
KSample: Dynamic Sampling Over Unbounded Data Streams

Tiago Rodrigo Kepe1, Eduardo Cunha de Almeida1, Thomas Cerqueus2

1 Universidade Federal do Paraná, Brazil
[trkepe,eduardo]@inf.ufpr.br

2 Université de Lyon, CNRS, INSA-Lyon, LIRIS, France
thomas.cerqueus@insa-lyon.fr

Abstract.

Data sampling over data streams is common practice to allow the analysis of data in real-time. However, sampling
over data streams becomes complex when the stream does not fit in memory, and worse yet, when the length of the
stream is unknown. A well-known technique for sampling data streams is the Reservoir Sampling. It requires a fixed-size
reservoir that corresponds to the resulting sample size. But, defining the reservoir size is challenging: huge samples
may waste computing resources and may not fit in memory; whereas tiny samples may be inadequate and prevent from
drawing meaningful conclusions. This article presents KSample, a novel data sampling algorithm over unbounded data
streams. It does not require to know the length of the stream or the size of the sample. The key idea of KSample is
based on an invariant that keeps the percentage of the stream regardless of its length. That is the reservoir invariably
represents at least the target percentage of the stream. KSample eliminates the problem of memory space by defining the
concept of distributed mini-reservoirs grounded on the same invariant. Experiments show that KSample is substantially
faster than the Reservoir Sampling algorithm to generate samples. Finally, KSample was put in practice to speed up
data analytics over MapReduce jobs, reducing their response times by up to a factor of 20.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous; H.3 [Information Storage and
Retrieval]: Miscellaneous

Keywords: Data Analytics, Data Sampling, Data Stream

1. INTRODUCTION

Data stream is an inherent property of different data-centric systems, including Internet databases [Chen
et al. 2000], continuous query systems [Madden et al. 2002] [Arasu et al. 2003], sensor networks [Mad-
den and Franklin 2002], mobile devices [Boutsis et al. 2013], social networks [Diaz-Aviles et al. 2012]
and data mining [Papini et al. 2014a; 2014b]. In many companies extracting information from data
streams is crucial to infer business trends and, consequently, focus efforts on right markets by ap-
plying prompt actions and take advantage of business opportunities. For instance, on stock markets,
investors have to make quick decisions based on data streams of the stock exchange. Delayed decisions
on new entrants might lead to costly consequences.

Besides time constraints, other problems arise when memory space is insufficient for building ana-
lytics over data streams. A well-accepted solution lies in computing data samples. A state-of-the-art
algorithm to sample data streams is the Reservoir Sampling (RS) [Vitter 1985; Bonin et al. 2014].
It has been successfully applied in many contemporary systems, such as real-time social streams
(e.g., Twitter) [Chen et al. 2013], text streams [Bonin et al. 2014] and Web-based stream-data sys-

Copyright c©2015 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 6, No. 1, February 2015, Pages 32–47.



KSample: Dynamic Sampling Over Unbounded Data Streams · 33

tems1 2. The RS computes samples as fresh data arrives from the stream and keeps them in a memory
buffer called reservoir. The RS also replaces legacy data in the reservoir to keep the sample fresh.
However, the RS requires a pre-defined fixed size of the sample that bounds the size of the reser-
voir. Defining the optimal size is challenging: huge samples may waste computing resources and may
not fit in memory; whereas tiny samples may be inadequate and compromise drawing meaningful
conclusions [Cochran 1977].

Al-Kateb et al. [2007] proposed an adaptive-size reservoir sampling over data streams. In their work,
the size of the reservoir is not fixed, it is adjusted according to the characteristics of the data stream:
if there is any change in the data characteristics, then the reservoir is resized. However, memory space
is not taken into account and overfilling reservoirs is prohibited. Alternatively, other approaches focus
on preserving memory space by using sliding windows over unbounded data streams [Braverman et al.
2009; Srivastava and Widom 2004], but the size of the window must be externally provided.

This article presents KSample, a new sampling technique to address two problems of the state-of-
the-art techniques: (i) the size of the reservoir, and (ii) the space of main memory. The first one is
addressed by introducing an invariant: at any iteration of KSample the resulting sample invariably
represents at least the target percentage of the stream regardless of its length. The second one is
addressed by distributing the reservoir as mini-reservoirs, also called slots (each slot respects the
invariant). Several elements from a given data stream may compete for the same slot, but only
statistically chosen elements are kept in the slot. When the slot reaches the target percentage, a new
empty slot is created to be disputed by the incoming fresh elements. In time, slots that are no longer
disputed are flushed away to secondary storage to save main memory space. Experiments show that
KSample is substantially faster than the Reservoir Sampling algorithm to generate samples. KSample
was also put in practice to speed up data analytics over MapReduce jobs, reducing their response
times by a factor of 20.

The remainder of this article is structured as follows. Section 2 presents the related work. Section 3
presents the Reservoir Sampling algorithm, on which KSample is based. KSample is introduced
in Section 4, along with the proof of its invariant. Section 5 evaluates KSample. We first show
the accuracy and efficiency of KSample in terms of response time (Sections 5.1 and 5.2). Then, we
present two practical use cases of KSample on MapReduce processing (Sections 5.3 and 5.4). Section 6
concludes this article.

2. RELATED WORK

Sampling over data streams is a strategy applied to rapidly infer information without prior knowledge
of the stream length, especially for continuous query systems [Madden et al. 2002] [Arasu et al. 2003].
The Reservoir Sampling [Vitter 1985] is a well-known and widely used algorithm to sample data
streams [Gama 2010]. However, approaches based on it [Chen et al. 2013; Bonin et al. 2014] require
a fixed-size reservoir.

To deal with the static characteristic of the Reservoir Sampling, Al-Kateb et al. [2007] proposed a
dynamic adjustment of the reservoir size while sampling is still in progress. They focused on two main
factors: the reservoir size and the sample uniformity. The reservoir size is adjusted based on runtime
data characteristics or application behavior. While they address the problem of the reservoir size,
a new enlarged reservoir may burst memory. Furthermore, adjusting the size of the reservoir while
sampling leads to an additional cost corresponding to (I) the analysis of data stream, (II) the detection
of changes in data characteristics, and (III) the computation of a new reservoir size. Recently, the

1Algorithms Every Data Scientist Should Know: Reservoir Sampling
http://blog.cloudera.com/blog/2013/04/hadoop-stratified-randosampling-algorithm
2Reservoir Sampling - Sampling from a stream of elements
http://gregable.com/2007/10/reservoir-sampling.html

Journal of Information and Data Management, Vol. 6, No. 1, February 2015.



34 · Tiago Rodrigo Kepe, Eduardo Cunha de Almeida and Thomas Cerqueus

same authors proposed a new adaptive stratified reservoir sampling over multiple sub-streams, but
their algorithm still runs with fixed-size reservoir [Al-Kateb and Lee 2014].

Some works focus on the frequency of items to perform sampling of items at any time from the
stream [Manku and Motwani 2002; Gibbons 2001]. For instance, the Hybrid-Streaming [Guo et al.
2011] considers the frequency of items on multiple data streams, maintaining approximate histograms
for all data streams coming from different report sources. Frequency summaries are gathered by the
algorithms and stored in internal structures consuming extra memory space.

Other approaches present moving/sliding windows over data streams, where timeline is meaning-
ful [Gemulla and Lehner 2008; Babcock et al. 2002; Braverman et al. 2009]. These approaches consider
that outdated data is expired in a time interval t (timestamp-based sample) or a group of the n most
recent elements (sequence-based sample). A sample of size k is created by replacing the most recent
elements in a window. However, they require defining a fixed-size sample (k) and extra information
(e.g. t or n), leading to use O(k) memory space and O(k log n) for bursty windows [Braverman et al.
2009].

Other works use different strategies based on stratified sampling and resampling techniques. For
instance, Levin and Kanza [2014] designed a distributed MapReduce algorithm based on the stratified
sample technique. This algorithm aims to create multi-survey stratified sampling over on-line social
networks, considering specific constraints and costs to share individuals among surveys. Elements
are selected from strata created by Map and Reduce functions. However, the algorithm requires the
population size from which the stratum is extracted. Another approach is the EARL [Laptev et al.
2012] framework to run queries on samples constrained by user thresholds in order to reduce response
time. EARL creates samples following an error threshold. If the current sample achieves a high error,
then a new sample is created with an increased sample size (resampling).

Compared to the described approaches, our main contribution lies in creating a new data sampling
algorithm that does not require of a fixed-size reservoir while solving the acute problem of memory
space.

3. RESERVOIR SAMPLING ALGORITHM

This section presents the Reservoir Sampling algorithm, as it represents the basis of KSample. The
Reservoir Algorithm, initially known as Algorithm R, was designed by Alan Waterman, and later
categorized by Vitter [1985]. Our first contribution draws on the Reservoir Sampling algorithm to
generalize the proof for a reservoir of any size.

The Reservoir Sampling algorithm uses a fixed-size reservoir to hold elements added by the sampling
process. The reservoir size (denoted by k) is the sample size. But defining k is challenging, as it has to
be representative without filling up the whole main memory. The Reservoir Sampling aims to process
a stream of elements whose length is large and unknown, and build a reservoir that can fit in main
memory.

The Reservoir Sampling algorithm is presented in Algorithm 1: It receives as input k and the data
stream. Initially, the reservoir is assigned with the first k elements. Then the algorithm calculates the
probability of the ith element to be inserted into the reservoir starting from the (k + 1)th, which has
a probability equal to P (ith) = k

i . Next, a random number (denoted by rand) uniformly distributed
between 0 and 1 is chosen. If rand < P (ith), then the ith element randomly replaces another one in
the reservoir.

Let us sketch the execution of the algorithm assuming a reservoir sampling of size k = 1, and that
all elements have the same probability to be chosen. Initially (in round R1), the first element E1

comes in with the probability to be sampled as P (E1)
R1 = 1. At this point, E1 is chosen and the

length of the stream is 1. When the next element E2 comes in, the algorithm should decide to keep

Journal of Information and Data Management, Vol. 6, No. 1, February 2015.



KSample: Dynamic Sampling Over Unbounded Data Streams · 35

Algorithm 1: Reservoir Sample Algorithm
Input : k, sample size
Input : stream, data stream of undefined length
Output: arraySample[k]
for i = 1→ k do

arraySample[i]← stream[i]

numElements← k
while stream != EOF do

numElements← numElements+ 1
probability ← k/numElements
rand← Random(0, 1)
if rand < probability then

pos← Random(1, k)
arraySample[pos]← stream[numElements]

return arraySample

E1 or to replace it by E2. The probability to choose E2 is P (E2) = 1
2 , as at this point the stream

length is 2. The probability to keep E1 (P (E1)
R2) is equal to the probability to choose it in the last

round multiplied by the probability of not choosing E2, which is:
P (E1)

R2 = P (E1)
R1 × P (E2)

= 1× (1− P (E2))
= 1×

(
1− 1

2

)
= 1× 1

2 = 1
2

Thus, the probabilities of E1 and E2 in the second round are the same, i.e., 1
2 .

Likewise in the next round (R3), when E3 comes in, the algorithm has to decide between the element
chosen in R2 and E3. The probability to choose E3 is P (E3) =

1
3 , as the stream length at this point

is 3. Now, the algorithm computes the probability to keep the element chosen in R2. Let us consider
that this element is E1. Its probability in the current round R3 is its probability in R2 multiplied by
the probability of not choosing E3, as follows:
P (E1)

R3 = P (E1)
R2 × P (E3)

= 1
2 × (1− P (E3))

= 1
2 ×

(
1− 1

3

)
= 1

2 ×
2
3 = 1

3

So, the probabilities of E1, E2 and E3 in R3 are equal to 1
3 . By induction, in round Rn the probability

of each element is 1
N .

Proof 3.1. Reservoir Sampling’s proof.

Let us prove that the probability of any element to be present in the reservoir after N rounds is k
N .

—Base Case: N = k.
The probability of the kst elements is P (kst) = k

N = 1.

—Induction Hypothesis (I.H.):
Let us assume that the probability of the Nst elements in the round N th is P (Nst) = k

N , N > k.

—Induction Step: round N + 1.
P ((N +1)th) = k

N+1 is the probability to choose the (N +1)th element to put into the reservoir, as
the reservoir size is k and the stream length is N + 1 at this point.

The probability to remove an element (Eremove) already inserted in the reservoir is:

Journal of Information and Data Management, Vol. 6, No. 1, February 2015.



36 · Tiago Rodrigo Kepe, Eduardo Cunha de Almeida and Thomas Cerqueus

P (Eremove) = (the probability to choose the (N + 1)th element)
× (the probability to remove an element of the reservoir)

P (Eremove) = P ((N + 1)th) × 1

k
=

k

N + 1
× 1

k
=

1

N + 1

Hence, the probability of any element kept in the reservoir is:

P (Ekeep) = 1− P (Eremove) = 1− 1
N+1 = N

N+1

Thus, the probability of any previous element to be in the reservoir after the round (N + 1)th is:

P (Ebeing) = (probability of any previous element to be chosen in the last N th rounds)
× P (Ekeep)

P (Ebeing) =
k

N
(by the I.H.) × N

N + 1
=

k

N + 1

4. KSAMPLE DYNAMIC RESERVOIR SAMPLING ALGORITHM

In this section, we present KSample, a sampling algorithm for the challenging task of defining the
reservoir size on unbounded data streams. The key idea to drive the data sampling is to define an
invariant: at any iteration of KSample the resulting sample invariably represents at least the target
percentage of the stream regardless of its length. KSample receives as parameter a target percentage
(ρ ∈ ]0, 1]), and, whenever the stream or KSample stops, the resulting sample contains at least P%
of elements from the stream (where P = ρ × 100). Let us assume that ρ = 0.1 is received as input,
then KSample will dynamically scale the reservoir to hold at least 10% of the input data stream.

KSample refines the reservoir sample technique to work with an undefined reservoir size. Hence, we
define the concept of slot, which is a memory space where a single element is inserted into the reservoir.
Several elements from a given data stream may compete for the same slot, but only statistically chosen
elements are inserted. New slots can be dynamically created in the reservoir in order to ensure the
invariant. When the slot reaches the target percentage, a new empty slot is created to be disputed
by the newcomer elements. In time, slots that are no longer disputed are flushed away to secondary
storage to save main memory space.

Algorithm 2 depicts KSample. It receives as input the target percentage to build the sample and
the data stream. It starts with an empty reservoir. New slots are created in the sample reservoir,
thus the reservoir bulks up dynamically. If the reservoir size is lower than ρ multiplied by the stream
length (denoted by sLength), then a new sloti is created in the reservoir to keep newcomer elements.
Then, KSample considers this slot as a reservoir of size equal to 1, and uses it to store newcomer
elements until a new slot sloti+1 is created (see Algorithm 1). Elements stored in old slots can be
flushed away to secondary storage to save memory space.

Figure 1 illustrates KSample running with a target percentage equal to 30%, i.e., ρ = 0.3. Initially,
when the first element (E1) comes in, slot1 is created and E1 is inserted with probability P (E1) = 1.
In the second round, E2 replaces E1 in the reservoir with probability P (E2) =

1
2 , but no additional

slots are required as the reservoir still adheres to the target percentage (≥ 30%). In the third round,
the newcomer element E3 does not replace E2 and is discarded with probability P (E3) =

1
3 . When

E4 comes in the fourth round, KSample requires creating slot2, otherwise the reservoir would not
contain at least 30% of the population (from this moment slot1 can be flushed away). Thus, E4 is
inserted into slot2. The algorithm loops until the stream ends.

Journal of Information and Data Management, Vol. 6, No. 1, February 2015.



KSample: Dynamic Sampling Over Unbounded Data Streams · 37

Algorithm 2: KSample Algorithm
Input : ρ, percentage for sampling (ρ ∈ ]0, 1])
Input : stream, data stream of undefined length
Output: reservoir[ ]
sLength← 0
slotRound← 0
while stream != EOF do

sLength++

if reservoir.size() < (ρ× sLength) then
reservoir.flush()
reservoir.newSlot()
slotRound← 0

slotRound++

probability ← 1
slotRound

rand← Random(0, 1)
if rand ≤ probability then

reservoir.currentSlot← stream[sLength]

return reservoir

Although the newest element seems to have the least probability to be inserted in the slot, the
probability of old elements also change according to the arrival of the newest one, which is a property
inherited from the Reservoir Sampling algorithm. For example when E3 arrives in Figure 1, the
probability of E1 and E2 to keep in the reservoir is the same than inserting E3, i.e., P (E1,2) = (the
probability of E1 and E2 before the arrival of E3) multiplied by (the probability of not choosing E3),
that is 1

2×(1− 1
3 ) =

1
2×

2
3 = 1

3 . The cumulative probability of the Reservoir Sampling is shown by the
induction in Section 3. It means that the probability of old items to be kept in the reservoir equals

Fig. 1. The execution of KSample with ρ = 0.3 and with the conditional decisions to create a new slot and replace the
elements inserted in the reservoir.

Journal of Information and Data Management, Vol. 6, No. 1, February 2015.



38 · Tiago Rodrigo Kepe, Eduardo Cunha de Almeida and Thomas Cerqueus

(the probability to choose them before the arrival of the newest one)1 multiplied by (the probability
of not choosing the newest one)2.

Proof 4.1. Let us consider the following mathematical demonstration:

—Notations:
Reservoir size = 1 (for KSample one specific slot is a reservoir of size 1).
n: Slot round.
Olds: (the probability to choose old items before the arrival of the newest one)1.
NotNewest: (the probability of not choosing the newest one)2.

—Olds = 1/n→ that is the probability of the old items before the arrival of the newest one, according
to the Reservoir Sampling’s proof.

—NotNewest = the complement of the probability to choose the newest one, i.e., 1 - (the probability
to choose the newest one = 1

n+1 ), then NotNewest = 1− 1
n+1 .

—The probability of old items to be kept in the reservoir after the arrival of the
newest one is: Olds×NotNewest = 1

n × 1− 1
n+1 = 1

n ×
(n+1−1)

n+1 = 1
n ×

n
n+1 = 1

n+1 .
—Thus, the probability of the old items to stay in the reservoir when the newest one arrives is the
same, i.e., 1

n+1 , that is the probability of the newest one.

KSample ensures that the reservoir always holds at least the target percentage of elements (30%
in the previous example) regardless of the length of the current stream. The creation of new slots is
based on this invariant. That is, if KSample does not create a new slot, then the reservoir cannot
hold at least P% of elements from the stream.

Proof 4.2. KSample’s invariance proof by induction.

—Notations:
R: reservoir size.
ρ: target percentage of elements from the stream, ρ ∈ ]0, 1].
P : ρ× 100.
L: stream length.

—Base Case: When E1 comes in.
R = 0, the algorithm determines whether to create a new slot by checking the condition (R <
(ρ × L)). As ρ ∈ ]0, 1] and L = 1, then (ρ × L) ∈ ]0, 1]. Consequently, R < (ρ × L) is true and
the algorithm determines to create a new slot, thus the reservoir keeps E1 and holds at least P%
of the elements from the stream.

—Induction Hypothesis (I.H.):
Suppose in the N th step, after the arrival of the (En)

th element, the reservoir holds at least P% of
elements from the stream.

—Induction Step: step (N + 1).
We have to prove two cases:
(1) Create a new slot :

In this case the condition: R < (ρ × L) has to be true. By the I.H., in the last step N , the
reservoir contains at least P% of the elements from the stream. Due to the incoming of En+1,
KSample creates a new slot to hold this new element. Certainly, adding a new slot to the
reservoir increases its size, thus keeping up with at least P% of elements of the stream.

(2) Do not create a new slot :
In this case the condition: R ≥ (ρ×L) has to be true. This means that the reservoir holds P%
or more elements from the stream.

Journal of Information and Data Management, Vol. 6, No. 1, February 2015.



KSample: Dynamic Sampling Over Unbounded Data Streams · 39

Therefore, after the step (N +1) the reservoir size, with at least P% of the elements of the stream,
is kept in any round of KSample.

KSample processes any slot as a reservoir of size equal to 1. Moreover, elements competing for the
same slot have the same probability to be inserted. One may argue that an exception arises when
considering the last slot. For instance, if the stream length is odd and ρ = 0.5, the last element will
be inserted in the last slot with a probability equal to 1. All other previous elements are inserted
into the reservoir with probability equal to 1

2 . However, this exception cannot arise for sampling over
unbounded data streams, because the stream is continuous.

5. EVALUATION

In this section, we present the empirical evaluation of KSample. We evaluate the efficiency of KSample
against an adapted Reservoir Sampling on MapReduce. In addition, we show two practical use cases
of KSample for boosting data processing of the Apache Hadoop system.

All experiments were carried out in a Hadoop3 cluster composed of three machine nodes: one
machine acts as the master node and the two others act as slave nodes. The machines run with Linux
Mint 13 Maya SO, 3GB of ram memory, SATA Disk with at least 250GB, at a LAN of 100Mbs.
The cluster was populated using the job randomtextwriter bundled with Apache Hadoop. This job
generates 10GB of random text on each slave machine, totaling 20GB of data stored in the cluster. We
used Hadoop version 0.20.203.0 in all experiments, as it is a requirement of the third party software
(i.e., Starfish4). All experiments were run using the Hadoop streaming5 in order to simulate the input
data set as a stream of elements.

We implemented KSample in MapReduce for Hadoop to take advantage of its architecture for
distributed computing and storage. We used each generated row as the atomic unit for data sampling.
However, KSample is flexible enough to handle other atomic units, including files, blocks, bytes, and
images. The MapReduce implementation of KSample is given in APPENDIX A.

Next, sections 5.1 and 5.2 show comparisons of KSample against a Random Sampling algorithm
and an adaptation of the Reservoir Sampling algorithm on MapReduce. Sections 5.3 and 5.4 illustrate
potential use cases of KSample for Hadoop data processing. In Section 5.3, KSample and the Starfish
framework were used to tune Hadoop jobs. Section 5.4 shows the benefit of using KSample in the
context of a typical Hadoop data analytics application.

5.1 KSample’s Invariant

In this section, we compare KSample with a Random Sampling algorithm based on the Simple Random
Sampling6. The Random Sampling algorithm is presented in APPENDIX C. It receives a percentage
as parameter and the input population are text lines coming from the standard input. For each line a
random float number is generated, a line is added to the survey if this random number is lower than
the given percentage.

3Apache Hadoop a standardized MapReduce framework for Big Data processing.
http://hadoop.apache.org/docs/r1.2.1/
4Starfish - Self-tuning system on Hadoop. http://www.cs.duke.edu/starfish/
5Hadoop Streaming. http://hadoop.apache.org/docs/r1.2.1/streaming.html
6Simple Random Sampling. http://www.ph.ucla.edu/epi/rapidsurveys/RScourse/RSbook_ch3.pdf
http://www.randomsampling.org/Simple-Random-Sampling.html

Journal of Information and Data Management, Vol. 6, No. 1, February 2015.



40 · Tiago Rodrigo Kepe, Eduardo Cunha de Almeida and Thomas Cerqueus

KSample Random
Round Lines Percentage Lines Percentage

1 106613 20,02% 106341 19.97%
2 106613 20,02% 106649 20.03%
3 106613 20,02% 106890 20.07%
4 106613 20,02% 106343 19.97%
5 106613 20,02% 105839 19.87%
6 106613 20,02% 106345 19.97%
7 106613 20,02% 106691 20.03%
8 106613 20,02% 106262 19.95%
9 106613 20,02% 107065 20.10%
10 106613 20,02% 106667 20.03%

Table I. KSample X Random Sampling.

We ran KSample and the Random Sampling algorithm 10 times with 20% as input parameter of a
20GB population. The size of this population corresponds to 532,414 lines of text. Table I shows the
number of resulting line and the corresponding percentage for both algorithms.

Based on Table I, we observe that KSample does not have any deviation related to its invariant,
i.e., all samples generated contain at least 20% of elements. KSample variance and standard deviation
are both zero, which empirically corroborates with the KSample’s invariant. On the other side, the
Random Sampling algorithm generates different sizes of samples at each round with standard deviation
of 335 number of lines. For applications constrained by accuracy, KSample is the best solution.

5.2 KSample Execution Time

In this section, we present a performance comparison in terms of execution time to generate samples
between KSample and a MapReduce algorithm derived from the Reservoir Sampling 7. In this derived
algorithm, the Reservoir Sampling was adapted to support very large data sets, considering scenarios
where the desired sample does not fit in memory. The Map function randomly fills buckets (that are
allocated memory spaces to accommodate some items) by choosing items from the input data set.
Then the Reduce function selects the k first items from these buckets.

We generate 9 samples using KSample with several percentage numbers as parameter (10%, 20%, ...,
90%) recording the execution times for each percentage. Meanwhile, we did the same with Reservoir
Sampling7, but provided the k parameter to generate the same quantity of samples. To compute 9
different sizes of reservoir, we ran another Hadoop job, called LineCounter, that counts the number of
lines on the whole data set. Given the total number of lines computed by LineCounter (i.e., 532,414),
we manually computed the number of lines that represent 10%, 20%, ..., 90% of the population. After,
using each number of lines we ran the Reservoir Sampling to compute the samples.

Figure 2 depicts the execution time to generate the samples without considering the execution time
of the LineCounter job. KSample was faster than the Reservoir Sampling in six data samplings (the
samples: 10%, 20%, 30%, 40%, 50% and 60%). For large samples (70%, 80% and 90%) the Reservoir
Sampling gets better execution time. But in this approach, users have to provide the reservoir size
(i.e., the parameter k) to the algorithm, and finding a proper k may be an expensive task. In terms
of efficiency, KSample shows better response times to generate samples smaller than 70% of the
population.

7Reservoir Sampling in MapReduce.
http://had00b.blogspot.ie/2013/07/random-subset-in-mapreduce.html

Journal of Information and Data Management, Vol. 6, No. 1, February 2015.



KSample: Dynamic Sampling Over Unbounded Data Streams · 41

Fig. 2. Execution time to generate samples.

5.3 Using KSample to Tune Hadoop Jobs

In this section, we present a use case for KSample for boosting the costly process of tuning Hadoop
jobs. Essentially, the cost is related to the large number of parameters involved. Indeed, every Hadoop
job has more than 200 parameters to be properly tuned in order to obtain good performance, such
as: memory allocation, I/O controllers and network timeouts [Filho et al. 2014]. Those parameters
are bound to the available resources (e.g., input data, online machines and network bandwidth). In
addition, Hadoop jobs are expected to process massive data sets, which can be the main barrier to
finding a good configuration [Chen et al. 2012]. Thus, some tools have been developed to tune Hadoop
jobs, and Starfish [Herodotou et al. 2011] is the state-of-the-art tool. Therefore, data sampling can
be useful to generate testing data inputs for tuning Hadoop jobs.

We used Starfish v0.3.0 to find configurations for two jobs bundled with the Hadoop package:
WordCount and Grep. First, we used the distributed KSample to generate 9 samples corresponding
to 10%, 20%, ..., 90% of the data stored in the cluster. Second, in those samples we ran the Starfish’s
optimizer to get the configurations for both Hadoop jobs. We also ran the optimizer to get the
configuration for the whole data set (100% of data). Finally, we configured the jobs with each computed
configuration to run the jobs on the whole data set.

Tables II and III present the response times for 5 runs of each job. The columns labeled "10%" to
"90%" show the execution time of the jobs tuned with the configurations provided by Starfish over the

# 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Default

1 40:58 38:40 39:42 37:00 37:54 37:04 36:36 36:40 37:29 37:37 39:39
2 39:24 36:05 36:27 36:22 37:26 37:11 37:10 36:48 38:11 39:06 40:56
3 36:13 35:54 36:45 36:49 36:49 37:02 36:16 36:36 36:40 34:01 43:10
4 33:10 36:11 42:05 48:20 40:27 42:33 36:03 37:21 35:51 34:39 43:07
5 36:56 36:36 36:56 39:06 42:09 43:12 36:45 38:00 37:25 34:56 45:20

Avg 36:32 36:29 37:35 39:19 38:33 39:12 36:22 36:29 36:31 35:27 42:26

Table II. The execution times in minutes for KSample generating samples for the WordCount job.

Journal of Information and Data Management, Vol. 6, No. 1, February 2015.



42 · Tiago Rodrigo Kepe, Eduardo Cunha de Almeida and Thomas Cerqueus

# 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Default

1 29:14 29:12 29:11 28:35 28:24 28:44 28:59 29:17 28:31 28:11 33:48
2 29:34 29:18 29:17 29:32 29:20 28:59 29:02 29:29 29:25 29:52 31:10
3 32:13 39:56 42:47 43:24 43:40 44:1 44:43 44:52 44:07 36:41 31:16
4 29:18 28:55 28:58 29:18 29:28 29:1 29:26 29:38 29:19 27:38 31:33
5 29:29 29:13 29:28 29:23 29:13 29:15 29:14 29:28 29:24 28:51 31:36

Avg 29:21 30:30 31:32 31:26 31:25 31:24 31:28 32:32 31:21 29:38 31:52

Table III. The execution times in minutes for KSample generating samples for the Grep job.

samples. The column labeled "100%" shows the execution time of the jobs tuned using the whole data
set. The column labeled "Default" shows the execution time of jobs using the default configuration
of Hadoop on the whole data set.

Figure 3 presents the average times in minutes with the best execution time for the WordCount
provided by Starfish for the whole data set (100%). The second best performance was the sample of
20% of the data. However, getting this configuration takes 10 minutes and 9 seconds, and it takes
21 minutes to generate the sample. In total, it takes more than 31 minutes to tune the WordCount
job. Whilst, the time needed to get the configuration from the whole data set was 56 minutes and 57
seconds. The difference of execution times is close to 1 minute, but to reach the configuration from a
sample of 20% was around 25 minutes faster. If the WordCount job is executed once a day, after 25
days the configuration from the whole data set would be advantageous. If after 25 days the data set
changed, thus it should be needed to compute a new job configuration.

For the Grep job the best performance was reached using the configuration from the sample of 10%.
The second best time was reached using the configuration from the whole data set. But, the difference
between them is 17 seconds. However, the configuration from the sample of 10% was computed in 5
minutes and 12 seconds, and the time to generate that sample was 16 minutes and 43 seconds. So
the total time to get a configuration was 21 minutes and 55 seconds. Whilst, the time spent to get
the configuration from the whole data set was 54 minutes and 43 seconds. Therefore, with a sample
of 10% the execution time slightly decreases, but with half of the cost.

Fig. 3. MapReduce Jobs tuned by Starfish using samples provided by KSample.

Journal of Information and Data Management, Vol. 6, No. 1, February 2015.



KSample: Dynamic Sampling Over Unbounded Data Streams · 43

Fig. 4. Time to retrieve the top 10 products on samples.

5.4 Top-k Products

This section demonstrates the benefits of KSample when retrieving the top-k products in a sales
list8. Top-k is a common task on continuous queries systems over data streams [Mouratidis et al.
2006]. KSample was applied to generate product lines as atomic units. The data set was generated
synthetically with 300, 000, 000 lines with 100 different products, each line represents the sale of a
product, and contains product id, product name, sales time stamp and amount of product sold.

We implemented a MapReduce version of top-k for Hadoop to get the top-10 products from a data
set of sold products. Top-k runs over each sample to seek the top-10 products. The Map function
of the top-k job keeps apart the product id and the amount of product sold as the intermediate
key/value. In the shuffle phase, top-k groups different amount of sales belonging to the same product,
e.g., 〈product_id, [11, 20, 3, 5]〉 (this process is similar to the WordCount job, but the amount of sales
is assigned to the value instead of the occurrence of words). The Reduce function sums up the total
of product sold, and in the end the output is ordered according to this number. Our implementation
is given in APPENDIX D.

Figure 4 presents the time needed to generate the data samples (KSample bar), and the response
time to retrieve the top-10 products on samples (TopK bar). Only the last bar (100%) does not have
the time needed to run KSample, as it represents the whole data set. We used the diff program to
check the top-10 products reached using those data samples against the top-10 products reached on
the whole data set. We checked that the results were identical, i.e., 100% of precision. On the sample
of 0,01% the top-k response time was 30 seconds. Whilst, the top-k response time on the whole data
set was 612 seconds. If we consider just the top-k response time, KSample leads to an improvement
of 20 times. In addition, KSample generated the sample in 520 seconds, totaling 540 seconds to run
the top-k on a sample of 0,01%. This represents an improvement of 12% in the response time. In
real-world analytics, the time to generate the sample can be diluted if reusing it to extract other
information, such as the top-k products sold in a certain period.

8The variable k is different from the one introduced in Section 3.

Journal of Information and Data Management, Vol. 6, No. 1, February 2015.



44 · Tiago Rodrigo Kepe, Eduardo Cunha de Almeida and Thomas Cerqueus

As a concluding remark, computing the top-k products over a sample improved the response time
in 20 times in contrast with the same computing over the whole data set, without losing precision.

6. CONCLUSION

We presented KSample, an efficient data sampling algorithm for data streams. A well-known tech-
nique for sampling data streams is the Reservoir Sampling, but it requires a fixed-size reservoir that
corresponds to the resulting sample size. Defining the reservoir size is challenging, as big reservoirs
may waste computing resources, whilst small ones may hold inaccurate samples. KSample differs from
the state-of-the-art Reservoir Sampling algorithm, as it does not require to know the length of the
stream or the size of the sample. The key idea of KSample is based on an invariant that keeps the
percentage of the stream regardless of its length. KSample introduces the concept of mini-reservoirs
to tackle the acute problem of memory space. The mini-reservoirs allow distributing the sampling
over large machine setups.

KSample is also faster than the standard Reservoir Sampling to generate samples, which makes
it appealing for data analytics tools over data streams. Empirical experiments show that KSample
reached better performance to generate samples smaller than 70% of the population against the
standard Reservoir Sampling. For instance, to generate a sampling of 10% from the data set, KSample
is approximately 2.8 times faster, even ignoring the extra time to compute the reservoir sizes required
by the Reservoir Sampling.

KSample showed good performance for data sampling in a distributed fashion on a cluster of Apache
Hadoop machines and flexibility to process large and unbounded data streams. We obtained inter-
esting results after exposing KSample to two practical use cases on Hadoop and continuous query
systems. First, samples can be used to test performance tuning setups of Hadoop jobs. As presented
in Section 5.3, the Grep job tuned over a sample of 10% reached a better response time than the whole
data set counterpart, but with less than half of the cost. Second, KSample was applied to retrieve
the top-k products from a stream of products containing 300, 000, 000 elements. The response time
was 20 times better than executing top-k over the whole data set, whilst maintaining 100% accuracy.
Future work includes seeking the best target percentage as the current KSample algorithm still needs
it as an input from developers.

ACKNOWLEDGMENT

This work has been partially funded by the Brazilian Innovation Agency (FINEP) and CNPq grant
441944/2014-0.

REFERENCES

Al-Kateb, M. and Lee, B. S. Adaptive Stratified Reservoir Sampling over Heterogeneous Data Streams. Information
Systems 39 (0306-4379): 199–216, 2014.

Al-Kateb, M., Lee, B. S., and Wang, X. S. Adaptive-Size Reservoir Sampling over Data Streams. In Proceedings
of the International Conference on Scientific and Statistical Databases Management. Washington, DC, USA, pp.
22–34, 2007.

Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Nishizawa, I., Rosenstein, J., and Widom, J. STREAM:
the stanford stream data manager (demonstration description). In Proceedings of the ACM SIGMOD International
Conference on Management of Data. New York, NY, USA, pp. 665–665, 2003.

Babcock, B., Datar, M., and Motwani, R. Sampling from a Moving Window over Streaming Data. In Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA, USA, pp. 633–634, 2002.

Bonin, R., Marcacini, R. M., and Rezende, S. O. Unsupervised Instance Selection from Text Streams. Journal
of Information and Data Management 5 (1): 114–123, 2014.

Boutsis, I., Kalogeraki, V., and Gunopulos, D. Efficient Event Detection by Exploiting Crowds. In Proceedings
of the ACM International Conference on Distributed Event-based Systems. New York, NY, USA, pp. 123–134, 2013.

Journal of Information and Data Management, Vol. 6, No. 1, February 2015.



KSample: Dynamic Sampling Over Unbounded Data Streams · 45

Braverman, V., Ostrovsky, R., and Zaniolo, C. Optimal Sampling from Sliding Windows. In Proceedings of the
ACM Symposium on Principles of Database Systems. New York, NY, USA, pp. 147–156, 2009.

Chen, C., Yin, H., Yao, J., and Cui, B. TeRec: a temporal recommender system over tweet stream. Proceedings of
the VLDB Endowment 6 (12): 1254–1257, 2013.

Chen, J., DeWitt, D. J., Tian, F., and Wang, Y. NiagaraCQ: a scalable continuous query system for internet
databases. SIGMOD Record 29 (2): 379–390, 2000.

Chen, Y., Alspaugh, S., and Katz, R. Interactive Analytical Processing in Big Data Systems: a cross-industry study
of MapReduce workloads. Proceedings of the VLDB Endowment 5 (12): 1802–1813, 2012.

Cochran, W. G. The Estimation of Sample Size. In J. Wiley (Ed.), Sampling Techniques. John Wiley Sons, USA,
pp. 72–86, 1977.

Diaz-Aviles, E., Drumond, L., Gantner, Z., Schmidt-Thieme, L., and Nejdl, W. What is Happening Right
Now ... That Interests Me?: online topic discovery and recommendation in Twitter. In Proceedings of the ACM
International Conference on Information and Knowledge Management. New York, NY, USA, pp. 1592–1596, 2012.

Filho, E. R. L., de Almeida, E. C., and Traon, Y. L. Intra-query Adaptivity for MapReduce Query Processing
Systems. In Proceedings of the 18th International Database Engineering & Applications Symposium. New York, NY,
USA, pp. 380–381, 2014.

Gama, J. Knowledge Discovery from Data Streams. CRC Press, Boca Raton, USA, 2010.
Gemulla, R. and Lehner, W. Sampling Time-based Sliding Windows in Bounded Space. In Proceedings of the ACM
SIGMOD International Conference on Management of Data. New York, NY, USA, pp. 379–392, 2008.

Gibbons, P. B. Distinct Sampling for Highly-Accurate Answers to Distinct Values Queries and Event Reports. In
Proceedings of the International Conference on Very Large Data Bases. San Francisco, CA, USA, pp. 541–550, 2001.

Guo, J., Zhang, P., Tan, J., and Guo, L. Mining Frequent Patterns Across Multiple Data Streams. In Proceedings
of the ACM International Conference on Information and Knowledge Management. New York, NY, USA, pp. 2325–
2328, 2011.

Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F. B., and Babu, S. Starfish: a self-tuning
system for big data analytics. In Conference on Innovative Data Systems Research. California, USA, pp. 261–272,
2011.

Laptev, N., Zeng, K., and Zaniolo, C. Early Accurate Results for Advanced Analytics on MapReduce. Proceedings
of the VLDB Endowment 5 (10): 1028–1039, 2012.

Levin, R. and Kanza, Y. Stratified-sampling over Social Networks Using Mapreduce. In Proceedings of the ACM
SIGMOD International Conference on Management of Data. New York, NY, USA, pp. 863–874, 2014.

Madden, S. and Franklin, M. J. Fjording the Stream: an architecture for queries over streaming sensor data. In
Proceedings of the 18th International Conference on Data Engineering, ICDE. San Jose, CA, USA, pp. 555–566,
2002.

Madden, S., Shah, M., Hellerstein, J. M., and Raman, V. Continuously Adaptive Continuous Queries over
Streams. In Proceedings of the ACM SIGMOD International Conference on Management of Data. New York, NY,
USA, pp. 49–60, 2002.

Manku, G. S. and Motwani, R. Approximate Frequency Counts over Data Streams. In Proceedings of the Interna-
tional Conference on Very Large Data Bases. Hong Kong, China, pp. 346–357, 2002.

Mouratidis, K., Bakiras, S., and Papadias, D. Continuous Monitoring of Top-k Queries over Sliding Windows.
In Proceedings of the ACM SIGMOD International Conference on Management of Data. New York, NY, USA, pp.
635–646, 2006.

Papini, J. A. J., de Amo, S., and Soares, A. K. S. FPSMining: a fast algorithm for mining user preferences in
data streams. Journal of Information and Data Management 5 (1): 4–15, 2014a.

Papini, J. A. J., de Amo, S., and Soares, A. K. S. Strategies for Mining User Preferences in a Data Stream Setting.
Journal of Information and Data Management 5 (1): 64–73, 2014b.

Srivastava, U. and Widom, J. Memory-limited Execution of Windowed Stream Joins. In Proceedings of the Inter-
national Conference on Very Large Data Bases. Toronto, Canada, pp. 324–335, 2004.

Vitter, J. S. Random Sampling with a Reservoir. ACM Transactions on Mathematical Software 11 (1): 37–57, 1985.

APPENDIX A. KSAMPLE IN PYTHON

#!/usr/bin/python

import sys, random
from reservoir import Reservoir

perc = float(sys.argv[1])
slength, slotRound = 0, 0

Journal of Information and Data Management, Vol. 6, No. 1, February 2015.



46 · Tiago Rodrigo Kepe, Eduardo Cunha de Almeida and Thomas Cerqueus

res = Reservoir()

for elem in sys.stdin:
slength += 1
if (res.size() < (perc * slength)):

if slotRound != 0:
res.flush()

res.newSlot()
slotRound = 0

slotRound += 1
prob = 1.0/slotRound
r = random.random()
if (r <= prob):

res.setCurrentSlot(elem)

print ’%s’ % (res.getCurrentElement()),

The Map Python script imports the Reservoir class presented in APPENDIX B. This class was
designed to support a reservoir of size 1. The target percentage number is passed as a parameter to the
program. Hadoop provides an embedded package to perform streaming processing, which transforms
files in the HDFS (Hadoop Distributed File System) into streaming to the standard input (stdin).
Then the Python Map script reads each line from the stdin and runs KSample. The intermediate
key/value pairs are sent before a new slot is create in order to avoid leak memory on Hadoop.

We decided to implement KSample in the map phase due to the number of files scanned in this
phase. The sample is created while files are scanned. The Reduce phase simply writes the lines
sampled on Map phase into the HDFS.

APPENDIX B. RESERVOIR PYTHON CLASS

class Reservoir:
def __init__(self):

self.currentSlot = 0
self.currentElement = ’’

def newSlot(self):
self.currentSlot += 1

def setCurrentSlot(self, newElement):
self.currentElement = newElement

def getCurrentElement(self):
return self.currentElement

def size(self):
return self.currentSlot

def flush(self):
print ’%s’ % (self.getCurrentElement()),

APPENDIX C. RANDOM SAMPLING IN PYTHON

#!/usr/bin/python

import sys, random

perc = float(sys.argv[1])

for elem in sys.stdin:
r = random.random()
if r < perc:

print ’%s’ % (elem),

Journal of Information and Data Management, Vol. 6, No. 1, February 2015.



KSample: Dynamic Sampling Over Unbounded Data Streams · 47

APPENDIX D. TOP-K MR JOB IN PYTHON

APPENDIX D.1 TOP-K MAP FUNCTION

#!/usr/bin/python
import sys

products={}
for line in sys.stdin:

product=line.split(’|’)
id=product[0]
sold=int(product[3])
if id not in products:

products[id] = sold
else:

products[id] += sold

for k,v in products.items():
print "%s|%s" % (k, v)

APPENDIX D.2 TOP-K REDUCE FUNCTION

#!/usr/bin/python
import sys, random

topK=[]
current_product = None
current_count=0

for elem in sys.stdin:
elem=elem.rstrip()
product, count = elem.split("|");

try:
count = int(count)

except ValueError:
continue

if current_product == product:
current_count += count

else:
if current_product:

topK.append([int(current_product), int(current_count)])
current_product = product
current_count = count

if current_product == product:
topK.append([int(current_product), int(current_count)])

topK.sort(key=lambda x: x[1], reverse=True)

for k,v in topK:
print "%s|%s" % (k, v)

Journal of Information and Data Management, Vol. 6, No. 1, February 2015.


