
Hierarchical Adaptive Distributed System-Level Diagnosis Applied for
SNMP-based Network Fault Management

Elias Proc6pio Duarte Jr. *t Takashi Nanya
Tokyo Institute of Technology

Ookayama 2- 12- 1 Meguro-ku Tokyo 152 Japan
E-mail: {elias,nanya} @cs.titech.ac.jp

Abstract

Fault Management is a key functional area of Net-
work Management Systems, but currently deployed applica-
tions often implement rudimentary diagnosis mechanisms.
This paper presents a new hierarchical adaptive distributed
system-level diagnosis (Hi-ADSD} algorithm and its imple-
mentation based on SNMP (Simple Network Management
Protocol}. Hi-ADSD is afully distributed algorithm that has
diagnosis latency of at most (logzN)2 testing rounds for a
network of N nodes. Nodes are mapped into progressively
larger logical clusters, so that each node executes tests in a
hierarchical fashion. The algorithm assumes no link faults,
a fully-connected network and imposes no bounds on the
number of faults. Both the worst-case diagnosis latency and
correctness of the algorithm are formally proved. Experi-
mental results are given through simulation of the algorithm
for large networks. The algorithm was implemented on a
small network using SNMP: We present details of the imple-
mentation, including device fault management, the role of
the Network Management Station (NMS), and the Diagno-
sis MIB (Management Information Base).

1. Introduction

As computer networks have grown into complex,
enterprise-wide systems, management of operations and as-
sociated risks has become a critical task. The goal of
Network Management Systems is to monitor, interpret and
control network operations, optimizing costs and reducing
risks.

*The author has a scholarship from the Brazilian research council,

+also with the Departmento de Informatica, Universidade Federal do

*also with the Research Center for Advanced Science & Technology

CNPq.

Parani, C.P. 19081 Curitiba PR, CEP 81531-990, B r a d

University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153, Japan

1060-9857/96 $5.00 Q 1996 IEEE

In the manager-agent paradigm, a Network Management
System consists of a Network Management Station (NMS),
also called monitor or manager, that queries a set of agents
for information describing the state of links, devices, proto-
col entities, and nodes. Agents collect operational data (e.g.
performance parameters) and detect exceptional events (e.g.
error rates exceeding thresholds). This information ’is kept
in the Management Information Base (MIB). Agents may
issue alarms to inform the NMS about an exception. The
NMS and the agents communicate through a network man-
agement protocol. Applications based on the Simple Net-
work Management Protocol (SNMP) [1,2, 31 are currently
widely available.

Current network management systems often implement
rudimentary fault diagnosis mechanisms. Consider a Local
Area Network (LAN). The traditional approach to monitor-
ing [6, 71 is to have a few managers, usually only one, or-
ganized in a tree, each of them responsible for querying a
set of agents, and reporting to monitors in higher levels of
the tree, as shown in figure 1. In these trees, agents (“Ag”)
are the leaves, and intermediate nodes are monitors (“mon”)
that implement both an agent process (i.e., SNMP server)
and a manager process (i.e., SNMP client). This approach
presents two drawbacks: (1) if monitors become faulty or
unreachable, diagnosis stops on an entire portion of the net-
work; (2) all monitors are required to test a large number of
network nodes.

The field of distributed system-level diagnosis has flour-
ished for years. Not only theoretical, but also practical im-
plementations have been presented. In [15, 161 Bianchini
and Buskens introduced the Adaptive Distributed System-
level Diagnosis (Adaptive-DSD) algorithm, and also its im-
plementation in an Ethernet environment. Adaptive-DSD
has diagnosis latency of N testing rounds, for a network of
N nodes, requiring that each node be tested by one node per
testing round.

In this paper we present a new Hierarchical Adaptive
Distributed System-level Diagnosis (Hi-ADSD) algorithm
and its implementation integrated to a Network Manage-

98

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on October 14,2024 at 17:23:29 UTC from IEEE Xplore. Restrictions apply.

mailto:cs.titech.ac.jp

This figure shows
a tree-structured
two-level monitoring
scheme.

All links correspond
to SNMP queried
replies.

'mon' implements
both SNMP dient
and sewer.

Figure 1. A common approach to network
management monitoring.

ment System based on SNMP (Simple Network Manage-
ment Protocol). Hi-ADSD is a fully distributed algorithm
that has diagnosis latency of at most log2 N testing rounds
for a network of N nodes. Nodes are grouped in pro-
gressively larger logical clusters, so that each node exe-
cutes tests in a hierarchical fashion. The algorithm assumes
no link faults, a fully-connected network and imposes no
bounds on the number of faults. All logarithms used in this
paper are base 2.

The rest of the paper is organized as follows. Section 2
reviews distributed system-level diagnosis. In section 3 the
Hierarchical Adaptive Distributed S ystem-level (Hi-ADSD)
algorithm is specified and its correctness is formally proved.
Section 4 shows experimental results of diagnosis on large
networks obtained through simulation. Section 5 presents
details of the implementation of Hi-ADSD integrated to an
SNMP-based Network Management System, including de-
vice fault management, the role of the Network Manage-
ment Station (NMS), and the Diagnosis MIB. This is fol-
lowed by conclusions in section 6.

2. Adaptive Distributed System-Level Diagno-
sis

Consider a system consisting of N units, which can
be faulty or fault-free. The goal of system-level diagno-
sis is to determine the state of those units. For almost 30
years researchers have worked on this problem, and the first
model of diagnosable systems was introduced by Preparata,
Metze, and Chien, the PMC Model [8]. In the PMC model
units are assigned a subset of the other units to test, and
fault-free units are able to accurately assess the state of the
units they test. The set of all tests makes up a testing graph,

i.e., a directed graph in which vertices represent the sys-
tem's units and an edge from vertex i to vertex j corre-
sponds to a test performed by unit i on unit j .

The collection of all test results is called the syndrome of
the system. The problem of diagnosis is to obtain the state
of the system from a given syndrome. The PMC model
assumes the existence of a central observer that, based on
the syndrome, can diagnose the state of all the units. For a
given testing assignment the diagnosability of a system may
be limited by the number of faulty units, and determining
this number is called the diagnosability problem. Preparata
et al. showed that for a system to be t-diagnosable, it is
necessary that N 2 2t + 1, and each unit is tested by at
least t other units. Later, Hakimi and Amin [9] proved that
if no two units test each other this conditions are sufficient
for t-diagnosability.

Early system-level diagnosis algorithms assumed that all
the tests had to be decided in advance. The tests were then
executed, and from the obtained results, it was determined
which units were faulty. Those algorithms focused on find-
ing properties of the testing graph which would allow the
observer to identify the faulty units from the tests corre-
sponding to the testing graph's edges.

An alternative approach, which requires fewer tests, is to
assume that each unit is capable of testing any other, and to
issue the tests adaptively, i.e., the choice of the next tests de-
pends on the results of previous tests, and not on a fixed pat-
tern. Hakimi and Nakajima called this approach adaptive
[101. Early adaptive system-level diagnosis results assumed
the existence of the previously mentioned central observer.
Furthermore, a bound on the number of faulty nodes was
imposed for the system to achieve correct diagnosis.

Adaptive system-level diagnosis algorithms proceed in
testing rounds, i.e., the period of time in which each unit
has executed the tests it was assigned. To evaluate adap-
tive algorithms two measures are normally used: the total
number of tests required per testing round and the diagnosis
latency, or delay, i.e., the number of testing rounds required
to determine the state of the units.

Previously, Kuhl and Reddy [I I , 121, introduced dis-
tributed system-level diagnosis, in which fault-free nodes
reliably receive test results through their neighbors, and
each node independently performs consistent diagnosis.
They proposed the SELF distributed system-level diagnosis
algorithm, that although fully distributed, is non-adaptive,
i.e., each unit has a fixed testing assignment, and the num-
ber of faulty units in the system cannot exceed t. We will
use alternatively the word node for unit, and network for
system.

Later, Hosseini, Kuhl and Reddy, [13] extended the
SELF algorithm, introducing the NEW-SELF algonthm,
which also has a fixed inter-node test assignment, but is exe-
cuted on-line, permitting faulty nodes to reenter the network

99

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on October 14,2024 at 17:23:29 UTC from IEEE Xplore. Restrictions apply.

after being repaired. NEW-SELF ensures the accuracy of
test-results by restricting the forwarding of testing results
to fault-free nodes. For correct diagnosis, NEW-SELF re-
quires that every fault-free node receive all test results from
all other fault-free nodes. To reduce the amount of network
resources required for diagnosis, the EVENT-SELF algo-
rithm was proposed by Bianchini et.al.[l4] This algorithm
uses event-driven techniques to improve both the diagnosis
latency and the impact of the algorithm on network perfor-
mance.

The Adaptive Distributed System-level Diagnosis algo-
rithm, Adaptive-DSD, was introduced by Bianchini and
Buskens [15, 161. Adaptive-DSD is at the same time dis-
tributed and adaptive. Each node must be tested only one
time per testing interval. All fault-free nodes achieve con-
sistent diagnosis in at most N testing rounds. There is no
limit on the number of faulty nodes for fault-free nodes to
diagnose the system.

Adaptive-DSD is executed at each node of the system at
predefined testing intervals. Each time the algorithm is ex-
ecuted on a fault-free node, it performs tests on other nodes
until it finds another fault-free node, or it runs out of nodes
to test. A testing round is defined as the period of time in
which all nodes of the system have executed Adaptive-DSD
at least once. After one testing round, if there are at least
two fault-free units, the testing graph has the format of a
ring, as shown in figure 2. In the example shown in fig-
ure 2, node 1, node 4, and node S are faulty, and the rest
are fault-free. Node 0 tests node 1 and finds it faulty; so it
goes on and tests node 2, which is fault-free, and then stops
testing. Node 2 then tests node 3 as fault-free, and so on.

Of
Figure 2. Example of test assignment in
Adaptive-DSD.

Each node i that executes the algorithm has an array
called TESTED-UPi, that contains N entries, indexed by
the node identifier. The entry TESTED-UPi[k] = j means
that the node i has received diagnostic information from

a fault-free node specifying that node IC has tested j to be
fault-free. An entry TESTED-UPi[j] is “arbitrary” if node
j is faulty.

When node i finds node j to be fault-free, it saves this
information in TESTED-UPi [i]. In the next testing round,
this test data of i is taken by its first fault-free predeces-
sor, and so on, until all nodes get the information. In this
way, the diagnostic information in the TESTED-UP array
is forwarded to nodes in the reverse direction of the testing
network. Using the information in TESTED-UPi a node i
has to diagnose the state of all nodes in system, for this task
another algorithm, called Diagnose is employed.

Adaptive-DSD has a diagnosis latency of N testing
rounds. It is desirable to reduce this latency. In the original
papers, Bianchini and Buskens [lS, 161, use event-driven
mechanisms to reduce the latency, like employing multi-
cast or broadcast just after a new situation is identified. In
certain systems it may be unnecessary or even impossible
to introduce these extra event-driven mechanisms. In the
next section, we introduce a new Hierarchical Adaptive Dis-
tributed System-level Diagnosis (Hi-ADSD) algorithm. Hi-
ADSD is hierarchical in the sense that it employs a divide-
and-conquer testing strategy [20]. Hi-ADSD is the first hi-
erarchical diagnosis algorithm that is at the same time adap-
tive and distributed. The algorithm has diagnosis latency of
log2N rounds in the worst case, without employing extra
event-driven mechanisms, and requiring less diagnostic in-
formation than Adaptive-DSD.

The results discussed here assume a fully connected net-
work, no link faults and the PMC fault model. Besides the
PMC fault model, many other fault models have been pro-
posed. For example, a survey of probabilistic diagnosis is
presented in [19]. Diagnosis of link faults were treated in
[17]. Diagnosis on networks of general topology has re-
ceived a great deal of attention recently, e.g. [181. ,

3. Hierarchical System-Level Diagnosis

In this section the Hierarchical Adaptive Distributed
System-Level Diagnosis (Hi-ADSD) algorithm is presented,
its correctness is formally proved, and it is compared to
the Adaptive-DSD algorithm. Hi-ADSD maps nodes to
clusters, which are sets of nodes, and employs a divide-
and-conquer testing strategy to permit nodes to indepen-
dently achieve consistent diagnosis in at most log2N testing
rounds.

Before the algorithm is specified, it is important to recall
the concepts of test and testing round, to avoid confusions.
These concepts are the same used by Bianchini and Buskens
for Adaptive-DSD in [15, 161. At specified time intervals,
for example 30 seconds, each fault-free node in the system
executes tests on other nodes of the system, until each node
finds another node in the system that is fault-free, or tests all

100

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on October 14,2024 at 17:23:29 UTC from IEEE Xplore. Restrictions apply.

other nodes as faulty. For instance, if the first node tested
is fault-free, the tester stops testing. A testing round is de-
fined as the period of time in which every fault-free node in
the system has tested another node as fault-free, and has ob-
tained diagnostic information from that node, or has tested
all other nodes as faulty. The diagnosis latency of Hi-ADSD
is once more the same as used for Adaptive-DSD, being de-
fined as the number of testing rounds required for all fault-
free nodes in the system to achieve diagnosis.

3.1 Algorithm Specification

Consider a system S consisting of a set of nodes ni,
each of which is assigned a unique natural identifier i =
0,1, ..., N - 1. In this paper we alternatively refer to node
ni as node i . The system is assumed to be fully connected,
i.e., there is a communication link between any two nodes
(ni, nj) . Each node ni is assumed to be in one of two states,
faulty or fault-jree. A combination of the state of all nodes
constitutes the system's fault situation. Nodes perform tests
on other nodes in a testing interval, and fault-free nodes re-
port test results reliably.

In Hi-ADSD, nodes are grouped into clusters for the pur-
pose of testing. Clusters are sets of nodes. The number of
nodes in a cluster, its size, is always a power of two. Ini-
tially, N is assumed to be a power of 2, and the system
itself is a cluster of N nodes.

I f

Figure 3. A hierarchical approach to test clus-
ters.

A cluster of n nodes nj, ..., nj+,-l, where j MOD n =
0, and n is a power of two, is recursively defined as either
a node, in case n = 1; or the union of two clusters, one
containing nodes nj, ..., nj+n/2-1 and the other containing
nodes 7 ~ j + , / ~ , ..., nj+,-l. Figure 3 shows a system with
eight nodes organized in clusters.

In the first testing interval, each node performs tests on
nodes of a cluster that has one node, in the second testing

interval, on nodes of a cluster that has two nodes, in the third
testing interval, on nodes of a cluster that has four nodes,
and so on, until the cluster of 2"gN-l nodes is tested. After
that, the cluster of size 1 is tested again, and the process is
repeated.

The lists of ordered nodes tested by node i in a cluster
of size 2'-l, in a given testing interval, are denoted by c+.
The following expression completely characterizes list c+,
for all i = 0,1, ..., N - 1, and s = 1,2, ..., ZogN. In the
expression, a DIV b is the quotient of the integer division of
a by b, and a MOD b is the remainder of the same integer
division.

{nt I t = (i MOD 2' + 2'-' + j) MOD 2S-1+a+
(i DIV 2') * 2' + b * 2'-l ; j = 0,1, ..., 2' - 1) Ci,s =

Where:

1 if i MOD 2" < 2'-'
a = { 0 otherwise

1

0 otherwise

if a = 1 AND (i MOD 2' + 2'-l+
b = { j) MOD 2s-1+a + (i DIV 2') * 2' < i

When node i performs a test on nodes of e+, it performs
tests sequentially, until it finds a fault-free node, or all other
nodes are faulty. Supposing a fault-free node is found, from
this fault-free node, node i copies diagnostic information of
all nodes in c+. For the system in figure 3, for all i and s,
c~,' is listed in table 1.

are faulty, node i goes on to test c++l
in the same testing interval. Again, if all nodes in c,,'+l are
faulty, node i goes on to test c,?,+2 and so on, until it finds
a fault-free node. For example, figure 4 shows the testing
hierarchy for 8 nodes, from the viewpoint of node 0. When
node 0 tests a cluster of size 2', it first tests node 4. If node 4
is fault-free, node 0 copies diagnostic information regarding
nodes 4,5,6 and 7. If node 4 is faulty, node 0 tests node 5,
and so on.

Hi-ADSD uses a tree to store information about the tests
in all clusters. To effectively diagnose the state of all nodes,
it is sufficient to list all nodes in the tree. Figure 5 shows
the tree for node 0, for the case that all nodes are fault-free.

The algorithm is given in figure 6.
It is important to observe that the system is asyn-

chronous, i.e., at any time, different nodes in the system
may be testing clusters of different sizes. In other words, a
node running Hi-ADSD does not know which tests are be-
ing performed by other nodes at any time. Even if nodes
could be initially synchronized, after some of them become
faulty and recover, the system would lose the initial syn-
chronization. If there are at least two fault-free nodes in
the system, in a testing round of Hi-ADSD, each node has

If all nodes in

10 1

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on October 14,2024 at 17:23:29 UTC from IEEE Xplore. Restrictions apply.

Table 1. c ~ , ~ , for the system in figure 3.

Figure 4. Each node adaptively tests all clus-
ters.

tested at least one other fault-free node in but the other
nodes don't know which st . This fact has major conse-
quences on the performance of the algorithm, as will be seen
in the next subsection.

It is assumed that a node cannot fail and recover from
that failure during the time between two tests by another
node. In Hi-ADSD this time may be of up to logN testing
rounds, in the worst case. This assumption can be enforced
by, for example, recording and storing fault events, or by
reducing the testing interval between consecutive tests [151.

In Hi-ADSD, like in Adaptive-DSD, whenever a faulty
node becomes fault-free, it doesn' t have complete diagnos-
tic information for log2N testing rounds. The algorithm can
be easily modified to incorporate this transient behaviour: if
a tested node has been fault-free for less than log2N testing
rounds, then the tester should test another fault-free node.
However, during the algorithm initialization, every node has
been fault-free for less than log2N testing rounds. To guar-
antee the correct initialization, nodes that are fault-free for
less than Zog2N testing rounds must also test and obtain di-
agnostic information from other nodes that have been fault-
free for less than log2N testing rounds.

3.2 Correctness Proof

We now proceed to prove the correctness and the worst
case of the diagnosis latency of the algorithm. For this proof

Figure 5. A tree keeps all testing information.

we assume a system fault situation that doesn't change
for an enough amount of time. The correctness proof of
Adaptive-DSD also carried this assumption.

We begin by defining the Tested-Fault-Free graph, T (S) .
In T (S) for each node i and each ci,+, there is an edge di-
rected from node i to the last node that node i tested as
fault-free in that ~ i , ~ . If, in the most recent testing interval
in which node i tested ci+, all nodes in ci,+ were tested as
faulty, then T (S) doesn' t contain an edge from node i to
any node in that

The
Tested-Fault-Free graph of that system contains a directed
edge from any node i to the last node that i tested as fault-
free in ci,l, another edge to the last node that i tested as
fault-free in c ~ , and another edge to the last node that i
tested as fault-free in ci,3.

For example, consider the system in figure 3.

Definition 1 The Tested-Fault-Free graph T (S) is a di-
rected graph whose nodes are the nodes of S. For each
node i , and for each cluster ~ i , ~ , there is an edge (i, t) , di-
rected from i to t E ci,s if i has tested t as fault-free in the
most recent testing interval in which it tested ci,+.

Lemma 1 For any node i , any given s, and at any given
instant of time ti, it takes at most logN testing rounds for
node i to test

Proof: This follows from the deJinition of the algorithm,
i.e., at a given testing interval node i tests a clustel; and

102

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on October 14,2024 at 17:23:29 UTC from IEEE Xplore. Restrictions apply.

Algorithm Hi-ADSD;
{ at node i 1
please refer to the text for c(i,s) }

{ j indexes the nodes of a given c(i,s) 1
REPEAT

FOR s := 1 TO logN DO
REPEAT
node-to-test := next in c(i,s);
IF "node-to-test is fault-free"
THEN "update cluster diagnosti'c information"

UNTIL ("node-to-test is fault-free") OR
("all nodes in c(i,s) are faulty");

IF "all nodes in c(i,s) are faulty"
THEN "erase cluster diagnostic information";

END FOR;
FOREVER

Figure 6. The Hi-ADSD algorithm.

looks for a fault-free node in that cluster In one testing
round, by definition, each fault-free node tests at least an-
other fault-free node, if there is one. There may be at most
logN clusters for node i to test. In logN consecutive in-
tervals, at each interval a different cluster is tested. Thus, if
node i executes exactly one successful testper testing round,
it will take logN testing rounds for it to test all clusters.
Therefore, in the worst possible case, for ti immediately af-
ter a given cluster is tested, it will take up to logN testing
rounds for that cluster to be tested again. 0

Theorem 1 The shortest path between any two fault-free
nodes in T (S) contains at most logN edges.

Proof: We will conduct an induction on t, for a system
of 2t nodes.

First, consider a system of 2' nodes; each node tests the
othel; thus the shortestpaths in T (S) contain one edge.

Next, assume that for a system of 2t nodes, a shortest
path between any two nodes in T (S) contains at most t
edges. Then, by definition, in the system of 2t+1 nodes there
are two clusters of 2t nodes. Consider a subgraph of T (S)
that contains only the nodes in one of these clusters. By def-
inition, this subgraph is isomorphic to the Tested-Fault-Free
graph of a system of 2t nodes. So, by the assumption above,
the shortest path between any two nodes in this subgraph
has at most t edges. Consider any two nodes, i and j . If i
and j are in the same cluster of 2t nodes, the shortest path
between them in T(S) has at most t edges. Now, consider the
case in which i and j are in different clusters of 2t nodes.
Without loss of generality let's consider the shortest path
from i to j . Node i tests one node in the cluster in which j
is contained, call this node p. In T(S), the shortest distance
from i t o p contains one edge, and the shortest distance from
p to j contains at most t edges. Thus the shortest distance
from i to j contains at most t + 1 edges. 0

As an example, consider a system of size 22; this system

has size four, and each node tests two other nodes, and gets
information about the fourth node indirectly, through the
tested nodes. This makes up a path of length two. Now
consider a system of size Z3, there are two clusters of size
22, and each node in one cluster tests one node in the other,
thus, in T(S), there is an edge from each node in one cluster
to the other. Therefore, the paths from a node in one cluster
to the nodes in the other have lengths of the paths within
the cluster which are at most of length 2, plus 1, for the
edge linking the two clusters. Thus, in a system of size z3,
the shortest path has length at most 3. For example, look to
node 5 and node 2 on figure 7. For node 5 to get information
about node 2, node 5 tests node 1, which tests node 3 which
tests node 2. In this system of 8 nodes, the maximum path
has size log 8.

Now let's consider each test in this worst case shortest
path. How many testing rounds does it take to execute one
test, in the worst case? Consider figure 7 again. If node
3 has tested node 2 just before it became faulty, then only
after three testing rounds node 3 will discover that node 2
is faulty. Then, in the worst case, if node 1 tests node 3 just
before node 3 tests node 2, it will take other three testing
rounds for node 1 to discover that node 2 is faulty. If we
are very unlucky and node 5 tested node 1 just before node
1 tested node 3, then it will take other three testing rounds
for node 5 to discover that node 2 is faulty. In other words,
there are three tests in the maximum path, and each one
takes three testing rounds to be executed in the worst case,
thus, in total, it may take up to nine testing rounds to execute
all three tests.

'igure 7. The shortest path from node 5 to
iode 2 has log 8 = 3 edges.

Theorem 2 Consider the system fault situation at a given
time. After at most log2N testing rounds, each node that
has remained fault-free for that period correctly determines
that.fault situation.

103

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on October 14,2024 at 17:23:29 UTC from IEEE Xplore. Restrictions apply.

Proof: It was proved in theorem 1 that the shortest path
between any two nodes in T (S) has at most logN edges.
But, from lemma 1, each of the tests corresponding to an
edge in T (S) can take up to logN testing rounds to be exe-
cuted in the worst case. In other words, there are up logN
different tests to execute, and each may take up to logN
testing rounds to be executed. So, in total, they may take
at most 1ogNYogNtesting rounds to be executed. Thus, it
may take up to log2 N testing rounds for a fault-free node to
obtain diagnostic information about an event in S. 0

These results also hold for a dynamic fault situation, in
which multiple nodes become faulty and are repaired af-
ter a given event occurs. When a node becomes faulty, the
lengths of the paths in T(S) that included that node are re-
duced of at least one unit, for a tester of this node will ex-
ecute at least one more test. Furthermore, if a faulty node
becomes fault-free, during the period of transient behavior
described above, the tester of that node also executes at least
one more test, until it gets to a node with complete diagnos-
tic information. In this way nodes that are fault-free for
log2N testing rounds detect the fault situation of all nodes
that haven't changed state for log2N testing rounds, even if
other nodes in the network have become faulty and/ or been
repaired during that period.

We believe that, in average, nodes running Hi-ADSD
achieve diagnosis in less than 1og'Ntesting rounds, and our
simulation results confirm this fact. As if nodes are roughly
synchronized they will run the algorithm in O(log N) test-
ing rounds, if extra synchronization mechanisms are intro-
duced better bounds can be guaranteed.

It should be clear that in Hi-ADSD, like in Adaptive-
DSD, there is no limit in the number of faulty nodes for
fault-free nodes to perform consistent diagnosis. In the
worst case, when N - 1 nodes are faulty, the number of
tests required still N , as shown by Bianchini and Buskens
for Adaptive-DSD. For example, if N - 1 nodes are faulty,
the fault-free node must test all other nodes to diagnose the
system.

It is not necessary that the number of nodes, N , be a
perfect power of 2. In this case, the algorithm works as if
for a system of 2 r l 0 g N 1 nodes, 2 r 1 O g N 1 - N nodes were
faulty.

16
32
64

3.3 Comparison of Adaptive-DSD and Hi-ADSD

16 16
25 32
36 64

To compare Hi-ADSD and Adaptive-DSD we begin
comparing the number of testing rounds required by both
algorithms. We then compare the number of tests required,
and conclude with the amount of diagnostic information
that must be Gxchanged by nodes in the system until the
fault situation is diagnosed.

The first difference between the two algorithms is their
worst case diagnosis latencies, in terms of testing rounds.

256
5 12

I N I Hi-ADSD I Adautive-DSD I

64 256
81 512

L I I I

1024 I 100

1 4 I 4 I

1024

4

Table 2. Examples of diagnosis latency.

While Adaptive-DSD's diagnosis latency is N testing
rounds, Hi-ADSD's is log2N.

Table 2 lists the diagnosis latency in terms of testing
rounds for both algorithms, for networks having from 4 to
1024 nodes. The figures in this table should be clearly un-
derstood. They show the number of testing rounds that are
needed for all nodes in the system to diagnose one change
in the fault situation. For example, if all nodes are fault-
free, and one node becomes faulty, that diagnostic informa-
tion will take N testing rounds, being transferred sequen-
tially through N nodes until all nodes diagnose the situa-
tion. In Hi-ADSD, the diagnostic information will be trans-
ferred through a tree of depth log N and to reach all nodes
it takes at most 1og'Ntesting rounds. For networks of 4
and 16 nodes, the algorithms present the same worst case
latency. In one case, for a network of 8 nodes, Adap-
tive DSD presents better latency then Hi-ADSD, but this
changes quickly as the number of nodes grows.

To compare the number of tests required by both algo-
rithms we show the number of tests required in one testing
round and the number of tests required to achieve complete
diagnosis. Both algorithms employ approximately the same
number of tests per testing round, i.e. each fault-free node
executes tests until it finds another fault-free node. If there
are t faulty nodes in the system, Adaptive-DSD needs N
tests per testing round, while Hi-ADSD needs N + E tests. E

corresponds to the unlikely situation in which two or more
nodes have the same entry point to a given cluster (which is
bounded by log N), they test this cluster at the same time,
and this entry point is faulty. Furthermore, as the number
of testing rounds required by Adaptive-DSD is N, and by
Hi-ADSD is log2N, the total number of tests required for
diagnosis in Adaptive-DSD is O(N2) and for Hi-ADSD is
O (N log2 N) .

Now consider the total number of diagnostic messages
required by the algorithms. Adaptive-DSD requires a total
of N 2 messages for all nodes to achieve diagnosis, while
Hi-ADSD requires N log'N messages in the worst case.
Extra mechanisms like timestamps [161 can be employed to

104

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on October 14,2024 at 17:23:29 UTC from IEEE Xplore. Restrictions apply.

avoid transferring diagnostic messages unless strictly nec-
essary. Using these mechanisms, for each event, only infor-
mation regarding that event must be transfered.

If extra mechanisms are not employed to avoid transfer-
ing more than information regarding new events, then there
is also a major difference in the size of diagnostic messages
in Adaptive-DSD and Hi-ADSD. Nodes running Adaptive-
DSD get messages with diagnostic information concerning
all nodes in all testing intervals, in contrast, Hi-ADSDs di-
agnostic messages only contain information about the nodes
in each cluster being tested. Let's call the information about
one node a diagnostic unit. Consider logN consecutive test-
ing intervals, during this period, a node running Adaptive-
DSD requires NlogN diagnostic units, while a node run-
ning Hi-ADSDrequiresonly 2°+21+...+210gN-1 = N-1
units during the same period.

4. Simulation of Hi-ADSD

In this section we present experimental results of diag-
nosis on large networks using Hi-ADSD, obtained through
simulation. The simulation was conducted using the
discrete-event simulation language SMPL [21]. Nodes were
modeled as SMPL facilities, and each node was identified
by a SMPL token number. Three kinds of events were de-
fined: (1) test, (2) fault, and (3) repair. Tests were scheduled
for each node at each 30 seconds, considering time expo-
nentially distributed. We modeled the fault as the facility
being reserved, and the repair as the facility being released.
During each test, the status of the facilities were checked,
and if the node is fault-free diagnosis information regard-
ing the cluster is copied to the testing node. If the tested
node is faulty, the testing nodes proceeds testing as in the
algorithm.

We conducted several experiments with networks of dif-
ferent sizes. In this paper we present results of two ex-
periments: on a network of 512 nodes, a failure occurs at
time 100, and is repaired at time 1100. On the second ex-
periment, on a network of 64 nodes, after a node becomes
faulty, a second node also becomes faulty, and after that they
are sequentially repaired. These four events were scheduled
for times 100, 1000,2100 and 3000, respectively.

Results are shown in the graphs in figures 8 and 9. These
graphs show representative simulation outcomes from the
set of experiments executed. Both graphs have the number
of testing rounds as the x-axis and the number of nodes that
diagnosed the event as the y-axis. Figure 8 shows that after
node 2 becomes faulty, it takes 9 testing rounds for the other
63 nodes to diagnose the event. For the other events in this
graph, it takes 8 testing rounds for all fault-free nodes to
achieve diagnosis.

Figure 9 shows that after node 2 becomes faulty, it takes
15 testing rounds for all 51 1 fault-free nodes to diagnose

node.

65 00

6000

55 00

50 00

45 00

4000

35 00

30 00

25 00

20 00

IS 00

1 0 00

5 0 0

000

I round.
o w 20 00 4000 60 00 80 00 IW00

Figure 8. Simulation of Hi-ADSD for a 64-node
network.

nodss

500.00

450.00

400.00

350.00

300.00

250.00

Z00.00

150.00

100.00

50.00

0.00

0.00 10.00 20.00 30.00 b0.W

Figure 9. Simulation of Hi-ADSD for a 512-
node network.

the fault event. After node 2 is repaired it takes 17 testing
rounds for all nodes to diagnose the event. To compare with
Adaptive-DSD, without extra event-driven mechanisms, we
point out that Adaptive-DSD takes 511 testing rounds for
all fault-free nodes to diagnose any event in this network.

5. An SNMP-based Fault Management Ap-
proach

In this section we present the application of hierarchical
distributed system-level diagnosis results to SNMP-based
fault management. We take into account that the primary
goal of SNMP-based fault management is to permit a cen-
tral NMS to determine the state of all nodes in the network,
in a reliable and efficient way. By reliable, we mean that if
any node fails in the network, the diagnosis process con-

105

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on October 14,2024 at 17:23:29 UTC from IEEE Xplore. Restrictions apply.

tinues, even if the faulty-node is the current NMS itself.
By efficient, we mean that the diagnosis is accomplished
within a small delay, and the overhead imposed by diagno-
sis messages requires a reasonable percentage of network
bandwidth.

One o f the goals of network management systems is to
provide network state information to the human manager
at the NMS. The concept of a central observation point is
not contradictory with the previously presented distributed
approach: the NMS can be seen now as a management in-
terface, and not as the single monitor. This approach gives
a number of advantages to the human manager, as shehe
has a choice of workstations from which to control the net-
work. Furthermore, there are obvious advantages in terms
of the reliability of the network monitoring system itself, as
fault-free nodes achieve correct diagnosis for any number
of faulty nodes.

It has been shown that Hi-ADSD has a diagnosis latency
of at most log2 N testing rounds. To further reduce this la-
tency at the NMS, a feasible solution is to employ SNMP
traps, i.e., an agent reports any new state information as
soon as it is discovered. This combination of distributed
monitoring and traps gives the system high resilience over
errors, while keeping delays conveniently short. The NMS
receives all changes in state information as soon as they are
discovered. Using a simple configuration mechanism, all
stations are informed of the NMS identity. Furthermore,
even if the NMS is changed (or becomes faulty) soon after
receiving and acknowledging the trap, by the time another
node assumes the role of NMS, the information is delivered
to this new NMS through the testing network.

5.1 Network Device Fault Management

To permit Hi-ADSD to monitor the state of network de-
vices, each unit is classified into a testing node or a tested-
only node. Testing nodes are usually workstations, which
are not only subject to tests, but are also capable of test-
ing. In contrast, tested-only nodes are only tested, and don't
perform any testing on other elements. A number of man-
aged devices, like printers, modems, terminals, among oth-
ers are tested-only. Furthermore, to improve the diagnosis
delay, some workstations may be tested-only. In addition
to participating in the logical testing network, each testing
node has some associated tested-only nodes, that are tested
at each testing interval. Whenever a testing node finds an-
other testing node to be faulty it must test all tested-only
nodes associated with that faulty testing node.

5.2 Diagnosis MIB

Hi-ADSD was implemented to demonstrate the opera-
tional potential of the SNMP-based distributed diagnosis.

The implementation was done on a small system of four
nodes. The CMU SNMP public-domain packet [4] was
used as a base to implement the diagnosis agent, in which
we coded the Diagnosis MIB variables. From the Sony
News-OS SNMP application [5] we used client programs
to access and update MIB variables.

The main portion of the Diagnosis MIB is the Diag-Tree
which is implemented as an SNMP table. The ASN. 1 cod-
ing is shown bellow:

DiagTree OBJECT-TYPE
SYNTAX SEQUENCE OF diagTreeEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"This is the tree in which each testing node
keeps network diagnostic info."

: := { diagnosis 1 1

diagTreeEntry OBJECT-TYPE
SYNTAX DiagTreeEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"Each entry of DiagTree identifies
which node the testing node recognized
as up in the last testing round."

INDEX C testingID 1
::= { DiagTree I 1

TestedWEntry : :=
SEQUENCE {
testingID INTEGER,
testingAD IpAddress,
testingm INTEGER,
tested-only1 IpAddress,
to-status1 INTEGER,

tested-only5 IpAddress,
...

to-status5 INTEGER I

testinglD is the identifier of each node, it varies from 1 to
N. testingAD is the ip-address of the each node. testingUP
contains 1 if the node is known to be fault-free, and 0 other-
wise. Five slots were reserved for the associated tested-only
nodes, for each testing node. to-status-i contains 1 if the
tested-only node whose address is tested-only-i is fault-free,
and 0 otherwise.

6. Conclusions

In this paper we have presented an efficient approach to
LAN fault management based on distributed system-level
diagnosis.

The Hierarchical Distributed System-level Diagnosis al-
gorithm, Hi-ADSD, was presented. Hi-ADSD maps nodes

106

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on October 14,2024 at 17:23:29 UTC from IEEE Xplore. Restrictions apply.

to clusters, and uses a divide-and-conquer testing strategy to
achieve diagnosis in at most log2N testing rounds. In this
way Hi-ADSD improves the diagnosis latency of previous
algorithms, while requiring that each node perform one test
per testing interval.

Hi-ADSD was implemented integrated to an SNMP-
based network management system of a small network. Is-
sues regarding the actual deployment of the algorithm were
discussed, like the role of the NMS, the Diagnosis MIB,
and device fault management. We presented experimental
results of diagnosis on large networks using simulation.

As SNMP applications are currently widely deployed,
this implementation is an important step in the direction of
improving the dependability of the Internet itself.

Acknowledgements

We wish to thank the many colleagues at Tokyo Insti-
tute of Technology that have helped in this project, espe-
cially: Yoichiro Ueno and Pavlin I. Radoslavov for their
expert help in the SNMP implementation; Dr. Patrick Trane
for fruitful discussions on the correctness proof; and An-
dreas Savva for his valuable comments on all phases of the
project. Special acknowledgements are due to FBtima L.P.
Duarte, for her expert help in the SMPL simulation, and to
Prof. Doug Blough, of U.California Irvine, for his insight-
ful comments on the algorithm.

References

[11 M. Rose, and K. McCloghrie, “Structure and Identifi-
cation of Management Information for TCP/IP-based
Internets,” RFC 1155, 1990.

[2] J.D. Case, M.S. Fedor, M.L. Schoffstall, and J.R.
Davin, “A Simple Network Management Protocol,”
RFC 1157,1990.

[3] K. McCloghtie and M.T. Rose, “Management Informa-
tion Base for Network Management of TCP/IP-based
Internets,” RFC 1213, 1991.

[4] M.T. Rose, The Simple Book - An Introduction to In-
ternet Management, 2nd ed., Prentice-Hall, Englewood
Cliffs, NJ, 1994.

[5] News OS Release 4.2.1, Administrator‘s Guide Vol. I ,
“Network Management”, Sony, Tokyo, 1991. (In
Japanese)

[6] L. Steinberg, “Techniques for Managing Asyn-
chronously Generated Alerts,” RFC 1224, 199 1.

[7] J. Herman, “Distributed Network Management,” Data
Communications Magazine, June, 1992.

[8] E Preparata, G. Metze, and R.T. Chien, “On The Con-
nection Assignment Problem of Diagnosable Systems,”
IEEE Transactions on Electronic Computers, Vol. 16,
pp. 848-854,1968.

[9] S.L. Hakimi, and A.T. Amin, “Characterization of Con-
nection Assignments of Diagnosable Systems,” IEEE
Transactions on Computers, Vol. 23, pp. 86-88, 1974.

[101 S.L. Hakimi, and K. Nakajima, “On Adaptive System
Diagnosis” IEEE Transactions on Computers, Vol. 33,
pp. 234-240, 1984.

[l l] J.G. Kuhl, and S.M. Reddy, “Distributed Fault-
Tolerance for Large Multiprocessor Systems,” Proc. 7th
Annual Symp. Computer Architecture, pp. 23-30, 1980.

[12] J.G. Kuhl, and S.M. Reddy, “Fault-Diagnosis in Fully
Distributed Systems,” Proc. FTCS-11, pp. 100-105,
1981.

[131 S.H. Hosseini, J.G. Kuhl, and S.M. Reddy, “A Diagno-
sis Algorithm for Distributed Computing Systems with
Failure and Repair,” IEEE Transactions on Computers,
Vol. 33, pp, 223-233, 1984.

[14] R.P. Bianchini, K. Goodwin, and D.S. Nydick, “Prac-
tical Application and Implementation of System-Level
Diagnosis Theory,” Proc. FTCS-20, pp. 332-339, 1990.

[15] R.P. Bianchini, and R. Buskens, “An Adaptive Dis-
tributed System-Level Diagnosis Algorithm and Its Im-
plementation,’’ Proc. FTCS-21, pp. 222-229 , 1991.

[16] R.P. Bianchini, and R. Buskens, “Implementation of
On-Line Distributed System-Level Diagnosis Theory,”
IEEE Transactions on Computers, Vol. 41, pp. 616-626,
1992.

[17] C.-L. Yang, and G.M. Masson, “Hybrid Fault-
Diagnosability with Unreliable Communication Links,”
Proc. FTCS-16, pp. 226-231, 1986.

[18] S.Rangarajan, A.T. Dahbura, and E.A. Ziegler, “A
Distributed System-Level Diagnosis Algorithm for Ar-
bitrary Network Topologies,” IEEE Transactions on
Computers, Vo1.44, pp. 3 12-333, 1995.

[191 G. Masson, D. Blough, and G. Sullivan, “System Di-
agnosis,” in Fault-Tolerant Computer System Design,
ed. D.K. Pradhan, Prentice-Hall, 1996.

[20] E.P. Duarte Jr., and T. Nanya, “Multi-Cluster Adap-
tive Distributed System-Level Diagnosis Algorithms”,
IEICE Technical Report FTS 95-73,1995.

[21] M.H. MacDougall, Simulating Computer Systems:
Techniques and Tools, The MIT Press, Cambridge, MA,
1987.

107

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on October 14,2024 at 17:23:29 UTC from IEEE Xplore. Restrictions apply.

