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Elias Procópio Duarte Jr. Takashi Nanya

Graduate School of Information Science, Tokyo Institute of Technology
2–12–1 Ookayama Meguro-ku Tokyo 152, Japan

{elias, nanya}@cs.titech.ac.jp

Abstract. System-level diagnosis is used to determine the state of a system con-
sisting of N units which may be faulty or fault-free. Each unit tests a subset of
all others, and fault-free units perform tests and report test results reliably. In
adaptive diagnosis the tests each unit performs are adaptively selected based on
previous test results; and in distributed diagnosis the units themselves perform
the diagnosis, instead of a centralized observer. In this paper we present new
adaptive distributed system-level diagnosis algorithms, that by grouping units in
logical clusters improve the diagnosis latency of current algorithms, while still
requiring the same order of diagnostic messages. Two algorithms, ADSD with
Intersections and Hierarchical ADSD are presented and analyzed. Applications
of these algorithms, including network fault management are considered.
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1. Introduction
Consider a system consisting of N units, which can be faulty or fault-free. The goal
of system-level diagnosis is to determine the state of those units. For almost 30 years
researchers have worked on this problem, and the first model of diagnosable systems was
introduced by Preparata, Metze, and Chien, the PMC Model [1]. In the PMC model units
are assigned a subset of the other units to test, and fault-free units are able to accurately
assess the state of the units they test. The set of all tests makes up a testing graph, i.e.,
a directed graph in which vertices are the system’s units and an edge from vertice i to
vertice j corresponds to a test performed by unit i on unit j.

The collection of all test results is called the syndrome of the system. The problem
of diagnosis is to obtain the state of the system from a given syndrome. The PMC model
assumes the existence of a central observer that, based on the syndrome, can diagnose
the state of all the units. For a given testing assignment the diagnosability of a system
may be limited by the number of faulty units, and determining this number is called
the diagnosability problem. Preparata et al. showed that a system is t-diagnosable if
N ≥ 2t + 1, and each unit is tested by at least t other units. Later, Hakimi and Amin [2]
showed that this result holds if no two units test each other.

Early system-level diagnosis algorithms assumed that all the tests had to be de-
cided in advance. The tests were then executed, and from the obtained results, it was
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determined which units were faulty. Those algorithms focused on finding properties of
the testing graph which would allow the observer to identify the faulty units from the tests
corresponding to the testing graph’s edges.

An alternative approach, which requires fewer tests, is to assume that each unit is
capable of testing any other, and to issue the tests adaptively, i.e. the choice of the next
tests depends on the results of previous tests, and not on a fixed pattern. This approach was
called adaptive [3]. Early adaptive system-level diagnosis results assumed the existence
of the previously mentioned central observer. Furthermore, a bound on the number of
faulty nodes was imposed for the system to achieve correct diagnosis.

Adaptive system-level diagnosis algorithms proceed in testing rounds, i.e., the
period of time in which each unit has executed at least one test successfully. To evaluate
adaptive algorithms two measures are normally used: the total number of tests required
per testing round and the diagnosis delay, i.e., the number of testing rounds required to
determine the state of the units.

Kuhl and Reddy [4, 5], introduced distributed system-level diagnosis, in which
fault-free nodes reliably receive test results through their neighbors, and each node in-
dependently performs consistent diagnosis. They proposed the SELF distributed system-
level diagnosis algorithm, that although fully distributed, was non-adaptive, i.e. each unit
had a fixed testing assignment, and the number of faulty units in the system could not
exceed t. We will use alternatively the word node for unit, and network for system.

In 1984, Hosseini, Kuhl and Reddy, [6] extended the SELF algorithm, introduc-
ing the NEW-SELF algorithm, which also has a fixed inter-node test assignment, but
is executed on-line, permitting faulty nodes to reenter the network after being repaired.
NEW-SELF ensures the accuracy of test-results by restricting the forwarding of testing
results to fault-free nodes. For correct diagnosis, NEW-SELF requires that every fault-
free node receive all test results from all other fault-free nodes. To reduce the amount of
network resources required for diagnosis, the EVENT-SELF algorithm was proposed [7],
which uses event-driven techniques to improve both the diagnosis latency and the impact
of the algorithm on network performance.

The Adaptive Distributed System-Level Diagnosis algorithm, Adaptive DSD, was
introduced by Bianchini and Buskens [8, 9]. Adaptive DSD is at the same time distributed
and adaptive, each fault-free node uses the minimal number of messages per testing round,
i.e., one message, to achieve consistent diagnosis in at most N testing rounds.

In this paper we present a new approach to Adaptive Distributed System-Level
Diagnosis, in which nodes are grouped in logical clusters, so that using the same order
of the number of messages diagnosis latency can be reduced. The algorithms assume no
link faults, a fully-connected network and impose no bounds on the number of faults.

Besides the PMC fault model, there are many other fault models, see for exam-
ple [12] for a survey of probabilistic diagnosis. Diagnosis of link faults were treated in
[10]. Work on general topology networks has received a great deal of attention recently,
e.g. [11]. Furthermore, there are many other completely different approaches to fault
diagnosis, that may be useful according to one’s specific needs [13, 14].

The paper is organized as follows. Next section presents the Adaptive DSD algo-
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rithm in sufficient detail to permit its comparison to our approach. Section 3 introduces the
cluster approach to diagnosis, and two algorithms: (1) ADSD with Intersections (Adap-
tive Distributed System-level Diagnosis with Intersections), which has diagnosis latency
of up to O(

√
N) testing rounds; and (2) Hi-ADSD, (Hierarchical Adaptive Distributed

System-level Diagnosis), in which each node uses one message testing round to achieve
diagnosis in at most O(log2N) steps. In section 5 possible applications of these methods,
like network fault management, are considered and followed by concluding remarks.

2. The Adaptive-DSD Algorithm

Consider a system S consisting of the triple (V(S),E(S),T(S)), where V(S) is the set of
nodes or vertices of S; E(S) is the set of edges linking two nodes of S; T(S) is a testing
digraph, where an edge (ni, nj) means that ni tests nj . Consider also a fault situation
F(S), which is the set of the states of each node in V(S), faulty or fault-free. S is assumed
to be fully connected, and each node in V (S) is assigned a unique identifier, from 0 to
N − 1.

A fault-free node is capable of performing tests and reporting the results of those
tests reliably. Faulty nodes may distribute erroneous test results. Diagnostic messages
containing test results flow between neighboring nodes and reach non-neighboring nodes
through intermediate nodes. Each fault-free node achieves independent consistent diag-
nosis based on the diagnostic messages it receives. There is no bound on the number of
faulty-nodes for fault-free nodes to achieve correct diagnosis.

The Adaptive Distributed System-level Fault Diagnosis (Adaptive-DSD) algo-
rithm, [8, 9] is executed at each node of the system at predefined testing intervals. Each
time the algorithm is executed, a fault-free node will test other nodes until it finds another
fault-free node. A testing round is defined as the period of time in which all nodes of the
system have executed Adaptive DSD at least once. After one testing round, V(S) has the
format of a ring, as shown in figure 1. It is very important to keep in mind the difference
between testing, testing interval and testing round to understand the algorithm.

Whenever a fault-free node detects that a fault has occurred, the logical testing
network, i.e. the logical ring, rearranges itself around the fault so it stays connected. The
algorithm does not consider link faults. In the example shown in figure 1, nodes 1, 4, and
5 are faulty, and the rest are fault-free. Node 0 tests node 1 and finds it faulty; so it goes
on and tests node 2, which is fault-free, it then stops testing. Node 2 then tests node 3,
and so on.

Each node i that executes the algorithm has an array called TESTED−UPi, that
contains N entries, indexed by the node identifier. The entry TESTED − UPi[k] = j
means that the node i has received diagnostic information from a fault-free node spec-
ifying that node k has tested j to be fault-free. This means that each cell contains the
identification of the node tested by the node whose identifier is the cell’s index. An entry
TESTED − UPi[j] is “arbitrary” if the node j is faulty.

The information contained in the array TESTED − UP of a given node gets
transmitted to other nodes. When a node i finds node j to be fault-free, it saves this
information in TESTED−UPi[i]. In the next round of testing, this test data of i is taken
by its first fault-free predecessor, and so on, until all nodes get the information. In this
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Figure 1. Example of test assignment in Adaptive DSD.

way, the diagnostic information in the TESTED − UP array is forwarded to nodes in
the reverse direction of the testing network. The total number of tests per testing interval
in this algorithm is low, equal to N , the number of nodes. The Adaptive-DSD algorithm
is given below:

Adaptive-DSD
t = i
REPEAT

t = (t+1) MOD N
request t to forward TESTED_UPi to i

UNTIL (i tests t as fault-free)
TESTED_UPi[i] = t
FOR j = 1 TO N-1 DO

IF i != j
THEN TESTED_UPi[j] = TESTED_UPt[j]

End Adaptive DSD;

From the information in TESTED − UPi a node i has to diagnose the state of
the entire system, for this task another algorithm, called Diagnose is employed. This
algorithm uses the array STATEi to store the state of the system. The kth element of
STATEi represents the state of node k, as determined by node i. Diagnose first initializes
the state of all nodes as faulty. It then sets its own state to fault-free. In the second iteration
of the loop it sets the state of the node which it had directly determined to be fault-free.
In the next iteration, it sets the state of that node which this one had detected as fault-free.
This continues until it reaches the node which had determined that i itself was fault-free.
By this time, the loop has been completed and the algorithm terminates. The algorithm
can be found in [9].

Since at each testing interval the array TESTED−UP flows backward one step,
and the largest possible path in the cycle is of size N , after no more than N intervals, all
fault-free nodes will set their ith element of TESTED − UP to j. It follows that the
diagnosis latency of Adaptive DSD is N testing rounds.

A diagnosis latency of N testing rounds may be unacceptable for many real sys-
tems. For example, consider N = 200, and a testing interval of 30 seconds: it takes around
1:40 hours for all the nodes to diagnose a given fault situation. In the original papers,
Bianchini et al. [8, 9], suggest the use of event-driven mechanisms to reduce the latency,
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like employing multicast or broadcast just after a new situation is identified. As in an
specific systems it may be undesirable or even impossible to introduce these extra event-
driven mechanisms, in the next section we introduce new adaptive distributed system-
level algorithms that reduce the diagnosis latency without extra event-driven mechanisms,
while requiring the same order of the number of diagnostic messages.

3. Multi-Cluster Diagnosis
In the Adaptive DSD algorithm each node sees all others in a linear list. For example, if
all nodes are fault-free, information about node N − 1 will reach node 0 after N testing
rounds. Using such a linear testing strategy it is impossible to achieve diagnosis in less
than N testing rounds. But applying a divide-and-conquer strategy adaptive distributed
system level diagnosis can be achieved in less than N testing rounds.
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Figure 2. Organizing nodes in logical clusters

Figure 2 shows a possible structure for clustering nodes of network. In this figure
clusters are made up of three nodes, and we have a total of three clusters. In this way
if Adaptive DSD is executed at two levels, diagnosis could be, in principle achieved in
6 testing rounds, instead of 9. Many different algorithms are possible, one just has to
change the number of nodes in a cluster or the testing strategy for each node.

Whenever a node tests a cluster it must select which information it wants from that
cluster or the specific node being tested. In Adaptive DSD, as all nodes are part of only
one big cluster, and each node always tests only one other node, this problem doesn’t
exist. The basic data structure of a multi-cluster algorithm cannot be a unidimensional
array as in Adaptive DSD, and needs to reflect the strategy of each algorithm.

Among the many possible cluster-based diagnosis algorithms two are presented in
the next two subsections: the ADSD with Intersections and the Hierarchical ADSD.

3.1. Adaptive-DSD with Intersections

In this section we introduce ADSD with Intersections, an algorithm for cluster-based adap-
tive distributed system-level diagnosis. In ADSD with Intersections, nodes are grouped
in logical clusters, and each cluster executes tests forming a ring, like in Adaptive DSD.
But now, all clusters have a point of intersection, so that if there are a total of p clusters,
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it takes N/p testing rounds to diagnose the state of all N nodes. At each testing interval,
all nodes still test one fault-free node, but the node at the intersection tests p nodes, one
at each cluster.

The main data structure employed is a two-dimensional TESTED −
UPi[cluster, j] array. And for a fixed cluster, TESTED − UPi[cluster, j] is treated
much in the same way as the unidimensional TESTED − UPi[j] of Adaptive DSD.
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Figure 3. Multiple simultaneous clusters run Adaptive-DSD with intersection.

Within a cluster, whenever one node tests another node as fault-free, it gets all
its information regarding tests in all clusters. The node at the intersection proceeds in a
different way: for each cluster it tests it only gets information about that specific cluster.
In this way, at each test it gets only the new testing information of each cluster.

The algorithm provides a mechanism for network nodes to identify the intersection
node, and also a replacement if the current one becomes faulty. There is an array that
identifies an order of priority of nodes that should become the intersection, this array is
called PRIORITY.

All the nodes at the clusters have identifiers that go from 1 to p, and the intersection
has the logical address 0. Whenever a node tests another node that is not the intersection
it simply gets all the information of all clusters.

Whenever a node tests the node at the intersection, i.e., the node with id equal to 0
(zero), it accesses the PRIORITY array, and searches sequentially until it finds a working
intersection, which can be the node itself.

In this way if the PRIORITY array is filled such that the original intersection is
followed by the nodes that test that intersection and then the nodes that test the nodes that
test the intersection and so on, as soon as the intersection becomes faulty, these nodes
discover the new intersection. It should be noted that whenever a higher priority node
recovers, receiving one message from each cluster is sufficient to obtain the state of the
entire network. The algorithm is as follows:
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ADSDwI(cluster, next);
/* in node of address my_cluster, my_id */
/* initially called as

ADSDwI(my_cluster, (my_id+1) MOD p) */

REPEAT
IF next = 0
THEN /* test intersection */
REPEAT
cluster := PRIORITY[next].cluster;
next := PRIORITY[next].id;
IF (cluster = my_cluster) AND (next = my_id)
THEN /* become intersection */
FOR i := 1 TO N/p DO
IF i <> my_cluster
THEN ADSDwI (i,1);

ELSE request TESTED_UP(cluster,next);
UNTIL fault-free intersection is found;
ELSE request TESTED_UP(cluster,next);
next := (next + 1) MOD p;

UNTIL next is tested as fault-free;
update cluster information consistently;
End ADSDwI;

As the diagnosis process starts, the intersection doesn’t know the state of any node
in any cluster. After N/p testing rounds it will have received complete information about
the state of all nodes at all clusters.

3.2. Optimal Number of Clusters

For a given system of N nodes, it is important to determine which number of clusters,
p, of which size, optimize the diagnosis latency of the system, while keeping the number
of messages as low as possible. The total number of messages in the system per testing
round is given by function f(p) = p+N/p. To find the number of clusters that minimize
the number of messages we have to find a minimum of f(p). This minimum is reached
when p =

√
N , i.e., the best organization is to organize nodes in

√
N clusters of size

√
N .

Which gives an algorithm of diagnosis latency on the order of O(
√
N) testing rounds.

3.3. The Hi-ADSD Algorithm

In this section we present the Hierarchical Adaptive Distributed System-Level Diagnosis
algorithm (Hi-ADSD). In Hi-ADSD, nodes are grouped in clusters, that are themselves
grouped in larger clusters, so that the testing graph forms a hierarchical structure, as
shown in figure 4.

At each testing interval node i tests a cluster, instead of a node. We assume that
clusters have sizes of powers of 2, although this can be modified. Whenever we mention
logN , we are refering to the logarithm base 2 of N . Initially a node tests the other node
in its 21 sized cluster. After that it goes on to test the 22 sized cluster. To get information
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Figure 4. A hierarchical approach to test clusters.

about this cluster it executes tests adaptively until it finds a working node in the cluster.
After it gets information about the cluster, it proceeds to the next, an so on, always from
the 2i to the 2i+1 cluster. The following figure shows the testing hierarchy for 8 nodes,
from the viewpoint of node 1:

2

3 4

5 6 7 8

1

Figure 5. Each node adaptively tests all clusters.

Hi-ADSD uses a tree to store information about the tests in all clusters. To ef-
fectively diagnose the state of all nodes, it is sufficient to list all nodes in the tree. The
following figure shows the tree for node 1, considering that all nodes are fault-free.

An outline of the algorithm is given below:

Algorithm Hi-ADSD;
/* at node i */
REPEAT FOREVER

FOR cluster <- 1 TO logN
j <- next_node(cluster,0);
REPEAT

test_node(j);
IF j is non-faulty

THEN cluster_info <- new_info
ELSE j <- next(cluster,j);

UNTIL j is non-faulty OR j=0 /* flag */;
IF j=0 THEN result(cluster) <- NIL;

END FOR;
END REPEAT;
END Algorithm.
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Figure 6. A tree keeps all testing information.

In Hi-ADSD whenever a faulty node becomes fault-free, it takes one testing round
for that node to update its testing tree, which is initially empty. And during this period of
time if the node is tested, the tester should take care not to copy the empty tree, which it
should instead get from another fault-free node in that cluster.

We outline below a correctness and complexity proof of the algorithm.

Lemma 1: After logN testing rounds each fault-free node will have tested all
clusters in which there is a fault-free node.

Outline of proof: This follows from the definition of the algorithm, i.e., at a given
testing interval node i tests a cluster, and looks for a fault free node in that cluster. As
there are logN clusters to test, after logN testing rounds, all nodes in all clusters will have
executed the algorithm at least logN times, having tested all clusters.

Theorem 1: The maximum shortest path in T (S) is of length t after t testing
rounds.

Outline of proof by induction: After one testing round, each node has tested 1
other fault-free node, and the maximum shortest path is 1. After 2 testing rounds, clusters
have size 4, and, in these clusters, each node tests two other nodes, and gets information
about the fourth node indirectly, through the other nodes. This makes up a path of length
2.

Assume that after t testing rounds the maximum indirectness is t. We verify what
happens after t+1 testing rounds. Now the cluster has size 2t+1, and there are two clusters
of size 2t. As every node in each of these clusters will have an edge to the other cluster,
the maximum shortest path from that node to a node in the other cluster is of size 1 + t,
where t is the maximum shortest path within each of the two clusters.

For example, see nodes 6 and 3 on figure 4. For 6 to get information about 3, 6
tests 2, which tests 4 which tests 3. In this system of 8 nodes, this path is the worst case,
and has length log8.

Theorem 2: After at most log2N testing rounds, Diagnose executed at a fault-free
node will correctly determine F(S).

Outline of proof: We showed in theorem 1 that the length of the maximum shortest
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path in T (S) is logN , after logN testing rounds. But each of these tests takes logN testing
rounds to be executed, i.e., it takes a maximum of log2N testing rounds for a node to
obtain information about its farthest peer in V (S).

4. Conclusion
We have presented new adaptive distributed system-level diagnosis algorithms in which
nodes are grouped in logical clusters, permitting a divide-and-conquer testing approach
that reduces the diagnosis latency of current algorithms. In ADSD with Intersections a
number of clusters executing Adaptive DSD have a point of intersection, that distributes
tests from all clusters to all others. In Hi-ADSD nodes test cluster organized in a hierar-
chical fashion, and latency is reduced to log2N testing rounds.

There are many applications for system-level diagnosis algorithms, including par-
allel computer diagnosis, and network fault management. We have conducted experi-
ments in which Adaptive DSD was implemented within an SNMP-based network man-
agement system [15], and are now working on an extension of that implementation for
both Adaptive DSD with Intersections and Hi-ADSD.
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