
Linux Security Modules (LSM)

Florian Hantke, Bruno Labres, Eduardo Trevisan, Pedro Demarchi Gomes

1/14



Outline

● History

● LSM Design and Modules

● Examples

● Downsides

● Conclusion

2/14



History

● Problem: Access Control Modules (ACMs) have failed to win acceptance into mainstream operating systems - 
security community cannot agree on one solution

● Problem: You need to patch the kernel to change the ACM
● 2001: NSA proposed to include SELinux in Linux 2.5
● Linus Torvalds rejected it seeing too many security projects in development

○ “Make it a module”

3/14



History

● Crispin Cowan et al proposed Linux Security Modules (LSM)
● LSM: Framework that allows the Linux kernel to support a variety of computer security models while avoiding 

favoritism toward any single security implementation.
● 2003: LSM is standard part of kernel since Linux 2.6
● AppArmor, SELinux, Smack, and TOMOYO Linux are the currently accepted modules in the official kernel.

4/14



LSM Design

● LSM uses hooks in the kernel to call module

● The Module can grant or deny access

● Access is denied when first module denys 

access

● Change of modules without rebuild the 

kernel

● LSM is initialized and modules are loaded 

during kernel’s boot sequence

User Level Process

open system call

look up inode

DAC checks

error checks

LSM hook

access inode

User Space

Kernel Space

Examine context.
Does request pass policy?
Grant or deny

LSM Module Policy Engine 

Ok with you?
Yes or No

5/14



Origin Hooks

● Task Hooks (Process operations such as kill or setuid) 

● Program Loading Hooks (During execve)

● Interprocess Communication Hooks (In existing ipcperms function)

● Filesystem Hooks (filesystem, inode and file)

● Network Hooks (socket-based protocols)

● Other Hooks (Kernel modules and System hooks)

6/14



LSMs

● Capabilities

● AppArmor
○ pathnames

● SELinux
○ complex

● Smack
○ simple; label based

● TOMOYO
○ end user intended; low adoption; trees of process invocation recording

● YAMA
○ miscellaneous DAC security enhancements

7/14



Example - todo mby list modules 

● List of active security modules
● Order, in which checks are made

8/14



kernel.yama.ptrace_scope = 0: All processes can be debugged, 
as long as they have same uid. This is the classical way of how 
ptracing worked.

kernel.yama.ptrace_scope = 1: only a parent process can be 
debugged.

kernel.yama.ptrace_scope = 2: Only admin can use ptrace, as it 
required CAP_SYS_PTRACE capability.

kernel.yama.ptrace_scope = 3: No processes may be traced with 
ptrace. Once set, a reboot is needed to enable ptracing again.

YAMA

9/14



● Profiles are described at /etc/apparmor.d/
● Variables begin with @, and are defined at the 

included files(tunables/global in this case).
● This permissions cannot exceed the permissions 

defined by DAC.

AppArmor

10/14



● Overhead

● Stateless Calls

● Not so many hooks

● Too much work to port

● Rootkits can use it too

Downsides

11/14



● Modularity

● Allow support for MAC policies

● Supplements the default DAC rather than replaces it

● Only adds restrictive behavior

● Allows some forms of “abuse” to bypass the linux kernel and add functionality

Conclusion

12/14



Sources

● Linux Security Modules: General Security Support for the Linux Kernel

● https://www.kernel.org/doc/html/v4.15/admin-guide/LSM/index.html

● https://www.kernel.org/doc/htmldocs/lsm/

● https://grsecurity.net/lsm
● https://www.rsbac.org/documentation/why_rsbac_does_not_use_lsm

13/14

https://www.kernel.org/doc/html/v4.15/admin-guide/LSM/index.html
https://www.kernel.org/doc/htmldocs/lsm/
https://grsecurity.net/lsm


Vielen Dank!

Fragen???

14/14


