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1 PROBLEM AND MOTIVATION
Integrity Constraints (ICs) are fundamental rules used to avoid
inconsistencies in database updates. Different types of ICs, such as
key constraints, functional or order dependencies, can be general-
ized by denial constraints (DCs) [2, 9], a more powerful constraint
language.

The discovery of DCs is a fundamental step in data cleaning
pipelines. Manually discovering DCs is difficult because it requires
domain expertise and database knowledge. It is known as a time-
consuming and error-prone task [12]. Thus, automatic discovering
DCs is desirable. However, the large search space exhibits expo-
nential time complexity in the number of constraint predicates and
requires large amounts of memory to process intermediate data
that may hinder the execution of discovery algorithms [9].

We propose a new method named Boolean Patterns (BP) that
automatically recognizes patterns within a set of distinct evidences
identifying the existing DCs. The main appeal of BP is its simplic-
ity, bringing the discovery of DCs from the land of elaborated data
structures to the land of boolean signs. This opens many research
opportunities. In particular, we are currently studying two opportu-
nities. First, BP drastically reduces the amount of memory required
to keep intermediates in the evidence set data structures. Second,
the execution of boolean signs allows exploring the discovery of
DCs in highly parallel emerging hardware, like GPUs/FPGAs and
processing-in-memory (PIM), to offload the discovery execution
and overcome performance bottlenecks in the CPU.We hypothesize
that BP offers a more efficient discovery of DCs than the state-of-
the-art algorithms, with better use of memory space and flexibility
to offload the required computation in emerging hardware.
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¬ (t0.ID=t1.Id)
¬ (t0.Partner=t1.Partner)

¬ (t0.Partner=t1.Id)

¬ (t0.Income ≠ t1.Income ^ 
         t0.Id = t1.Partner)

⋮

(t0.Id ≠ t1.ID)

(t0.Id = t1.ID)

(t0.Partner = t1.Partner)
⋮

⋱

⋱

Figure 1: Boolean Patterns building blocks.

2 BACKGROUND AND RELATEDWORK
The method presented in [2] shows that the problem of discovering
DCs can be transformed into a problem of discovering minimal cov-
erage sets (hereafter "mincovers") of an evidence set. Recentmethods
[1, 6, 8, 9, 14] proposed enhancements to improve efficiency in DC
discovery. All these works keep an evidence set structure in mem-
ory. Not optimized evidence set construction can cause enormous
problems such as a huge memory footprint, incorrect cache utiliza-
tion, ineptitude for parallelism and other issues that can hinder DC
discovery. Therefore, we seek efficient methods to deal with these
problems and benefit from high-performance hardware.

To support the discovery of DCs, [13] maintains indexes even
bigger than the original dataset. FACET [10] also implements in-
dexes to discover DC violations keeping diverse and intricate data
structures in memory. Our approach builds sole distinct evidence
set in memory, keeping memory footprint minimal.

All previous works use complex algorithms and data structures
that cannot benefit from emerging hardware architectures. In con-
trast, the BP method employs simple algorithms and minimum
bitwise data structures more suitable for hardware acceleration.

Discovering mincovers is equivalent to hitting set enumeration
[3, 5]. According to their structure, the hitting set enumeration
algorithms are categorized in iterative, such as BMR [11], RS and
the state-of-the-art algorithm MMCS [7], and hill-climbing, such
as MTminer [4] and now BP. In the DC search, the number of
predicates is large, causing a huge search space. To our best under-
standing, this is the first study comparing mincovers algorithms to
assess how they handle large inputs in DC discovery.

3 UNIQUENESS AND APPROACH
Consider a relational instance 𝑟 with schema R(𝐴1, ..., 𝐴𝑛), a tuple
𝑡 ⊂ 𝑟 , and a set 𝑂 = {=, <, >,≠, ≤, ≥} operators. A predicate is a
comparison between two attributes and an 𝑜 operator that takes the
form 𝑡𝑥 .𝐴𝑖𝑜𝑡𝑦 .𝐴 𝑗 , where𝐴𝑖 , 𝐴 𝑗 are different attributes in schema R,
𝑡𝑥 , 𝑡𝑦 are different tuples in the relational instance 𝑟 and 𝑜 ∈ 𝑂 . A
predicate space P from a relational schemaR is a set of all predicates
with which DCs can be formed. A DC 𝜑 over an instance 𝑟 is an
expression in the form 𝜑 : ∀𝑡𝑥 , 𝑡𝑦 ∈ 𝑟,¬(𝑝𝑖 ∧ ... ∧ 𝑝𝑛) in which
𝑝𝑖 is a predicate. A DC expresses a set of predicates that cannot
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be true together for any combination of tuples in a relationship.
For example, DC ¬(𝑡0.𝐼𝑑 = 𝑡1.𝐼𝑑) means no tuple pairs can have
the same 𝐼𝑑 . A structure called evidence set (𝐸𝑣𝑖) is used to guide
the search for DCs and validate DCs candidates. 𝐸𝑣𝑖 is formed by
comparing the tuples in the dataset, checking the predicates each
tuple pair satisfies.

We define 𝐸𝑣𝑖≠ as a subset of 𝐸𝑣𝑖 . As only distinct values are
allowed in 𝐸𝑣𝑖≠, then |𝐸𝑣𝑖≠ | ≤ |𝐸𝑣𝑖 |. The usage of 𝐸𝑣𝑖≠ is capable
of considerably reducing the size of the evidence set.

A sample of 𝐸𝑣𝑖≠ generated over the dataset shown in Figure
1 for P predicates is 𝐸𝑣𝑖≠ = {{0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0}, ...},
where 0 means no match, and 1 indicates a match in the predicate.

3.1 Boolean Patterns
The search for mincovers requires processing expensive scans on
evidence sets. As no single boolean algebra gate can deal with all
possible combinations of evidences alone, we introduce Boolean
Patterns, a method that works by evaluating values on 𝐸𝑣𝑖≠ look-
ing for patterns that ensure whether a rule is a mincover and conse-
quently forms a DC. BP can detect mincovers or discard them even
without having to go through all the involved records, as will be
seen in the sequel.

𝐸𝑣𝑖≠ can be seen as boolean signs suitable for hardware acceler-
ation. We set up a function named 𝐹𝑢𝑙𝑙𝐶𝑜𝑣𝑒𝑟 (Σ) that takes a set of
predicates as input and returns 𝐸𝑣𝑖≠ equivalent boolean signs, e.g.,
calling 𝐹𝑢𝑙𝑙𝐶𝑜𝑣𝑒𝑟 (P) returns Ψ = {{𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻𝐼 𝐽 𝐾𝐿𝑀𝑁 }, {𝐴𝐵𝐶𝐷𝐸𝐹
𝐺𝐻𝐼 𝐽 𝐾𝐿𝑀𝑁 }, {𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻𝐼 𝐽 𝐾𝐿𝑀𝑁 }, {𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻𝐼 𝐽 𝐾𝐿𝑀𝑁 }}

We set two theorems. The Viability is a mincover indicator pat-
ternwhich states that assuming a set of rules Σ andΨ = 𝐹𝑢𝑙𝑙𝐶𝑜𝑣𝑒𝑟 (Σ) ,
if the values Ψ match with the pattern Π, and Φ ⊄ Ψ, then the group
Σ of rules is a mincover of 𝐸𝑣𝑖≠ (see examples 1, 2, 3 and 6 in Ta-
ble 2). The Unviability is the discard indicator pattern which says
that considering a set of rules Σ and Ψ = 𝐹𝑢𝑙𝑙𝐶𝑜𝑣𝑒𝑟 (Σ), if Φ ⊂ Ψ
then Σ is not a mincover of 𝐸𝑣𝑖≠ (see examples 4 and 5 in Table 2).
Depicting example 6 in table 2, calling 𝐹𝑢𝑙𝑙𝐶𝑜𝑣𝑒𝑟 (Σ = {𝐸𝑁 }) will
generate Ψ = {{𝐸𝑁 }, {𝐸𝑁 }, {𝐸𝑁 }} showing that rules {𝐸𝑁 } form
a mincover due the existence of pattern Π = {{𝐸∗}, {∗𝑁 }}.

N Rule (Σ) Viability (Π) Unviability (Φ)
1 {𝑃} {𝑃} {𝑃}
2 {𝑃𝑄} {{𝑃∗}, {∗𝑄}} {𝑃𝑄}
3 {𝑃𝑄𝑅} {{𝑃 ∗ ∗}, {∗𝑄∗}, {∗ ∗ 𝑅}} {𝑃𝑄𝑅}
... ... ... ...
|P| {𝑃𝑄𝑅𝑆...} {{𝑃 ∗ ...}, {∗𝑄 ∗ ...}, {∗ ∗ 𝑅 ∗ ...}, {∗ ∗ ∗𝑆 ∗ ...}, ...} {𝑃𝑄𝑅𝑆...}
𝑃,𝑄, 𝑅, 𝑆, ... are boolean variables that can represent any predicate in the predicate space P.
The ∗ character is a wildcard in the domain {𝑃, 𝑃 }, {𝑄,𝑄 }, {𝑅, 𝑅}, ... depending on its column.

Table 1: Boolen Patterns.

# Rule 𝐹𝑢𝑙𝑙𝐶𝑜𝑣𝑒𝑟 (Σ) Pattern found DC
Σ Ψ Π Φ 𝜑

1 {𝐵} {𝐵} {𝐵} ¬(𝑡0.𝐼𝑑 = 𝑡1.𝐼𝑑)
2 {𝐷} {𝐷} {𝐷} ¬(𝑡0.𝑃𝑎𝑟𝑡𝑛𝑒𝑟 = 𝑡1.𝑃𝑎𝑟𝑡𝑛𝑒𝑟 )
3 {𝑀} {𝑀} {𝑀} ¬(𝑡0.𝐼𝑑 = 𝑡0.𝑃𝑎𝑟𝑡𝑛𝑒𝑟 )
4 {𝐹 } {{𝐹 }, {𝐹 }} {𝐹 }
5 {𝐸𝐿} {{𝐸𝐿}, {𝐸𝐿}, {𝐸𝐿}} {𝐸𝐿}
6 {𝐸𝑁 } {{𝐸𝑁 }, {𝐸𝑁 }, {𝐸𝑁 }} {{𝐸∗}, {∗𝑁 }} ¬(𝑡0.𝐼𝑛𝑐𝑜𝑚𝑒 ≠ 𝑡1.𝐼𝑛𝑐𝑜𝑚𝑒 ∧

𝑡0.𝐼𝑑 = 𝑡1.𝑃𝑎𝑟𝑡𝑛𝑒𝑟 )
Table 2: Examples of Boolean Patterns usage.

Rules formed with the possible combinations of P create a set
enumeration tree in which a breadth-first search is carried out. For
each node composed of groups of rules Σ, a call to 𝐹𝑢𝑙𝑙𝐶𝑜𝑣𝑒𝑟 (Σ)

is performed, and the result is compared to Π and Φ patterns to
determine whether these rules form amincover.BP uses efficient dy-
namic programming techniques to store previous results, reducing
the number of comparisons between rules.

4 RESULTS
Our preliminary experiments compared BP with the related work
algorithms that deal with the mincover problems. We set up a first
round of experiments using the BMS-WebWiew-2 [7] dataset com-
monly used for evaluating mincover problems and a second round
using real-world datasets used in DCs experimentsHospital, SPStock
and Airport [1, 2, 9].

We used the method stated in [2] to prepare the evidence sets.
For all datasets, we built 𝐸𝑣𝑖 ≈ 90𝑘 rows to have a hard comparison
in the worst-case scenario.

Experiments were carried out in a CPU. The environment runs on
a LMDE 5 (elsie) machine with AMD EPYC 7401 24-Core Processor
2.0GHz CPU and 200GB RAM.

800 400 200 100 50 30 20
BMR 1.990 9.070 67.640 304.250 767.210 1316.450 1884.150
RS 0.030 0.100 1.030 13.530 108.770 498.300 1186.850
MMCS 0.030 0.120 1.210 14.520 143.740 626.770 1329.150
MTminer 0.044 0.153 0.535 1.896 5.127 11.409 19.011
BP 0.020 0.070 0.280 1.188 3.714 8.283 15.571

Table 3: Execution time in seconds for BMS-WebWiew-2 dataset.

Hospital SPStock Airport
time(s) Evi(Kb) time(s) Evi(Kb) time(s) Evi(Kb)

BMR 0,274 5220 0,398 5916 0,265 1137
RS 0,319 5220 1,088 6264 0,184 4555
MMCS 0,414 5220 1,189 6264 0,164 4555
MTminer 0,264 696 5,488 696 0,324 700
BP 0,021 0,75 0,561 1,66 0,018 0,67

Table 4: Real-world datasets execution time in seconds and size in Kbytes of
evidence set kept in memory.

In the preliminary results, BP revealed superior performance,
with a fraction of memory required by its counterparts to hold
evidence sets in memory while allowing hardware acceleration.

Representing 𝐸𝑣𝑖≠ as boolean signs reduces the number of inter-
mediate results when using BP, as demonstrated in our preliminary
results, and it facilitates hardware acceleration, which is our next
goal. Our future work involves utilizing reprogrammable hardware,
such as an FPGA equipped with private memory that can be ac-
cessed via a PCIe connection. DMA controllers will transfer 𝐸𝑣𝑖≠
from the CPUmemory to the accelerator’s private memory. The pro-
cess of DC discovery will occur in specialized hardware developed
within the FPGA, where the low coupling between DC candidates
can take advantage of the FPGA’s high parallel architecture. The
results will then be returned to the CPU memory. We will compare
the accelerated version of BP with current CPU-based methods.

5 CONTRIBUTIONS
Our major contributions: 1) We present Boolean Patterns, a new
algorithm to deal with mincover problems that can be used to dis-
cover DCs while keeping tiny structures in memory and is suitable
for hardware acceleration. 2) We evaluate BP and its counterparts
on real-world datasets used in discovering DCs, linking algorithms
to deal with mincovers and the problem of DC discovery. 3) We
created and validated a CPU version of BP assuring its correctness.
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