
Safely	
  Managing	
  Data	
  Variety	
  in	
  
Big	
  Data	
  So2ware	
  Development	
  
Thomas	
  Cerqueus	
  (Université	
  de	
  Lyon,	
  INSA	
  Lyon,	
  LIRIS)	
  
Eduardo	
  Cunha	
  de	
  Almeida	
  (Federal	
  University	
  of	
  Paraná)	
  

Stefanie	
  Scherzinger	
  (OTH	
  Regensburg)	
  

1st	
  InternaRonal	
  Workshop	
  on	
  BIG	
  Data	
  So2ware	
  Engineering,	
  23	
  May	
  2015	
  



PaaS	
  over	
  NoSQL	
  Databases	
  

•  No	
  explicit	
  DB	
  schema	
  
•  EnRRes	
  are	
  defined	
  at	
  the	
  applicaRon	
  level	
  
– Class	
  è	
  EnRty	
  
– A]ribute	
  è	
  Field	
  

•  Developers	
  are	
  in	
  charge	
  of	
  defining	
  and	
  
maintaining	
  the	
  DB	
  

Safely	
  Managing	
  Data	
  Variety	
  in	
  Big	
  Data	
  So2ware	
  Development.	
  Cerqueus	
  T.,	
  Cunha	
  de	
  Almeida	
  E,	
  Scherzinger	
  S.	
  	
  



Object	
  Mappers	
  

Safely	
  Managing	
  Data	
  Variety	
  in	
  Big	
  Data	
  So2ware	
  Development.	
  Cerqueus	
  T.,	
  Cunha	
  de	
  Almeida	
  E,	
  Scherzinger	
  S.	
  	
  



Object	
  Mappers	
  

Safely	
  Managing	
  Data	
  Variety	
  in	
  Big	
  Data	
  So2ware	
  Development.	
  Cerqueus	
  T.,	
  Cunha	
  de	
  Almeida	
  E,	
  Scherzinger	
  S.	
  	
  



code	
  repository	
  

development	
  IDE	
  

commit	
  

Development	
  Environment	
   ProducRon	
  Environment	
  
5	
  Safely	
  Managing	
  Data	
  Variety	
  in	
  Big	
  Data	
  So2ware	
  Development.	
  Cerqueus	
  T.,	
  Cunha	
  de	
  Almeida	
  E,	
  Scherzinger	
  S.	
  	
  



code	
  repository	
  

development	
  IDE	
  

v0	
  

commit	
  

Development	
  Environment	
   ProducRon	
  Environment	
  

v0	
  

v0	
  
deploy	
  

DaaS	
  

PaaS	
  

v0	
  

v0	
   v0	
  

6	
  Safely	
  Managing	
  Data	
  Variety	
  in	
  Big	
  Data	
  So2ware	
  Development.	
  Cerqueus	
  T.,	
  Cunha	
  de	
  Almeida	
  E,	
  Scherzinger	
  S.	
  	
  



code	
  repository	
  

development	
  IDE	
  

v1	
  

commit	
  

Development	
  Environment	
   ProducRon	
  Environment	
  

v0	
  

v1	
  
deploy	
  

DaaS	
  

PaaS	
  

v0	
  

v0	
   v0	
  

7	
  

v0	
  

v1	
  

v1	
  

Safely	
  Managing	
  Data	
  Variety	
  in	
  Big	
  Data	
  So2ware	
  Development.	
  Cerqueus	
  T.,	
  Cunha	
  de	
  Almeida	
  E,	
  Scherzinger	
  S.	
  	
  



code	
  repository	
  

development	
  IDE	
  

v1	
  

commit	
  

Development	
  Environment	
   ProducRon	
  Environment	
  

PaaS	
  

v0	
  

v1	
  

v0	
   v0	
  

v1	
  

8	
  

v1	
   v1	
  

Safely	
  Managing	
  Data	
  Variety	
  in	
  Big	
  Data	
  So2ware	
  Development.	
  Cerqueus	
  T.,	
  Cunha	
  de	
  Almeida	
  E,	
  Scherzinger	
  S.	
  	
  



code	
  repository	
  

development	
  IDE	
  

v1	
  

commit	
  

Development	
  Environment	
   ProducRon	
  Environment	
  

PaaS	
  

v0	
  

v1	
  

v0	
   v0	
  

v1	
  

9	
  

v1	
   v1	
  

Safely	
  Managing	
  Data	
  Variety	
  in	
  Big	
  Data	
  So2ware	
  Development.	
  Cerqueus	
  T.,	
  Cunha	
  de	
  Almeida	
  E,	
  Scherzinger	
  S.	
  	
  



code	
  repository	
  

development	
  IDE	
  

v1	
  

commit	
  

Development	
  Environment	
   ProducRon	
  Environment	
  

PaaS	
  

v0	
  

v1	
  

v0	
   v0	
  

v1	
  

10	
  

v1	
   v1	
  



Checking	
  Rules	
  (1/2)	
  
CW ` @Id type att;

CR � CW ` @Id type att; ok

(1)

CW ` type att;
CR � CW ` type att; ok

(2)

CR � CW ` type att; ok

✓
att not declared

in CW

◆
(3)

CW ` @Ignore type1 att;
CR � CW ` type2 att; ok

(4)

CW ` type att;
CR � CW ` @IgnoreLoad type att; ok

(5)

CW ` type att;
CR � CW ` @IgnoreSave type att; ok

(6)

CW ` type att;
CR � CW ` @Ignore type att; ok

(7)

Fig. 4: Selected rules for (1, 2) keeping an attribute, lazily (3, 4)
adding, (5) overwriting, and (6, 7) explicitly removing an attribute.

2) Renaming Attributes: Figure 5 lists rules concerning the
annotation @AlsoLoad. They detect ambiguous mappings in
renamings (c.f., Section II-B3).

3) Ignoring Attributes: Rule 13 in Figure 5 concerns the
annotations for ignoring attributes in writing or reading. Ig-
noring annotations can be combined freely without risk.

C. Nontranstitivity of Type Checking Rules

Our type checking rules are not transitive in the following
sense: Given a sequence of versions X , Y , and Z of an object
mapper class declaration, if Y type checks as valid w.r.t. X ,
and Z type checks as valid w.r.t. Y , it does not necessarily
follow that Z type checks as valid w.r.t. X . It turns out that
non-transitivity is helpful in detecting actual problems, as the
next example shows.

Example 5. We assume a sequence of versions X , Y , and
Z of an object mapper class declaration, with the following
judgments for attribute level:

X ` String level;

Y ` @Ignore String level;

Z ` Integer level;

Then according to rules (7) and (4), it holds that

X ` String level;

Y �X ` @Ignore String level; ok

Y ` @Ignore String level;

Z � Y ` Integer level; ok

yet Z does not type check as valid w.r.t. X . Thus, the release
of Z does not type check, due to issues with retyping. ⇤

In the example above, attribute level is re-introduced with a
different type. If the type had not been changed, then our type
checking rules would not have detected an issue. To be able to
capture this case as well, we extend our approach to checking
chains of object mapper class declarations (rather than pairs)
in Section IV-B.

IV. RELAXATIONS AND EXTENSIONS

We next discuss pragmatic relaxations and extensions.

A. Allowable Type Promotions

Our examples so far have only considered basic types for
class member attributes, such as String and Integer. We can
easily generalize to complex types.

Example 6. We consider the following judgments from two
different versions of the Player class declaration:

Playerc ` @Embedded A description;

Playerd ` @Embedded B description;

The Objectify annotation @Embedded stores structured data
within a single entity in a way so that it remains queryable.
We assume that A and B are different Java class names. ⇤

By our type checking approach, Playerd does not check as
valid w.r.t Playerc, since the types for attribute description
differ. Yet there are cases where this rule is overly restrictive.

Rule (14) below relaxes rule (2). We use the notation tBt

0 to
express that type t is compatible with t

0. This means that any
instance of t must be “loadable” as an instance of t

0 without
data loss. The trivial case is that t = t

0, yet we can also
allow for Short B Integer, since all instances of Short can be
converted to Integers.

CW ` type att;
CR � CW ` type0 att; ok

(type B type0) (14)

We look at type compatibility in more detail.
1) Conversion of Primitive Types: For the remainder of this

section, we focus on primitive types1 (i.e., Void, Boolean,
Byte, Short, Integer, Long, Float, Double, Character, String
and Object), and we discuss the risks when primitive type
attributes are loaded from a datastore.

a) Successful Conversion: A number of primitive types
can be converted safely into other primitive types, for instance,
ShortBInteger, FloatBDouble, and IntegerBString. Typically,
a primitive type t can be converted to a type t

0 if the memory
allocated to store objects of type t

0 is larger (or equal) than
the one allocated to objects of type t.

b) Incorrect Conversion: When a type t cannot be con-
verted to a type t

0, an exception may be raised. For instance, in
general it is not possible to convert a literal into a number, so
the conversion of a String into a Short will raise an exception.

1We somewhat abusively use the terms primitive types to refer to classes
of the java.lang package that wrap Java primitive types. Void, Character
and Object are not considered, as Objectify does not support them in entities.

Safely	
  Managing	
  Data	
  Variety	
  in	
  Big	
  Data	
  So2ware	
  Development.	
  Cerqueus	
  T.,	
  Cunha	
  de	
  Almeida	
  E,	
  Scherzinger	
  S.	
  	
  



Checking	
  Rules	
  (2/2)	
  

CW ` type att1;
CR � CW ` @AlsoLoad("att2") type att1; ok

(att2 not declared in CW ) (8)

CW ` type att2;
CR � CW ` @AlsoLoad("att2") type att1; ok

(att1 not declared in CW ) (9)

CW ` @annot type att1 CW ` type att2;
CR � CW ` @AlsoLoad("att2") type att1; ok

(@annot is @Ignore or @IgnoreSave) (10)

CW ` type att1 CW ` @annot type att2;
CR � CW ` @AlsoLoad("att2") type att1; ok

(@annot is @Ignore or @IgnoreSave) (11)

CR � CW ` @AlsoLoad("att2") type att1; ok

(att1 and att2 not declared in CW ) (12)

CW ` @annot1 type att1;
CR � CW ` @annot2 type att1; ok

✓
@annot1 and @annot2 are any of

@Ignore,@IgnoreSave,@IgnoreLoad

◆
(13)

Fig. 5: Selected rules for the @AlsoLoad annotation (8 - 12) and for ignoring attributes (13).

c) Conversion Returning a Corrupted Value: Surpris-
ingly, there are cases where Objectify allows a conversion,
even when types cannot be casted in Java. For instance, the
conversion of a positive Integer to a Short may return a
negative number. This situation is particularly dangerous from
a development and testing point-of-view as, since it does not
raise an exception, developers might not expect to be able to
convert an Integer to a Short. So when a corrupted value is
retrieved, they might not suspect a conversion problem, and
the problem does not appear systematically (it only appears
for certain values), which complicates testing.

B. Checking Chains of Class Declarations

We consider the unintentional reintroduction of attributes
a schema evolution pitfall (c.f. Section II-B4). These cases
are difficult to anticipate for developers, as the attribute that
existed in previous versions may have been removed from
the source code several releases back. Yet as discussed in
Section III-C, we may not always capture this problem by
type checking pairs of class declaration versions.

In order to reliably detect these problems at development
time, we check the whole sequence of class declarations
released into production to detect when attributes by the same
name have been removed and are now being reintroduced. The
necessary information is usually accessible from within the
IDE, since the source code repository is commonly integrated
with the IDE.

V. THE CONTROVOL FRAMEWORK

As a proof-of-concept, we have implemented our type
checking rules as the ControVol Eclipse plugin. We briefly
highlight the core features of ControVol, and refer to [16]
and [17] for details on the workflow as experienced by
developers. Our ControVol prototype currently supports Java
development against Google Cloud Datastore [1], using the
Objectify object mapper library. It is straightforward to extend

Fig. 6: ControVol suggests quick fixes to resolve warnings.

ControVol to other IDEs, NoSQL data stores, and object
mapper libraries.

ControVol captures changes to object mapper class dec-
larations during the IDE-integrated build process. ControVol
then compares object mapper class declarations to the release
history, as managed by the code repository. The plugin is
able to detect common schema evolution pitfalls involving
adding, renaming, and removing attributes. ControVol then
issues warnings accordingly.

ControVol can even suggest IDE-supported quick fixes
to help resolve problems. For instance, in the case of the
renaming problem triggered by the refactoring in Figure 2,
the ControVol dialog in Figure 6 proposes several fixes:

• Adding the Objectify annotation @AlsoLoad lazily re-
names level to rank. This ensures that no values are lost.

• Adding annotation @Ignore makes clear that attribute
level is intentionally discarded.

• Restoring attribute level prevents that its value is lost. In
this case, attributes level and rank co-exist.

ControVol currently type checks Java class declarations
w.r.t. all Objectify life-cycle annotations for class member
attributes, as listed in Section II. In the future, we plan
to also type check life-cycle annotations for methods. Yet
since the methods may contain arbitrary Java code, these are

Safely	
  Managing	
  Data	
  Variety	
  in	
  Big	
  Data	
  So2ware	
  Development.	
  Cerqueus	
  T.,	
  Cunha	
  de	
  Almeida	
  E,	
  Scherzinger	
  S.	
  	
  



Example	
  

CW ` @Id type att;
CR � CW ` @Id type att; ok

(1)

CW ` type att;
CR � CW ` type att; ok

(2)

CR � CW ` type att; ok

✓
att not declared

in CW

◆
(3)

CW ` @Ignore type1 att;
CR � CW ` type2 att; ok

(4)

CW ` type att;
CR � CW ` @IgnoreLoad type att; ok

(5)

CW ` type att;
CR � CW ` @IgnoreSave type att; ok

(6)

CW ` type att;
CR � CW ` @Ignore type att; ok

(7)

Fig. 4: Selected rules for (1, 2) keeping an attribute, lazily (3, 4)
adding, (5) overwriting, and (6, 7) explicitly removing an attribute.

2) Renaming Attributes: Figure 5 lists rules concerning the
annotation @AlsoLoad. They detect ambiguous mappings in
renamings (c.f., Section II-B3).

3) Ignoring Attributes: Rule 13 in Figure 5 concerns the
annotations for ignoring attributes in writing or reading. Ig-
noring annotations can be combined freely without risk.

C. Nontranstitivity of Type Checking Rules

Our type checking rules are not transitive in the following
sense: Given a sequence of versions X , Y , and Z of an object
mapper class declaration, if Y type checks as valid w.r.t. X ,
and Z type checks as valid w.r.t. Y , it does not necessarily
follow that Z type checks as valid w.r.t. X . It turns out that
non-transitivity is helpful in detecting actual problems, as the
next example shows.

Example 5. We assume a sequence of versions X , Y , and
Z of an object mapper class declaration, with the following
judgments for attribute level:

X ` String level;

Y ` @Ignore String level;

Z ` Integer level;

Then according to rules (7) and (4), it holds that

X ` String level;

Y �X ` @Ignore String level; ok

Y ` @Ignore String level;

Z � Y ` Integer level; ok

yet Z does not type check as valid w.r.t. X . Thus, the release
of Z does not type check, due to issues with retyping. ⇤

In the example above, attribute level is re-introduced with a
different type. If the type had not been changed, then our type
checking rules would not have detected an issue. To be able to
capture this case as well, we extend our approach to checking
chains of object mapper class declarations (rather than pairs)
in Section IV-B.

IV. RELAXATIONS AND EXTENSIONS

We next discuss pragmatic relaxations and extensions.

A. Allowable Type Promotions

Our examples so far have only considered basic types for
class member attributes, such as String and Integer. We can
easily generalize to complex types.

Example 6. We consider the following judgments from two
different versions of the Player class declaration:

Playerc ` @Embedded A description;

Playerd ` @Embedded B description;

The Objectify annotation @Embedded stores structured data
within a single entity in a way so that it remains queryable.
We assume that A and B are different Java class names. ⇤

By our type checking approach, Playerd does not check as
valid w.r.t Playerc, since the types for attribute description
differ. Yet there are cases where this rule is overly restrictive.

Rule (14) below relaxes rule (2). We use the notation tBt

0 to
express that type t is compatible with t

0. This means that any
instance of t must be “loadable” as an instance of t

0 without
data loss. The trivial case is that t = t

0, yet we can also
allow for Short B Integer, since all instances of Short can be
converted to Integers.

CW ` type att;
CR � CW ` type0 att; ok

(type B type0) (14)

We look at type compatibility in more detail.
1) Conversion of Primitive Types: For the remainder of this

section, we focus on primitive types1 (i.e., Void, Boolean,
Byte, Short, Integer, Long, Float, Double, Character, String
and Object), and we discuss the risks when primitive type
attributes are loaded from a datastore.

a) Successful Conversion: A number of primitive types
can be converted safely into other primitive types, for instance,
ShortBInteger, FloatBDouble, and IntegerBString. Typically,
a primitive type t can be converted to a type t

0 if the memory
allocated to store objects of type t

0 is larger (or equal) than
the one allocated to objects of type t.

b) Incorrect Conversion: When a type t cannot be con-
verted to a type t

0, an exception may be raised. For instance, in
general it is not possible to convert a literal into a number, so
the conversion of a String into a Short will raise an exception.

1We somewhat abusively use the terms primitive types to refer to classes
of the java.lang package that wrap Java primitive types. Void, Character
and Object are not considered, as Objectify does not support them in entities.

CW	
   CR	
  

Safely	
  Managing	
  Data	
  Variety	
  in	
  Big	
  Data	
  So2ware	
  Development.	
  Cerqueus	
  T.,	
  Cunha	
  de	
  Almeida	
  E,	
  Scherzinger	
  S.	
  	
  



Example	
  

CW ` @Id type att;
CR � CW ` @Id type att; ok

(1)

CW ` type att;
CR � CW ` type att; ok

(2)

CR � CW ` type att; ok

✓
att not declared

in CW

◆
(3)

CW ` @Ignore type1 att;
CR � CW ` type2 att; ok

(4)

CW ` type att;
CR � CW ` @IgnoreLoad type att; ok

(5)

CW ` type att;
CR � CW ` @IgnoreSave type att; ok

(6)

CW ` type att;
CR � CW ` @Ignore type att; ok

(7)

Fig. 4: Selected rules for (1, 2) keeping an attribute, lazily (3, 4)
adding, (5) overwriting, and (6, 7) explicitly removing an attribute.

2) Renaming Attributes: Figure 5 lists rules concerning the
annotation @AlsoLoad. They detect ambiguous mappings in
renamings (c.f., Section II-B3).

3) Ignoring Attributes: Rule 13 in Figure 5 concerns the
annotations for ignoring attributes in writing or reading. Ig-
noring annotations can be combined freely without risk.

C. Nontranstitivity of Type Checking Rules

Our type checking rules are not transitive in the following
sense: Given a sequence of versions X , Y , and Z of an object
mapper class declaration, if Y type checks as valid w.r.t. X ,
and Z type checks as valid w.r.t. Y , it does not necessarily
follow that Z type checks as valid w.r.t. X . It turns out that
non-transitivity is helpful in detecting actual problems, as the
next example shows.

Example 5. We assume a sequence of versions X , Y , and
Z of an object mapper class declaration, with the following
judgments for attribute level:

X ` String level;

Y ` @Ignore String level;

Z ` Integer level;

Then according to rules (7) and (4), it holds that

X ` String level;

Y �X ` @Ignore String level; ok

Y ` @Ignore String level;

Z � Y ` Integer level; ok

yet Z does not type check as valid w.r.t. X . Thus, the release
of Z does not type check, due to issues with retyping. ⇤

In the example above, attribute level is re-introduced with a
different type. If the type had not been changed, then our type
checking rules would not have detected an issue. To be able to
capture this case as well, we extend our approach to checking
chains of object mapper class declarations (rather than pairs)
in Section IV-B.

IV. RELAXATIONS AND EXTENSIONS

We next discuss pragmatic relaxations and extensions.

A. Allowable Type Promotions

Our examples so far have only considered basic types for
class member attributes, such as String and Integer. We can
easily generalize to complex types.

Example 6. We consider the following judgments from two
different versions of the Player class declaration:

Playerc ` @Embedded A description;

Playerd ` @Embedded B description;

The Objectify annotation @Embedded stores structured data
within a single entity in a way so that it remains queryable.
We assume that A and B are different Java class names. ⇤

By our type checking approach, Playerd does not check as
valid w.r.t Playerc, since the types for attribute description
differ. Yet there are cases where this rule is overly restrictive.

Rule (14) below relaxes rule (2). We use the notation tBt

0 to
express that type t is compatible with t

0. This means that any
instance of t must be “loadable” as an instance of t

0 without
data loss. The trivial case is that t = t

0, yet we can also
allow for Short B Integer, since all instances of Short can be
converted to Integers.

CW ` type att;
CR � CW ` type0 att; ok

(type B type0) (14)

We look at type compatibility in more detail.
1) Conversion of Primitive Types: For the remainder of this

section, we focus on primitive types1 (i.e., Void, Boolean,
Byte, Short, Integer, Long, Float, Double, Character, String
and Object), and we discuss the risks when primitive type
attributes are loaded from a datastore.

a) Successful Conversion: A number of primitive types
can be converted safely into other primitive types, for instance,
ShortBInteger, FloatBDouble, and IntegerBString. Typically,
a primitive type t can be converted to a type t

0 if the memory
allocated to store objects of type t

0 is larger (or equal) than
the one allocated to objects of type t.

b) Incorrect Conversion: When a type t cannot be con-
verted to a type t

0, an exception may be raised. For instance, in
general it is not possible to convert a literal into a number, so
the conversion of a String into a Short will raise an exception.

1We somewhat abusively use the terms primitive types to refer to classes
of the java.lang package that wrap Java primitive types. Void, Character
and Object are not considered, as Objectify does not support them in entities.

CW	
   CR	
  

Safely	
  Managing	
  Data	
  Variety	
  in	
  Big	
  Data	
  So2ware	
  Development.	
  Cerqueus	
  T.,	
  Cunha	
  de	
  Almeida	
  E,	
  Scherzinger	
  S.	
  	
  



Example	
  

CW ` @Id type att;
CR � CW ` @Id type att; ok

(1)

CW ` type att;
CR � CW ` type att; ok

(2)

CR � CW ` type att; ok

✓
att not declared

in CW

◆
(3)

CW ` @Ignore type1 att;
CR � CW ` type2 att; ok

(4)

CW ` type att;
CR � CW ` @IgnoreLoad type att; ok

(5)

CW ` type att;
CR � CW ` @IgnoreSave type att; ok

(6)

CW ` type att;
CR � CW ` @Ignore type att; ok

(7)

Fig. 4: Selected rules for (1, 2) keeping an attribute, lazily (3, 4)
adding, (5) overwriting, and (6, 7) explicitly removing an attribute.

2) Renaming Attributes: Figure 5 lists rules concerning the
annotation @AlsoLoad. They detect ambiguous mappings in
renamings (c.f., Section II-B3).

3) Ignoring Attributes: Rule 13 in Figure 5 concerns the
annotations for ignoring attributes in writing or reading. Ig-
noring annotations can be combined freely without risk.

C. Nontranstitivity of Type Checking Rules

Our type checking rules are not transitive in the following
sense: Given a sequence of versions X , Y , and Z of an object
mapper class declaration, if Y type checks as valid w.r.t. X ,
and Z type checks as valid w.r.t. Y , it does not necessarily
follow that Z type checks as valid w.r.t. X . It turns out that
non-transitivity is helpful in detecting actual problems, as the
next example shows.

Example 5. We assume a sequence of versions X , Y , and
Z of an object mapper class declaration, with the following
judgments for attribute level:

X ` String level;

Y ` @Ignore String level;

Z ` Integer level;

Then according to rules (7) and (4), it holds that

X ` String level;

Y �X ` @Ignore String level; ok

Y ` @Ignore String level;

Z � Y ` Integer level; ok

yet Z does not type check as valid w.r.t. X . Thus, the release
of Z does not type check, due to issues with retyping. ⇤

In the example above, attribute level is re-introduced with a
different type. If the type had not been changed, then our type
checking rules would not have detected an issue. To be able to
capture this case as well, we extend our approach to checking
chains of object mapper class declarations (rather than pairs)
in Section IV-B.

IV. RELAXATIONS AND EXTENSIONS

We next discuss pragmatic relaxations and extensions.

A. Allowable Type Promotions

Our examples so far have only considered basic types for
class member attributes, such as String and Integer. We can
easily generalize to complex types.

Example 6. We consider the following judgments from two
different versions of the Player class declaration:

Playerc ` @Embedded A description;

Playerd ` @Embedded B description;

The Objectify annotation @Embedded stores structured data
within a single entity in a way so that it remains queryable.
We assume that A and B are different Java class names. ⇤

By our type checking approach, Playerd does not check as
valid w.r.t Playerc, since the types for attribute description
differ. Yet there are cases where this rule is overly restrictive.

Rule (14) below relaxes rule (2). We use the notation tBt

0 to
express that type t is compatible with t

0. This means that any
instance of t must be “loadable” as an instance of t

0 without
data loss. The trivial case is that t = t

0, yet we can also
allow for Short B Integer, since all instances of Short can be
converted to Integers.

CW ` type att;
CR � CW ` type0 att; ok

(type B type0) (14)

We look at type compatibility in more detail.
1) Conversion of Primitive Types: For the remainder of this

section, we focus on primitive types1 (i.e., Void, Boolean,
Byte, Short, Integer, Long, Float, Double, Character, String
and Object), and we discuss the risks when primitive type
attributes are loaded from a datastore.

a) Successful Conversion: A number of primitive types
can be converted safely into other primitive types, for instance,
ShortBInteger, FloatBDouble, and IntegerBString. Typically,
a primitive type t can be converted to a type t

0 if the memory
allocated to store objects of type t

0 is larger (or equal) than
the one allocated to objects of type t.

b) Incorrect Conversion: When a type t cannot be con-
verted to a type t

0, an exception may be raised. For instance, in
general it is not possible to convert a literal into a number, so
the conversion of a String into a Short will raise an exception.

1We somewhat abusively use the terms primitive types to refer to classes
of the java.lang package that wrap Java primitive types. Void, Character
and Object are not considered, as Objectify does not support them in entities.

CW	
   CR	
  

Safely	
  Managing	
  Data	
  Variety	
  in	
  Big	
  Data	
  So2ware	
  Development.	
  Cerqueus	
  T.,	
  Cunha	
  de	
  Almeida	
  E,	
  Scherzinger	
  S.	
  	
  



Example	
  
CW	
   CR	
  

Safely	
  Managing	
  Data	
  Variety	
  in	
  Big	
  Data	
  So2ware	
  Development.	
  Cerqueus	
  T.,	
  Cunha	
  de	
  Almeida	
  E,	
  Scherzinger	
  S.	
  	
  



Type	
  Checking	
  Extension	
  

CW ` @Id type att;
CR � CW ` @Id type att; ok

(1)

CW ` type att;
CR � CW ` type att; ok

(2)

CR � CW ` type att; ok

✓
att not declared

in CW

◆
(3)

CW ` @Ignore type1 att;
CR � CW ` type2 att; ok

(4)

CW ` type att;
CR � CW ` @IgnoreLoad type att; ok

(5)

CW ` type att;
CR � CW ` @IgnoreSave type att; ok

(6)

CW ` type att;
CR � CW ` @Ignore type att; ok

(7)

Fig. 4: Selected rules for (1, 2) keeping an attribute, lazily (3, 4)
adding, (5) overwriting, and (6, 7) explicitly removing an attribute.

2) Renaming Attributes: Figure 5 lists rules concerning the
annotation @AlsoLoad. They detect ambiguous mappings in
renamings (c.f., Section II-B3).

3) Ignoring Attributes: Rule 13 in Figure 5 concerns the
annotations for ignoring attributes in writing or reading. Ig-
noring annotations can be combined freely without risk.

C. Nontranstitivity of Type Checking Rules

Our type checking rules are not transitive in the following
sense: Given a sequence of versions X , Y , and Z of an object
mapper class declaration, if Y type checks as valid w.r.t. X ,
and Z type checks as valid w.r.t. Y , it does not necessarily
follow that Z type checks as valid w.r.t. X . It turns out that
non-transitivity is helpful in detecting actual problems, as the
next example shows.

Example 5. We assume a sequence of versions X , Y , and
Z of an object mapper class declaration, with the following
judgments for attribute level:

X ` String level;

Y ` @Ignore String level;

Z ` Integer level;

Then according to rules (7) and (4), it holds that

X ` String level;

Y �X ` @Ignore String level; ok

Y ` @Ignore String level;

Z � Y ` Integer level; ok

yet Z does not type check as valid w.r.t. X . Thus, the release
of Z does not type check, due to issues with retyping. ⇤

In the example above, attribute level is re-introduced with a
different type. If the type had not been changed, then our type
checking rules would not have detected an issue. To be able to
capture this case as well, we extend our approach to checking
chains of object mapper class declarations (rather than pairs)
in Section IV-B.

IV. RELAXATIONS AND EXTENSIONS

We next discuss pragmatic relaxations and extensions.

A. Allowable Type Promotions

Our examples so far have only considered basic types for
class member attributes, such as String and Integer. We can
easily generalize to complex types.

Example 6. We consider the following judgments from two
different versions of the Player class declaration:

Playerc ` @Embedded A description;

Playerd ` @Embedded B description;

The Objectify annotation @Embedded stores structured data
within a single entity in a way so that it remains queryable.
We assume that A and B are different Java class names. ⇤

By our type checking approach, Playerd does not check as
valid w.r.t Playerc, since the types for attribute description
differ. Yet there are cases where this rule is overly restrictive.

Rule (14) below relaxes rule (2). We use the notation tBt

0 to
express that type t is compatible with t

0. This means that any
instance of t must be “loadable” as an instance of t

0 without
data loss. The trivial case is that t = t

0, yet we can also
allow for Short B Integer, since all instances of Short can be
converted to Integers.

CW ` type att;
CR � CW ` type0 att; ok

(type B type0) (14)

We look at type compatibility in more detail.
1) Conversion of Primitive Types: For the remainder of this

section, we focus on primitive types1 (i.e., Void, Boolean,
Byte, Short, Integer, Long, Float, Double, Character, String
and Object), and we discuss the risks when primitive type
attributes are loaded from a datastore.

a) Successful Conversion: A number of primitive types
can be converted safely into other primitive types, for instance,
ShortBInteger, FloatBDouble, and IntegerBString. Typically,
a primitive type t can be converted to a type t

0 if the memory
allocated to store objects of type t

0 is larger (or equal) than
the one allocated to objects of type t.

b) Incorrect Conversion: When a type t cannot be con-
verted to a type t

0, an exception may be raised. For instance, in
general it is not possible to convert a literal into a number, so
the conversion of a String into a Short will raise an exception.

1We somewhat abusively use the terms primitive types to refer to classes
of the java.lang package that wrap Java primitive types. Void, Character
and Object are not considered, as Objectify does not support them in entities.

CW ` @Id type att;
CR � CW ` @Id type att; ok

(1)

CW ` type att;
CR � CW ` type att; ok

(2)

CR � CW ` type att; ok

✓
att not declared

in CW

◆
(3)

CW ` @Ignore type1 att;
CR � CW ` type2 att; ok

(4)

CW ` type att;
CR � CW ` @IgnoreLoad type att; ok

(5)

CW ` type att;
CR � CW ` @IgnoreSave type att; ok

(6)

CW ` type att;
CR � CW ` @Ignore type att; ok

(7)

Fig. 4: Selected rules for (1, 2) keeping an attribute, lazily (3, 4)
adding, (5) overwriting, and (6, 7) explicitly removing an attribute.

2) Renaming Attributes: Figure 5 lists rules concerning the
annotation @AlsoLoad. They detect ambiguous mappings in
renamings (c.f., Section II-B3).

3) Ignoring Attributes: Rule 13 in Figure 5 concerns the
annotations for ignoring attributes in writing or reading. Ig-
noring annotations can be combined freely without risk.

C. Nontranstitivity of Type Checking Rules

Our type checking rules are not transitive in the following
sense: Given a sequence of versions X , Y , and Z of an object
mapper class declaration, if Y type checks as valid w.r.t. X ,
and Z type checks as valid w.r.t. Y , it does not necessarily
follow that Z type checks as valid w.r.t. X . It turns out that
non-transitivity is helpful in detecting actual problems, as the
next example shows.

Example 5. We assume a sequence of versions X , Y , and
Z of an object mapper class declaration, with the following
judgments for attribute level:

X ` String level;

Y ` @Ignore String level;

Z ` Integer level;

Then according to rules (7) and (4), it holds that

X ` String level;

Y �X ` @Ignore String level; ok

Y ` @Ignore String level;

Z � Y ` Integer level; ok

yet Z does not type check as valid w.r.t. X . Thus, the release
of Z does not type check, due to issues with retyping. ⇤

In the example above, attribute level is re-introduced with a
different type. If the type had not been changed, then our type
checking rules would not have detected an issue. To be able to
capture this case as well, we extend our approach to checking
chains of object mapper class declarations (rather than pairs)
in Section IV-B.

IV. RELAXATIONS AND EXTENSIONS

We next discuss pragmatic relaxations and extensions.

A. Allowable Type Promotions

Our examples so far have only considered basic types for
class member attributes, such as String and Integer. We can
easily generalize to complex types.

Example 6. We consider the following judgments from two
different versions of the Player class declaration:

Playerc ` @Embedded A description;

Playerd ` @Embedded B description;

The Objectify annotation @Embedded stores structured data
within a single entity in a way so that it remains queryable.
We assume that A and B are different Java class names. ⇤

By our type checking approach, Playerd does not check as
valid w.r.t Playerc, since the types for attribute description
differ. Yet there are cases where this rule is overly restrictive.

Rule (14) below relaxes rule (2). We use the notation tBt

0 to
express that type t is compatible with t

0. This means that any
instance of t must be “loadable” as an instance of t

0 without
data loss. The trivial case is that t = t

0, yet we can also
allow for Short B Integer, since all instances of Short can be
converted to Integers.

CW ` type att;
CR � CW ` type0 att; ok

(type B type0) (14)

We look at type compatibility in more detail.
1) Conversion of Primitive Types: For the remainder of this

section, we focus on primitive types1 (i.e., Void, Boolean,
Byte, Short, Integer, Long, Float, Double, Character, String
and Object), and we discuss the risks when primitive type
attributes are loaded from a datastore.

a) Successful Conversion: A number of primitive types
can be converted safely into other primitive types, for instance,
ShortBInteger, FloatBDouble, and IntegerBString. Typically,
a primitive type t can be converted to a type t

0 if the memory
allocated to store objects of type t

0 is larger (or equal) than
the one allocated to objects of type t.

b) Incorrect Conversion: When a type t cannot be con-
verted to a type t

0, an exception may be raised. For instance, in
general it is not possible to convert a literal into a number, so
the conversion of a String into a Short will raise an exception.

1We somewhat abusively use the terms primitive types to refer to classes
of the java.lang package that wrap Java primitive types. Void, Character
and Object are not considered, as Objectify does not support them in entities.

Safely	
  Managing	
  Data	
  Variety	
  in	
  Big	
  Data	
  So2ware	
  Development.	
  Cerqueus	
  T.,	
  Cunha	
  de	
  Almeida	
  E,	
  Scherzinger	
  S.	
  	
  



Type	
  Checking	
  Extension	
  –	
  PrimiRve	
  
Types	
  

Boolean	
   Byte	
   Short	
   Integer	
   Long	
   Float	
   Double	
   String	
   Object	
  

Boolean	
   Boolean	
  

Byte	
   Long	
  

Short	
   Long	
  

Integer	
   Long	
  

Long	
   Long	
  

Float	
   Double	
  

Double	
   Double	
  

String	
   String	
  

Excep;on	
  at	
  run;me	
   OK	
   Unexpected	
  type	
  	
  
conversion	
  

Precision	
  loss	
  

Safely	
  Managing	
  Data	
  Variety	
  in	
  Big	
  Data	
  So2ware	
  Development.	
  Cerqueus	
  T.,	
  Cunha	
  de	
  Almeida	
  E,	
  Scherzinger	
  S.	
  	
  



Type	
  Checking	
  Extension	
  –	
  Complex	
  
Types	
  

X	
  
…	
  

Y	
  
…	
  

X	
  
A	
  a	
  
B	
  b	
  
C	
  c	
  

Y	
  
A	
  a	
  
B	
  b	
  
C	
  c	
  

Safely	
  Managing	
  Data	
  Variety	
  in	
  Big	
  Data	
  So2ware	
  Development.	
  Cerqueus	
  T.,	
  Cunha	
  de	
  Almeida	
  E,	
  Scherzinger	
  S.	
  	
  



Chains	
  of	
  DeclaraRons	
  

Safely	
  Managing	
  Data	
  Variety	
  in	
  Big	
  Data	
  So2ware	
  Development.	
  Cerqueus	
  T.,	
  Cunha	
  de	
  Almeida	
  E,	
  Scherzinger	
  S.	
  	
  



Conclusion	
  

ControVol:	
  schema	
  evoluRon	
  checking	
  
framework	
  for	
  NoSQL	
  databases	
  
– Takes	
  acRon	
  prior	
  to	
  applicaRon	
  release	
  
–  Integrated	
  in	
  the	
  IDE	
  (Eclipse)	
  
– Warns	
  developers	
  against	
  perilous	
  evoluRons:	
  
addiRon/deleRon/renaming	
  of	
  a]ributes,	
  re-­‐
typing	
  

– Suggests	
  quick	
  fixes	
  

Safely	
  Managing	
  Data	
  Variety	
  in	
  Big	
  Data	
  So2ware	
  Development.	
  Cerqueus	
  T.,	
  Cunha	
  de	
  Almeida	
  E,	
  Scherzinger	
  S.	
  	
  



Conclusion	
  

Safely	
  Managing	
  Data	
  Variety	
  in	
  Big	
  Data	
  So2ware	
  Development.	
  Cerqueus	
  T.,	
  Cunha	
  de	
  Almeida	
  E,	
  Scherzinger	
  S.	
  	
  



PublicaRons	
  
•  T.	
  Cerqueus,	
  E.	
  Cunha	
  de	
  Almeida,	
  S.	
  Scherzinger.	
  ControVol:	
  

Let	
  yesterday's	
  data	
  catch	
  up	
  with	
  today's	
  applica;on	
  code.	
  
In	
  24th	
  Interna3onal	
  World	
  Wide	
  Web	
  Conference	
  
(WWW	
  2015)	
  

•  S.	
  Scherzinger,	
  T.	
  Cerqueus,	
  E.	
  Cunha	
  de	
  Almeida.	
  ControVol:	
  
A	
  Framework	
  for	
  Controlled	
  Schema	
  Evolu;on	
  in	
  NoSQL	
  
Applica;on	
  Development.	
  In	
  31st	
  Interna3onal	
  Conference	
  
on	
  Data	
  Engineering	
  (ICDE	
  2015)	
   	
  	
  

•  T.	
  Cerqueus,	
  E.	
  Cunha	
  de	
  Almeida,	
  S.	
  Scherzinger.	
  Safely	
  
Managing	
  Data	
  Variety	
  in	
  Big	
  Data	
  SoQware	
  Development.	
  
In	
  1st	
  Interna3onal	
  Workshop	
  on	
  Big	
  Data	
  SoEware	
  
Engineering	
  (BIGDSE'15)	
   	
  	
  

Safely	
  Managing	
  Data	
  Variety	
  in	
  Big	
  Data	
  So2ware	
  Development.	
  Cerqueus	
  T.,	
  Cunha	
  de	
  Almeida	
  E,	
  Scherzinger	
  S.	
  	
  



Safely	
  Managing	
  Data	
  Variety	
  in	
  
Big	
  Data	
  So2ware	
  Development	
  
Thomas	
  Cerqueus	
  (Université	
  de	
  Lyon,	
  INSA	
  Lyon,	
  LIRIS)	
  
Eduardo	
  Cunha	
  de	
  Almeida	
  (Federal	
  University	
  of	
  Paraná)	
  

Stefanie	
  Scherzinger	
  (OTH	
  Regensburg)	
  

1st	
  InternaRonal	
  Workshop	
  on	
  BIG	
  Data	
  So2ware	
  Engineering,	
  23	
  May	
  2015	
  


