phe-
nomenon can be seen on the ncvoter dataset, where increasing
the approximation beyond 0.0001 to achieve more general DCs
paradoxically leads to the discovery of longer constraints. This
behavior can be understood by simplifying the scenario. Let us
have independent predicates 𝑃1, 𝑃2, 𝑃3, with the same individual
probability of fulfilling a random tuple pair 𝑝 (𝑃𝑖) = 0.1. If we look
for minimal sets of predicates satisfied together for a proportion of
tuple pairs below 𝜖 = 0.001, only {𝑃1, 𝑃2, 𝑃3} will be discovered. If
we increase the approximation factor to 𝜖 = 0.01, now three sets of
predicates are discovered: {𝑃1, 𝑃2}, {𝑃1, 𝑃3}, {𝑃2, 𝑃3}, showing how
approximation can increase the number of discovered DCs. If we
further increase approximation to 𝜖 = 0.1, individual predicates are
accepted, often leading to the discovery of less results (if {𝑃1} is
accepted, {𝑃1, 𝑃2}, {𝑃1, 𝑃3} are no longer minimal). These behaviors

0

FastDC

0

Hydra

0
10 −

8
10 −

6
10 −

4
10 −

2

DCFinder

0
10 −

8
10 −

6
10 −

4
10 −

2

ADCMiner

0
10 −

8
10 −

6
10 −

4
10 −

2

FastADC

airport

0

133

flights

0

134861

food

0

93

H
ospital

0

271

ncvoter

0

2199

tax500k

0

15194

Not a Golden DC Golden DC

Figure 2: Number of discovered DCs that are golden, showing
how most discovered DCs are not true constraints.

can be combined, leading to approximation decreasing the number
of short DCs while increasing the number of long DCs.

This result does not refute the claim that approximation can
reduce the complexity of discovered DCs. However, it demonstrates
that approximation alone is not always reliable for ensuring more
general DCs. It also shows that approximation should not be con-
sidered a universal solution to the problem of overfitting.

The main goal of a discovery algorithm is not to discover small
and specific constraints, but true ones representing real relation-
ships of the data. The fact that approximation sometimes leads to
the discovery of shorter DCs does not imply these are true data rules.
In order to experimentally evaluate how good the algorithms are
at discovering true DCs, some previous work used a set of golden
DCs gathered by domain experts and evaluated how well their algo-
rithms find those [8, 17, 23]. These publications present high recalls,
highlighting how good their algorithms are at ensuring golden DCs
are within the set of discovered constraints. However, they are
generating a number of DCs that is several orders of magnitude
larger than the amount of golden DCs.

We believe that analyzing the precision of the algorithms is cru-
cial, as we must ensure the DCs discovered by the algorithms are
actual constraints of the data. While prior work by [8] and [23]

initiated such an investigation, their focus on the top-k DCs based
on specific metrics limits the scope of the analysis. By selecting only
the top-k shortest constraints, they discover several high-quality
DCs, but this cannot be generalized to broader results. Moreover,
this approach is highly susceptible to underfitting when even mini-
mal approximation is introduced.

We nowpresent a comprehensive analysis of the precision yielded
by the same DC discovery algorithms. We have generated a set of
golden DCs for each dataset, as done previously in the literature
[8, 17], through a combination of various techniques3:
• Golden DCs published in previous research [8, 17].
• Manual generation of simple constraints (Keys, FDs, equivalent

columns), verified by domain experts.
• Manual generation of complex constraints by means of a thor-

ough analysis by the domain experts.
We used this set of golden DCs to measure the precision of the

algorithms, that is, which proportion of the discovered DCs are
golden. This measure is a great indicator of the trust or certainty a
user would have in obtaining true DCs from each algorithm. Figure
2 summarizes these experimental results, clearly showing how only
a minuscule proportion of the discovered DCs correspond to true
data constraints. Furthermore, this precision does not grow as the
approximation increases, but it diminishes instead.

To sum up, while the literature considers approximation nec-
essary to handle erroneous data and uncover more general DCs,
this approach proves unreliable. It sometimes results in longer DCs
and increases the number of false DCs discovered. Moreover, ap-
proximation introduces underfitting, causing algorithms to identify
subsets of true rules as valid DCs, which then leads to the rejection
of these true DCs due to minimality.

4 MODELING FALSE DCS
In this section, we analyze how the current DC Validity definition
admits sets of completely independent predicates as valid DCs.
While complete independence is rarely found in real data, this the-
oretical analysis allows us to model the appearance of overfit and
underfit constraints in the results of all algorithms. We experimen-
tally demonstrate howmost results yielded by current DC discovery
algorithms behave as sets of independent predicates.

The evaluation of a predicate 𝑃 on a random pair of tuples can
be treated as a binary random event, which can be modeled with a
Bernoulli distributionwith probability 𝑝 (𝑃). This can be generalized
to the joint evaluation of a set of 𝑘 predicates 𝜑 = {𝑃1, . . . , 𝑃𝑘 },
where 𝑝 (𝜑) = 𝑝 (⋀︁𝑘

𝑖=1 𝑃𝑖) is the probability of all predicates in 𝜑

being true. If the predicates in 𝜑 are independent, the probability
of them jointly satisfying a random tuple pair equals the product
of individual predicate probabilities 𝑒 (𝜑) = ∏︁𝑘

𝑖=1 𝑝 (𝑃𝑖). Consider a
repetition of this experiment for𝑚 random pairs of tuples, and let
𝑚′ (𝜑) be the number of tuple pairs fulfilling all predicates so that:

𝑚′ (𝜑) ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑚, 𝑒 (𝜑))
To accept 𝜑 as a valid DC, the proportion of tuple pairs that

satisfy all the predicates (i.e. violating the DC) must be below the
approximation factor 𝜖 (which is 0 for exact discovery). Thus, we
3The set of golden DCs is available in the paper repository.

define 𝑝 (𝑚′ (𝜑) ≤ 𝜖 · 𝑚) as the probability of 𝜑 being accepted
as valid. That is, the probability of the number of pairs of tuples
violating the DC being lesser or equal than 𝜖 ·𝑚. This implies that
any set of independent predicates, no matter how meaningless they
read together, has a probability of being accepted as a true DC in our
data. Ideally, false constraints would have very small acceptance
probabilities, but in the following subsections we discuss that this
is not the case, and all types of erroneous DCs presented in the
literature can be explained due to sets of independent predicates.

4.1 Underfit
Underfit DCs are generally formed by one or two very selective
predicates that are accepted as a valid DC due to approximation.
Let us consider the real examples of accepted underfit constraints
on the Tax dataset shown in Table 2 (DCs 𝜑 (2−5)). Table 4a lists the
probabilities of each predicate involved being true for any random
pair of tuples, or equivalently, the proportion of tuple pairs that
satisfy each predicate. The first three predicates are true for a very
small proportion of tuple pairs, as the large number of unique
elements in the respective columns (ZIP, Last Name, Area Code)
makes it unlikely to pick two random tuples sharing the same
value. This means that when evaluating these predicates on a large
enough number of tuple pairs (e.g.𝑚 > 1000), the probability of
them being satisfied on less than 𝜖 = 1% of the tuple pairs (hence
being discovered as valid DCs) is essentially 100%, as shown in the
first three columns of Table 4b.

Therefore, by just looking at the individual predicate probabili-
ties, we can assert it is almost impossible to find enough tuple pairs
that fulfill the predicates to reject them as uniqueness constraints.
The same is not true for the false DC ¬(𝑡𝑥 .𝑆𝑇 = 𝑡𝑦 .𝑆𝑇) (i.e., unique
State), as shown in Table 4b. This makes sense as this predicate is
expected to be true for around 1.9% of tuple pairs, so the chances
of it being fulfilled less than 1% are negligible for a large enough
number of tuple pairs. However, when a new independent predicate
is added to this DC, the probability of both predicates being true at
the same time drops to 0.9%, meaning it is quite likely for a set of
𝑚 > 1000 tuple pairs to contain less than 𝜖 = 1% fulfilling both. The
last column of Table 4b showcases how just adding an independent
predicate to ¬(𝑡𝑥 .𝑆𝑇 = 𝑡𝑦 .𝑆𝑇) makes the chances of accepting this
underfit constraint as a valid approximate DC go from practically
impossible to almost certain.

For this reason, underfit DCs are essentially a small set of highly
selective, independent predicates with a joint probability of being
true together lower than the approximation factor. Clearly, combin-
ing independent predicates on unrelated attributes does not create
any useful constraint, yet these DCs are still considered valid under
the current DC validity definition.

4.2 Overfit
Overfit DCs are discovered due to the same principle discussed in
the previous subsection. However, unlike underfit DCs that require
using approximation to be discovered, overfit DCs also appear even
when using no approximation (𝜖 = 0). Overfit DCs are typically
characterized by a long list of seemingly unrelated predicates that
are nevertheless accepted as a valid DC, such as 𝜑6 from Table 2.
The individual probabilities of each predicate being fulfilled in a

Table 4: Mechanism behind the generation of underfit constraints. Selective predicates with probabilities lower than the
approximation factor are accepted as valid DCs. If their individual probabilities are not sufficiently low, independent predicates
can still be combined to form DCs with a joint probability that is low enough to be considered valid.

(a) Individual probabilities of predicates involved in underfit constraints: 𝜑2, 𝜑3, 𝜑4, 𝜑5.

𝑃 𝑡𝑥 .𝑍𝑖𝑝 = 𝑡𝑦 .𝑍𝑖𝑝 𝑡𝑥 .𝐿𝑁 = 𝑡𝑦 .𝐿𝑁 𝑡𝑥 .𝐴𝐶 = 𝑡𝑦 .𝐴𝐶 𝑡𝑥 .𝑆𝑇 = 𝑡𝑦 .𝑆𝑇 𝑡𝑥 .𝐺𝐷 ≠ 𝑡𝑦 .𝐺𝐷

𝑝 (𝑃) 4.5 · 10−5 9.9 · 10−5 8.8 · 10−3 0.019 0.5
(b) Probability of sets of predicates being discovered as underfit DCs with approx. factor 𝜖 = 1% on a dataset with𝑚 > 1000 tuple pairs.

𝜑 ¬(𝑡𝑥 .𝑍𝑖𝑝 = 𝑡𝑦 .𝑍𝑖𝑝) ¬(𝑡𝑥 .𝐿𝑁 = 𝑡𝑦 .𝐿𝑁) ¬(𝑡𝑥 .𝐴𝐶 = 𝑡𝑦 .𝐴𝐶) ¬(𝑡𝑥 .𝑆𝑇 = 𝑡𝑦 .𝑆𝑇) ¬(𝑡𝑥 .𝑆𝑇 = 𝑡𝑦 .𝑆𝑇 ∧ 𝑡𝑥 .𝐺𝐷 ≠ 𝑡𝑦 .𝐺𝐷)
𝑒 (𝜑) 4.5 · 10−5 9.9 · 10−5 8.8 · 10−3 0.019 0.009

𝑝 (𝑚′ (𝜑) < 0.01 ·𝑚) ∼ 1 ∼ 1 ∼ 1 ∼ 0 ∼ 1

Table 5: Mechanism behind the generation of overfit constraints on clean data. Groups of predicates are agglomerated regardless
of their relationships, with the only goal of making even a single pair of tuples in the data unlikely to fulfill them all at the
same time.

(a) Individual probabilities of predicates involved in overfit constraint: 𝜑6.

𝑃 𝑡𝑥 .𝐺𝐷 = 𝑡𝑦 .𝐺𝐷 𝑡𝑥 .𝑃𝐻 = 𝑡𝑦 .𝑃𝐻 𝑡𝑥 .𝐶𝑇 = 𝑡𝑦 .𝐶𝑇 𝑡𝑥 .𝑀𝑆 = 𝑡𝑦 .𝑀𝑆 𝑡𝑥 .𝐶𝐻 ≠ 𝑡𝑦 .𝐶𝐻 𝑡𝑥 .𝑇𝑅 ≠ 𝑡𝑦 .𝑇𝑅 𝑡𝑥 .𝑆𝑋 = 𝑡𝑦 .𝑆𝑋 𝑡𝑥 .𝐶𝑋 ≤ 𝑡𝑦 .𝐶𝑋

𝑝 (𝑃) 0.5 2.5 · 10−4 7.2 · 10−4 0.5 0.49 0.93 0.41 0.58
(b) Probability of there being no tuple pair fulfilling all predicates, among the𝑚 =

15000(15000−1)
2 tuple pairs available to the algorithms that

discovered this overfit DC.

𝜑 ¬(𝑡𝑥 .𝐺𝐷 = 𝑡𝑦 .𝐺𝐷 ∧ 𝑡𝑥 .𝑃𝐻 = 𝑡𝑦 .𝑃𝐻 ∧ 𝑡𝑥 .𝐶𝑇 = 𝑡𝑦 .𝐶𝑇 ∧ 𝑡𝑥 .𝑀𝑆 = 𝑡𝑦 .𝑀𝑆 ∧ 𝑡𝑥 .𝐶𝐻 ≠ 𝑡𝑦 .𝐶𝐻 ∧ 𝑡𝑥 .𝑇𝑅 ≠ 𝑡𝑦 .𝑇𝑅 ∧ 𝑡𝑥 .𝑆𝑋 = 𝑡𝑦 .𝑆𝑋 ∧ 𝑡𝑥 .𝐶𝑋 ≤ 𝑡𝑦 .𝐶𝑋)
𝑒 (𝜑) 5.9 · 10−9

𝑝 (𝑚′ (𝜑) = 0) 0.51

random tuple pair are shown in Table 5a. Assuming these predicates
are independent, Table 5b estimates the proportion of tuple pairs
that will satisfy every predicate in 𝜑6 to be 5.9 · 10−9, making the
probability of no tuple pair fulfilling all predicates to be 51%. This
probability is of little importance in practice, as new predicates can
be added to bring this value as high as desired. The way these overfit
DCs are constructed by current algorithms is by first obtaining a set
of very selective predicates (such as predicates 2 and 3 in Table 5a),
which are randomly fulfilled together by a small amount of tuple
pairs. Then, for each of these tuple pairs, a random predicate not
fulfilled by these tuples is added to the DC. This process is repeated
until the target satisfaction is met.

Real overfit DCs often contain related subsets of predicates. For
instance, there is a small correlation between the attributesMarital-
Status (MS) andChildrenStatus (CH) in𝜑6. Thus, their real joint prob-
ability slightly deviates from the expected under independence, but
it does not change the fact that we can still add other independent
predicates and obtain an accepted DC regardless of approximation.
We further discuss this phenomenon in Section 5.

Overfit DCs, in essence, are generated by the same principle as
underfit DCs: i.e. they agglomerate sets of independent predicates.
While underfit DCs are accepted due to approximation, overfit
DCs are accepted due to randomly generated sets of independent
predicates that no tuple pair satisfies.

4.3 Analysis of current algorithms
We showed how the acceptance of overfit and underfit constraints
can be attributed to the fact that state-of-the-art algorithms gen-
erate DCs by concatenating independent predicates, until their

satisfaction is high enough. This indicates that, internally, the al-
gorithms are generating sets of independent predicates as DCs,
instead of discovering real constraints on the data.

To experimentally demonstrate that current algorithms often
generate DCs without considering the underlying data relation-
ships, we compare 𝑝 (𝜑) and 𝑒 (𝜑) for each discovered DC 𝜑 , as well
as analyze how 𝑒 (𝜑) evolves as the number of tuples given to the
algorithms increases.

Comparing 𝒑(𝝋) and 𝒆(𝝋): If the algorithms are generating DCs
by agglomerating independent predicates, the joint probabilities
of the predicate sets 𝑝 (𝜑) will be very similar to what is expected
under independence 𝑒 (𝜑). We compute the proportion of discovered
DCs whose true joint probability is low enough so that it would be
unlikely under the assumption of independence with the following
hypothesis test:

𝐻0 : 𝑝 (𝜑) = 𝑒 (𝜑)
𝐻1 : 𝑝 (𝜑) < 𝑒 (𝜑)

Under the null hypothesis, the number of tuple pairs fulfilling all
predicates𝑚′ (𝜑) follows a binomial distribution with probability
𝑒 (𝜑). If an algorithm operates with 𝑛 tuples, there are𝑚 =

𝑛 (𝑛−1)
2

distinct pairs of them available. If 𝑘 tuple pairs fulfill all predicates,
the p-value of the one-sided test is 𝑝 (𝑚′ (𝜑) ≤ 𝑘).

Figure 3 shows the proportion of discovered DCs for which this
probability is lower than 𝛼 = 5%. This graph showcases how, for
a significant portion of the discovered DCs, we are unable to find

evidence against them being independent sets of predicates instead
of true relationships.

At this point, we emphasize that predicate independence is not
always fully correlated with DC quality for two reasons. First, an
overfit DC may contain two slightly correlated predicates that lead
to the rejection of the statistical test. This is the reason behind
the low proportion of completely independent predicate sets in
some datasets, as algorithms gather two or three negative corre-
lated predicates, and pad them with several independent ones until
satisfaction is high enough.

Second, a true DC may have negative and positive correlations
between its predicates, leading to joint probabilities being what is
expected under independence. This is a very unlikely case though,
as predicates confirming true exact DCs have 0 joint probability,
which cannot be obtained from the product of nonzero predicate
probabilities. And for an approximate DC to have this shape, the
positive correlations must be high enough to offset the negative cor-
relations, but this will easily lead to nonminimal DCs as positively
correlated predicates can be removed.

The goal of this experiment is not to determine DC quality, but to
showcase how algorithms are indeed accepting sets of completely
independent predicates as valid DCs. This concept of using statisti-
cally significant predicate relationships to determine which DCs
correspond to true rules of the data is expanded in Section 5.
Evolution of 𝒆(𝝋) as data increases: An alternative approach
to prove how algorithms are just gathering sets of independent
predicates can be taken by analyzing how the joint probability
under independence 𝑒 (𝜑) evolves as we tweak the amount of data
available to the algorithms. If the algorithms discover only true
constraints, we would find that the values of 𝑒 (𝜑) do not change
significantly as we increase the data available to the algorithms.
This is due to the fact that once enough data is available to discover a
true constraint 𝜑 , this one will always be discovered no matter how
many more data are added. Any further executions with more data
will still discover this very DCwith the exact same 𝑒 (𝜑). However, if
the algorithms were simply agglomerating independent predicates,
the satisfaction of the discovered DCs would depend only on 𝑒 (𝜑).
We know that with no approximation and 𝑛 tuples, the probability
of accepting a DC made of independent predicates is the probability
of the predicates not being randomly true at the same time for all
𝑚 =

𝑛 (𝑛−1)
2 tuple pairs, as: 𝑝 (𝑚′ (𝜑) ≤ 0) = (1 − 𝑒 (𝜑))𝑚 .

Hence, the sets of independent predicates need to have joint
probabilities below −𝑙𝑜𝑔 (𝛼)

𝑚 to maintain a reasonable acceptance
probability above some 𝛼 .

Proof: Assume the opposite: 𝑒 (𝜑) > −𝑙𝑜𝑔 (𝛼)
𝑚 . This implies that

(1 − 𝑒 (𝜑))𝑚 < (1 + 𝑙𝑜𝑔(𝛼)
𝑚

)𝑚

The LHS is the probability of accepting the set of predicates, and
the RHS is bounded above by 𝑒𝑙𝑜𝑔 (𝛼) = 𝛼 . Together, we have:

(1 − 𝑒 (𝜑))𝑚 < 𝛼

□
As the data available to the algorithms grow, the joint probability

of discovered sets of independent predicates needs to decrease to
maintain a high probability of never being true at the same time for

0

FastDC

0

Hydra

0
10 −

8
10 −

6
10 −

4
10 −

2

DCFinder

0
10 −

8
10 −

6
10 −

4
10 −

2

ADCMiner

0
10 −

8
10 −

6
10 −

4
10 −

2

FastADC

airport

0

133

flights

0

134861

food

0

93

H
ospital

0

271

ncvoter

0

2199

tax500k

0

15194

Independent predicates Not independent predicates

Figure 3: Number of discovered DCs whose predicate sets
𝜑 are true together on a number of tuples 𝑚′ (𝜑) unlikely
(𝛼 = 0.05) under independence 𝑝 (𝜑) = 𝑒 (𝜑). It shows how
many of the erroneous DCs from Figure 2 can be attributed
to algorithms generating sets of independent predicates.

all available tuple pairs. Figure 4 shows how 𝑒 (𝜑) tends to always
be proportional to 1

𝑛 (𝑛−1) , indicating that the discovered DCs are
not true constraints of the data. Instead, this suggests that they are
sets of independent predicates grouped together with the objective
of making them unlikely to be true at the same time, thus ensuring
a high acceptance probability.

We showed this experiment only for FastADC on the Tax dataset
due to the computational cost of discovery algorithms, but the re-
sults are generalizable to all of them: all algorithms use the same DC
validity definition, and even if individual implementations differ,
none of them considers the source of satisfaction of a DC when clas-
sifying it as valid. Instead, to generate DCs, algorithms concatenate
unrelated (independent) predicates until their joint satisfaction is
high enough.

Figure 4: Evolution of the joint probability under indepen-
dence 𝑒 (𝜑) of exact DCs discovered by FastADC on the Tax
dataset as we increase the number of tuples given to the algo-
rithm 𝑛. The dotted line follows the trend marked by 1

𝑛 (𝑛−1) .
Since 𝑒 (𝜑) decreases at the same rate, the algorithm is simply
agglomerating independent predicates.

5 REDEFINING DC VALIDITY
In this section we provide modifications to the DC validity defini-
tion to ensure that the discovered DCs always correspond to true
relationships between the data attributes. To this end, we incorpo-
rate a new soundness property, and redefine the triviality property
already present in the original definition.

5.1 Definition of Soundness
Soundness guarantees that the algorithms do not accept DCs whose
satisfaction is achieved by agglomerating independent predicates.
Instead, it ensures that only constraints representing real relation-
ships between the predicates are discovered:
• Soundness: The satisfaction of the DC is not artificially achieved

through independent predicates.
Given our analysis on sets of independent predicates, accepting

only those constraints whose predicates are provably not indepen-
dent seems the most intuitive option. However, comparing Figures
2 and 3 we can see how not all erroneous discovered DCs are sets
of completely independent predicates. While rejecting these sets of
independent predicates would greatly improve the quality of cur-
rent results, the soundness rule should be general enough to ensure
that valid DCs are completely free of any DC whose satisfaction is
owed to independent predicates in any form.

Examples of erroneous DCs not completely made of independent
predicates are well-known in the literature. We studied overfit DCs
in the context of error-free data in Section 4, but overfit DCs are
also formed when independent predicates are added to true DCs
due to erroneous data. Consider the following exact DC, which is
accepted on the Tax dataset when some errors are introduced in the
data: ¬(𝑡𝑥 .𝐶𝑇 = 𝑡𝑦 .𝐶𝑇 ∧ 𝑡𝑥 .𝑆𝑇 ≠ 𝑡𝑦 .𝑆𝑇 ∧ 𝑡𝑥 .𝐹𝑁 = 𝑡𝑦 .𝐹𝑁) (Equal
City, different State, equal First Name) . Clearly, this is an overfit

DC, as the last predicate has only been added in order to ignore the
tuple pairs affected by errors, yet this is not a set of independent
predicates. The first two predicates correspond to a true constraint
(FD: City → State) and are negatively correlated, while only the
last one is unrelated to the rest.

The soundness rule should not simply prevent the acceptance
of sets of completely independent predicates. Its goal is to reject
any DC discovered by artificially adding independent predicates to
increase satisfaction. We propose ensuring DC soundness through
atomicity:
• Atomicity: Consider a set of predicates𝜑 = {𝑃1, 𝑃2, . . . , 𝑃𝑘 }, and

let 𝑝 (𝑃 | 𝜑 \ {𝑃}) be the probability of predicate 𝑃 ∈ 𝜑 when all
other predicates in 𝜑 are true. The predicate set 𝜑 is not atomic
if it can be reduced 𝜑 ′ ⊂ 𝜑 without changing the behavior of
any remaining predicate 𝑃 ∈ 𝜑 ′:

𝑝 (𝑃 | 𝜑 \ {𝑃}) = 𝑝 (𝑃 | 𝜑 ′ \ {𝑃}) ∀𝜑 ′ ⊂ 𝜑,∀𝑃 ∈ 𝜑 ′

We use a statistical approach to determine whether this equality
is fulfilled for each predicate. We assume the evaluation of a predi-
cate 𝑋 conditioned to 𝑌, 𝑍 . . . follows a Bernoulli distribution with
unknown, Beta-distributed, population probability 𝑝 (𝑋 |𝑌, 𝑍 . . .). If
there are 𝑎 successes and 𝑏 failures of predicate𝑋 when𝑌, 𝑍 . . . are
true, we can update our knowledge about the probability distribu-
tion through Bayesian Learning: 𝑝 (𝑋 |𝑌, 𝑍 . . .) ∼ 𝐵𝑒𝑡𝑎(𝑎 + 1, 𝑏 + 1).
By modeling the log odds ratio between the two probabilities in
each atomicity equality as done in [14] we can compute the proba-
bility of the LHS not being smaller than the RHS. The equality is not
fulfilled if this probability is below some constant 𝛼4. If all equalities
are proven to be unfulfilled with enough statistical significance, the
DC is atomic.

If the set of predicates of a DC is atomic, no subset of them
can be removed without altering the behavior of some predicate.
This ensures the DC does not contain independent predicates and,
instead, entirely owes its satisfaction to capturing a relationship
between the predicates. For instance, DC 𝜑5 would be rejected
under this new DC validity rule. This is because the distribution
of the predicate 𝑡𝑥 .𝑆𝑇 = 𝑡𝑦 .𝑆𝑇 does not change significantly when
conditioned by the predicate 𝑡𝑥 .𝐺𝐷 ≠ 𝑡𝑦 .𝐺𝐷 .

This way, we extend the findings from Section 4 to ensure that
every discovered DC captures a meaningful relationship between
predicates.

5.2 Redefinition of Triviality
While the soundness rule addresses all erroneous DCs discussed,
there is some overlap between sets of independent predicates and
trivial DCs that warrants discussion. The general definition of a
trivial DC, as stated in [8], is: “A DC is trivial if it is always satisfied
by any data”. This makes sense because the purpose of a constraint
is to ensure that invalid data does not satisfy it. A DC that can never
be false, no matter how erroneous the data, is useless. However, as
this definition is too abstract to be validated in practice during the
4This parameter alters the sensitivity of the test. A low threshold increases false
negatives by requiring lots of data to obtain enough statistical evidence, and a high
threshold increases false positives by allowing randomness to be mistakenly treated as
correlation. However, during our experiments, probabilities for uncorrelated predicates
never fell below 0.01, meaning using any reasonable 𝛼 value would lead to similar
results.

discovery process, the literature relies on an alternative definition:
“ADC is trivial if one predicate’s opposite is implied by other predicates.”
This definition is much easier to validate, typically by checking
DCs with multiple predicates over the same attribute.

Despite the vagueness of the general definition, there is some
intersection between these trivial DCs and sets of independent
predicates. Let us assume we have a database with 𝑘 attribute
columns 𝐴𝑖 , and consider a DC formed by every possible equality
predicate 𝜑 = ¬(𝑡𝑥 .𝐴1 = 𝑡𝑦 .𝐴1 ∧ 𝑡𝑥 .𝐴2 = 𝑡𝑦 .𝐴2 ∧ · · · ∧ 𝑡𝑥 .𝐴𝑘 =

𝑡𝑦 .𝐴𝑘). For the vast majority of datasets, this DC is valid due to the
very low probability of finding two identical tuples. Even if one
is willing to consider this a true constraint of the data, changing
the operator of a subset of the predicates to any other, like < or ≠,
will still lead to a set of predicates that are never true at the same
time. The number of satisfied DCs we can generate this way grows
exponentially with the amount of attributes.

This kind of DCs clearly qualify as overfit, yet they would also
fall within the general triviality definition. In the same way that
DCs like ¬(𝑡𝑥 .𝐴1 = 𝑡𝑦 .𝐴1 ∧ 𝑡𝑥 .𝐴1 ≠ 𝑡𝑦 .𝐴1) are always satisfied
despite not representing a data constraint, long overfit DCs are also
always satisfied without their predicates having any relationship.
We identify two distinct kinds of triviality, characterized by the
reason the DCs are always satisfied:
• Syntactic Triviality: These DCs are always satisfied due to the

structure of the DC. In other words, the triviality of these DCs is
known before even looking at the data. For example ¬(𝑃 ∧ ¬𝑃)
will always be satisfied regardless of the predicate 𝑃 or the values
in the database.

• Semantic Triviality: These DCs are always satisfied due to
the extremely low likelihood of all predicates being true at the
same time. In other words, their triviality can only be identified
after examining the data and estimating the probabilities of
individual predicates. For example, it is impossible to estimate
the satisfaction of 𝜑6 before looking at the data. However, once
individual predicate probabilities are known, the probability of
all of them being true together is minuscule, qualifying the DC
as trivial.
In this case, semantically trivial DCs are a subset of non-sound

DCs, as their satisfaction is owed to independent predicates. How-
ever, syntactically trivial DCs seem to correspond to an entirely dif-
ferent class than all other possible DCs, not just erroneous ones. To
clarify this claim, we need to revisit the definition of Integrity Rules.
According to [9, 28], Integrity Rules are defined, as: “A mechanism
for limiting the possible states of the database”. This generally makes
sense for DCs, as they prevent the data from being in states that vi-
olate certain rules, like Keys or Functional Dependencies [2, 31, 32].
The only exception are syntactically trivial DCs, as they prevent
states that could never exist in the first place.

For this reason, along with the fact that our novel soundness
rule already rejects semantically trivial DCs, we propose redefining
DC triviality to eliminate redundancy among rules and to better
distinguish this class of syntactically trivial constraints from others:
• Nontriviality: The DC does not restrict impossible states of the

data.
With this redefinition, there is no overlap between soundness

and triviality. The redefined triviality rule now explicitly prevents

0

FastDC

0

Hydra

0
10 −

8
10 −

6
10 −

4
10 −

2

DCFinder

0
10 −

8
10 −

6
10 −

4
10 −

2

ADCMiner

0
10 −

8
10 −

6
10 −

4
10 −

2

FastADC

airport

0

133

flights

0

134861

food

0

93

H
ospital

0

271

ncvoter

0

2199

tax500k

0

15194

Not Sound DC Sound DC

Figure 5: Number of discovered DCs that are sound, showing
how the proportion of not sound DCs is similar to the pro-
portion of false DCs from Figure 2.

syntactically trivial DCs like ¬(𝑡𝑥 .𝑆𝑇 = 𝑡𝑦 .𝑆𝑇 ∧ 𝑡𝑥 .𝑆𝑇 ≠ 𝑡𝑦 .𝑆𝑇)
from being valid, which all algorithms already detect and reject.
Our key contribution is the rejection of semantically trivial DCs
like 𝜑6 for the first time thanks to the soundness rule. This allows
our DC validity definition to ensure valid DCs are not "fulfilled for
any data", as was the goal in the original formalisation of the DC
discovery problem ([8]).

6 EXPERIMENTAL EVALUATION
In this section we evaluate the impact of our proposed definitions
on the results produced by discovery algorithms. First, we compute
the proportion of the discovered DCs that are not sound, showing
how the number of sound DCs closely matches the number of
golden DCs. Second, we analyze the DCs that meet our redefined
DC validity criteria to confirm that sound DCs indeed correspond
to true DCs. This analysis shows how incorporating the soundness
rule significantly improves the quality of the results.

0

FastDC

0

Hydra

0
10 −

8
10 −

6
10 −

4
10 −

2

DCFinder
0

10 −
8

10 −
6

10 −
4

10 −
2

ADCMiner

0
10 −

8
10 −

6
10 −

4
10 −

2

FastADC

airport

0%

100%

flights

0%

100%

food

0%

100%

H
ospital

0%

100%

ncvoter

0%

100%

tax500k

0%

100%

|𝜑 | : 1 2 3 4 5 6 7 8+

Figure 6: Number of predicates of resulting soundDCs. Shows
how sound DCs have consistently reasonable lengths, unlike
those shown in Figure 1.

6.1 Evaluation of DC Soundness
Now we study which proportion of the discovered DCs are sound,
in order to assess how well our redefined DC validity could aid
in reducing the amount of discovered DCs. Since the soundness
rule is designed to prevent DCs containing independent predicates,
the proportion of DCs it rejects should be no less than in Figure 3.
However, if this new rule can detect more complex types of erro-
neous DCs, the proportion of false DCs detected could be as high
as those in Figure 2, completely removing all erroneous DCs from
the results.

To evaluate soundness, we run the algorithms for each dataset
and different approximation factors, following the idea in Figures
2 and 3, and we checked soundness for the outputs produced by
each run. Specifically, in order to estimate which proportion of
the results are sound, we have determined the soundness of each
discovered DC by checking if it fulfills the atomicity rule. Figure 5
shows how the soundness rule allows for the detection of a large
number of erroneous DCs. The soundness rule not only properly
discerns all sets of independent predicates, but it also detects large
amounts of erroneous DCs that are more complex than simple sets

0

FastDC

0

Hydra

0
10 −

8
10 −

6
10 −

4
10 −

2

DCFinder

0
10 −

8
10 −

6
10 −

4
10 −

2

ADCMiner

0
10 −

8
10 −

6
10 −

4
10 −

2

FastADC

airport

0

10

flights

0

146

food

0

20

H
ospital

0

82

ncvoter

0

30

tax500k

0

64

Not Golden or True Not Golden but True Golden and True

Figure 7: Number of discovered sound DCs that are golden
and those that are true despite not being golden. Shows
how sound DCs almost entirely correspond to true data con-
straints, unlike those shown in Figure 2.

of mutually independent predicates. These results are encouraging,
because they imply that the soundness rule allows for a massive
reduction in the number of discovered DCs. Most importantly, this
reduction is achieved through an intuitive rule which simply aims
to discard those DCs that the algorithms constructed through the
agglomeration of independent predicates, keeping only those with
statistically significant predicate relationships.

6.2 Analysis of Sound DC quality
As discussed in Section 3, simply reducing the number of DCs
discovered does not guarantee they will be true. Here, we show
how our redefined definition of DC validity can reliably lead to
exclusively true constraints. To this end, we study the effect of our
soundness rule in the following two dimensions:
• Recall: would our more restrictive DC validity increase the

number of rejected true DCs?
• Precision: would our more restrictive DC validity decrease the

number of accepted false DCs?

Table 6: Denial Constraints missed by domain experts but found with our redefined DC Validity on the Tax dataset.

DC Semantics
¬(𝑡𝑥 .𝑀𝑋 > 𝑡𝑦 .𝑀𝑋 ∧ 𝑡𝑥 .𝑆𝑋 > 𝑡𝑦 .𝑆𝑋) An individual cannot have higher marital exemption (MX) and higher single exemp-

tion (SX) than another.¬(𝑡𝑥 .𝑀𝑋 < 𝑡𝑦 .𝑀𝑋 ∧ 𝑡𝑥 .𝑆𝑋 < 𝑡𝑦 .𝑆𝑋)
¬(𝑡𝑥 .𝑀𝑆 = 𝑡𝑦 .𝑀𝑆 ∧ 𝑡𝑥 .𝑀𝑋 ≠ 𝑡𝑦 .𝑀𝑋 ∧ 𝑡𝑥 .𝑆𝑋 ≠ 𝑡𝑦 .𝑆𝑋) If marital (MX) and single exemptions (SX) differ, marital status (MS) differs too.
¬(𝑡𝑥 .𝑆𝑇 = 𝑡𝑦 .𝑆𝑇 ∧ 𝑡𝑥 .𝑀𝑋 = 𝑡𝑦 .𝑀𝑋 ∧ 𝑡𝑥 .𝑆𝑋 ≠ 𝑡𝑦 .𝑆𝑋) For individuals in the same state (ST), marital (MX) and single exemptions (SX)

determine each other.¬(𝑡𝑥 .𝑆𝑇 = 𝑡𝑦 .𝑆𝑇 ∧ 𝑡𝑥 .𝑆𝑋 = 𝑡𝑦 .𝑆𝑋 ∧ 𝑡𝑥 .𝑀𝑋 ≠ 𝑡𝑦 .𝑀𝑋)

Recall: First, we highlight that no golden DCs discovered by
the algorithms have failed to be proven sound. Equivalently, our
method achieved perfect recall throughout the experiments. This
is because when a domain expert identifies an exclusive set of
predicates forming a DC, this relationship consistently emerges
during atomicity testing. This does not mean it is impossible for a
true DC to fail being proven sound, as this may happen when the
amount of data available is too small for the atomicity tests to be
statistically significant. However, this is an encouraging result, as
it showcases how the increased restrictiveness of our DC validity
definition does not lead to a loss in recall.

Precision: Next, we study the effect of soundness in the com-
plexity and precision of the results by repeating the experiments
discussed in Section 3.3, but only with the subset of discovered DCs
that are sound. Figure 6 shows how sound DCs are much shorter
compared to the general results of the algorithms (Figure 1). These
results confirm our hypothesis that algorithms are generating long
overfit DCs by adding independent predicates until satisfaction is
high enough, while DCs that are sound (and thus represent existing
relationships in the data) are short and concise.

As before, discovering shorter DCs is not a guarantee of increased
quality. We now evaluate the precision of the sets of sound DCs
and compare these results to those presented in Figure 2. Given
that the soundness rule leads to a significant drop in the number
of discovered DCs and in their complexity, we have been able to
manually analyze all sound DCs to determine their truthfulness.
All sound DCs have been classified according to two properties:
• Golden: is the DC golden? As done in Figure 2, we will analyze

which proportion of sound DCs are golden.
• True: is the DC determined to be true by a domain expert? As

done in [8], smaller sets of DCs can be analyzed manually by
domain experts to more accurately compute the precision.
Figure 7 shows the proportion of discovered sound DCs that are

part of the golden DC set. The results demonstrate a significant
improvement in precision when our redefined DC validity is ap-
plied to determine which DCs to accept. Furthermore, several of
the sound DCs that lie outside the set of golden DCs still appear to
represent true data rules. Table 6 lists five examples of DCs satisfied
in the Tax dataset that were not generated manually by domain
experts. Not only these constraints are satisfied by the data, but
they are also sound, indicating statistically significant relationships
among predicates. This is strong evidence supporting our DC valid-
ity definition, as it enables the automatic discovery of new DCs that
could not have been discovered only through domain knowledge.

In light of this, we have gathered all DCs of up to 4 predicates
that are valid under our new DC validity definition. These DCs have
been made publicly available in the paper repository, and highlight

how adopting our redefined DC validity may allow algorithms to
directly discover high-quality sets of DCs.

7 CONCLUSIONS
In this paper we presented a comprehensive experimental evalua-
tion on the quality of the results given by several state-of-the-art
DC discovery algorithms. This analysis highlights how current al-
gorithms yield extremely long and contrived constraints, and how
approximation fails in mitigating these issues. More importantly,
we showed how the discovered DCs are rarely true constraints,
meaning all of these algorithms are difficult to be applied in prac-
tice. We explained the discovery of all erroneous DCs discussed
in the literature, namely underfit and overfit constraints, by un-
derstanding how independent predicates can be used to achieve
satisfied DCs. Our findings suggest that the erroneous results re-
ported in many publications of the field are not due to flaws in the
specific algorithms employed, but rather stem from fundamental
issues with the DC validity definition itself.

In response to these issues, we proposed a redefinition of DC
validity to prevent the discovery of false DCs. We presented the
soundness rule to prevent algorithms from generating DCs by ag-
glomerating independent predicates, thus ensuring discovered DCs
owe their satisfaction to representing some actual rule of the data.
Finally, we validated the effect the soundness rule has in the quality
of the discovered DCs. We showed how the number of erroneous
DCs that are discovered is lowered by over 95% in most cases, with
no decrease in recall. Furthermore, by just filtering results using
our novel soundness rule, we have been able to discover constraints
missed by domain experts, demonstrating how our redefined DC
validity can be used to reliably discover true rules of the data.

ACKNOWLEDGMENTS
This work is supported by the Horizon Europe Programme under
GA.101135513 (CyclOps) and the Spanish Ministerio de Ciencia e
Innovación under project PID2020-117191RB-I00 / AEI/10.13039/
501100011033 (DOGO4ML). Anna Queralt is a Serra-Húnter fel-
low. E. Almeida is funded by the CNPQ grants 302909/2022-2 and
444192/2024-7.

REFERENCES
[1] Naser Ayat, Hamideh Afsarmanesh, Reza Akbarinia, and Patrick Valduriez. 2012.

Pay-As-You-Go Data Integration Using Functional Dependencies. In Multidisci-
plinary Research and Practice for Information Systems. 375–389.

[2] Laure Berti-Équille, Hazar Harmouch, Felix Naumann, Noël Novelli, and Sara-
vanan Thirumuruganathan. 2018. Discovery of Genuine Functional Dependen-
cies from Relational Data with Missing Values. Proc. VLDB Endow. 11, 8 (2018),
880–892. https://doi.org/10.14778/3204028.3204032

[3] Lingfeng Bian, Weidong Yang, Jingyi Xu, and Zijing Tan. 2024. Discovering
Denial Constraints Based on Deep Reinforcement Learning. In Proceedings of the

https://doi.org/10.14778/3204028.3204032

33rd ACM International Conference on Information and Knowledge Management.
120–129.

[4] Johann Birnick, Thomas Bläsius, Tobias Friedrich, Felix Naumann, Thorsten
Papenbrock, and Martin Schirneck. 2020. Hitting Set Enumeration with Partial
Information for Unique Column Combination Discovery. Proc. VLDB Endow. 13,
11 (2020), 2270–2283. http://www.vldb.org/pvldb/vol13/p2270-birnick.pdf

[5] Tobias Bleifuß, Sebastian Kruse, and Felix Naumann. 2017. Efficient denial
constraint discovery with hydra. Proceedings of the VLDB Endowment 11, 3
(2017), 311–323.

[6] Fei Chiang and Renée J Miller. 2008. Discovering data quality rules. Proceedings
of the VLDB Endowment 1, 1 (2008), 1166–1177.

[7] Jan Chomicki, Jerzy Marcinkowski, and Slawomir Staworko. 2004. Computing
consistent query answers using conflict hypergraphs. In Proceedings of the 2004
ACM CIKM International Conference on Information and Knowledge Management,
Washington, DC, USA, November 8-13, 2004, David A. Grossman, Luis Gravano,
ChengXiang Zhai, Otthein Herzog, and David A. Evans (Eds.). ACM, 417–426.
https://doi.org/10.1145/1031171.1031254

[8] Xu Chu, Ihab F Ilyas, and Paolo Papotti. 2013. Discovering denial constraints.
Proceedings of the VLDB Endowment 6, 13 (2013), 1498–1509.

[9] AnHai Doan, Alon Halevy, and Zachary Ives. 2012. Principles of data integration.
Elsevier.

[10] Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. 2010. Discovering
conditional functional dependencies. IEEE Transactions on Knowledge and Data
Engineering 23, 5 (2010), 683–698.

[11] Stella Giannakopoulou, Manos Karpathiotakis, and Anastasia Ailamaki. 2020.
Cleaning denial constraint violations through relaxation. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 805–815.

[12] Arvid Heise, Jorge-Arnulfo Quiané-Ruiz, Ziawasch Abedjan, Anja Jentzsch, and
Felix Naumann. 2013. Scalable Discovery of Unique Column Combinations. Proc.
VLDB Endow. 7, 4 (2013), 301–312. https://doi.org/10.14778/2732240.2732248

[13] Yka Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. 1999. TANE:
An efficient algorithm for discovering functional and approximate dependencies.
The computer journal 42, 2 (1999), 100–111.

[14] Norman L Johnson, Samuel Kotz, and Narayanaswamy Balakrishnan. 1995. Con-
tinuous univariate distributions, volume 2. Vol. 2. John wiley & sons.

[15] Sebastian Kruse and Felix Naumann. 2018. Efficient Discovery of Approximate
Dependencies. Proc. VLDB Endow. 11, 7 (2018), 759–772. https://doi.org/10.14778/
3192965.3192968

[16] Philipp Langer and Felix Naumann. 2016. Efficient order dependency detection.
VLDB J. 25, 2 (2016), 223–241. https://doi.org/10.1007/S00778-015-0412-3

[17] Ester Livshits, Alireza Heidari, Ihab F. Ilyas, and Benny Kimelfeld. 2020. Ap-
proximate Denial Constraints. Proc. VLDB Endow. 13, 10 (2020), 1682–1695.
https://doi.org/10.14778/3401960.3401966

[18] Thorsten Papenbrock and Felix Naumann. 2016. A Hybrid Approach to Func-
tional Dependency Discovery. In Proceedings of the 2016 International Conference
on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June
26 - July 01, 2016, Fatma Özcan, Georgia Koutrika, and Sam Madden (Eds.). ACM,
821–833. https://doi.org/10.1145/2882903.2915203

[19] Thorsten Papenbrock and Felix Naumann. 2017. Data-driven Schema Normal-
ization. In Proceedings of the 20th International Conference on Extending Database
Technology, EDBT 2017, Venice, Italy, March 21-24, 2017, Volker Markl, Salvatore
Orlando, Bernhard Mitschang, Periklis Andritsos, Kai-Uwe Sattler, and Sebastian
Breß (Eds.). OpenProceedings.org, 342–353. https://doi.org/10.5441/002/EDBT.

2017.31
[20] Primal Pappachan, Shufan Zhang, Xi He, and Sharad Mehrotra. 2024. Preventing

Inferences Through Data Dependencies on Sensitive Data. IEEE Transactions on
Knowledge and Data Engineering 36, 10 (2024), 5308–5327. https://doi.org/10.
1109/TKDE.2023.3336630

[21] Marcel Parciak, SebastiaanWeytjens, Niel Hens, Frank Neven, Liesbet M. Peeters,
and Stijn Vansummeren. 2024. Measuring Approximate Functional Dependencies:
A Comparative Study. In 40th IEEE International Conference on Data Engineering,
ICDE 2024, Utrecht, The Netherlands, May 13-16, 2024. IEEE, 3505–3518. https:
//doi.org/10.1109/ICDE60146.2024.00270

[22] Eduardo HM Pena and Eduardo Cunha de Almeida. 2018. BFASTDC: A bitwise
algorithm for mining denial constraints. In Database and Expert Systems Applica-
tions: 29th International Conference, DEXA 2018, Regensburg, Germany, September
3–6, 2018, Proceedings, Part I 29. Springer, 53–68.

[23] Eduardo HM Pena, Eduardo C De Almeida, and Felix Naumann. 2019. Dis-
covery of approximate (and exact) denial constraints. Proceedings of the VLDB
Endowment 13, 3 (2019), 266–278.

[24] Eduardo HM Pena, Fabio Porto, and Felix Naumann. 2022. Fast Algorithms for
Denial Constraint Discovery. Proceedings of the VLDB Endowment 16, 4 (2022),
684–696.

[25] Eduardo H. M. Pena, Erik Falk, Jorge Augusto Meira, and Eduardo Cunha de
Almeida. 2018. Mind Your Dependencies for Semantic Query Optimization. J.
Inf. Data Manag. 9, 1 (2018), 3–19. https://sol.sbc.org.br/journals/index.php/
jidm/article/view/1633

[26] Chaoqin Qian, Menglu Li, Zijing Tan, Ai Ran, and Shuai Ma. 2023. Incremental
discovery of denial constraints. The VLDB Journal 32, 6 (2023), 1289–1313.

[27] Theodoros Rekatsinas, Xu Chu, Ihab F Ilyas, and Christopher Ré. 2017. Holoclean:
Holistic data repairs with probabilistic inference. arXiv preprint arXiv:1702.00820
(2017).

[28] Avi Silberschatz, Henry F. Korth, and S. Sudarshan. 2020. Database System
Concepts, Seventh Edition. McGraw-Hill Book Company. https://www.db-
book.com/

[29] Jaroslaw Szlichta, Parke Godfrey, Jarek Gryz, and Calisto Zuzarte. 2013. Expres-
siveness and Complexity of Order Dependencies. Proc. VLDB Endow. 6, 14 (2013),
1858–1869. https://doi.org/10.14778/2556549.2556568

[30] Nicolas Tamalu, Leandro Augusto Ensina, Eduardo Cunha de Almeida, Eduardo
Henrique Monteiro Pena, and Luiz Eduardo Soares de Oliveira. 2023. Fault
Detection in Transmission Lines: a Denial Constraint Approach. In Proceedings
of the 38th Brazilian Symposium on Databases, SBBD 2023, Belo Horizonte, MG,
Brazil, September 25-29, 2023. SBC, 231–243. https://sol.sbc.org.br/index.php/
sbbd/article/view/25530

[31] Ziheng Wei and Sebastian Link. 2019. Discovery and Ranking of Functional
Dependencies. In 35th IEEE International Conference on Data Engineering, ICDE
2019, Macao, China, April 8-11, 2019. IEEE, 1526–1537. https://doi.org/10.1109/
ICDE.2019.00137

[32] Ziheng Wei and Sebastian Link. 2023. Towards the efficient discovery of
meaningful functional dependencies. Inf. Syst. 116 (2023), 102224. https:
//doi.org/10.1016/J.IS.2023.102224

[33] Renjie Xiao, Zijing Tan, Haojin Wang, and Shuai Ma. 2022. Fast approximate
denial constraint discovery. Proceedings of the VLDB Endowment 16, 2 (2022),
269–281.

[34] Chen Ye, Haoyang Duan, Hua Zhang, Yifan Wu, and Guojun Dai. 2024. Learned
Query Optimization by Constraint-Based Query Plan Augmentation. Mathemat-
ics 12, 19 (2024), 3102.

http://www.vldb.org/pvldb/vol13/p2270-birnick.pdf
https://doi.org/10.1145/1031171.1031254
https://doi.org/10.14778/2732240.2732248
https://doi.org/10.14778/3192965.3192968
https://doi.org/10.14778/3192965.3192968
https://doi.org/10.1007/S00778-015-0412-3
https://doi.org/10.14778/3401960.3401966
https://doi.org/10.1145/2882903.2915203
https://doi.org/10.5441/002/EDBT.2017.31
https://doi.org/10.5441/002/EDBT.2017.31
https://doi.org/10.1109/TKDE.2023.3336630
https://doi.org/10.1109/TKDE.2023.3336630
https://doi.org/10.1109/ICDE60146.2024.00270
https://doi.org/10.1109/ICDE60146.2024.00270
https://sol.sbc.org.br/journals/index.php/jidm/article/view/1633
https://sol.sbc.org.br/journals/index.php/jidm/article/view/1633
https://www.db-book.com/
https://www.db-book.com/
https://doi.org/10.14778/2556549.2556568
https://sol.sbc.org.br/index.php/sbbd/article/view/25530
https://sol.sbc.org.br/index.php/sbbd/article/view/25530
https://doi.org/10.1109/ICDE.2019.00137
https://doi.org/10.1109/ICDE.2019.00137
https://doi.org/10.1016/J.IS.2023.102224
https://doi.org/10.1016/J.IS.2023.102224

	Abstract
	1 Introduction
	2 Background
	2.1 Denial Constraints
	2.2 Denial Constraint Discovery Problem
	2.3 Discovery Algorithms

	3 Challenges in DC discovery
	3.1 Overfit DCs
	3.2 Underfit DCs
	3.3 Analysis of current algorithms

	4 Modeling False DCs
	4.1 Underfit
	4.2 Overfit
	4.3 Analysis of current algorithms

	5 Redefining DC Validity
	5.1 Definition of Soundness
	5.2 Redefinition of Triviality

	6 Experimental Evaluation
	6.1 Evaluation of DC Soundness
	6.2 Analysis of Sound DC quality

	7 Conclusions
	Acknowledgments
	References

