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Abstract 

Fault Management is a key functional area of Net- 
work Management Systems, but currently deployed applica- 
tions often implement rudimentary diagnosis mechanisms. 
This paper presents a new hierarchical adaptive distributed 
system-level diagnosis (Hi-ADSD} algorithm and its imple- 
mentation based on SNMP (Simple Network Management 
Protocol}. Hi-ADSD is afully distributed algorithm that has 
diagnosis latency of at most (logzN)2 testing rounds for  a 
network of N nodes. Nodes are mapped into progressively 
larger logical clusters, so that each node executes tests in a 
hierarchical fashion. The algorithm assumes no link faults, 
a fully-connected network and imposes no bounds on the 
number of faults. Both the worst-case diagnosis latency and 
correctness of the algorithm are formally proved. Experi- 
mental results are given through simulation of the algorithm 
for  large networks. The algorithm was implemented on a 
small network using SNMP: We present details of the imple- 
mentation, including device fault management, the role of 
the Network Management Station (NMS), and the Diagno- 
sis MIB (Management Information Base). 

1. Introduction 

As computer networks have grown into complex, 
enterprise-wide systems, management of operations and as- 
sociated risks has become a critical task. The goal of 
Network Management Systems is to monitor, interpret and 
control network operations, optimizing costs and reducing 
risks. 
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In the manager-agent paradigm, a Network Management 
System consists of a Network Management Station (NMS), 
also called monitor or manager, that queries a set of agents 
for information describing the state of links, devices, proto- 
col entities, and nodes. Agents collect operational data (e.g. 
performance parameters) and detect exceptional events (e.g. 
error rates exceeding thresholds). This information ’is kept 
in the Management Information Base (MIB). Agents may 
issue alarms to inform the NMS about an exception. The 
NMS and the agents communicate through a network man- 
agement protocol. Applications based on the Simple Net- 
work Management Protocol (SNMP) [ 1,2, 31 are currently 
widely available. 

Current network management systems often implement 
rudimentary fault diagnosis mechanisms. Consider a Local 
Area Network (LAN). The traditional approach to monitor- 
ing [6, 71 is to have a few managers, usually only one, or- 
ganized in a tree, each of them responsible for querying a 
set of agents, and reporting to monitors in higher levels of 
the tree, as shown in figure 1. In these trees, agents (“Ag”) 
are the leaves, and intermediate nodes are monitors (“mon”) 
that implement both an agent process (i.e., SNMP server) 
and a manager process (i.e., SNMP client). This approach 
presents two drawbacks: (1) if monitors become faulty or 
unreachable, diagnosis stops on an entire portion of the net- 
work; ( 2 )  all monitors are required to test a large number of 
network nodes. 

The field of distributed system-level diagnosis has flour- 
ished for years. Not only theoretical, but also practical im- 
plementations have been presented. In [ 15, 161 Bianchini 
and Buskens introduced the Adaptive Distributed System- 
level Diagnosis (Adaptive-DSD) algorithm, and also its im- 
plementation in an Ethernet environment. Adaptive-DSD 
has diagnosis latency of N testing rounds, for a network of 
N nodes, requiring that each node be tested by one node per 
testing round. 

In this paper we present a new Hierarchical Adaptive 
Distributed System-level Diagnosis (Hi-ADSD) algorithm 
and its implementation integrated to a Network Manage- 
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This figure shows 
a tree-structured 
two-level monitoring 
scheme. 

All links correspond 
to SNMP queried 
replies. 

'mon' implements 
both SNMP dient 
and sewer. 

Figure 1. A common approach to network 
management monitoring. 

ment System based on SNMP (Simple Network Manage- 
ment Protocol). Hi-ADSD is a fully distributed algorithm 
that has diagnosis latency of at most log2 N testing rounds 
for a network of N nodes. Nodes are grouped in pro- 
gressively larger logical clusters, so that each node exe- 
cutes tests in a hierarchical fashion. The algorithm assumes 
no link faults, a fully-connected network and imposes no 
bounds on the number of faults. All logarithms used in this 
paper are base 2. 

The rest of the paper is organized as follows. Section 2 
reviews distributed system-level diagnosis. In section 3 the 
Hierarchical Adaptive Distributed S ystem-level (Hi-ADSD) 
algorithm is specified and its correctness is formally proved. 
Section 4 shows experimental results of diagnosis on large 
networks obtained through simulation. Section 5 presents 
details of the implementation of Hi-ADSD integrated to an 
SNMP-based Network Management System, including de- 
vice fault management, the role of the Network Manage- 
ment Station (NMS), and the Diagnosis MIB. This is fol- 
lowed by conclusions in section 6. 

2. Adaptive Distributed System-Level Diagno- 
sis 

Consider a system consisting of N units, which can 
be faulty or fault-free. The goal of system-level diagno- 
sis is to determine the state of those units. For almost 30 
years researchers have worked on this problem, and the first 
model of diagnosable systems was introduced by Preparata, 
Metze, and Chien, the PMC Model [8]. In the PMC model 
units are assigned a subset of the other units to test, and 
fault-free units are able to accurately assess the state of the 
units they test. The set of all tests makes up a testing graph, 

i.e., a directed graph in which vertices represent the sys- 
tem's units and an edge from vertex i to vertex j corre- 
sponds to a test performed by unit i on unit j .  

The collection of all test results is called the syndrome of 
the system. The problem of diagnosis is to obtain the state 
of the system from a given syndrome. The PMC model 
assumes the existence of a central observer that, based on 
the syndrome, can diagnose the state of all the units. For a 
given testing assignment the diagnosability of a system may 
be limited by the number of faulty units, and determining 
this number is called the diagnosability problem. Preparata 
et al. showed that for a system to be t-diagnosable, it is 
necessary that N 2 2t + 1, and each unit is tested by at 
least t other units. Later, Hakimi and Amin [9] proved that 
if no two units test each other this conditions are sufficient 
for t-diagnosability. 

Early system-level diagnosis algorithms assumed that all 
the tests had to be decided in advance. The tests were then 
executed, and from the obtained results, it was determined 
which units were faulty. Those algorithms focused on find- 
ing properties of the testing graph which would allow the 
observer to identify the faulty units from the tests corre- 
sponding to the testing graph's edges. 

An alternative approach, which requires fewer tests, is to 
assume that each unit is capable of testing any other, and to 
issue the tests adaptively, i.e., the choice of the next tests de- 
pends on the results of previous tests, and not on a fixed pat- 
tern. Hakimi and Nakajima called this approach adaptive 
[ 101. Early adaptive system-level diagnosis results assumed 
the existence of the previously mentioned central observer. 
Furthermore, a bound on the number of faulty nodes was 
imposed for the system to achieve correct diagnosis. 

Adaptive system-level diagnosis algorithms proceed in 
testing rounds, i.e., the period of time in which each unit 
has executed the tests it was assigned. To evaluate adap- 
tive algorithms two measures are normally used: the total 
number of tests required per testing round and the diagnosis 
latency, or delay, i.e., the number of testing rounds required 
to determine the state of the units. 

Previously, Kuhl and Reddy [ I I ,  121, introduced dis- 
tributed system-level diagnosis, in which fault-free nodes 
reliably receive test results through their neighbors, and 
each node independently performs consistent diagnosis. 
They proposed the SELF distributed system-level diagnosis 
algorithm, that although fully distributed, is non-adaptive, 
i.e., each unit has a fixed testing assignment, and the num- 
ber of faulty units in the system cannot exceed t. We will 
use alternatively the word node for unit, and network for 
system. 

Later, Hosseini, Kuhl and Reddy, [13] extended the 
SELF algorithm, introducing the NEW-SELF algonthm, 
which also has a fixed inter-node test assignment, but is exe- 
cuted on-line, permitting faulty nodes to reenter the network 
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after being repaired. NEW-SELF ensures the accuracy of 
test-results by restricting the forwarding of testing results 
to fault-free nodes. For correct diagnosis, NEW-SELF re- 
quires that every fault-free node receive all test results from 
all other fault-free nodes. To reduce the amount of network 
resources required for diagnosis, the EVENT-SELF algo- 
rithm was proposed by Bianchini et.al.[l4] This algorithm 
uses event-driven techniques to improve both the diagnosis 
latency and the impact of the algorithm on network perfor- 
mance. 

The Adaptive Distributed System-level Diagnosis algo- 
rithm, Adaptive-DSD, was introduced by Bianchini and 
Buskens [15, 161. Adaptive-DSD is at the same time dis- 
tributed and adaptive. Each node must be tested only one 
time per testing interval. All fault-free nodes achieve con- 
sistent diagnosis in at most N testing rounds. There is no 
limit on the number of faulty nodes for fault-free nodes to 
diagnose the system. 

Adaptive-DSD is executed at each node of the system at 
predefined testing intervals. Each time the algorithm is ex- 
ecuted on a fault-free node, it performs tests on other nodes 
until it finds another fault-free node, or it runs out of nodes 
to test. A testing round is defined as the period of time in 
which all nodes of the system have executed Adaptive-DSD 
at least once. After one testing round, if there are at least 
two fault-free units, the testing graph has the format of a 
ring, as shown in figure 2. In the example shown in fig- 
ure 2, node 1, node 4, and node S are faulty, and the rest 
are fault-free. Node 0 tests node 1 and finds it faulty; so it 
goes on and tests node 2, which is fault-free, and then stops 
testing. Node 2 then tests node 3 as fault-free, and so on. 

Of 
Figure 2. Example of test assignment in 
Adaptive-DSD. 

Each node i that executes the algorithm has an array 
called TESTED-UPi, that contains N entries, indexed by 
the node identifier. The entry TESTED-UPi[k] = j means 
that the node i has received diagnostic information from 

a fault-free node specifying that node IC has tested j to be 
fault-free. An entry TESTED-UPi[j] is “arbitrary” if node 
j is faulty. 

When node i finds node j to be fault-free, it saves this 
information in TESTED-UPi [i]. In the next testing round, 
this test data of i is taken by its first fault-free predeces- 
sor, and so on, until all nodes get the information. In this 
way, the diagnostic information in the TESTED-UP array 
is forwarded to nodes in the reverse direction of the testing 
network. Using the information in TESTED-UPi a node i 
has to diagnose the state of all nodes in system, for this task 
another algorithm, called Diagnose is employed. 

Adaptive-DSD has a diagnosis latency of N testing 
rounds. It is desirable to reduce this latency. In the original 
papers, Bianchini and Buskens [lS, 161, use event-driven 
mechanisms to reduce the latency, like employing multi- 
cast or broadcast just after a new situation is identified. In 
certain systems it may be unnecessary or even impossible 
to introduce these extra event-driven mechanisms. In the 
next section, we introduce a new Hierarchical Adaptive Dis- 
tributed System-level Diagnosis (Hi-ADSD) algorithm. Hi- 
ADSD is hierarchical in the sense that it employs a divide- 
and-conquer testing strategy [20]. Hi-ADSD is the first hi- 
erarchical diagnosis algorithm that is at the same time adap- 
tive and distributed. The algorithm has diagnosis latency of 
log2N rounds in the worst case, without employing extra 
event-driven mechanisms, and requiring less diagnostic in- 
formation than Adaptive-DSD. 

The results discussed here assume a fully connected net- 
work, no link faults and the PMC fault model. Besides the 
PMC fault model, many other fault models have been pro- 
posed. For example, a survey of probabilistic diagnosis is 
presented in [19]. Diagnosis of link faults were treated in 
[17]. Diagnosis on networks of general topology has re- 
ceived a great deal of attention recently, e.g. [ 181. , 

3. Hierarchical System-Level Diagnosis 

In this section the Hierarchical Adaptive Distributed 
System-Level Diagnosis (Hi-ADSD) algorithm is presented, 
its correctness is formally proved, and it is compared to 
the Adaptive-DSD algorithm. Hi-ADSD maps nodes to 
clusters, which are sets of nodes, and employs a divide- 
and-conquer testing strategy to permit nodes to indepen- 
dently achieve consistent diagnosis in at most log2N testing 
rounds. 

Before the algorithm is specified, it is important to recall 
the concepts of test and testing round, to avoid confusions. 
These concepts are the same used by Bianchini and Buskens 
for Adaptive-DSD in [15, 161. At specified time intervals, 
for example 30 seconds, each fault-free node in the system 
executes tests on other nodes of the system, until each node 
finds another node in the system that is fault-free, or tests all 
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other nodes as faulty. For instance, if the first node tested 
is fault-free, the tester stops testing. A testing round is de- 
fined as the period of time in which every fault-free node in 
the system has tested another node as fault-free, and has ob- 
tained diagnostic information from that node, or has tested 
all other nodes as faulty. The diagnosis latency of Hi-ADSD 
is once more the same as used for Adaptive-DSD, being de- 
fined as the number of testing rounds required for all fault- 
free nodes in the system to achieve diagnosis. 

3.1 Algorithm Specification 

Consider a system S consisting of a set of nodes ni, 
each of which is assigned a unique natural identifier i = 
0,1, ..., N - 1. In this paper we alternatively refer to node 
ni as node i .  The system is assumed to be fully connected, 
i.e., there is a communication link between any two nodes 
(ni, nj) .  Each node ni is assumed to be in one of two states, 
faulty or fault-jree. A combination of the state of all nodes 
constitutes the system's fault situation. Nodes perform tests 
on other nodes in a testing interval, and fault-free nodes re- 
port test results reliably. 

In Hi-ADSD, nodes are grouped into clusters for the pur- 
pose of testing. Clusters are sets of nodes. The number of 
nodes in a cluster, its size, is always a power of two. Ini- 
tially, N is assumed to be a power of 2, and the system 
itself is a cluster of N nodes. 

I f  

Figure 3. A hierarchical approach to test clus- 
ters. 

A cluster of n nodes nj, ..., nj+,-l, where j MOD n = 
0, and n is a power of two, is recursively defined as either 
a node, in case n = 1; or the union of two clusters, one 
containing nodes nj, ..., nj+n/2-1 and the other containing 
nodes 7 ~ j + , / ~ ,  ..., nj+,-l. Figure 3 shows a system with 
eight nodes organized in clusters. 

In the first testing interval, each node performs tests on 
nodes of a cluster that has one node, in the second testing 

interval, on nodes of a cluster that has two nodes, in the third 
testing interval, on nodes of a cluster that has four nodes, 
and so on, until the cluster of 2"gN-l nodes is tested. After 
that, the cluster of size 1 is tested again, and the process is 
repeated. 

The lists of ordered nodes tested by node i in a cluster 
of size 2'-l, in a given testing interval, are denoted by c+. 
The following expression completely characterizes list c+, 
for all i = 0,1, ..., N - 1, and s = 1,2, ..., ZogN. In the 
expression, a DIV b is the quotient of the integer division of 
a by b, and a MOD b is the remainder of the same integer 
division. 

{nt I t = (i MOD 2' + 2'-' + j )  MOD 2S-1+a+ 
( i  DIV 2') * 2' + b * 2'-l ; j = 0,1, ..., 2' - 1) Ci,s = 

Where: 

1 if i MOD 2" < 2'-' 
a = {  0 otherwise 

1 

0 otherwise 

if a = 1 AND (i MOD 2' + 2'-l+ 
b = { j )  MOD 2s-1+a + ( i  DIV 2') * 2' < i 

When node i performs a test on nodes of e+, it performs 
tests sequentially, until it finds a fault-free node, or all other 
nodes are faulty. Supposing a fault-free node is found, from 
this fault-free node, node i copies diagnostic information of 
all nodes in c+. For the system in figure 3, for all i and s, 
c~,' is listed in table 1. 

are faulty, node i goes on to test c++l 
in the same testing interval. Again, if all nodes in c,,'+l are 
faulty, node i goes on to test c,?,+2 and so on, until it finds 
a fault-free node. For example, figure 4 shows the testing 
hierarchy for 8 nodes, from the viewpoint of node 0. When 
node 0 tests a cluster of size 2', it first tests node 4. If node 4 
is fault-free, node 0 copies diagnostic information regarding 
nodes 4,5,6 and 7. If node 4 is faulty, node 0 tests node 5, 
and so on. 

Hi-ADSD uses a tree to store information about the tests 
in all clusters. To effectively diagnose the state of all nodes, 
it is sufficient to list all nodes in the tree. Figure 5 shows 
the tree for node 0, for the case that all nodes are fault-free. 

The algorithm is given in figure 6. 
It is important to observe that the system is asyn- 

chronous, i.e., at any time, different nodes in the system 
may be testing clusters of different sizes. In other words, a 
node running Hi-ADSD does not know which tests are be- 
ing performed by other nodes at any time. Even if nodes 
could be initially synchronized, after some of them become 
faulty and recover, the system would lose the initial syn- 
chronization. If there are at least two fault-free nodes in 
the system, in a testing round of Hi-ADSD, each node has 

If all nodes in 
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Table 1. c ~ , ~ ,  for the system in figure 3. 

Figure 4. Each node adaptively tests all clus- 
ters. 

tested at least one other fault-free node in but the other 
nodes don't know which st .  This fact has major conse- 
quences on the performance of the algorithm, as will be seen 
in the next subsection. 

It is assumed that a node cannot fail and recover from 
that failure during the time between two tests by another 
node. In Hi-ADSD this time may be of up to logN testing 
rounds, in the worst case. This assumption can be enforced 
by, for example, recording and storing fault events, or by 
reducing the testing interval between consecutive tests [ 151. 

In Hi-ADSD, like in Adaptive-DSD, whenever a faulty 
node becomes fault-free, it doesn' t have complete diagnos- 
tic information for log2N testing rounds. The algorithm can 
be easily modified to incorporate this transient behaviour: if 
a tested node has been fault-free for less than log2N testing 
rounds, then the tester should test another fault-free node. 
However, during the algorithm initialization, every node has 
been fault-free for less than log2N testing rounds. To guar- 
antee the correct initialization, nodes that are fault-free for 
less than Zog2N testing rounds must also test and obtain di- 
agnostic information from other nodes that have been fault- 
free for less than log2N testing rounds. 

3.2 Correctness Proof 

We now proceed to prove the correctness and the worst 
case of the diagnosis latency of the algorithm. For this proof 

Figure 5. A tree keeps all testing information. 

we assume a system fault situation that doesn't change 
for an enough amount of time. The correctness proof of 
Adaptive-DSD also carried this assumption. 

We begin by defining the Tested-Fault-Free graph, T ( S ) .  
In T ( S )  for each node i and each ci,+, there is an edge di- 
rected from node i to the last node that node i tested as 
fault-free in that ~ i , ~ .  If, in the most recent testing interval 
in which node i tested ci+, all nodes in ci,+ were tested as 
faulty, then T ( S )  doesn' t contain an edge from node i to 
any node in that 

The 
Tested-Fault-Free graph of that system contains a directed 
edge from any node i to the last node that i tested as fault- 
free in ci,l,  another edge to the last node that i tested as 
fault-free in c ~ ,  and another edge to the last node that i 
tested as fault-free in ci,3. 

For example, consider the system in figure 3. 

Definition 1 The Tested-Fault-Free graph T ( S )  is a di- 
rected graph whose nodes are the nodes of S. For each 
node i ,  and for each cluster ~ i , ~ ,  there is an edge (i, t) ,  di- 
rected from i to t E ci,s if i has tested t as fault-free in the 
most recent testing interval in which it tested ci,+. 

Lemma 1 For any node i ,  any given s, and at any given 
instant of time ti, it takes at most logN testing rounds for 
node i to test 

Proof: This follows from the deJinition of the algorithm, 
i.e., at a given testing interval node i tests a clustel; and 
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Algorithm Hi-ADSD; 
{ at node i 1 
please refer to the text for c(i,s) } 

{ j indexes the nodes of a given c(i,s) 1 
REPEAT 

FOR s := 1 TO logN DO 
REPEAT 
node-to-test := next in c(i,s); 
IF "node-to-test is fault-free" 
THEN "update cluster diagnosti'c information" 

UNTIL ("node-to-test is fault-free") OR 
("all nodes in c(i,s) are faulty"); 

IF "all nodes in c(i,s) are faulty" 
THEN "erase cluster diagnostic information"; 

END FOR; 
FOREVER 

Figure 6. The Hi-ADSD algorithm. 

looks for a fault-free node in that cluster In one testing 
round, by definition, each fault-free node tests at least an- 
other fault-free node, if there is one. There may be at most 
logN clusters for  node i to test. In logN consecutive in- 
tervals, at each interval a different cluster is tested. Thus, if 
node i executes exactly one successful testper testing round, 
it will take logN testing rounds for it to test all clusters. 
Therefore, in the worst possible case, for ti immediately af- 
ter a given cluster is tested, it will take up to logN testing 
rounds for that cluster to be tested again. 0 

Theorem 1 The shortest path between any two fault-free 
nodes in T ( S )  contains at most logN edges. 

Proof: We will conduct an induction on t, for  a system 
of 2t nodes. 

First, consider a system of 2' nodes; each node tests the 
othel; thus the shortestpaths in T ( S )  contain one edge. 

Next, assume that for  a system of 2t nodes, a shortest 
path between any two nodes in T ( S )  contains at most t 
edges. Then, by definition, in the system of 2t+1 nodes there 
are two clusters of 2t nodes. Consider a subgraph of T ( S )  
that contains only the nodes in one of these clusters. By def- 
inition, this subgraph is isomorphic to the Tested-Fault-Free 
graph of a system of 2t nodes. So, by the assumption above, 
the shortest path between any two nodes in this subgraph 
has at most t edges. Consider any two nodes, i and j .  If i 
and j are in the same cluster of 2t nodes, the shortest path 
between them in T(S) has at most t edges. Now, consider the 
case in which i and j are in different clusters of 2t nodes. 
Without loss of generality let's consider the shortest path 
from i to j .  Node i tests one node in the cluster in which j 
is contained, call this node p. In T(S), the shortest distance 
from i t o p  contains one edge, and the shortest distance from 
p to j contains at most t edges. Thus the shortest distance 
from i to j contains at most t + 1 edges. 0 

As an example, consider a system of size 22; this system 

has size four, and each node tests two other nodes, and gets 
information about the fourth node indirectly, through the 
tested nodes. This makes up a path of length two. Now 
consider a system of size Z3,  there are two clusters of size 
22, and each node in one cluster tests one node in the other, 
thus, in T(S), there is an edge from each node in one cluster 
to the other. Therefore, the paths from a node in one cluster 
to the nodes in the other have lengths of the paths within 
the cluster which are at most of length 2, plus 1, for the 
edge linking the two clusters. Thus, in a system of size z3, 
the shortest path has length at most 3. For example, look to 
node 5 and node 2 on figure 7. For node 5 to get information 
about node 2, node 5 tests node 1, which tests node 3 which 
tests node 2. In this system of 8 nodes, the maximum path 
has size log 8. 

Now let's consider each test in this worst case shortest 
path. How many testing rounds does it take to execute one 
test, in the worst case? Consider figure 7 again. If node 
3 has tested node 2 just before it became faulty, then only 
after three testing rounds node 3 will discover that node 2 
is faulty. Then, in the worst case, if node 1 tests node 3 just 
before node 3 tests node 2, it will take other three testing 
rounds for node 1 to discover that node 2 is faulty. If we 
are very unlucky and node 5 tested node 1 just before node 
1 tested node 3, then it will take other three testing rounds 
for node 5 to discover that node 2 is faulty. In other words, 
there are three tests in the maximum path, and each one 
takes three testing rounds to be executed in the worst case, 
thus, in total, it may take up to nine testing rounds to execute 
all three tests. 

'igure 7. The shortest path from node 5 to 
iode 2 has log 8 = 3 edges. 

Theorem 2 Consider the system fault situation at a given 
time. After at most log2N testing rounds, each node that 
has remained fault-free for that period correctly determines 
that.fault situation. 
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Proof: It was proved in theorem 1 that the shortest path 
between any two nodes in T ( S )  has at most logN edges. 
But, from lemma 1, each of the tests corresponding to an 
edge in T ( S )  can take up to logN testing rounds to be exe- 
cuted in the worst case. In other words, there are up logN 
different tests to execute, and each may take up to logN 
testing rounds to be executed. So, in total, they may take 
at most 1ogNYogNtesting rounds to be executed. Thus, it 
may take up to log2 N testing rounds for  a fault-free node to 
obtain diagnostic information about an event in S. 0 

These results also hold for a dynamic fault situation, in 
which multiple nodes become faulty and are repaired af- 
ter a given event occurs. When a node becomes faulty, the 
lengths of the paths in T(S) that included that node are re- 
duced of at least one unit, for a tester of this node will ex- 
ecute at least one more test. Furthermore, if a faulty node 
becomes fault-free, during the period of transient behavior 
described above, the tester of that node also executes at least 
one more test, until it gets to a node with complete diagnos- 
tic information. In this way nodes that are fault-free for 
log2N testing rounds detect the fault situation of all nodes 
that haven't changed state for log2N testing rounds, even if 
other nodes in the network have become faulty and/ or been 
repaired during that period. 

We believe that, in average, nodes running Hi-ADSD 
achieve diagnosis in less than 1og'Ntesting rounds, and our 
simulation results confirm this fact. As if nodes are roughly 
synchronized they will run the algorithm in O(log N )  test- 
ing rounds, if extra synchronization mechanisms are intro- 
duced better bounds can be guaranteed. 

It should be clear that in Hi-ADSD, like in Adaptive- 
DSD, there is no limit in the number of faulty nodes for 
fault-free nodes to perform consistent diagnosis. In the 
worst case, when N - 1 nodes are faulty, the number of 
tests required still N ,  as shown by Bianchini and Buskens 
for Adaptive-DSD. For example, if N - 1 nodes are faulty, 
the fault-free node must test all other nodes to diagnose the 
system. 

It is not necessary that the number of nodes, N ,  be a 
perfect power of 2. In this case, the algorithm works as if 
for a system of 2 r l 0 g N 1  nodes, 2 r 1 O g N 1  - N nodes were 
faulty. 

16 
32 
64 

3.3 Comparison of Adaptive-DSD and Hi-ADSD 

16 16 
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36 64 

To compare Hi-ADSD and Adaptive-DSD we begin 
comparing the number of testing rounds required by both 
algorithms. We then compare the number of tests required, 
and conclude with the amount of diagnostic information 
that must be Gxchanged by nodes in the system until the 
fault situation is diagnosed. 

The first difference between the two algorithms is their 
worst case diagnosis latencies, in terms of testing rounds. 

256 
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Table 2. Examples of diagnosis latency. 

While Adaptive-DSD's diagnosis latency is N testing 
rounds, Hi-ADSD's is log2N.  

Table 2 lists the diagnosis latency in terms of testing 
rounds for both algorithms, for networks having from 4 to 
1024 nodes. The figures in this table should be clearly un- 
derstood. They show the number of testing rounds that are 
needed for all nodes in the system to diagnose one change 
in the fault situation. For example, if all nodes are fault- 
free, and one node becomes faulty, that diagnostic informa- 
tion will take N testing rounds, being transferred sequen- 
tially through N nodes until all nodes diagnose the situa- 
tion. In Hi-ADSD, the diagnostic information will be trans- 
ferred through a tree of depth log N and to reach all nodes 
it takes at most 1og'Ntesting rounds. For networks of 4 
and 16 nodes, the algorithms present the same worst case 
latency. In one case, for a network of 8 nodes, Adap- 
tive DSD presents better latency then Hi-ADSD, but this 
changes quickly as the number of nodes grows. 

To compare the number of tests required by both algo- 
rithms we show the number of tests required in one testing 
round and the number of tests required to achieve complete 
diagnosis. Both algorithms employ approximately the same 
number of tests per testing round, i.e. each fault-free node 
executes tests until it finds another fault-free node. If there 
are t faulty nodes in the system, Adaptive-DSD needs N 
tests per testing round, while Hi-ADSD needs N + E tests. E 

corresponds to the unlikely situation in which two or more 
nodes have the same entry point to a given cluster (which is 
bounded by log N),  they test this cluster at the same time, 
and this entry point is faulty. Furthermore, as the number 
of testing rounds required by Adaptive-DSD is N, and by 
Hi-ADSD is log2N, the total number of tests required for 
diagnosis in Adaptive-DSD is O(N2) and for Hi-ADSD is 
O ( N  log2 N ) .  

Now consider the total number of diagnostic messages 
required by the algorithms. Adaptive-DSD requires a total 
of N 2  messages for all nodes to achieve diagnosis, while 
Hi-ADSD requires N log'N messages in the worst case. 
Extra mechanisms like timestamps [ 161 can be employed to 
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avoid transferring diagnostic messages unless strictly nec- 
essary. Using these mechanisms, for each event, only infor- 
mation regarding that event must be transfered. 

If extra mechanisms are not employed to avoid transfer- 
ing more than information regarding new events, then there 
is also a major difference in the size of diagnostic messages 
in Adaptive-DSD and Hi-ADSD. Nodes running Adaptive- 
DSD get messages with diagnostic information concerning 
all nodes in all testing intervals, in contrast, Hi-ADSDs di- 
agnostic messages only contain information about the nodes 
in each cluster being tested. Let's call the information about 
one node a diagnostic unit. Consider logN consecutive test- 
ing intervals, during this period, a node running Adaptive- 
DSD requires NlogN diagnostic units, while a node run- 
ning Hi-ADSDrequiresonly 2°+21+...+210gN-1 = N-1 
units during the same period. 

4. Simulation of Hi-ADSD 

In this section we present experimental results of diag- 
nosis on large networks using Hi-ADSD, obtained through 
simulation. The simulation was conducted using the 
discrete-event simulation language SMPL [21]. Nodes were 
modeled as SMPL facilities, and each node was identified 
by a SMPL token number. Three kinds of events were de- 
fined: (1) test, (2) fault, and (3) repair. Tests were scheduled 
for each node at each 30 seconds, considering time expo- 
nentially distributed. We modeled the fault as the facility 
being reserved, and the repair as the facility being released. 
During each test, the status of the facilities were checked, 
and if the node is fault-free diagnosis information regard- 
ing the cluster is copied to the testing node. If the tested 
node is faulty, the testing nodes proceeds testing as in the 
algorithm. 

We conducted several experiments with networks of dif- 
ferent sizes. In this paper we present results of two ex- 
periments: on a network of 512 nodes, a failure occurs at 
time 100, and is repaired at time 1100. On the second ex- 
periment, on a network of 64 nodes, after a node becomes 
faulty, a second node also becomes faulty, and after that they 
are sequentially repaired. These four events were scheduled 
for times 100, 1000,2100 and 3000, respectively. 

Results are shown in the graphs in figures 8 and 9. These 
graphs show representative simulation outcomes from the 
set of experiments executed. Both graphs have the number 
of testing rounds as the x-axis and the number of nodes that 
diagnosed the event as the y-axis. Figure 8 shows that after 
node 2 becomes faulty, it takes 9 testing rounds for the other 
63 nodes to diagnose the event. For the other events in this 
graph, it takes 8 testing rounds for all fault-free nodes to 
achieve diagnosis. 

Figure 9 shows that after node 2 becomes faulty, it takes 
15 testing rounds for all 51 1 fault-free nodes to diagnose 

node. 
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Figure 8. Simulation of Hi-ADSD for a 64-node 
network. 
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Figure 9. Simulation of Hi-ADSD for a 512- 
node network. 

the fault event. After node 2 is repaired it takes 17 testing 
rounds for all nodes to diagnose the event. To compare with 
Adaptive-DSD, without extra event-driven mechanisms, we 
point out that Adaptive-DSD takes 511 testing rounds for 
all fault-free nodes to diagnose any event in this network. 

5. An SNMP-based Fault Management Ap- 
proach 

In this section we present the application of hierarchical 
distributed system-level diagnosis results to SNMP-based 
fault management. We take into account that the primary 
goal of SNMP-based fault management is to permit a cen- 
tral NMS to determine the state of all nodes in the network, 
in a reliable and efficient way. By reliable, we mean that if 
any node fails in the network, the diagnosis process con- 
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tinues, even if the faulty-node is the current NMS itself. 
By efficient, we mean that the diagnosis is accomplished 
within a small delay, and the overhead imposed by diagno- 
sis messages requires a reasonable percentage of network 
bandwidth. 

One o f  the goals of network management systems is to 
provide network state information to the human manager 
at the NMS. The concept of a central observation point is 
not contradictory with the previously presented distributed 
approach: the NMS can be seen now as a management in- 
terface, and not as the single monitor. This approach gives 
a number of advantages to the human manager, as shehe 
has a choice of workstations from which to control the net- 
work. Furthermore, there are obvious advantages in terms 
of the reliability of the network monitoring system itself, as 
fault-free nodes achieve correct diagnosis for any number 
of faulty nodes. 

It has been shown that Hi-ADSD has a diagnosis latency 
of at most log2 N testing rounds. To further reduce this la- 
tency at the NMS, a feasible solution is to employ SNMP 
traps, i.e., an agent reports any new state information as 
soon as it is discovered. This combination of distributed 
monitoring and traps gives the system high resilience over 
errors, while keeping delays conveniently short. The NMS 
receives all changes in state information as soon as they are 
discovered. Using a simple configuration mechanism, all 
stations are informed of the NMS identity. Furthermore, 
even if the NMS is changed (or becomes faulty) soon after 
receiving and acknowledging the trap, by the time another 
node assumes the role of NMS, the information is delivered 
to this new NMS through the testing network. 

5.1 Network Device Fault Management 

To permit Hi-ADSD to monitor the state of network de- 
vices, each unit is classified into a testing node or a tested- 
only node. Testing nodes are usually workstations, which 
are not only subject to tests, but are also capable of test- 
ing. In contrast, tested-only nodes are only tested, and don't 
perform any testing on other elements. A number of man- 
aged devices, like printers, modems, terminals, among oth- 
ers are tested-only. Furthermore, to improve the diagnosis 
delay, some workstations may be tested-only. In addition 
to participating in the logical testing network, each testing 
node has some associated tested-only nodes, that are tested 
at each testing interval. Whenever a testing node finds an- 
other testing node to be faulty it must test all tested-only 
nodes associated with that faulty testing node. 

5.2 Diagnosis MIB 

Hi-ADSD was implemented to demonstrate the opera- 
tional potential of the SNMP-based distributed diagnosis. 

The implementation was done on a small system of four 
nodes. The CMU SNMP public-domain packet [4] was 
used as a base to implement the diagnosis agent, in which 
we coded the Diagnosis MIB variables. From the Sony 
News-OS SNMP application [5] we used client programs 
to access and update MIB variables. 

The main portion of the Diagnosis MIB is the Diag-Tree 
which is implemented as an SNMP table. The ASN. 1 cod- 
ing is shown bellow: 

DiagTree OBJECT-TYPE 
SYNTAX SEQUENCE OF diagTreeEntry 
ACCESS not-accessible 
STATUS mandatory 
DESCRIPTION 
"This is the tree in which each testing node 
keeps network diagnostic info." 

: :=  { diagnosis 1 1 

diagTreeEntry OBJECT-TYPE 
SYNTAX DiagTreeEntry 
ACCESS not-accessible 
STATUS mandatory 
DESCRIPTION 
"Each entry of DiagTree identifies 
which node the testing node recognized 
as up in the last testing round." 

INDEX C testingID 1 
::= { DiagTree I 1 

TestedWEntry : :=  
SEQUENCE { 
testingID INTEGER, 
testingAD IpAddress, 
testingm INTEGER, 
tested-only1 IpAddress, 
to-status1 INTEGER, 

tested-only5 IpAddress, 
... 

to-status5 INTEGER I 

testinglD is the identifier of each node, it varies from 1 to 
N. testingAD is the ip-address of the each node. testingUP 
contains 1 if the node is known to be fault-free, and 0 other- 
wise. Five slots were reserved for the associated tested-only 
nodes, for each testing node. to-status-i contains 1 if the 
tested-only node whose address is tested-only-i is fault-free, 
and 0 otherwise. 

6. Conclusions 

In this paper we have presented an efficient approach to 
LAN fault management based on distributed system-level 
diagnosis. 

The Hierarchical Distributed System-level Diagnosis al- 
gorithm, Hi-ADSD, was presented. Hi-ADSD maps nodes 
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to clusters, and uses a divide-and-conquer testing strategy to 
achieve diagnosis in at most log2N testing rounds. In this 
way Hi-ADSD improves the diagnosis latency of previous 
algorithms, while requiring that each node perform one test 
per testing interval. 

Hi-ADSD was implemented integrated to an SNMP- 
based network management system of a small network. Is- 
sues regarding the actual deployment of the algorithm were 
discussed, like the role of the NMS, the Diagnosis MIB, 
and device fault management. We presented experimental 
results of diagnosis on large networks using simulation. 

As SNMP applications are currently widely deployed, 
this implementation is an important step in the direction of 
improving the dependability of the Internet itself. 
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