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Abstract
Array database management systems (Array databases) are specialized software to
streamline multi-dimensional data processing. Due to the data-hungry nature of multi-
dimensional data applications (e.g., images and time series), array databases must
ideally provide linear speedup when using a multi-processing system. However, when
dealing with non-uniform memory access (NUMA) machines, array databases may
require massive data movement for processing across the NUMA nodes resulting
in severe performance impact. This paper investigates the performance impact of five
well-known thread pinning strategies running array filtering operations in two different
NUMA architectures. To identify the maximum potential performance improvement,
we perform an in-width analysis evaluating all possible thread pinning combinations.
Our experiments showed execution metrics of two array databases, namely SAVIME
and SciDB. We observe a maximum speedup by 2.25× in SAVIME with a reduction
in remote memory access by 5×. For SciDB, we observed a speedup of up to 5.83×
and a reduction on the remote memory access by 4.1×. Our main finding is that well-
known static thread pinning strategies only yield 48% from the potential speedup (and
26% of the energy reduction), opening multiple opportunities for improvements.
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1 Introduction

Many engineering and scientific applications use data arrays to efficiently store col-
lections of elements and support multi-dimensional data analysis. An array database
is specialized software for creating and maintaining data arrays. It supports multi-
dimensional operations based on geometry and linear algebra operations to query data
arrays (e.g., data slices, array transpose, addition, subtraction, opposite array) and
requires multi-processing computing when dealing with vast amount of data.

Ideally, the performance of the array databases should increase linearly usingmulti-
processor systems. In this paper, we study the performance of array databases running
on NUMA hardware architecture.

NUMAmachines provide shared memory across multi-processor nodes with vary-
ing data access latency according to the memory location: low latency whenever
accessing local memory, while high latency accessing remote memory. The loca-
tion of data plays an essential role in the overall performance as the execution of
multi-dimensional operations may need to move large amounts of data scattered in
local and remote nodes to validate query conditions. Suppose, for instance, moving
multiple array cells scattered in different nodes to output a data slice operation. Multi-
dimensional query processing needs efficient strategies for pinning query threads
across specific processing nodes. With an efficient pinning strategy, the validation
of the query conditions occurs mainly locally at each node, consequently, reducing
the movement of data.

Multi-dimensional query processing models are similar to those used by Relational
Database Management System (RDBMS). For example, SAVIME [23] uses the mate-
rialization query model (i.e., full materialization of intermediate array cells between
multiple operations), whereas SciDB [4] uses the iterator query model (i.e., produc-
er/consumer of one array cell at a time between multiple operations in a pipelined
scheme). The parallel execution of queries is similar to many RDBMS and relies on
theOperatingSystem (OS) tomap thememory and the query threads toCPUcores. The
OS uses load balance strategies to spread the query threads all over the cores without
considering specific characteristics of the interaction between operations running in
the database and themulti-core processor architecture. Previouswork onRDBMS [11]
observed that the OS attempt to keep load balance between NUMA nodes generated
a negative performance impact with increasing interconnection data traffic between
nodes.

In this paper, we study this negative impact that may reach up to 5× more remote
access if we let the OS in charge of pinning the multi-dimensional query threads.
This paper is an extension of the work presented in the 29th Euromicro International
Conference on Parallel, Distributed, and Network-based Processing (PDP’21). We
extend our previous work with an in-width analysis of the subarray operations with
all possible thread pinning combinations. We include an analysis of the execution of
our thread pinning implementations in twoNUMAmachines for studying the influence
of different NUMAarchitectures.We also updated the analysis of the speedup to better
understand the impact of the number of chunks. Now, we normalize all results with
a fixed size of 100 chunks for the baseline (i.e., the execution of the OS scheduler).
As far as we know, we are the first to evaluate such impact on array databases. We
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have chosen the SAVIME and SciDB state-of-the-art systems for the experiments.
They implement two different query processing models and implement the multi-
dimensional array data model from scratch (i.e., no adaptations from the relational
model).

Our main contributions in this paper are:

Traditional techniques comparison: We analyze the speedup and energy impact of
five different thread pinning strategies for NUMA systems when executing SAVIME
and SciDB. Implementing different strategies, we observe a maximum speedup of
2.25× (3.1× less energy) with 5× less remote memory accesses for SAVIME. For
SciDB, we observed a speedup of up to 5.83× (1.17× less energy) and a reduction
on the remote memory access by 4.1×.

Analysis of all thread pinning combinations: We perform an extensive evaluation
of the impact of thread pinning. We show that performance can improve in 3.89×
of speedup in SAVIME. Our experiments showed that not all combinations affect
performance positively.

NUMA architectures comparison: Using different multiprocessing Intel platforms,
we evaluate the impact of two distinct NUMA systems in the execution of our thread
pinning implementations.

Maximum performance analysis:We show that traditional techniques for distribut-
ing threads across NUMA cores are still far from a perfect point of improvement. Our
experiments showed that, on average, 52% performance and 74% energy improve-
ments are still available to be collected by newer and improved techniques.

The paper is organized as follows: Sect. 2 discusses the n-dimensional array model;
Sect. 3 describes our thread pinning strategies; Sect. 5 presents a study on the effects
of the NUMA architecture on two Array databases; Sect. 6 discusses related work;
Finally, Sect. 7 concludes the paper.

2 Array database systems

This section briefly describes the array data model and the query operator to slice
multi-dimensional data that we used in our evaluations.

The array data model represents data using n named dimensions that are contigu-
ously indexed. The multiple dimensions speed up the data access and analysis through
different views. In this model, each cell belonging to an array contains attributes with
the same data type. Figure 1 illustrates the array data model with three dimensions
being respectively latitude, longitude, and year1. The values are accessible through a
set of indexes. Experts can quickly analyze, in the example of Fig. 1, the change in
temperature over the years.

Along with the array data model concept, a wide range of Array Database has
emerged, such as RasdMan [3], ArrayStore [31], SciDB [4], SciQL [34] and SAVIME
[23]. In this paper, we focus on two full-stack databases, SAVIME [23] and SciDB [4].

1 http://geoserver.geo-solutions.it/edu/en/multidim/netcdf/netcdf_basics.html.
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Fig. 1 Model of a
multi-dimensional array:
temperature on many latitudes
and longitudes over the years
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They implement the array model from scratch without adaptations in the relational
model. In scalable multi-processing machines, this allows the distribution of data
chunks on separated machine nodes. A chunk is the smallest physical representation
of an array. Both database systems, SAVIME and SciDB, split the arrays into chunks
according to the stored data types. The chunk size and format depend on the density of
the array. For dense arrays, all the chunks will have the same size. On the other hand,
when arrays are sparse, chunks may have different sizes and formats. Non-regular
chunks (i.e., sparse arrays) are prone to be non-uniformly distributed, causing load
unbalance that reduces system efficiency.

Considering the query processing iterator model implemented by SciDB, chunks
are extracted from the arrays using nested function calls, and a processing pipeline
emits one array cell at a time through query operators. The data array structure makes
faster access to a set of cells using the indexes, and buffer pool management keeps
frequently used chunks in memory [12].

The SAVIME and SciDB databases support an Array Functional language (AFL)
with a series of operators defined as functions [17,21]. In this paper, we focus on the
operator responsible for slicing an array. The operation has different names in the array
databases: called subset in SAVIME, and subarray in SciDB. From this point, we
refer to both operations as subarray. The subarray operator uses dimension indexes
for fast access to data ranges, generating a new chunk according to the specified
bounds. The subarray works like the selection operation of the relational algebra
with range filtering condition. The code snippet below creates a new array with the
cells within the three dimension range predicate.

Listing 1 Filtering the 3D temperature array using the subarray SciDB API

subarray(temperature,−25.423,−49.267,2000,−25.426,−49.265,2020);

Array databases implement subarray operators in different ways. SAVIME finds
cells between the range using the query filter and generatesmany chunkswith different
sizes. SciDB decodes the compressed binary data for the chunks and redistributes data
to produce a new chunking configuration for the results that are within the range of
interest. Although the subarray is a simple filter operation in the array data model,
we may require processing all the chunks according to the query selectivity.

Considering that Array database systems use multiple threads to scale query pro-
cessing, in the next section, we present the NUMA architecture and thread pinning
strategies to benefit from multi-processing.
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Fig. 2 Example of a NUMA architecture with 2-nodes inspired by the Intel Xeon Silver 4114 Skylake
microarchitecture

3 NUMA architectures

The NUMA architecture is a hardware design to provide high throughput using mul-
tiple processing cores with a unified memory view. Ideally, this architecture provide
high performance by maximizing computing power and data sharing.

Themultiple processing cores are grouped in nodes that share thememorywith non-
uniform access latency. The NUMA architecture has node-to-node communications
links, which provide high bandwidth with separate memory controllers per node. The
memory hierarchy is composed bymultiple cache levels andmemory sharing schemes
among the nodes. Each of the referred nodes can access both local memory banks with
low latency and remote memory banks from neighboring nodes with higher latency
(see Fig. 2).

Considering that different data and thread allocation within a NUMA system
may provide different latencies, it is essential to analyze such allocation for each
specific application. Many related-work study thread pinning strategies for spe-
cific applications niches, such as numerical modeling and computational fluid
dynamics applications, data mining, financial analysis, and media processing [8–
10,20,27,30,32].

Current array databases have the query threads allocated by the OS, which may
not be efficient in the database context. For example, thread mapping of the Linux OS
aims load balancing. The OS allocates memory pages next to the node where the first
access to the page occurs. During the load balancing, threads may migrate, leading to
an increase in data traffic and affecting the performance of the array database. Thus,
our challenge is pinning threads on specific cores to benefit from the local memory
and avoid the migration caused by the OS attempt to keep load balancing.

4 Thread pinning strategies

We now present five well-known thread pinning strategies that are used in our exper-
iments. Our goal is to analyze the impact of these strategies compared to the baseline
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Fig. 3 Compact, Sparse and shared thread pinning strategies on a two NUMA node with four threads

(i.e. OS scheduling strategy) and other threadmappings.We get at runtime the required
information to apply the pinning strategies. The strategies work seamlessly in SAV-
IME and SciDB systems because they use the same premise in their parallel query
processing: Multiple threads are defined to process each chunk. SAVIME processes
chunk groups with a pre-set number of threads for each group. In SciDB, the number
of threads is defined to process the chunks grouped in instances. Notice that the thread
placement strategies do not change data mapping policies. By default, the Linux OS
uses the first-touch policy and we leave the OS-level features active for NUMA load
balancing.

Baseline: To provide a commonly used baseline, we decided to measure the OS
thread pinning performance without user interference. The OS uses a load balancer to
distribute threads over all the NUMA nodes to maximize the usage of the computing
cores.

Strategy 1 - Compact: In Fig. 3a we present the compact strategy. The thread
pinning follows the order the threads are created and only uses one NUMA node. This
strategy can provide workload benefits with high data reuse. However, the benefits are
limited by the amount of memory available on the node.

Strategy 2 - Sparse: The sparse strategy distributes the threads equally among
the nodes, one thread per node. For instance, t1 is allocated in node 0, t2 in node 1,
and so on, as we show in Fig. 3b. Hence, our goal is to measure the performance when
scattering the threads in the nodes and pinning them in one specific core inside the
node.

Strategy 3 - Shared: The shared strategy aims to pin sets of threads that work on
the same chunk of data to a single NUMA node. In Savime, this is done through the
thread affinity control of OpenMP. In SciDB, we capture the threads that work under
the same instance and place them close together. These threads share the Last-Level
Cache (LLC) node, as shown in Fig. 3c.We use this strategy to analyze if data reuse has
a positive impact on minimizing the effects of the NUMA memory latency disparity.

Strategy 4 - Petri net: In this strategy, we implement the dynamic core allocation
mechanism presented in [11]. This mechanism implements a Petri net abstract model
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that decides the allocation of computing cores. The allocation decision relies on the
performance states of the current database workload, respecting the assumption that
a minimum number of cores maintains performance. Monitoring uses the CPU load
metric of the execution machine as input to the performance state model. The Petri net
controls the group and number of cores that the OS can use to schedule the database
threads. This strategy assigns threads to a group of processing cores and does not pin
threads to specific cores.

Strategy 5 - Random: In this strategy, the threads are randomly pinned to all the
cores in the NUMAnodes.We generated all the possible thread pinning combinations,
but avoided symmetrical core pinning, as well as similar allocations from the compact
and sparse strategies. This random strategy aims at identifying possible thread pin-
ning combinations that improve performance compared to the other strategies. In our
experiments, we only show the best pinning combination concerning this strategy.

5 Experimental evaluation

We now evaluate the performance of SAVIME version (v.1.0) and SciDB ver-
sion (v.19.11.5) array databases in two NUMA machines using the previously
described strategies of thread pinning. We essentially use the first machine in our
experiments, and we point out the use of the second machine when appropriate.

The first NUMA machine (here called NUMA-Skylake) has two nodes, each node
with an Intel Xeon Silver 4114 (with Skylake microarchitecture). Each Xeon socket
has ten cores with private L1 (I+D) cache (32 KB each core), a private L2 cache (1MB
each core), and a shared L3 cache (14 MB total per node). The two NUMA nodes
are interconnected by a Quick Path Interconnect (QPI) [14] link 4.x with 21.5 GB/S
bandwidth. The machine includes 128 GB DDR-4 main memory and 14 TB of disk
storage (at 15000 rpm) running the Ubuntu OS in version 18.04.01 LTS for SAVIME
and 14.04.6 LTS for SciDB. The different OS versions were used according to the
ADBMS documentation. We run an unmodified Linux kernel, version 4.15.0−121−
generic.

The second machine (here called NUMA-SandyBridge) has also two nodes, each
nodewith an Intel Xeon E5−2630 (with SandyBridgemicroarchitecture). EachXeon
socket has six physical cores with private L1 (I+D) cache (32 KB each core), a private
L2 cache (256 KB each core), and a shared L3 cache (15 MB total per node). The two
NUMA nodes are interconnected by a QPI [14] link 4.x with 14.4 GB/S bandwidth.
The machine includes 48 GB DDR-3 main memory and 869 GB of disk storage (at
7500 rpm) running the CentOS OS in version 7.9.2009.

To measure the hardware performance, we used the Intel Performance Counter
Monitor (PCM) [33]. In particular, the Intel PCM tool provides the total power con-
sumption of the main memory. To manage the thread pinning strategies, we used the
OpenMP (version 4.5) thread affinity [7] and the taskset Linux command. In our exper-
iments, we set the maximum number of threads available for each query execution
to 20, which corresponds to the number of available physical cores. The workload
has a dense array based on data from the HPC4e BSC seismic benchmark [6] used
in work presented in [21]. We present the results considering the average over 10
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executions for each thread pinning strategy and the baseline. In our experiments, we
found maximum values of coefficient of variation at 0.16 and minimum values at 0.07.
These values indicate a low dispersion of data around the mean used to calculate the
acceleration.

We focus our analysis on the subarray operator. We chose this operator due to its
simple memory access behavior and its considerable amount of applications [21,26].
This operation has a coalescing memory access pattern due to the inequality predicate
that retrieve ranges of array cells and no cache data reuse due to its data streaming
behavior. Furthermore, the parallel processing of the subarray operation leads to
data movement between NUMA nodes with direct performance impact in the array
databases. The performance of the subarray operator depends on how data is chunked
and laid out [21], but it is still the most time-consuming query operator, as described
in [5]. The execution of the subarray requires traversing the array and materializing
the results for further use along the query pipeline.

As for the results presented in this section, we normalized all results with the
baseline that is the execution of the OS scheduler with a fixed size of 100 chunks. In
the experiments with selectivity, we normalize the results with the execution of the
OS scheduler with exact query filters (EQ). Our main goal is to understand the impact
of the variation of the number of chunks.

5.1 Impact of the number of chunks

In this section, we investigate the impact of the number of chunks in an array of
1 GB. We recall that a chunk is the smallest storage unit in an array database. For this
setup, whenever we increase the number of chunks for a given array, the size of each
chunk decreases, thus keeping the same total storage size. In this experiment, all the
configurations and strategies execute the same query operation over the same dataset,
generating the same output.

Figure 4 depicts the speedup results for SAVIME and SciDB when varying the
number of chunks. Here we used different thread pinning strategies running on
the NUMA-Skylake machine. We normalized all the results to the OS scheduler
(baseline) with 100 chunks. For this specific experiment, the random strategy was
chosen among 20 possible random mappings due to time constraints (on Sect. 5.3 we
present the exhaustive search over all random combinations).

We observe that the random strategy produces the most positive impact reaching a
maximum acceleration of up to 1.7× in SAVIME and 1.5× in SciDB, both executing
with 1000 chunks. The thread pinning strategies benefit from the NUMA architecture
using smaller number of chunks (thus, bigger chunk sizes), possibly due to the reduced
amount of chunk scheduling to the threads and the lower amount of data scattering
among the NUMA nodes. These results show that we can achieve on average 52%
performance gains with new thread pinning approaches.

We also observe that pinning each thread to a specific core is beneficial for the
system’s performance. It avoids thread migration between the NUMA nodes that hap-
pens when the OS tries to keep the load balancing. This result shows that we need a
static thread pinning strategy as the thread pinning does not dynamically change. Fig-
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Fig. 4 Speedup and amount of memory accesses comparing different thread pinning strategies varying the
number of chunks on a 1 GB array database (NUMA-Skylake machine)

ure 4 also presents the amount of remote and local memory accesses of the subarray
operation. The results indirectly indicate how well the scheduler pinned the threads.
Besides, the total access to DRAM memory indicates how well the cache memories
were utilized. The variation of DRAM accesses shows that the strategies benefited dif-
ferently from the cache memory. The random strategy shows a reduction in remote
access by 4.9× for SAVIME and 3.5× for SciDB. However, we cannot find a direct
link between the DRAM accesses and the final speedup, which indicates that more
metrics are required to fully explain the results. Section 5.3 makes a broader evalu-
ation to better understand the influence of cache and memory accesses on the final
performance

5.2 Impact of selectivity

We now evaluate the impact of different query selectivity using a 50 GB dataset.
Selectivity indicates the percentage of data that needs to be filtered to materialize
the subarray output. High selectivity (H - in this experiment 70%) indicates that we
filter out more data, and consequently, less data is materialized to the output in DRAM.
Low selectivity (L - in this experiment 20%) indicates the opposite. We also varied
the number of chunks as they need to be transferred through the memory hierarchy
to validate the query filters: Single Chunk (SC), Few Chunks (FC, here 20% of the
chunks) and Many Chunks (MC, here 100% of the chunks). Besides, we present the
Exact Query (EQ), which entirely selects a single chunk. We used a total number
of 210 chunks to reproduce the workload executed by the SAVIME testbed [22] and
store the 50 GB dataset in three-dimension chunks (250×250×500) of double-value
attributes.
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Fig. 5 Speedup and amount of memory accesses comparing different thread pinning strategies varying the
operator selectivity on a 50 GB array database (NUMA-Skylake machine). Topmost X-axis number is the
speedup for each strategy

Figure 5 presents the speedup and brings the number of remote/localmemory access
varying the selectivity. First, we can notice that bothArray databases performs efficient
operations. They only access the memory relative to the requested chunk using their
coordinates (observe the reduced amount of memory accesses for LSC and HSC).
High selectivity scenarios perform better comparing the three scenarios with their
low selectivity pair. This result is expected as high selectivity filters out more data,
reducing thus cache memory usage to store the results also reducing pressure in the
DRAM memory.

We can observe that neither the number of DRAM accesses, remote or local, seems
to correlate to the final speedup directly. Nevertheless, we can observe that for almost
every situation exists a different mapping that presents better performance, with 2.25×
and 5.83× speedup in SAVIME and SciDB, respectively. In particular, the random
mappings seem to have a trend of presenting low remote accesses, with an average
reduction of 5× in SAVIME and 4.1× in SciDB.

We observed that the best thread pinning strategy is the shared strategy. The threads
that work on the same chunk are placed in close cores maximizing data locality. This
result shows that selectivity does not influence the choice of the thread pinning strategy.
Instead, it indicates that the data locality influences the choice of the best thread pinning
strategy.

Figure 6 shows the results of energy consumption in the DRAMmemory (normal-
ized by the OS scheduler executing EQ). We observe that the presented behavior is
similar to the speedup results. The random strategy reduced on average the DRAM
energy by 68% for SAVIME and 16% for SciDB. In both databases, the compact
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Fig. 6 Energy consumption in DRAM normalized with the OS scheduler executing EQ on 50 GB database
using different selectivity (NUMA-Skylake)

strategy of pinning threads to cores in only one NUMA node increased memory traffic
due to high memory contention that resulted in more energy consumption in the main
memory.

Overall, energy consumption was significantly reduced, due to decreases in remote
memory access and data movement. The data movement accounts for most of the
memory energy consumption.

5.3 Exhaustive strategy evaluation

In this section, we performed an extensive evaluation of thread pinning combinations.
The exhaustive execution covers many simple strategies, for example, pinning threads,
in the same order these threads are created, to cores as close as possible to benefit
from data locality. We used the NUMA-SandyBridge due to its reduced amount of
cores, which allows us to evaluate all 462 possible combinations without repeating
analogues. We do not evaluate all combinations in the NUMA-Skylake machine due
to a higher number of processing cores (20 cores). Such an exhaustive experiment
would be impractical requiring 92,378 combinations.

When setting the total number of random thread pinning combinations,we consider
the machine memory hierarchy and the number of threads used by SAVIME. We
executed SAVIME with 12 threads varying the number of chunks on a 1 GB array.
Looking at these metrics, we use the combinations without repetition

(n
r

) = n!
r !(n−r)! .

We have n threads, and we want to choose r threads out of n to pin in one NUMA
node of the architecture that shares cache memory. In the NUMA-SandyBridge, we
found a total of 924 combinations running 12 threads. However, considering that we
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Fig. 7 SAVIME: Performance and DRAM accesses for all thread pinning combinations on 1 GB database
(NUMA-SandyBridge). Results are ordered by speedup compared to the OS scheduler

have two identical NUMA nodes, with 6 cores in each node, we reduced to a total of
462 different thread pinning possibilities.

Figure 7 shows the speedup results with three different number of chunks and also
reports the local and remote memory access. We observed that the experiments with
100 and 1000 chunks present more pronounced variations in the speedup. We observe
the clear impact of remote accesses on combinations between 0 and 100, with green
dots higher than blue ones. Whenever the mapping enables a reduction on the amount
of remote accesses (combinations between 100 and 200), we see the improvement
in performance. Finally, we also observe improvement in performance whenever the
cache memory is better utilized, reducing thus the total amount of DRAM memory
accesses (combinations between 200 and 462). While it is difficult to distinguish the
benefits of better cache usage and less remote access, we found that both metrics affect
SAVIME performance.

We notice the speedup decreases in 7% of the total number of experiments. That is
because in some random combinations, the threads that work in the same chunk end
up in different nodes, forcing remote accesses and 2.5× more memory accesses.

Figure 8 shows that the cache miss ratio follows the same pattern observed in
memory access. We observe that performance increases as the last level cache miss
ratio reduces. These results corroborate the findings present in the last plotted results.
Furthermore, we observe that using fewer chunks decreases cache misses, possibly
because the cells of the small chunks fit into the caches avoiding miss penalties.
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Fig. 8 L3 Cache miss ratio in a 1 GB database with different number of chunks varying the total number
of thread pinning combinations (NUMA-SandyBridge)

5.4 Performance comparison on NUMA architectures

This last experiment focuses on the performance comparison between the two NUMA
machines (NUMA-Skylake and NUMA-SandyBridge) running SAVIME. Our main
goal is to evaluate whether the scheduling policies would behave equally in terms
of performance for different machines. We varied the number of chunks of an array
of 50 GB. The results are normalized to the OS scheduler results with 100 chunks
from each machine. The three main differences between the machines are a number of
cores, L3 cache size and difference between local and remotememory latency (NUMA
factor). NUMA-Skylake have 2× 10 cores sharing 14 MB of L3 and NUMA factor
of 1.36 and NUMA-SandyBridge have 2× 6 cores sharing 15 MB of L3 and NUMA
factor of 1.32.

In Fig. 9, we observe that well-known scheduling policies provide different perfor-
mance results depending on themachine,which indicates that scheduling policiesmust
evolve together with newer architectures. For example, the sparse strategy increases
the access latency cost, which fits better to the NUMA-Skylake architecture due to its
lower latency and higher bandwidth.

5.5 Conclusions of NUMA effect on array database

We conclude in this section that well-known thread pinning policies provide mod-
erate speedup and are still far from the maximum performance achievable for array
databases.When looking at the selectivity,we could observe that both database systems
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Fig. 9 Performance comparison of subarray operator in 50GB database using different numbers of chunks
in SAVIME ADBMS in NUMA-Skylake and NUMA-SandyBridge. Our results were normalized with the
results of the OS scheduler with 100 chunks from each machine

are impacted with variations in the selectivity, where performance degrades starting
from higher to lower selectivity.

We could also observe that finding a combination of thread pinning that improves
performance is challenging. Such a thread pinning combination must at the same
time reduce remote memory access and improve the utilization of the cache memory
hierarchy. Results show that different thread pinning combinations, even with similar
metric of amount of DRAM accesses, may lead to very different speedups (combi-
nations 100–200 in Fig. 7). We observed that using only one metric is insufficient to
decide the best mapping and amultivariate analysis is required in future work. Interest-
ingly, results showed that 56% of the possible combinations (combinations 200–462
in Fig. 7) leads to the most efficient performance observed in our tests. This result
motivates our next steps in developing a specific thread scheduler for array databases.

6 Related work

The performance impact of the NUMA machines has motivated several recent works
in different areas. In computer architecture, these researches employ different thread
mapping techniques to minimize the NUMA effect. For instance, the works presented
in [8–10,16,20,30,32] focus on thread placement techniques based on memory access
patterns and communication cost between nodes.

In database systems, researches that mitigate the effects of the NUMA systems in
query processing gain momentum. These researches have focused on the relational
storage model running specific query operations or thread/data placement strategies.
In [1,2], the authors present techniques to improve the performance of the SQL join
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operation by pinning the operation threads into specific NUMA nodes. In [28] Online
Transaction Processing (OLTP) threads are pinned in NUMA islands grouping differ-
ent computing nodes. In [13,18,25] the data is partitioned in specific NUMA nodes,
and querying threads are statically pinned to the data location. The database scheduler
of the HyPer database uses a similar technique to control the dispatching of query
fragments, called “morsels” [19]. The “morsels” are statically pinned in specific cores
to take advantage of the data location and avoid data movement between nodes.

In [11], the authors present a multi-core allocation technique reducing the number
of cores that theOS could use to allocate the query threads.A similar strategy presented
by [13] uses OS policies to designate the number of resources needed and creates a
communication between the OS and the RDBMS in execution. Recent work present
in [24] analyzes the impact of different memory allocation and thread placement at the
kernel level running analytical workload in relational databases. The authors discuss
the improvements achievedwith dynamicmemory allocation andOS thread placement
policies. The work present in [29] proposes a NUMA-aware algorithm for spatial join
and analyzes the behavior of data placement OS policies.

We observed that all of these works focus on the relational model. In contrast,
our research investigates the impact of the NUMA architecture on array processing
operations that differs from traditional relational operations. We analyzed whether
thread placement improves the performance of the array query processing.

7 Conclusions and future work

Based on the fact that relational databases and array databases adopt similar strategies
when using multi-thread parallelism, only the former has been extensively studied in
terms of performance behavior when using NUMA systems. As far as we know, we
present the first study of the speedup and energy consumption impact of array query
processing in NUMA machines.

By implementing different thread pinning strategies in two array databases, we
showed how each strategy behaved. Our results support that the NUMA severely
affects the performance of the subarray operation. The subarray operation is based
on inequality conditions and requires moving ranges of array cells across computing
nodes for validating these conditions. The baseline thread pinning strategy based on
OS thread mapping does not acknowledge the relationship between query operators in
the query execution plan. Thus, threads are pinned for load balancing far from efficient
query processing performance.We also observed that differentNUMA implies distinct
performance gains.

Our next steps include understanding the NUMA effects in other query array oper-
ators with different memory access patterns, as presented in [15] for relational query
operators. Furthermore, we intend to study cost models searching for a good trade-
off between performance and energy consumption considering the pinning strategies
presented in this paper.
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