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Abstract 
Network fault management systems are mission-critical, for they are most needed dur­
ing periods when part of the network is faulty. Distributed system-level diagnosis offers 
a practical and theoretically sound solution for fault-tolerant fault monitoring. It guar­
antees that faults don't impair the fault management process. Recently, results from the 
application of distributed system-level diagnosis applied for SNMP~based LAN fault man­
agement have been reported [1, 2]. In this paper we expand those results by presenting a 
new algorithm for diagnosis of non-broadcast networks, applied to point-to-point network 
fault management. In the algorithm, nodes test links periodically, and disseminate link 
time-out information to all its fault-free neighbors in parallel. Upon receiving link time­
out information a node computes which portion of the network has become unreachable. 
This approach is closer to reality than previous algorithms, for it is impossible to distin­
guish a faulty node from a node to which all routes are faulty. The diagnosis latency of 
the algorithm is optimal, as nodes report events in parallel, and latency is proportional to 
the diameter of the network. The dissemination step includes mechanisms to reduce the 
number of redundant messages introduced by the parallel strategy. We present a MIB for 
the algorithm, and a SNMP-based implementation. The evaluation of algorithm's impact 
on network performance, shows that the amount of bandwidth required is less than 0.1% 
for popular link capacities. We conclude demonstrating the integration of LAN and WAN 
fault diagnosis into a unified framework. 
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1 INTRODUCTION 

Fault management is the set of activities required to guarantee network availability, even 
in the presence of network faults and performance degradation. Fault management must 
thus be fault tolerant, for network faults should not impair the system that is meant 
to solve them. Fault management can be broadly subdivided into monitoring and con­
trol. Monitoring is the process employed for obtaining information required about the 
components of a network, in order to make management decisions and subsequently con­
trol their behavior. In this paper we present a fault-tolerant approach for non-broadcast 
network fault-monitoring based on the long standing theory and practice of distributed 
system-level diagnosis. 

Current SNMP-based fault-management systems are based on the manager-agent model, 
in which a fixed manager station queries a set of agents for management information. This 
centralized scheme is inherently unreliable, for if the manager becomes faulty, network 
management stops on the entire network. 

Hierarchical schemes are also popular, in which machines that participate in manage­
ment form a tree, where the root is the main manager, leaves are agents and internal 
nodes run both the agent server and a monitoring application. An internal node of the 
tree monitors nodes in the subtree of which it is the root, and reports to its parent in the 
tree. Hierarchical schemes are also inherently unreliable, for whenever an internal node 
becomes faulty, monitoring stops on part of the network. 

System-level diagnosis offers a theoretically sound and practical framework for fault­
tolerant network monitoring: even if any part of the network becomes faulty, fault-free 
nodes are able to diagnose the system. Recently, results from the application of distributed 
system-level diagnosis applied for SNMP-based LAN fault management have been re­
ported. In [1] the Adaptive Distributed System-level Diagnosis ( ADSD) algorithm was 
implemented using SNMP. In this algorithm, nodes are assumed to be fully connected, 
and the testing topology is a ring, such that the number of tests is as low as one per node 
per testing round. For a network of N nodes, the diagnosis latency of the algorithm is N 
testing rounds, i.e. proportional to the number of nodes in the network. 

In [2] another algorithm for LAN fault-diagnosis, Hi-ADSD (Hierarchical ADSD), was 
introduced and implemented using SNMP. In this algorithm, the number of tests is the 
same as in ADSD, but the testing topology is initially a hypercube, and diagnosis is 
reduced to log2 N testing rounds. Those algorithms employ a distributed strategy for 
fault management, in which a collection of network nodes perform network diagnosis, and 
the human manager may attach an interface to any of these nodes to receive diagnostic 
information. 

In this paper we expand those results by introducing an algorithm for diagnosis in 
non-broadcast networks, applied to point-to-point network fault management. In the al­
gorithm, a node tests links periodically, and disseminates link time-out information to 
all its fault-free neighbors in parallel. Upon receiving link time-out information a node 
computes which portion of the system has become unreachable. This new approach to 
diagnosis, based on link time-out and node unreachability is closer to reality than previous 
approaches. There are two reasons for this improvement: (1) it is impossible to distinguish 
a node fault from the fault on all the paths to that node; (2) in previous algorithms, two 
fault-free nodes in disconnected components keep the old status for each other, which may 
not correspond to reality. 
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A node joining the algorithm disseminates information about itself, and collects diag­
nostic information from its neighbors. The diagnosis latency of the algorithm is optimal, 
as nodes report events in parallel, and latency is proportional to the diameter of the 
network. The dissemination step includes mechanism to reduce the number of redundant 
messages introduced by the parallel strategy. We present a MIB for the algorithm, and 
a SNMP-based implementation. The evaluation of algorithm's impact on network perfor­
mance shows that the amount of bandwidth required is less than 0.1% for popular link 
capacities. We conclude demonstrating the integration of LAN and WAN fault diagnosis 
into a unified framework. 

The rest of the paper is organized as follows. Section 2 reviews system-level diagnosis, 
including algorithms for LAN fault management. Section 3 reviews algorithms for diag­
nosis on networks of general topology, and includes the specification of the new algorithm 
for non-broadcast networks. In section 4 we present a MIB and a SNMP-based imple­
mentation of the algorithm. In section 5 we evaluate its impact on network performance. 
Section 6 concludes the paper, showing the integration of LAN, and WAN fault diagnosis 
into a unified framework. 

2 SYSTEM-LEVEL DIAGNOSIS 

Consider a system consisting of N units, which can be faulty or fault-free. The goal 
of system-level diagnosis is to determine the state of those units. For almost 30 years 
researchers have worked on this problem, and the first model of diagnosable systems was 
introduced by Preparata, Metze, and Chien, the PMC Model [3]. In the PMC model units 
are assigned a subset of the other units to test, and fault-free units are able to accurately 
assess the state of the units they test. The PMC model assumes the existence of a centml 
observer that, based on the syndrome, can diagnose the state of all the units. In this 
paper, we will use alternatively the word node for unit, and network for system. 

Early system-level diagnosis algorithms assumed that all the tests had to be decided in 
advance. An alternative approach, which requires fewer tests, is to assume that each unit 
is capable of testing any other, and to issue the tests adaptively, i.e., the choice of the 
next tests depends on the results of previous tests, and not on a fixed pattern. Hakimi 
and Nakajima called this approach adaptive [5]. 

Early system-level diagnosis algorithms assumed the existence of the previously men­
tioned central observer. This situation was changed by Kuhl and Reddy [6, 7], who in­
troduced distributed system-level diagnosis, in which fault-free nodes reliably receive test 
results through their neighbors, and each node independently performs consistent diag­
nosis. Important distributed system-level diagnosis algorithms include [8] and [9] 

System-level diagnosis algorithms proceed in testing rounds, i.e., the period of time in 
which each unit has executed the tests it was assigned. To evaluate those algorithms, two 
measures are normally used: the total number of tests required per testing round and the 
diagnosis latency, or delay, i.e., the number of testing rounds required to detPrmine the 
state of the units. 

The Adaptive Distributed System-level Diagnosis algorithm, Adaptive DSD, was intro­
duced by Bianchini and Buskens [10, 11]. Adaptive DSD is at the same time distributed 
and adaptive. Each fault-free node is required to perform the minimal number of tests 
per testing interval, i.e .. one test, to achieve consistent diagnosis in at most N testing 
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rounds. There is no limit on the number of faulty nodes for fault-free nodes to diagnose 
the system. Later, the Hierarchical Adaptive Distributed System-Level Diagnosis (Hi­
ADSD) algorithm [2] was introduced and implemented with SNMP. By using a testing 
assignment that is initially a hypercube, Hi-ADSD has diagnosis latency of log2 N in the 
worst case. 

2.1 Algorithms for Diagnosis m Networks of General 
Topology 

Up to this point, we reviewed system-level diagnosis algorithms for SNMP-based LAN 
diagnosis, in which the network is assumed to be fully connected, e.g., an Ethernet or a 
network based on switches. From this point on we review algorithms for diagnosis in non­
broadcast networks, which can be applied for point-to-point network fault management. 
We introduce our new algorithm in the next section. 

In [12] Bagchi and Hakimi introduced an algorithm for system-level diagnosis in net­
works of general topology. Initially each fault-free node knows only about its own state, 
and of its physical neighbors. Fault-free processors form a tree-based testing graph. Diag­
nostic messages are sent along the tree. The number of messages required by this algorithm 
to achieve diagnosis is shown to be optimum. Unfortunately the algorithm is not executed 
on-line, i.e., no processor can become faulty or be repaired during the execution of the 
algorithm. This characteristic rules out the application of the algorithm for WAN fault 
diagnosis. 

In [13, 14] Bianchini et.al. introduced and evaluated through simulation the Adapt algo­
rithm. The Adapt algorithm can be executed on-line: when a given node becomes faulty, 
a new phase begins in which other nodes reconnect the testing graph. The underlying 
testing assignment of Adapt is a minimally strongly connected digraph over the physical 
network. To build the testing graph, Adapt employs a distributed procedure that requires 
massive amounts of large diagnostic messages to be exchanged among the nodes. 

Recently Rangarajan et.al. [15] introduced another algorithm for system-level diagnosis 
for networks of arbitrary topology that can be executed on-line. The algorithm, which we 
call here RDZ, for the author's initials, builds a testing graph that guarantees the optimal 
number of tests, i.e., each node has one tester. Furthermore it presents the best possible 
diagnosis latency by using a parallel dissemination strategy. Whenever a node detects an 
event, it sends diagnostic information to all its neighbors, which in turn send it to all its 
neighbors, and so on. 

Figure 1 A jellyfish fault configuration. 

Although the RDZ algorithm presents the best possible diagnosis latency, and the best 
possible number of testers per node, it does not diagnose link faults and also a node 
fault configuration which the authors call jellyfish faulty node configuration. In this fault 
configuration, between two connected components there is a set of nodes such that part of 
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those nodes test each other in a cyclic fashion, and other tests emanate from the cycle. If 
all nodes in the jellyfish become faulty simultaneously, nodes in the connected components 
won't diagnose that situation. It should be noted that a jellyfish may involve from one to 
an arbitrary number of nodes. 

Consider figure 1. All nodes form a jellyfish, in which there is a cycle (node A and node 
B) and tests emanating from the cycle (from node B to node C to node D). If both nodes 
A and B become faulty, nodes C and D won't be able to diagnose the fault. The same is 
true if nodes A, B, and C become faulty, i.e., node D doesn't detect the event. The RDZ 
algorithm cannot be applied for network fault monitoring, for it is unacceptable to have 
an arbitrarily large portion of the network to become faulty in an undetected fashion. 

3 A NEW ALGORITHM FOR DIAGNOSIS ON NON-BROADCAST 
NETWORKS 

In this section, we introduce a new algorithm that diagnoses link time-outs, and node 
reachability, using the minimum number of tests, i.e. one per link, and also presenting the 
optimal latency. Before introducing the algorithm, consider figure 2. In fault situation A 
the node is fault-free, but all links leading to that node are faulty, in fault situation B, 
the node itself is faulty. From test results it would be impossible for any other node in the 
system to determine which is the actual situation. Our algorithm is based on this fact: a 
link may time-out to a test, and if all links to a given node have timed-out, then the node 
is unreachable. Thus links may be in one of two states fault-free, timed-out and nodes 
may be fault-f7·ee or unreachable. This approach to fault diagnosis on wide-area networks 
is closer to reality, for links are usually made up of not only wires but may also involve a 
number of network devices, hubs and gateways. 

w~ 
K~ 
Fault S~uation A Fault Situation B 

Figure 2 Ambiguous fault configurations. 

To keep the number of tests minimum, there is one tester per link. As a link always 
connects two nodes, and nodes have unique identifiers, the node with the highest identifier 
tests the link at each testing interval. If the link times-out, i.e., the neighbor doesn't 
reply to the test, and in the past testing interval it did, then there is a new fault event. 
Analogously, if the link has timed-out in the past testing interval, and it does carry a 
reply this time, then there is a repair event. 

The algorithm employs a two-way test. This guarantees that the jellyfish fault config­
uration is always detected, even keeping the minimum number of tests. When node A is 
testing the link to node B, node A gets the local time at B, and stores that result on B. 
In this way, not only node A knows about the state of B, but also node B can monitor the 
tester activity. If a threshold is decided for the maximum interval between link tests, then 
a node can time-out the tester whenever the threshold is exceeded. When a node detects 
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a link time-out or a tester fault, it starts or continues testing the link until it ceases to 
time out, such that, when the link recovers again, only the node of highest identifier tests 
the link. 

Each node keeps a state counter for each link in the system, which is initially zero, and is 
incremented at each new event information received for that link. This permits a node to 
identify redundant messages. After a new event is discovered, each node propagates event 
information to all neighbors. This parallel dissemination strategy is the same employed by 
the RDZ algorithm. Besides the nodes identifier, and the status counter, each diagnostic 
message carry information about which nodes have processed the message. In this way, 
the number of redundant messages is reduced, and messages do not cycle in the network. 
After receiving a message, each node appends its own identifier to the list of nodes that 
has processed the message. Furthermore it appends the identifiers of the neighbors to 
which the message was already sent. For a full discussion and evaluation of this approach 
please refer to [15]. It should be clear that, as messages are short, the impact of this 
strategy on network performance is small. In section 5 we evaluate the percentage of link 
bandwidth required to run the algorithm. 

After a node receives information about a link event, it runs an algorithm (like the 
breadth-first tree) to compute the system connectivity, thus discovering which portions 
have become reachable or unreachable. 

The data structures of the algorithm are thus: 

e A Link table indexed by link identifier, containing a status counter for the link, and the 
last time the link was tested. The counter is initially zero, and an even value indicates 
a fault-free state; The last-test-time is updated only on nodes connected to the link 
and such that the node doesn't test the link, but its neighbor; 

e A Link-Events table, containing at each entry the link identifier, the state counter of 
the link, and a list of nodes that have already processed the message as seen by the 
sending node. 

The algorithm in pseudo-code is: 

BEGIN 
I• at node i •I 
DO FOREVER 

FOR each link i-j, that connects node ito node j 
IF (i > j) OR (node j is faulty) 
THEN test link i-j; I• get local time at node •I 

IF link i-j is fault-free 
THEN set last-time-tested on j; 
IF there is a new event 
THEN add event to new-event table; 

ELSE I• check link tested by neighbors •I 
IF last-time-tested > testing interval threshold 
THEN add event to Link-Events table; 

FOR each entry in Link-Events table 
IF entry carries new information 
THEN update link counters; 



Non-broadcast network fault-monitoring 

FOR each neighbor k of node i 
IF k has not received the message 
THEN set event information to k's nev-event table; 

compute node reachability; 
SLEEP(testing interval) 

END; 

3.1 An Example Execution 

603 

Consider the example system in figure 3. Initially all links and nodes are fault-free. Each 
node starts testing links as depicted by arrows, and exchange test information with neigh­
bors. Eventually each node receives information about all links. 

Figure 3 The testing assignment on an example non-broadcast network. 

Now consider the first event depicted in figure 4, in which link 3-5 is faulty and times­
out. This time-out will be detected by node 5, and immediately disseminated to node 7. 
This in turn will disseminate to node 8 (and from there to node 9), and node 6. Node 6 
disseminates information to node 4, and from there to node 3, node 2 and node 1. Node 2 
disseminates the information to node 3. Now, if node 3 timed-out out the tester (link 3-.5) 
before the information arrives from node 2, then node 3 will also disseminate information 
on the time-out. If a node, say node 2, receives two diagnostic messagt>s about the same 
event it will only disseminate the first of them, because the second is recognized as old 
information. Thus, the highest number of messages per event per link is two. After all 
nodes receive and process diagnostic messages, they run an algorithm to compute system 
connectivity, and conclude that all nodes are still connected. 

1st Event: 
Link 3-5 Times Out 3rd Event: 

Link 5-7 Times Out 

2nd Event: 4th Event: 

Node 4 becomes faulty Link 8-9 Times Out 

Figure 4 A series of events occur in the network. 

In the second event depicted in figure 4, node 4 became faulty. Node 6 detects a time-out 
on link 6-4, and after the testing threshold expires, node 2 and node 3 detect time-outs on 
links 4-2 and 4-3 respectively. The system now is divided into two connected components, 
one consisting of node 1, node 2 and node 3, the other consisting of node 5, node 6, node 
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7, node 8 and node 9. As on each component a node detects and disseminates the event, 
diagnostic information will eventually reach every fault-free node in the system. 

Now consider the third event, link 7-5 becomes faulty and times-out. The resulting 
system has 3 connected components, the first consisting of node 1, node 2, and node 3; 
the second of node 5 alone; and the third of node 6, node 7, node 8, and node 9. In the 
first component not one node detects the event, because it is already disconnected from 
the rest of the system. In the second component, node 5 eventually times out on the 
test of link 7-5 and realizes it is disconnected from the system, i.e., every other node is 
unreachable. At the third component, node 7 initially detects link 7-5 time-out and the 
event is disseminated to the other nodes in the component. 

If still another link, 9-8, becomes faulty and times-out, node 9 detects the event and 
recognizes it is disconnected from the system. Node 8 times-out on the testing threshold 
of link 9-8, and disseminates event information to node 7 and node 6. The other nodes in 
the network are already in disconnected components. 

After these events, when faults are repaired, nodes testing corresponding links will 
detect the events, and disseminate the information to other nodes in their connected 
components. Eventually the whole system becomes a unique connected component, and 
every node receive diagnostic information about all links. 

Correctness 
Here we give an informal discussion of the correctness of the algorithm. Consider a con­
nected component of the system, made up of fault-free nodes and such that between any 
pair of those nodes there is a fault-free path. The neighborhood of the component is de­
fined as the set of links that timed-out in the previous testing-round. Clearly, any new 
event in the component or in its neighborhood is detected by nodes in the component. 
This is assured by the testing strategy, in which there is a two-way test on each link from 
any node of the component. Now consider that one event has occurred. If a fault-free 
node or link has become faulty, then one node in the component will detect the fault, 
and forward it to other neighbors. As each node forwards new information to all neigh­
bors, information will eventually reach all nodes in the component. If the fault breaks 
the component in two, then nodes on both components will detect a link time-out, and 
disseminate the information on their respective components. Now consider a repair event: 
if a test succeeds on a link that had been timing-out, the two nodes (tested and tester) ex­
change diagnostic information, and disseminate this information to their neighbors. Thus 
event information is always disseminated to every fault-free node in the component. 

Event counters guarantee that old information is recognized as such. Furthermore, those 
links that have odd event-counters are timed-out links and those that have even-counters 
are fault-free links. This is guaranteed because a counter is only incremented when a new 
event happens, from timed-out to fault-free or opposite. As the counter is initially zero, 
for a fault-free initial status, and when it times-out it is increased to 1 and so on, an even 
value will always indicate a fault-free state, and an odd value a faulty state. 

4 SNMP-BASED IMPLEMENTATION 

In this section we present an implementation of the algorithm for non-broadcast network 
fault management based on SNMP [17, 18, 19]. Each node running the algorithm keeps 
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two tables. The first table keeps information about each link in the network: its identifier, 
the state counter, and the time it was tested. The time field is only used by nodes that 
test a link to implement the two-way testing strategy. We give below the corresponding 
ASN.l table. 

LinkState OBJECT-TYPE 
SYNTAX SEQUENCE OF LinkStateEntry 
ACCESS not-accessible 
STATUS mandatory 
DESCRIPTION 

"This is an array that contains link status information." 
::= {diagnosis 1} 

linkStateEntry OBJECT-TYPE 
SYNTAX LinkStateEntry 
ACCESS not-accessible 
STATUS mandatory 
DESCRIPTION 

"Each entry of linkState shows if a link is timing-out 
or fault-free, according to the status counter" 

INDEX { linkiD } 
: := { LinkState 1 } 

LinkStateEntry 
SEQUENCE { 

linkiD DisplayString, 
StatusCounter Counter, 
TestedTime TimeTicks } 

The second table, LinkEvents, is a dynamic table, in which event information is added 
by the local agent and its neighbors. After each testing interval, all entries in the table 
are processed. Each entry contains the identifier of the link that suffered the event, the 
timestamp for that event, and a string containing the identifiers of all the nodes that have 
already processed the message. The ASN.l table is given below. 

LinkEvents OBJECT-TYPE 
SYNTAX SEQUENCE OF linkEventsEntry 
ACCESS not-accessible 
STATUS mandatory 
DESCRIPTION 

"This is a dynamic table to which information 
about new link events are added." 

{ diagnosis 2 } 

linkEventsEntry OBJECT-TYPE 
SYNTAX LinkEventsEntry 
ACCESS not-accessible 
STATUS mandatory 
DESCRIPTION 
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"Each entry of linkEvents carries the link identifier, 
the status counter for the new event, and a sequence 
of identifiers of nodes that have processed the event" 

INDEX { linkiD } 
: := { LinkEvents 1 } 

LinkEventsEntry 
SEQUENCE { 

LinkiD 
StatusCounter 
Path 

DisplayString, 
Counter, 
DisplayString } 

In our implementation nodes set neighbors tables, and thus security measures must be 
taken, specifically assignment of restricted access permission. It should be clear that from 
the LinkState table that the complete network configuration is available to each node, 
which can calculate the system connectivity at any time. Works on generating network 
configuration information automatically have been reported (16], and can be employed to 
build the LinkState table. 

5 IMPACT ON NETWORK PERFORMANCE 

Percenta e of link bandwidth re uired. 
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Figure 5 Amount of link bandwidth required to run diagnosis. 

At each testing interval, each link carries one message from the tester to the neighbor. 
Furthermore, for any new event in the network, each link will carry usually one, and at 
most two messages about the event. The reason is that after updating the state counter, 
a node does not forward any other message that contains known information. The link 
will carry two messages only if both nodes send information at the same time. Thus, the 
total number of messages per event required by the algorithm is at most 2 * L, where L 
is the number of links. 

The graph in figure 5 shows the impact of the algorithm on network performance, by 
showing the percentage of link bandwidth required by diagnostic messages. The graph 
shows links of different capacities, and results are shown for different testing intervals, of 
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10 seconds, 20 seconds, and 30 seconds. We consider a fault rate A of 0.001. The size of 
SNMP messages assumed is 128 bytes. Results show the percentage of bandwidth required 
is always less than 0.1%, on links from 28.8Kbps to 1Mbps. 

6 CONCLUSION 

In this paper we presented a new distributed algorithm for system-level diagnosis on non­
broadcast networks. The purpose of the algorithm is to allow each node to independently 
detect which portions of the network are faulty or unreachable. We show that in some 
cases it is impossible to distinguish between the two cases. 

A node running the algorithm executes link tests at a testing interval. The algorithm 
employs the minimum number of tests, i.e., one per link. Of the two nodes connected 
by a link, the one with highest identifier is the link tester. We assume nodes have local 
memory, and tests are built in such a way that both ends of a link detect a link time-out 
in case of link or one node failure. 

Upon detecting a new event, diagnostic information is disseminated in parallel, and the 
algorithm has the minimum diagnosis latency, i.e., proportional to the diameter of the 
network. Mechanisms are included to reduce the amount of redundant messages. As each 
message is small, containing information about one event, and any link carries at most 
two messages, the impact of the algorithm on network performance is small. A MIB and 
SNMP implementation were presented. 

Figure 6 A small internet. 

As future work we discuss here an integrated approach for internet fault monitoring. 
This approach can be achieved by running specific algorithms for diagnosis on broadcast 
networks (LAN's), like Hi-ADSD, together with the algorithm introduced in this paper. 
Consider the small internet in figure 6. Nodes with identifiers from 1 to 9 are connected 
to broadcast networks. Node A, node B, and node D have a link to a. broadcast network, 
and to a non-broadcast network. Node B is takes part only in the non-broadcast network. 
For the two algorithms to run cooperatively, it is sufficient that nodes only on a broadcast 
network run an algorithm for diagnosis on the LAN to which it belongs; nodes not on a 
non-broadcast network run the algorithm for diagnosis on that network; nodes that are 
on a broadcast network, but also have a link to another network must run both a LAN 
diagnosis algorithm, and a WAN diagnosis algorithm. This means these nodes execute 
tests according to the two algorithms, and also carry the necessary data structures to 
hold information about the entire system. In this way, a truly fault-tolerant network fault 
management system can be deployed, in which any fault-free node can diagnose the whole 
system. 
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