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Abstract

As networks expand, applications become critical for organizations and

individuals. Consequently, there is a pressing need for dependable network

management systems. However, considering current approaches, a network

fault may cause a partial collapse of the management entity. As fault manage-

ment is a key functional area of network management systems, this situation

constitutes a paradox: the system is meant to solve faults, but those same

faults impair the system. To tackle this problem, we have worked on algo-

rithms and tools for fault-tolerant network monitoring. All theoretical work

developed has been also implemented using SNMP (Simple Network Man-

agement Protocol), however, the proposed solutions are in no way limited to

this framework.

In the first part of this work, we present an strategy to improve the de-

pendability of current centralized network management systems based on

SNMP. We propose the use of SNMP proxy agents to bridge communica-

tions between manager and agent whenever the corresponding network route

is not working. This allows network management, which is an application

layer entity, to have a simple and powerful routing engine. Algorithms are

introduced to locate proxies for each agent. The impact of this solution on

the steady-state availability of the system is shown. An SNMP MIB imple-

mentation of the proxy is proposed that allows any agent to become a proxy

with virtually no cost.

Next, we propose the application of distributed system-level diagnosis to

develop network monitoring applications that are resilient to network faults,

i.e., no matter which portion of the network is faulty, monitoring continues

on the fault-free portion.

The second part of this work introduces a new Hierarchical Adaptive

Distributed System-level Diagnosis algorithm (Hi-ADSD) applied for SNMP-

based local area network fault management. The algorithm has latency of

log2N testing rounds, for a network of N nodes. Nodes are mapped into pro-

gressively larger logical clusters, so that each node executes tests in a hier-
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archical fashion. The algorithm assumes no link faults and a fully-connected

network. There are no bounds on the number of faults. Both the worst-case

diagnosis latency and correctness of the algorithm were formally proved. Ex-

perimental results are given through simulation of the algorithm for large

networks. Practical results were given from an implementation of the algo-

rithm on a 37-node Ethernet LAN using SNMP.

The third part of this work is a new algorithm for diagnosis of general

topology networks, applied for fault management of wide area networks.

Nodes test links periodically, and disseminate link time-out information to

all its fault-free neighbors in parallel. Upon receiving link time-out informa-

tion, a node computes which portion of the network has become unreachable.

This approach is closer to reality than previous algorithms, for it is impos-

sible to distinguish a faulty node from a node to which all routes are faulty.

The diagnosis latency of the algorithm is optimal, as nodes report events in

parallel, and latency is proportional to the diameter of the network. The

dissemination step includes mechanisms to reduce the number of redundant

messages introduced by the parallel strategy. We present a MIB which can

be used to implement the algorithm using SNMP. The evaluation of the algo-

rithm’s impact on network performance shows that the amount of bandwidth

required is less than 0.1% for popular link capacities.
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Chapter 1

Introduction

The information revolution is changing the world and deeply affecting hu-

man lives, relationships, and enterprises. Although innumerable factors have

allowed this revolution to take place, it can be seen as a direct result of the

development of computer and communication technologies, and the synergy

that arises from their interaction.

Computer networks are continually expanding to such an extent that it

is possible to say that the enterprise and the network are becoming indis-

tinguishable [1]. In other words, if the network is not working properly, the

enterprise is in trouble. Network applications are thus becoming mission-

critical: risks and costs associated with network faults and performance

problems are significant. At the same time, networks are becoming larger

and more complex, being made up of a variety of heterogeneous devices,

based on different technologies, produced by different organizations. Man-

agement of such a system is not a trivial task. There is thus a pressing need

for automated systems to allow effective network management.

As network management is needed to ensure that the network is operat-

ing efficiently at all times, it should be clear that the network management

system must be itself operating efficiently at all times, including periods in

which there are faults in the network. This work is about some of the al-

gorithms and tools that can be used for building dependable, fault-tolerant

1
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network management systems.

This chapter is organized as follows. After defining network management

systems and their functionality, we discuss current standards and why they

are needed. Network monitoring is then introduced as a key part of any

network management system, and popular approaches are reviewed. This

is followed by the definition of faults, as well as of system-level diagnosis.

The contributions of this work are then introduced. This is followed by an

overview of the remaining chapters.

1.1 Network Management

A broad definition of network management is given by Terplan [2]: “network

management means deploying and coordinating resources in order to plan,

operate, administer, analyze, evaluate, design, and expand communication

networks to meet service-level objectives at all times, at a reasonable cost,

and with optimum capacity”.

ISO (International Organization for Standardization) has proposed a clas-

sification of network management functionality into five areas: fault, per-

formance, configuration, security, and accounting management. This func-

tionality was proposed as part of the OSI (Open Systems Interconnection)

systems management specification, but has been widely accepted to describe

of the requirements for any network management system [3]. The core of

each function is described below:

• Fault management: allows the detection, isolation, and correction of

abnormal operation of the network.

• Performance management: allows performance monitoring and evalu-

ation of the network.

• Configuration management: allows the human manager to reconfigure

the network from a management station. Its goal is to guarantee con-

tinuous operation and quality of service.
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Security management: includes procedures to protect the system from

unauthorized access.

Accounting management: enables charges and cost to be defined for

network usage.

1.2 Standard Frameworks

As networks are made up of heterogeneous elements, i.e. computers and

communication technologies produced by different organizations and ven-

dors, it is important that network management systems be based on interna-

tional open standards, shared by all technologies. Both the Internet TCP/IP

(Transmission Control Protocol/Internet Protocol) and the OSI communi-

ties have produced open standards for network management. The OSI set of

standards includes the Common Management Information Protocol (CMIP)

standard. The TCP/IP set of standards includes the Simple Network Man-

agement Protocol (SNMP) standard, also known as the Internet-standard

Network Management Framework.

SNMP has had a huge success, it is the de facto standard for network

management today. A large number of organizations, both academic and

business-related, have adopted SNMP. A vast number of network devices,

routers, bridges, hubs, and operating systems offer support for SNMP. Al-

though the OSI framework has also received attention, its complexity and

the slow pace in which documents were produced have influenced in its low

acceptance and scarce deployment compared to SNMP. There is little hope

that CMIP will ever become more popular than SNMP.

In August 1988, the specification for SNMP was issued and soon after-

wards it became widely adopted. A significant revision of SNMP, known as

secure SNMP, was issued in 1992. Then, in 1993, a second generation pro-

tocol was issued: SNMP version 2 (SNMPv2), which improves both SNMP

and secure SNMP with new functionality. Work on new versions continues

under the auspices of the IETF (Internet Engineering Task Force).
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1.3 Network Monitoring

Network management can be divided into two parts: monitoring and control.

Monitoring is the process of observing the behavior of the network and its

components, both to detect faults and monitor performance. Control is the

process of changing the network’s behavior in real time by adjusting param-

eters when the network is up and running, in order to improve performance

or repair faults.

repeater

bridge

switch

router router

LAN

WAN

LAN / MAN

point-to-point

- node: server, host, printer...

          A Managed Internet

NMS

- Network Manager StationNMS

Figure 1.1: An example of a managed network, nodes and devices are agents.

SNMP is based on the manager/agent paradigm. Each agent maintains

a database of management objects, called MIB (Management Information

Base). The manager, also called Network Management Station (NMS), mon-

itors and controls the network by reading and writing (or getting and setting)

the management objects in the agent using a standard management protocol.

As Partridge and McCloghrie mention in [3]: “the object database provides

an abstract representation of the managed system to the management ap-
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plication, and it is the agent’s responsibility to translate operations on this

abstract database into real operations upon the managed system”. Figure

1.1 shows a heterogeneous network with one NMS and a collection of agents

on the various nodes and devices.

Ag

Ag
Ag

Ag

Ag
Ag

Ag

Ag

Ag Ag
Ag

Ag

NMS

mon

monmon

mon

This figure shows
a tree-structured
two-level monitoring
scheme.

All links correspond
to SNMP queries/
replies.

‘mon’ implements 
both SNMP client  
and server.  

Figure 1.2: A common approach to network management monitoring.

The traditional approach to monitoring is to have a number of managers,

usually only one, organized in a tree, each of them responsible for querying a

set of agents, and reporting to monitors in higher levels of the tree, as shown

in figure 1.2. Agents (Ag) are the leaves of the tree, and intermediate nodes

are monitors that implement both an agent process (i.e. SNMP server) and a

manager process (i.e. SNMP client). This approach presents two drawbacks:

(1) if monitors become faulty or unreachable, diagnosis stops on an entire

portion of the network; (2) all monitors are required to test a large number

of network nodes.

Network monitoring is accomplished not only through polling, but agents

are also able of asynchronously notify managers of potential problems by

using alarms, called trap messages. In general, network management systems

employ a combination of polling and alarm management. If the manager

monitors a large number of agents and each agent maintains a large number
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of objects, then it may become impractical to regularly poll all agents for all of

their data. However, trap processing also has problems of its own: as agents

must generate events when thresholds are achieved, they must continuously

monitor the value of the management objects. This process may have a bad

impact on the performance of the agent. Furthermore, when there is a fault

in the network, the manager is usually flooded with alarms sent from agents

that have different perspectives of the problem, and diagnosis can be difficult

in those circumstances. If the network problem is congestion, the traps will

make it worse. The SNMP community favors polling over traps [4].

Later in this work, we present new distributed algorithms for fault-tolerant

network monitoring, and strategies to improve the dependability of current

centralized systems.

1.4 Fault Diagnosis

Initially, we define a fault. There are in fact three concepts that must be

clearly understood [5]: failure, error, and fault. A failure of a system occurs

when the behavior of the system first deviates from the system’s specification.

In other words, a system fails when it cannot provide the desired service. An

error is a property of the system state that may lead to a failure. The cause

of an error is a fault. The concept of a fault is associated with a notion of

defect. A faulty system is one with defects. The definition of a fault is: a

defect that has the potential of generating errors.

A classical example is that of a memory cell that always returns 0, inde-

pendent of what is stored in it. This memory cell is faulty, i.e. it contains a

fault. However, an error only occurs when the value stored in the cell was 1,

and the contents of the cell are read for some computation. That is an error,

an observable event. This error may somehow make the system behave in a

way different from its specifications, if it does, there is a failure. A failure is

not a property of the system state, and cannot be observed easily.

A large portion of the research on fault management has concentrated on
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alarm correlation. The ability to filter and correlate alarms is an important

feature of network management systems. Whenever there is a problem in

the network, the manager is likely to receive a large number of alarms from

different parts of the networks, each of them with a different point of view

of the problem, and mechanisms should be employed to determine the real

cause of the problem. An example of recent work in this area is [6].

Another approach for fault management is to use expert systems. They

use knowledge based on past experience to diagnose network faults. The main

problem with this approach is that it is difficult to extract and maintain this

knowledge. Furthermore, new types of faults are not properly diagnosed. An

example of recent work in this area is [7].

1.5 System Level Diagnosis

The field of system-level diagnosis has flourished for years. Its objective is

determine the state of every unit of a system. In the PMC model, [8] a system

is composed of units that are capable of testing each other. It is assumed

that the status of each unit is either faulty or fault-free and the status does

not change during diagnosis. A test involves controlled application of some

stimuli and observation of the corresponding responses; it is assumed that a

fault-free unit always reports the status of the units it tests correctly, while

the faulty units can return incorrect results of the tests conducted by them.

The PMC model assumes the existence of a central observer that, based on

the syndrome, can diagnose the state of all the units. For a given testing

assignment, the diagnosability of a system may be limited by the number of

faulty units.

Early system-level diagnosis algorithms assumed that all the tests had

to be decided in advance. The tests were then executed, and from the test

results the central observer determined which units were faulty. An alter-

native approach, which requires fewer tests, is to assume that each unit is

capable of testing any other, and to issue the tests adaptively, i.e. the choice
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of the next tests depends on the results of previous tests, and not on a fixed

pattern. This approach was called adaptive [9]. Early adaptive system-level

diagnosis results assumed the existence of the previously mentioned central

observer. Furthermore, a bound on the number of faulty nodes was imposed

for the system to achieve correct diagnosis.

Kuhl and Reddy [10], introduced distributed system-level diagnosis, in

which fault-free nodes reliably receive test results through their neighbors,

and each node independently performs consistent diagnosis.

The Adaptive Distributed System-Level Diagnosis algorithm, Adaptive

DSD, was introduced by Bianchini and Buskens [11, 12]. Adaptive DSD

is at the same time distributed and adaptive, each fault-free node uses the

minimal number of messages per testing round, i.e., one message, to achieve

consistent diagnosis in at most N testing rounds. One testing round is the

period of time in which each unit has executed at least one test successfully.

We have proposed the usage of adaptive distributed system-level diagnosis

algorithms for network monitoring and fault management. In [13] system-

level diagnosis results which are not based on the PMC model are also applied

to fault management. Their results are not based on the PMC model, and

are basically centralized and not executed on-line.

1.6 Contributions of the Thesis

This thesis has three main contributions. Initially, we worked on improv-

ing the dependability of current centralized network management systems

by using proxies to bridge management communications and thus give the

manager the ability to reach agents even if there is a fault along the route de-

termined by the network layer. Next, we worked on new distributed system-

level diagnosis algorithms applied for fault-tolerant network monitoring. We

developed the Hierarchical Adaptive Distributed System-level Diagnosis al-

gorithm which can be applied to a Local Area Network (LAN), and a new

algorithm for Wide Area Network (WAN) diagnosis. Each of these contribu-
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tions was implemented using SNMP, but they are not limited in any way to

this framework. The three contributions are briefly introduced below.

1.6.1 Fault-Tolerant SNMP Query Routing

Although fault management is one of the most important functional areas

of network management systems, currently these systems themselves often

become partially faulty as a consequence of the faults they should instead

be solving. For instance, if the communication path from the NMS to an

agent is down, there will be a collapse of the system, as management is

an application layer entity and depends on the network routing layer for

all routing decisions. To solve this problem we proposed the usage of SNMP

proxies to bridge communications between the NMS and the agents, whenever

the corresponding network layer routes are faulty. An example is shown in

figure 1.3. Paths using the proxies are set up in the application layer, and

are known as application routes, in contrast to the usual network routes.

 NMS  Ag  G1  NMS  Ag

 G2

 G1

 G2

A: Normal operation. B: Fault recovery.

Figure 1.3: A proxy bridges communications between the NMS and an agent.

An algorithm was developed for selecting which nodes may act as proxies

for each agent in the network. An evaluation of the impact of the approach

on network management dependability was conducted. The evaluation was

based on the percentage of network management queries and replies that

are correctly delivered using the proxy mechanism, under different network

faults. Using routing proxies is a simple approach to prevent large parts of

the network from becoming unreachable. The proxy was implemented as a
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conventional SNMP MIB (Management Information Base), an efficient and

flexible approach, that allows the deployment at virtually no cost.

Fault-tolerant SNMP routing is presented in detail in chapter 3.

1.6.2 LAN Fault Diagnosis

We proposed a new Hierarchical Adaptive Distributed System-level Diagnosis

(Hi-ADSD) algorithm and its implementation integrated to a network man-

agement system based on SNMP. Hi-ADSD is a fully distributed algorithm

that has diagnosis latency of at most log2 N testing rounds for a network of

N nodes. The algorithm assumes the PMC fault model. Nodes are grouped

in progressively larger logical clusters, so that each node executes tests in a

hierarchical fashion, as shown in figure 1.4. The algorithm assumes no link

faults, a fully-connected network and imposes no bounds on the number of

faults.

0 1

2 3

4 5

6 7

Figure 1.4: Nodes test clusters.

The algorithm was formally proved correct. Each node tests one cluster

per testing interval, and tests continue until a fault-free node is found. A

testing round is defined as the period after which every fault-free node in the

system has tested another fault-free node, or all remaining nodes are tested

as faulty. The longest testing path is of length log N , as shown in figure 1.5.

As, for each test to occur it may take up to log N testing rounds, it takes at

most log2 N testing rounds for all nodes to diagnose the state of the system.
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0 1

2 3

4 5

6 7

Figure 1.5: Longest diagnostic path.

A simulation of Hi-ADSD was conducted using the discrete-event simu-

lation language SMPL. For a network of 512 nodes it took an average of 16

tests for all nodes to diagnose an event. The algorithm was implemented

using SNMP on an Ethernet LAN with 37 Sun workstations. Some of the

events and their diagnosis are presented in the figure above. Each event took

an average of 427.1 seconds to be diagnosed, with a testing interval of 40

seconds.

Hi-ADSD and LAN diagnosis are presented in detail in chapter 4.

1.6.3 WAN Fault Diagnosis

We have proposed a new algorithm for diagnosis of non-broadcast networks,

applied to WAN fault management.

In previous algorithms for system-level diagnosis on networks of general

topology, fault-free nodes determine if nodes/links are faulty/fault-free. We

claim this approach is unlikely to work, for in a non-broadcast network it is

impossible to distinguish between the following two fault situations: (1) a

node is faulty, and (2) all links to that node are faulty.

We proposed an algorithm in which nodes test links periodically, and

and disseminate link time-out information to all its fault-free neighbors in

parallel. Upon receiving link time-out information a node computes which

nodes are unreachable. The diagnosis latency of the algorithm is optimal,
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proportional to the network diameter.

An SNMP MIB was devised for the algorithm. Two-way tests are em-

ployed, such that for each link only one of the nodes acts as tester, but each

node detects if the other is faulty. The evaluation of the algorithm’s impact

on network performance shows that the amount of bandwidth required is less

than 0.1% for popular link capacities.

The new algorithm for WAN diagnosis is presented in detail in chapter 5.

1.7 Overview of the Thesis

Chapter 2 presents further concepts of network management systems based

on SNMP, allowing the reader to understand the implementation of the tools

and algorithms described in later chapters. Chapter 3 presents the usage of

proxies to allow a manager to reach agents even if there is a fault along the

route determined by the network layer. Chapter 4 presents the Hierarchical

Adaptive Distributed System-level Diagnosis algorithm and its application to

LAN fault diagnosis. In chapter 5 a new algorithm for WAN fault diagnosis

is presented. Chapter 6 concludes the thesis.



Chapter 2

Practical Network Management

Based on SNMP

In this chapter we present an overview of the Internet-standard Network

Management Framework, also known as the SNMP (Simple Network Man-

agement Protocol) framework [14, 15, 16]. SNMP has had a huge success, it

is the de facto standard for network management today. A large number of

organizations, both academic and business-related, have adopted SNMP. A

vast number of network devices, routers, bridges, hubs, and operating sys-

tems offer support for SNMP. We used SNMP to deploy the algorithms and

tools introduced in later chapters of this work.

As networks expand and become mission critical, the need for an in-

tegrated system to allow network monitoring and control becomes critical.

Networks are made up of heterogeneous elements, being based on comput-

ers and communication technologies produced by different organizations and

vendors. Thus, it is important that network management systems be based

on international open standards, shared by all technologies. SNMP is an

open framework developed by the TCP/IP community to allow the inte-

grated management of highly heterogeneous internets.

Besides the TCP/IP community, the OSI community has also worked

on a set of open standards for network management. It includes the Com-

13
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mon Management Information Protocol (CMIP) standard. Although the OSI

framework has also received attention, its complexity and the slow pace in

which documents were produced have influenced in its low acceptance and

scarce deployment compared to SNMP. There is little hope that CMIP will

ever become more popular than SNMP.

Although SNMP is a simple protocol, its huge success is not due to a lack

of more complex alternatives. SNMP’s simplicity is, to the opposite, one

of the reasons the protocol has been so widely deployed. As the impact of

adding network management to managed nodes must be minimal, avoiding

complicated approaches is a basic requirement of any network management

model. The simplicity of SNMP has guaranteed its efficiency and scalability.

Nevertheless, there is a number of areas in which SNMP has shown deficiency.

However, the set of standards has been evolving: new versions and new

solutions are being developed uninterruptedly.

In this chapter we give an overview of the SNMP management architec-

ture, including the Structure of Management Information (SMI), the Man-

agement Information Base (MIB), the management protocol, and conclude

examining the framework’s evolution trends.

2.1 SNMP Architecture

SNMP is based on the manager-agent paradigm, in which the network is mon-

itored and controlled from a Network Management Station (NMS). Managed

nodes and devices are called agents. Each agent keeps management infor-

mation stored at a local Management Information Base (MIB). The NMS

also keeps a MIB. The MIB may include information about, for example, the

number of packets received by the agent and the status of its interfaces. The

NMS and the agents communicate using a network management protocol.

Figure 2.1 illustrates the paradigm.

The NMS runs a collection of management applications, which allows

fault, performance, and configuration management, besides security and ac-
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Figure 2.1: The Manager/Agent Paradigm.

counting management [17]. The NMS must have a proper interface, as it is

the station from which the human manager accesses the network manage-

ment system. Graphical interfaces are recommended [18, 2], and a number

of current systems have Web-based interfaces.

Agents run on computers and network devices, including routers, bridges,

hubs, that are equipped with SNMP so that they can be managed by the

NMS. Each agent replies to SNMP queries, and may issue asynchronous

alarms, called traps, to the NMS reporting exceptions, for example, when

management objects indicate that an error has occurred. Agents run an

SNMP server, and the NMS runs SNMP client applications.

An SNMP MIB is a collection of management objects. Each object is,

essentially, a data variable that represents one aspect of the managed agent.

The MIB’s are standard, and different types of agents have MIB’s containing

different objects. The NMS can cause an action to take place at an agent

or can change an agent’s configuration by modifying the value of specific

variables.

The NMS and the agents communicate using a network management

protocol. SNMP contains three general types of operations: get, with which
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the NMS querries an agent for the value of a given management object; set,

with which the NMS writes the value of a given management object at a given

agent; and trap, with which an agent notifies the NMS about a significant

event.

SNMP is an application layer protocol of the TCP/IP protocol suite. It

runs on top of UDP (User Datagram Protocol), a connectionless transport

protocol, that runs on top of IP. Two port numbers have been assigned to

SNMP: agents listen for incoming get or set requests on port 161, managers

listen to incoming traps on port 162.

The reason a connectionless protocol was chosen is that network man-

agement must be very resilient to faults over the network. If there is a

fault, a connection may have problems to be established. Furthermore, a

connection-oriented approach masks a number of network problems for the

application, because it does retransmission and flow control automatically.

Network management cannot have these problems hidden from it.

If a computer or network device does not support SNMP, UDP or IP, it

can still be managed. An SNMP proxy is an agent that acts as a delegate for

one or more devices. So when the NMS wants information about those de-

vices, it queries the proxy, that is responsible to get the required information

from the actual device and reply the querry.

There are two strategies usually employed by the NMS to monitor the

network: polling and alarm management. The NMS polls agents regularly at

specific time intervals querying for management objects. The interval may

vary depending on the object or the network state. On the other hand, alarm

management is based on traps sent by agents to the NMS when threshold

conditions are reached. In general, network management systems employ a

combination of polling and alarm management. Request for Comments 1224

presents strategies to blend polling and traps [19].

If the NMS monitors a large number of agents and each agent maintains

a large number of objects, then it may become impractical to regularly poll

all agents for all of their data [3]. However, trap processing also has problems
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of its own. As agents must generate events when thresholds are achieved,

they must continuously monitor the value of the management objects. This

process may have a bad impact on the performance of the agent. Further-

more, when there is a fault in the network, the NMS is usually flooded with

alarms sent from agents that have different perspectives of the problem, and

diagnosis can be difficult in those circumstances. If the network problem

is congestion, traps will make it even worse. The SNMP community favors

polling over traps [4].

2.2 Structure of Management Information

Management information is a key component of any network management

system. In the SNMP framework, information is structured as a collection

of management objects (MO’s) stored at the MIB. Each managed device in

the system keeps a MIB that has information about the managed resources

of that device. The NMS monitors a resource by reading its corresponding

MO’s current value, and controls the resource by writing a new value to the

MO. Although the word “object” is used, it simply refers to a MIB variable.

In SNMP, the only data types that are supported are simple scalars and

one-dimensional data arrays.

The Structure of Management Information (SMI), defined in Request for

Comments 1155 [14], defines the rules for describing management informa-

tion. The SMI defines the data types that can be used in the MIB, and how

resources within the MIB are represented and identified. It was built to em-

phasize simplicity and extensibility. It allows the description of management

information independently of implementation details.

The SMI is defined using a restricted subset of ASN.1 (Abstract Syntax

Notation Language One). ASN.1 is an ISO formal language that defines the

abstract syntax of application data. Abstract syntax refers to the generic

structure of data, as seen by an application, independent of any encoding

techniques used by lower level protocols. An abstract syntax allows data
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types to be defined and values of those types to be specified independently of

any specific representation of the data. ASN.1 is used to define not only the

management objects, but also the Protocol Data Units (PDU’s) exchanged

by the management protocol.

There must be a mapping between the abstract syntax and an encoding,

which is used to store or transfer the object. The encoding rules used by

SNMP are called BER (Basic Encoding Rules) which, like ASN.1, is also an

ISO standard. BER describes a method for encoding values of each ASN.1

type as a string of octets. The encoding is based on the use of a type-

length-value structure to encode any ASN.1 definition. The type includes

the ASN.1 type plus its class, the length indicates the length of the actual

value representation, and the value is a string of octects. The structure is

recursive, so that complex types are also represented using this basic rule.

2.2.1 Object Identifiers

One of the most important tasks of the SMI is to define unique identifiers

for management objects. There must be a consensus throughout systems of

what each object is used to represent, and how objects are accessed.

Each object identifier is a sequence of labels, which translates to a se-

quence of integers. All objects are organized in a tree, such that the sequence

of integers corresponds to the path from the root of the tree up to the point

where the object is defined. It is important to remember that these objects

and their identifiers are standard, defined by the authority who is responsible

for the management framework.

The virtual root of the tree of objects is assigned to the ASN.1 stan-

dard. In the first level, there are three possible subtrees: iso, ccitt, and

joint-iso-ccitt. Each SNMP MIB is defined under the internet subtree,

which is under the iso subtree, and is referred to as:

iso.org.dod.internet

Which translates to:
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1.3.6.1

Under the internet node, the SMI defines, among others, the following

nodes:

• mgmt: used for standard Internet management objects. The mgmt sub-

tree contains the standard MIB, under the subtree mib-2.

• experimental: used to identify experimental objects; Experimental

MIBs may at some time be added to the standard MIB.

• private: used by vendors and organizations to attend particular needs.

This subtree contains one child, the enterprises subtree, under which

a subtree is allocated to each organization that registers for an enter-

prise object identifier. These MIBs can also eventually become part of

the standard MIB.

2.2.2 MIB-2

The current standard MIB is MIB-2 defined in Request for Comments 1213

[16]. The mib-2 subtree is under the mgmt subtree, i.e.:

iso.org.dod.internet.mgmt.mib-2

or

1.3.6.1.2.1

Within the MIB, objects are defined in groups, each of them having a

specific purpose. Following is a summary of the groups in MIB-2:

• system: overall information about the managed node itself;

For example, the variable sysUpTime identifies how long ago the agent

(re-)started.
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• interfaces: information about each of the interfaces from the agent

to the network;

For example, the variable ifNumber gives the number of interfaces of

the agent to the network.

• at (address translation): contains address resolution information, used

for mapping IP addresses into media-specific addresses.

For example, the variable atPhysAddress gives the media address for a

given interface, while the atNetAddress variable gives the IP address.

• ip, icmp, tcp, udp, egp, and snmp: Each group has information

about that protocol’s implementation and behavior on this system.

For example, the variable ipInReceives gives the number of packets

received by the IP protocol entity from lower layers.

• transmission: provides information about the transmission schemes

and access protocols at each system interface, used for media-specific

MIBs, like for X.25, Token Ring, FDDI, among others.

2.2.3 Defining a MIB

A collection of ASN.1 descriptions relating to a common theme, e.g. a MIB,

is called a module. A module has the following basic form:

<<module>> DEFINITIONS ::=

BEGIN

EXPORTS

IMPORTS

<<declarations>>

END

The <<module>> term is the name of the module. EXPORTS indicates

which definitions used by the module can be used by other modules. IMPORTS

indicates which type and value definitions from other modules are used by
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this module. The <<declarations>> consists of three types of assignments:

type assignments, value assignments, and macro definitions.

Type assignments define new data structures. Value assignments asso-

ciate instances to a type. The macro notation allows the user to extend the

syntax of ASN.1 to define new types and their values. SMI defines and uses

macros extensively.

Before presenting an example module, it is important to understand that

ASN.1 adopts the following lexical conventions: layout is not significant,

multiple spaces and blank lines are considered a single space; comments are

delimited by a pair of hyphens at the beginning of the comment, and this

can be ended either by another pair of hyphens, or a newline character.

ASN.1 identifiers consist of upper and lower case letters, digits and hy-

phens. A built-in data type identifier consists of all upper case letters. Other

data types’s identifiers just start with an uppercase letter. A macro identifier

consists also of uppercase letters, and a value identifier of lowercase letters.

The following module is an example used to group the management ob-

jects that are required by the diagnosis algorithms presented later in this

thesis. The <<declarations>> part is presented later.

DIAGNOSIS-MIB DEFINITIONS ::= BEGIN

--- The MIB for diagnosis algorithms

--- September 21, 1995

EXPORTS -- everything --;

IMPORTS

MODULE-IDENTITY, OBJECT-TYPE, OBJECT-GROUP, enterprises, IpAddress

FROM RFC1155-SMI ---- SMP-SMI

DisplayString

FROM RFC1158-MIB;

<<declarations>>
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END

DIAGNOSIS-MIB is an ASN.1 module that imports from the RFC1155-SMI

module the macros MODULE-IDENTITY, OBJECT-TYPE, OBJECT-GROUP. It also

imports the types enterprises and IpAddress from RFC1155-SMI, and type

DisplayString from RFC1158-MIB.

A MIB module defines a collection of related management objects. Each

module begins with an indication of the module’s identity and its revision

history. The SMI defines a special ASN.1 macro, MODULE-IDENTITY, used to

define MIB modules. Below there is an example of how to define a new MIB

called diagnosis MIB.

DiagnosisMIB MODULE-IDENTITY

LAST-UPDATED "9303040000Z"

ORGANIZATION "Tokyo Institute of Technology"

CONTACT-INFO

" Elias Procopio Duarte Jr.

Titech - Dept. Computer Science

Nanya Lab.

Ookayama 2-12-1 Tokyo 152 Japan

Tel: +81-3-5734-3041

Fax: +81-3-5734-2817

E-mail: elias@cs.titech.ac.jp

elias@inf.ufpr.br"

DESCRIPTION

"A MIB that implements objects for diagnosis

algorithms."

::= { enterprises 200 }

When a MIB module is defined, it includes information about when it was

LAST-UPDATED, which ORGANIZATION produced the module, CONTACT-INFO
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and a DESCRIPTION. The LAST-UPDATED field is of a type defined by the

ASN.1, UTCTime [4]. There are also optional fields, like REVISION and DESCRIPTION.

Defining Objects

Each type of object in a MIB has an identifier of the ASN.1 type

OBJECT IDENTIFIER. The SMI defines the OBJECT IDENTIFIER’s which are

used by the management framework.

The OBJECT-TYPE macro is used to define each managed object. It allows

the following key entries:

• SYNTAX: abstract syntax;

• MAX-ACCESS: the object may be “read-only”, “read-write”, “write-only”,

“not-accessible”;

• STATUS: may be “mandatory” or “optional” depending on the imple-

mentation support required for this object. May also be “obsolete”

meaning that objects are not implemented any more, or “deprecated”

meaning that in future MIB versions they are likely to be removed;

• DESCRIPTION: a textual description of the object;

• REFERENCE: an optional cross-reference to an object defined in other

MIB module;

• INDEX: used when the object corresponds to a row of a table;

• DEFVAL: defines an acceptable default value that may be used when an

object instance is created, it is optional.

Data Types

Each management object may be of the native ASN.1 types INTEGER,

OCTECT STRING, OBJECT IDENTIFIER and NULL. Furthermore it allows the

definition of new types derived from the previously defined types. Some of

the types defined by the SMI are:
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• Network Address for data-link layer addresses;

• IpAddress for IP addresses;

• Counter: non-decreasing, wraps around when reaches 232 − 1;

• Gauge may increase or decrease, remains at 232−1 until reset. A gauge

can also be used to store the difference in the value of some entity from

the start to the end of a time interval;

• TimeTicks counts the time in hundredths of a second since some initial

time;

• Opaque supports the capability of passing arbitrary data, used as octet

string for transmission. The data themselves may be used in any format

defined by ASN.1 or some other syntax.

Furthermore, there are two native ASN.1 constructed types:

• SEQUENCE: which defines a collection of elements grouped into a struc-

ture, usually used by the SMI to define rows of tables.

• SEQUENCE OF TYPE: defines a table, i.e. a one-dimensional array of

elements of a given ASN.1 type.

Each table must have an INDEX component that determines which object

value(s) will be used to distinguish and index the table. It is possible that

not one, but a set of objects be used as index.

An example of object definitions is given below, corresponding to the last

part of the <<declarations>> for the DIAGNOSIS-MIB.

testedUP OBJECT-TYPE

SYNTAX SEQUENCE OF TestedUPEntry

ACCESS not-accessible

STATUS mandatory

DESCRIPTION
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"Tested_UP is the main data structure used

by the Adaptive Distributed System-level

algorithm (Adaptive-DSD or aDSD)."

::= { DiagnosisMIB 1 }

testedUPEntry OBJECT-TYPE

SYNTAX TestedUPEntry

ACCESS not-accessible

STATUS mandatory

DESCRIPTION

"Each entry of testedUP identifies

which node the testing station recognized

as up in the last testing round."

INDEX { testingID }

::= { testedUP 1 }

TestedUPEntry ::=

SEQUENCE {

testingID

INTEGER,

testingAD

DisplayString,

testedID

DisplayString

}

testingID OBJECT-TYPE

SYNTAX INTEGER

ACCESS read-write

STATUS mandatory

DESCRIPTION

"The integer unique identifier of all the

nodes participating in Adaptive-DSD.
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Also indexes the table."

::= { testedUPEntry 1 }

testingAD OBJECT-TYPE

SYNTAX DisplayString

ACCESS read-write

STATUS mandatory

DESCRIPTION

"IP-address of all the nodes participating in

Adaptive-DSD, uniquely mapped to testingID’s."

::= { testedUPEntry 2 }

testedID OBJECT-TYPE

SYNTAX DisplayString

ACCESS read-write

STATUS mandatory

DESCRIPTION

"Index of the workstation tested on the last

testing round as up or _x_ if unknown"

::= { testedUPEntry 3 }

DiagnosisMIB contains the definition of the table testedUP, of which

a row, testedUPEntry is made up of the fields testingID, testingAD and

testedID which are all of the type DisplayString.

The example given in this chapter up to this point is the whole MIB used

for the implementation of the Hi-ADSD algorithm discussed in chapter 4.

2.2.4 Object Instantiation

Every object in the MIB has a unique object identifier that is defined by the

position of the object in the MIB, which forms a tree.

To access objects that appear in tables, the identifier alone is not enough,

for the INDEX object of the table is also necessary. This INDEX object distin-



Practical Network Management Based on SNMP 27

guishes rows in a table, and it is not necessarily a scalar integer. The index

must be a set of objects that uniquely distinguishes all the rows.

Thus, given an object whose identifier is y, in a table with INDEX objects

i1, i2,..., iN , the instance identifier for a particular row is the concatenation

y.i1.i2...iN .

A simple example is of the ifTable object in the interfaces group, which

has one INDEX object, the ifIndex. Now suppose we want to know the

interface type of the fourth interface of the system. The identifier of ifType

is:

1.3.6.1.2.1.2.2.1.3

The value of ifIndex for the fourth interface is 4, thus to access the

object, the following identifier is used:

1.3.6.1.2.1.2.2.1.3.4

An example of an INDEX object made up of a collection of objects is the

tcpConnTable, which has four objects as index. Thus, an instance identifier

for any of the five columnar objects in the table consists of the object identifier

of that object (call it x) concatenated with the four indexing objects as

follows:

x.I.(tcpConnLocalAddress).(tcp.ConnLocalPort).

(tcpConnRemAddress).(tcp.ConnRemPort)

Where I is an identifier for a column, i.e., a field withing each row.

A convention used to refer to scalar objects is to concatenate a “.0” to the

identifier of the object. So, for example, the sysDescr object has identifier:

1.3.6.1.2.1.1.1

and is be referred to as:

1.3.6.1.2.1.1.1.0
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2.3 SNMP: The Protocol

SNMP is the protocol employed by managers and agents to communicate

management information. It is used by managers to query and control agents

and by agents to issue traps and reply to queries. Version 2 of SNMP also

allows managers to communicate among themselves. SNMP became a full

Internet standard in 1990, and is described in Request for Comments 1157

[15]. The protocol has since evolved, but “basic” SNMP is in widespread

use, having been adopted by dozens of organizations worldwide. For the

implementations described in later chapters, basic SNMP version 1 was used,

and is described here.

SNMP provides three basic operations, always performed on scalar ob-

jects:

• Get: to read a given management object;

• Set: to write a new value for given management object;

• Trap: for the agent to send the value of a given management object to

a manager;

SNMP doesn’t allow one to “create” new variables on the fly: manage-

ment objects available are those previously defined in the MIB.

2.3.1 A Powerful Operation: getnext

As discussed before, all objects in SNMP follow a lexicographical order. This

allows the manager to easily traverse the whole MIB. One SNMP command

that allows this traversal is getnext. Given the identifier one a given object,

the agent is queried for the next one in the lexicographical order. This

operation can be used also to traverse a table. Using getnext on the result of

a getnext the whole MIB can be traversed, until a well defined error message

is got for the end of MIB. A popular application for traversing the whole

MIB is snmpwalk.
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2.3.2 SNMP Messages

In this section we examine the SNMP message format, and the Protocol Data

Units (PDU’s) that can be carried in a message.

SNMP Message:

version community SNMP PDU

PDU Type enterprise agent-addr generic-trap specific-trap time-stamp variable-bindings

GetRequest PDU, GetNext PDU, and SetRequest PDU:

GetResponse PDU:

Trap PDU:

Variable Bindings:

PDU Type

PDU Type

name1 name2 name N value Nvalue2value1 ........

request-id

request-id 0 0

variable-bindings

variable-bindings

error-status error-index

Figure 2.2: SNMP packet formats.

As shown in figure 2.2, each message includes a version, community, and

a PDU. Communities can be seen as passwords, they are explained in the

next subsection. There are five different types of PDU’s: GetRequest, Get-

NextRequest, SetRequest, GetResponse, and the Trap PDU. Except for the

trap, all PDU’s contain a request-id field. It is very important to keep track

of replies to a given query, especially when the query is retransmitted for

some reason. The response also contain fields for error status and index.

The variable-bindings field is used to allow a single packet to carry infor-

mation about a number of SNMP variables. Figure 2.3 show how PDU’s

are exchanged. Except for the trap, each request should be followed by an

appropriate response.

To transmit a message, first the PDU is constructed using ASN.1; then

the PDU is passed to the authentication service, together with a source and
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Get: GetNext:

Set: Trap:

GetRequest

GetResponseGetResponse

SetResponse

GetNextRequest

SetRequest

Trap

Figure 2.3: SNMP packet sequences.

destination transport addresses, and a community name. The result of this

phase, which may be also encrypted, is then sent to the protocol entity, which

constructs the message, including version field, community name. The result

is then encoded, using BER, and passed to the transport service.

When the SNMP entity receives a message, it performs the following

actions. First it does a basic syntax check, and discards the message if it

fails to parse. Then it verifies the version number. The rest of the message is

passed to the authentication service, which may do some decryption among

other security checks, and produces an ASN.1 PDU. The protocol entity then

does a syntax check of the PDU, and prepares for processing.

There is a number of PDU’s specific for traps, for example informing that

a machine has been started, that links are down or up, that neighbors have

become unreachable, among others.
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2.3.3 Communities: Passwords for Accessing Objects

It is important to provide security mechanisms that ensure only authorized

access to management information. In SNMP version 1, the only security

mechanism available is the community.

An SNMP community is a password, that defines for each agent a set of

access policies for the MIB. The access mode may be “read-only” or “read-

write”. For example, a given manager when querying an agent, may send

the community “public”, which means that the manager can get values of

certain objects, cannot get values of some other objects, and cannot set any

object. As another example, the community “private” may allow read and

write access to a limited number of objects.

An SNMP MIB view defines a subset of the objects within a MIB. Differ-

ent MIB views may be defined for each community. An SNMP community

profile is a combination of a MIB view and an access mode. A community

profile is associated with each community defined by an agent. The combi-

nation of an SNMP community and an SNMP community profile is called

an SNMP access policy.

The community concept is also important for proxies, which must keep

an SNMP access policy for each proxied device.

As the only security mechanism of SNMP was the communities, vendors

were reluctant to implement network configuration capabilities in SNMP,

restricting their products to network monitoring. Nevertheless, later versions

of SNMP have incorporated more sophisticated security procedures.

2.4 SNMP Evolution

With the huge success that followed the initial specification, SNMP prob-

lems became more evident. Nevertheless, new versions of the protocol have

appeared, and important additions have been made. Some of the most sig-

nificant have been the RMON MIB and SNMP version 2, described below.

RMON is the Remote Monitoring MIB. It defines a set of objects and a
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set of functions to monitor a remote network as a whole. Typically an agent

has information only about its own devices. RMON is different. Basically

it is an agent device connected to a broadcast network, the agent collects

statistics concerning traffic on that network. RMON makes it possible for an

NMS to collect information of a remote network as a whole.

An important deficiency of basic SNMP is its lack of effective secu-

rity mechanisms. Enhancements were proposed and were called ”Secure

SNMP”, but very soon these were included in the specifications of SNMP

version 2 (SNMPv2) [20]. SNMPv2 allows distributed management, provid-

ing manager-to-manager communication capabilities. Besides that, it pro-

vides dynamic tables, in which rows can be created or deleted; a new macro

do define object types; two new PDU’s, one for manager-to-manager com-

munications, the other for retrieving large blocks of data, GetBulkRequest.

The work on the framework has not stopped, and new results are being

constantly discussed and produced.



Chapter 3

Fault-Tolerant SNMP Query

Routing

The usual network management system is comprised of a network manage-

ment station (NMS) which communicates with agents using a network man-

agement protocol [21, 1]. The NMS queries the agents for management in-

formation describing the state of links, devices, protocol entities and nodes

[22]. The NMS takes decisions related to fault diagnosis, performance man-

agement, and network configuration, among others, based on the collected

information [23, 24].

There is a pressing need for network management systems capable of

handling errors [25]. Although network management systems are in princi-

ple responsible for fault diagnosis and management, current systems often

become partially non-operational as a consequence of the faults they should

instead be helping to solve [26, 22].

If a communication link along the path from the NMS to an agent or to a

managed network is down, there will be a collapse of network management,

as the NMS won’t be able to determine the state of part of the managed

network [27]. To make the network management system resilient to network

failures there has to be alternative means of accessing agents. The network is

in general a mesh-type structure, there are multiple potential paths between

33
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two communication nodes. However, since network management systems are

application layer entities, these have little or no control over the paths that

will be chosen by the network layer for routing the management queries.

So, alternative paths for management communication have to use applica-

tion layer entities which relay the management query and the replies along

adequate communication routes [26].

In [27] Norton identifies the problem that occurs when the NMS looses

the ability to monitor part of the network. This chapter presents a different

approach: using the concept of a proxy, the NMS has a simple application

routing engine to implement a fault tolerant routing system. An SNMP

proxy is an entity used by the NMS to access another device, i.e., the proxy

receives the query, transmits it to the agent, gets the reply and sends it back

to the NMS. We present an efficient deployment strategy of proxy agents.

An algorithm for determining the position of a set of proxies on a given

network is presented. The solution is modeled as a Markov process, and the

impact of application routes on the steady-state availability of the network

management system is presented.

The rest of the chapter is organized as follows. Section 3.1 motivates

the desired features of application routes, and provides precise definitions.

Section 3.2 describes the proposed algorithm that uses network configuration

information to determine the set of proxies and their position throughout

the managed network. Section 3.3 provides the dependability evaluation of

the solution, through the impact of application routes on the steady-state

availability of the network management system as well as other measures

of interest. Section 3.4 discusses practical aspects of deploying proxies on

the managed network, including a discussion of Internet routing protocols.

Section 3.5 examines how to obtain network topology information. Section

3.6 presents a network state determination strategy that uses application

routes as alternative tools to diagnose faults. Section 3.7 shows an effective

MIB to implement the proxies, that allows their deployment at virtually no

cost. Section 3.8 presents a case study, locating proxies on a large network.
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Section 3.9 contains concluding remarks.

3.1 Application Routes

Consider the simple network topology in figure 3.1, where the NMS is con-

nected to an agent (Ag) and also to two gateways, G1 and G2. Considering

communications involving the NMS and the Ag, suppose that routing is such

that the direct link is used to communicate the queries and replies, as shown

in part A of the figure. If the link between the NMS and agent fails, net-

work management queries will be delayed until the network layer recovers

from the failure. The delay may be significant as a new route for the agent

must be discovered. During this delay, the NMS won’t be fully operational,

and is not able to manage the whole network. This problem could be solved

if a management entity could relay the queries from NMS to AG and the

corresponding replies from AG to NMS, as shown in part B of the figure.

The condition to obtain this solution is that the routes used by the proxy be

available when a failure occurs in the network route between manager and

agent. In the example, G2 can be used as proxy in such situation.

 NMS  Ag  G1  NMS  Ag

 G2

 G1

 G2

A: Normal operation. B: Fault recovery.

Figure 3.1: Management communication routes.

In this work the term link should be clearly defined. It models a bidirec-

tional transmission channel between two nodes, and also includes the network

interfaces at those nodes. It contains two queues of packets, each represent-

ing the packets in transit in one direction. A link can be subject to failure
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and repair [28], with up-times and down-times described by probability dis-

tributions. When a link fails, all packets that are in transit are lost.

Although management communication happens between the NMS and

the agents, the paths used also employ ordinary communication nodes, that

are not necessarily agents nor managers. A node or vertex may be an NMS,

an agent or an ordinary communication node. Even if between a pair of

vertices there are multiple different paths, the communication occurs along

a precisely defined route. The route selection is carried out by the network

layer protocol entites. This path is called the network route between two

points, and is decided by the network layer. In figure 3.2 the network routes

are depicted using dashed lines. If there is a failure along any component

of a network route, communication between the end points is breached until

the network adapts itself to the failure [21] and sets up a new network route.

Fukuoka

HiroshimaSapporo

Sendai

Tokyo Kyoto

T.U. K.U.

TISN Osaka

Fujisawa

Figure 3.2: Node labels (α, β) represent the application routes’ sizes from
the NMS to agent1 and agent2 respectively.

An application route is a concatenation of one or more network routes,

which are joined by an application. For example, the network route from the

NMS to the proxy and the network route from the proxy to the agent result

in an application route from the NMS to the agent when concatenated. It is

important to understand that network routes are not transitive, so if there is

a network route from node A to node B, and another network route from node

B to node C, the concatenation of these two network routes may be different

from the network route from node A to node C. Thus, the application route

can be used as an alternative when there is a fault along the corresponding

network route.
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Application routes serve the purpose of bridging or relaying messages from

one network route to another. In the case of a failure along a network route

used for manager-agent communication, the agent will become unreachable

and the network management system won’t be able to monitor part of the

network. What is worse, there is generally no simple way to find out where

the failure occurred - in the agent, the connecting link or in the NMS node

itself, which is a clearly undesirable situation.

For a simple network topology like that of figure 3.1 the position of the

proxy is quite obvious, but for a more complex network, like that of figure 3.2

it is not a simple decision. Considering that the NMS is attached to Kyoto

and there are agents attached to all other nodes. If any network route from

the NMS to an agent is not available, the agent will become unreachable to

the NMS. A set of proxies should be determined such that whenever an agent

becomes unreachable an application route will be established to reach that

node.

The configuration of the network as seen by the network and application

layers must be taken into account in selecting the application routes to be

employed, i.e. in positioning and configuring the proxy agents. The next

section introduces an algorithm for selecting the application routes for a

given network.

3.2 An Algorithm for Locating Proxies

In this section, we present an algorithm to place a set of proxies that al-

lows application routes to be activated whenever network routes between the

NMS and an agent is faulty. A graph depicting the topology of the net-

work is obtained using network configuration information. In this graph [29],

nodes represent the manager station, the agents and ordinary communication

gateways. Edges represent communication links, of any physical structure.
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3.2.1 Algorithm Specification

The algorithm begins considering the network route from the manager to

each agent. In the first step, the algorithm marks all nodes that can reach

both manager and agent if one link is removed from the graph, i.e., if one link

is not operational, it finds which nodes can reach both agent and manager

through a route that does not employ the removed link.

NMS

a(-,4)
b(2,2)

Agent1(-,4) Agent2(4,-)

c(4,-)

Figure 3.3: Node labels represent the application routes’ sizes from the NMS
to the two agents.

If a node has an alternative route from manager to agent, the entry for

the node in a table called Number of Paths is incremented. Each entry in this

table is a counter of the number of alternative routes that a node provides,

and there is one entry for each node in the graph. For each link considered,

each node may provide only one alternative route, namely, the network route

for manager and agent. The criterion to select among nodes that provide

the same number of alternative routes is the length of the routes, which are

recorded in a table called Hops, from which the average number of hops in

the alternative routes will be calculated.

The algorithm is as follows:

Algorithm

REPEAT for each agent

Get_Network_Route(NMS, agent);

REPEAT for each link in the network route

FOR each node in the network

IF it can reach both NMS and Agent
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THEN record the sizes of the paths;

UNTIL all the links have been verified;

SELECT the nodes that provide:

the maximum number of routes;

the shortest average sized routes;

UNTIL all the agents have been examined;

End Algorithm.

3.2.2 Algorithm Complexity

Let N be the number of nodes of the network, and L the number of links. The

algorithm is polynomial, as the main loop refers to verifying the existence of

network routes from the manager to each agent, taking out each link of the

network. In the algorithm, the first loop is executed N − 1 times, one for

each agent. It contains a loop that is executed L times, for each link. And

this runs the shortest path algorithm 2 ∗ (N − 2) times, computing the path

to the NMS to the node and from the node to the agent. Thus the total

complexity is O(N3 ∗ L ∗ log N).

3.2.3 A Small Example

The example of figure 3.3 is a simple one to illustrate the basic idea of the

algorithm. There is one NMS, two agents and three ordinary gateways. For

this specific example, network routes are shortest paths, management queries

follow the network routes NMS-a-Agent1 and NMS-c-Agent2. The objective

is to determine a set of proxies for both agents, that will be used when the

network routes suffer one link failure. The node labels indicate the average

sizes of application routes for Agent1 and Agent2, respectively; when the

node cannot be a proxy for an agent, the size is omitted. For example, node

a cannot be used as a proxy for agent1, because node a is part of the network

route from the NMS to agent1.

Considering that the network route between the NMS and agent1 is

(NMS-a-Agent1), there are three possible application routes, namely (NMS-
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b, b-Agent1), (NMS-c, c-Agent2-b-Agent1) and (NMS-c-Agent2, Agent2-b-

Agent1). The three possible candidates both offer alternative routes when

link NMS-a fails and when link a-Agent1 fails. Then the proxy with shortest

application route is chosen, b. A similar process is done with Agent2, and b

is selected as its proxy.

After the best candidates are selected for each agent, the minimum set

that covers all agents may be selected, if the price of placing proxies in the

network is significant. For our purposes, it is not necessary to calculate this

minimum set. Later we present a MIB to implement the proxies that offers

virtually no cost for an agent to become a proxy. For the example shown,

the optimal set is node b, which serves as proxy for both agents.

3.2.4 Network Vulnerability

To allow an evaluation of the impact of using proxies on network manage-

ment, we define a measure called vulnerability.

Def.: Link Vulnerability , vi, for a given link li, is the number of nodes

that become unreachable to the NMS if li is faulty.

Table 3.2 shows link vulnerabilities for all links of the network of figure

3.2.

Def.: Network Vulnerability , V , for a given network is the summation

of link vulnerabilities, for all links in that network, i.e.: V =
∑L

i=1 vi.

The last row of table 3.2 shows the vulnerability of the network of figure

3.2.

Def.: Risky nodes are those for which it is not possible to determine an

alternative route to reach. These nodes are connected to the NMS

through a path that, if faulty, will make the node unreachable. Table

3.1 shows the risky nodes for the network of figure 3.2.
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Agents Candidate Proxies
ku tokyo, tu, tisn
sapporo ku, fujisawa, tokyo, tu, tisn
fujisawa ku, tokyo, tu, tisn
tohoku.u ku, fujisawa, tokyo, tu, tisn
tokyo ku, tu, tisn
tu ku, tisn
hiroshima risky node - no candidates
fukuoka risky node - no candidates
osaka tisn
tisn tokyo, tu

Table 3.1: Proxies selected for the example network.

3.2.5 A Larger Example

To better illustrate the algorithm, and understand the impact on network

vulnerability, a larger example is given. Consider the network of figure 3.2.

Table 1 gives the results after the candidate proxies are selected based on the

number of alternative paths and on the sizes of these paths. For example, for

node ku there are three possible proxies tokyo, tu, tisn. In the second step

the algorithm deals with the selection of one of these three candidates. For

each candidate there is a counter of the number of agents for which it is a

candidate, the one that may be a proxy for the largest number of agents is

selected. In this case, Tisn is a candidate for 7 agents; tokyo is a candidate

for 5 agents; tu is a candidate for 6 agents; tisn is then selected as proxy for

ku.

It is interesting to notice that with only two proxies, tisn and tu, it is

possible to have alternative routes for all agents. The improvement in the

vulnerability, is shown in table 3.2. The impact on the steady-state avail-

ability of the system is given in next section along with other measures of

interest.
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Links V without proxies V with proxies
Kyoto-Tokyo 5 0
Tokyo-TU 1 0
TU-TISN 0 0
Kyoto-KU 3 0
KU-TISN 1 0
KU-Osaka 1 0
TISN-Osaka 5 0
Hiroshima-Kyoto 1 1
Fukuoka-Kyoto 1 1
Tokyo-Fujisawa 3 3
Fujisawa-Sapporo 1 1
Fujisawa-Sendai 1 1
TOTAL 23 7

Table 3.2: Improvement in the vulnerability.

3.3 Dependability Evaluation

This section introduces a general function that provides an evaluation of the

impact of the proposed scheme on the steady-state availability of the system.

The basic parameter sought is the dependability of the network management

system, which in a repairable system is best described by its availability

[30, 31].

At a given time, the system is in one of two states: operational and failed.

It should be clear that the system is operational when network management

queries between the NMS and agents are properly delivered. When there is

a network route or an application route available for the NMS to reach the

agents, the system is operational. Otherwise, when an agent is unreachable

from an NMS the system is in the failed state.

The coverage, c, of a system gives the probability that the system will

recover given the occurrence of a failure in the network. In this context it

refers to the probability that the network management system will stay op-

erational if one link fails throughout the network. It can be directly obtained
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Op. Fa.

 µ∆ t

1 −µ∆t

 (1-c) λ ∆ t

 1-((1-c) λ ∆ t)

Figure 3.4: Markov process describing the behavior of the system.

from the previously introduced vulnerability. For the example of figure 3.2,

if one link fails, the probability that the management queries are delivered is

approximately 70%. The coverage must be calculated for each case [31, 32].

For the network management case, whenever an alternative route exists as

an option for the communications that use a given link, the coverage of the

system is improved, as the system remains operational.

To calculate the steady-state availability of the proposed solution the

system is modeled as a simple Markov process with the two states previously

defined, operational and failed. The probability that there is a failure in the

system is the product of the failure rate (λ), an interval of time (δt), and

the probability that the fault won’t be instantly repaired with an application

route. The same approach applies to the repair rate (µ) of the system.

After the fault-tolerant scheme is implemented, the probability that the
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λ = 0.1 µ

λ = µ

λ = 10 µ

C =  0.25 C = 0.50 C = 0.75

2%

14%

30%

4%

33%

83%

7%

60%

215%
VARIATION  IN  STEADY   STATE   AVAILABILITY

Figure 3.5: Analysis of the improvement on the steady-state availability,
given different values of coverage.

system will remain operational is increased by a factor correspondent to the

coverage c of the system. The Markov chain is depicted in figure 3.4.

The steady-state availability of this system is the probability that it stays

operational when time approaches infinity, and it is given by the following

formula [31, 32]:

pop(∞) =
µ

(1 − c)λ + µ

Our purpose is to obtain a general function that permits the analysis

of the method under all possible conditions. This function is the ratio of

the steady-state availability after and before the fault tolerant scheme is

implemented, considering possible values of the coverage c. The ratio of the

steady-state availability of fault-tolerant systems (Avft) in relation to current

systems (Avcur) gives this function:
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Avft

Avcur

=
λ + µ

λ + µ − λc

The graphs in figure 3.5 gives the improvement in the steady state avail-

ability for various values of coverage.

As it is difficult to obtain real values for λ and µ, we performed the eval-

uation considering the relation between them. When λ and µ are equal, and

coverage is high, the improvement in the steady-state availability is signif-

icant. When the repair rate is high compared with the error rate there is

not much room for improvement in the dependability of the system. But,

on the other hand, when the repair rate falls, the improvement is significant,

making the solution especially justified for critical failures over the network.

3.4 Routing on the Internet & Proxy Placing

The Internet is partitioned into a disjoint set of autonomous systems that use

an IGP (Internal Gateway Protocol) to propagate routing information inside

each autonomous system. RIP (Routing Information Protocol), HELLO and

especially OSPF (Open Shortest Path First) are among the commonly used

IGP’s. Besides these, EGP (External Gateway Protocol) and BGP (Border

Gateway Protocol) are used by gateways from different autonomous systems

to exchange routing information among themselves. Currently BGP has

replaced EGP. All traffic routed from one autonomous system to a network

in another will traverse one path, even if multiple physical connections exist.

As Comer points in [21], it is difficult to switch to alternate physical paths if

one fails, especially when the paths cross two or more autonomous systems.

An interesting work studying the behavior of BGP is described in [33].

This paper shows how unpredictable Internet routing is as seen by a network

application. They found that the likelihood of encountering a major routing

pathology more than doubled between the end of 1994 and the end of 1995,

rising from 1.5% to 3.4%. The second parameter studied was route stability,
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or how frequently a given route change. It was shown that although Internet

routes, in general, don’t change frequently, it does occur. The third param-

eter, route symmetry, shows that 50% of the two routes between two nodes

are different.

How does IP routing affect the proxies? The answer is that as network

(IP) routes are used to compute the application routes, and the IP routes

change with time, the algorithm must be run periodically, so that the proxy

candidates for a given agent are kept correct. Besides that, a routing pathol-

ogy may affect an application route.

To solve this problem a possible solution is to use source routing, i.e.

to make all decisions related to routing of management packets at the NMS,

instead of depending on the network layer. This solution is not recommended,

for it is a universal police not to use source routing, unless strictly necessary,

for it may interfere with other network algorithms, for example the one that

controls congestion.

Recently we started the work on a new algorithm that solves this prob-

lem [34]. Instead of selecting a set of candidate proxies based on current

network routes, the algorithm uses the unreachable agent’s physical neigh-

bors as proxies. If a proxy turns out to be also unreachable, their neighbors

are used as proxies for proxies, and so on, until problems are identified.

Another solution to this problem is to use distributed monitoring, and

this approach is shown in chapter 5.

3.5 Obtaining Network Topology

It is clear that network topology and configuration information is essential

for determining application routes. It must be understood that a managed

network is at most a collection of autonomous domains, whose topology and

configuration can and must be available to the human manager. Network

configuration information may be obtained from a number of sources, as

pointed below.
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• Static network maps: Network managers/operators may have access

to such maps. But information in such maps is, more often than not,

out-of-date.

• Directly from the network: Several tools and management devices exist

by which some configuration information may be extracted by querying

the elements that comprise the network. The disadvantage is that the

network configuration itself is dynamic and it is generally expensive to

query the network to keep track of these changes.

• Network configuration information servers: These servers may collect

and update configuration information as the real network changes. A

new approach is proposed in [35, 36], in which a communication net-

work with related details and descriptions is represented in the X.500

directory. Applications may access the directory to obtain configura-

tion information. Although this approach constitutes an effective way

to maintain network configuration information [37, 38], it is not yet

widely deployed.

Any of these approaches or their combination provides effective means by

which a management entity may extract the topology of the network for the

algorithm to calculate a set of application routes that will be used to achieve

a fault tolerant management framework.

3.6 Using Proxies for Fault Management

An essential aspect of network management is to detect the presence of faults

or to assure the absence of faults. There may be cases when the management

system cannot say whether a network element is operational or not. The

absence of response from a network element does not necessarily indicate the

failure of the element. It may be due to a failed intermediate link.

In general, the NMS does not have any way of determining the state of

network elements that lie beyond a failed network link. This is an undesirable
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Proxy

A. State determination w.o. alternate application routes

B. State determination with alternate application routes

NMS

NMS

Figure 3.6: Proxy helps state determination.

state as it defeats the purpose of the NMS. However application routes do

provide a convenient means by which one can bypass the failed link to gather

vital information.

For example in figure 3.6, part A, the NMS is able to successfully poll the

agents Sapporo, Fujisawa, Sendai, T.U., and TISN. This is reflected in the

state description viz.[UP] in the node labels. However due to a breached link

indicated by the dotted line it is unable to poll the remaining agents. This is

indicated by the state description [?]. The NMS is unable to determine the

exact extent of the problem and may at best generate alarms for each of the

unreachable nodes. These alarms can be deceptive and confusing as the real

problem is camouflaged among the side effects. But in figure 3.6, part B, the

Proxy agent relays the management queries, allowing the NMS to determine

not only the state of the previously unreachable agents but also to detect the

position of the fault, namely the broken link of the figure.
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A significant benefit of using application routes is that it provides a conve-

nient and simple way to improve the NMS capability to reliably monitor the

network, allowing the system to bypass faults and reach agents that would

otherwise be unreachable.

3.7 Proxy Implementation

The proxy was implemented as a conventional SNMP MIB: a simple and

flexible approach that allows any agent to become a proxy at virtually no

cost.

The MIB contains a table of which a row is made up of the following

objects:

RproxyEntry ::= SEQUENCE {

agentAD IpAddress,

mgmtOBJ OBJECT IDENTIFIER,

commPXY DisplayString,

resultPXY DisplayString }

The NMS sets the address of the agent to be queried in variable agentAD,

the object identifier to be queried in mgmtOBJ, and the community that

should be used in commPXY. After that, by querying the resultPXY object,

the proxy will issue an snmpget on the agent whose address is agentAD,

for the object whose identifier is mgmtOBJ and using commPXY as the

community. The result of the query is sent back to the NMS.

For example, if the NMS sets on the proxy:

agentAD <- 200.7.8.1

commPXY <- public

mgmtOBJ <- 1.3.6.1.2.1.1.1.0

After the settings are confirmed, the NMS can do an snmpget on the

proxy’s resultPXY. The result of the get is the reply to the query as received

by the proxy from the machine whose IP address is “200.7.8.1”.
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By using snmpwalk the NMS is able to identify a row in the table that

can be used for a new agent and object. It is the responsibility of the NMS

to erase that row, after it is no longer necessary.

3.8 A Case Study

nacsis-54 - NMS hokkaido-1
kyushu-58

chikusi

nakasu

wnoc-kyo-ss2

hiroshima wnoc-osaka-proteon

osaka-57

nacsis-gatefuyou
kahoku

wnoc-spk

kyoto-56

tambaent

wnoc-tyo

joingate

nogu

wnoc-snd

jpgate

genkyo genuji

ut-wide

uts4gw

yoshida-proteon

wnoc-nar

uji-proteon wnoc-tokyo-cisco

Figure 3.7: A large real wide-area network.

The algorithm was applied for a wide area network. The results are

discussed in this section. The topology is shown in figure 3.7, with 28 nodes

and 37 links. The NMS is located at nacsis-54 and all the other nodes are

agents. The physical network configuration was obtained by referring to the

X.500 directory. The network routes were computed by running a series of

traceroute’s.

The results of the algorithm for this network follow the graph depicting

the physical interconnections. The set of proxies selected was tambaent,

uji.proteon, wnoc.nar, and wnoc.tokyo, figure 3.8. shows for which agents

they can be activated. These four are the smallest set of proxies that covers
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all agents. Evidently, for each agent the set of candidate proxies contains

more candidates. Using the MIB presented in the previous section, all the

selected candidates can deploy proxies at virtually no cost.

The vulnerability before having proxies had a value of 60, and the vul-

nerability after proxies is merely 3. This huge increase in the dependability

of the system is justified by the fact that few link failures have the effect

of putting the NMS and agents on disjoint connected components, and thus

allows the usage of proxies to reach the agents in such cases.

3.9 Conclusion

The major contribution of the results presented in this chapter is that they

introduce a practical way to improve the reliability of current centralized

network management systems. The presented approach provides the man-

agement application with application routes, that are made up with some

nodes that act as management proxies, i.e., if an agent becomes unreachable

through the network route, the NMS can use a proxy to reach the agent

through an alternative path. Different approaches to obtain network topol-

ogy information are discussed. An algorithm is employed to find alternative

paths from the NMS to the agents. The algorithm selects the proxies based

on the number of alternative paths they provide, and the sizes of these paths.

Eventually, the topology of the network dictates if it is possible to have a

proxy for a given node. In some cases it is not possible to find alternative

paths completely disjunct from the usual path. In other cases no alternative

paths exist at all, and this shows a risky portion of the network. The use of

proxies for network management has a direct benefit in its capability of per-

forming network state determination. The solution was modeled as a Markov

process and a function that gives the improvement on the steady-state avail-

ability of the system was analyzed for different values of fault/repair rates

as well as of the fault coverage of the system, showing that the proposed

approach is specially effective for critical failures over the network. To il-
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lustrate the solution, a case study of a large network was carried out. The

proxies were implemented as an SNMP MIB which allows their deployment

with virtually no cost.
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Thu Jun 30 14:12:50 JST 1994

*************************************************************

NetConf. [Program Output]

The best set of proxies for NMS on nacsis-54

is..........:

Proxy For Agents on

<=========> <=============================================>

tambaent kyushu.58 wnoc.kyo.ss2 hiroshima

wnoc.osaka.proteon uji.proteon genkyo

uji.proteon yoshida.proteon

wnoc.nar chikusi nakasu kyoto.56

genuji jp.gate uts4gw

wnoc.tyo nacsis.gate tambaent

wnoc.tyo osaka.57 wnoc.nar wnoc.snd

nogu hokaido wnoc.spk

ut.wide wnoc.tokyo.cisco joingate

kahoku

Risky Nodes:

fuyou

**************************************************************

Thu Jun 30 14:12:51 JST 1994

Figure 3.8: Results of the algorithm for the Japanese Internet.



Chapter 4

System-Level Diagnosis for

Fully Connected Networks

Consider a system consisting of N units, also called nodes or processors, that

can communicate with each other. Each of these units can be in one of two

states: faulty or fault-free.

The goal of a fault tolerant system is to make a faulty unit invisible to

the application, so that the rest of the system performs the activities that

are necessary. This goal implies that it is fundamental for the system to

detect which units are working properly, and which are not. In other words,

each system component must detect and diagnose the state of the other

components.

A possible solution to the problem of diagnosis is to use a brute-force

algorithm, in which every node tests all others. It is easy to see that this

approach is not sound. At every testing interval every node has to issue N−1

tests and reply to N − 1 tests. This testing strategy which may present a

substantial overhead for both individual processors and the communication

network. Other solutions must be examined.

In this chapter we review system-level diagnosis for fully connected sys-

tems, and introduce the Hi-ADSD algorithm.

54
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4.1 The PMC Model

The goal of system-level diagnosis is to determine the state of a units of the

system. For almost 30 years, researchers have worked on this problem, and

the first model of diagnosable systems was introduced by Preparata, Metze,

and Chien, the PMC Model [8]. In the PMC model, units are able to test

other units and determine their status. Each unit is assigned a subset of the

other units to test, and fault-free units are able to accurately assess the state

of the units they test. Faulty units may report incorrect test resuls.

The set of all tests makes up a testing graph, i.e., a directed graph in

which vertices represent the system’s units and an edge from vertex i to

vertex j corresponds to a test performed by unit i on unit j. For example,

figure 4.1 shows a testing assignment on a system of five nodes, where node

1 is faulty.

The collection of all test results is called the syndrome of the system.

The problem of diagnosis is to obtain the state of the system from a given

syndrome. The PMC model assumes the existence of a central observer that,

based on the syndrome, can diagnose the state of all the units.

U1

U2

U3U4

U5

a12 = x

a23 = 0

a34 = 0

a51 = 1

a45=0

Figure 4.1: An example of PMC model’s testing assignment.

For a given testing assignment, the diagnosability of a system may be

limited by the number of faulty units, and determining this number is called

the diagnosability problem. Preparata et al. showed that for a system to be

t-diagnosable, it is necessary that N ≥ 2t + 1, and that each unit is tested
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by at least t other units. Later, Hakimi and Amin [39] proved that if no two

units test each other these conditions are sufficient for t-diagnosability.

For many years the research on system-level diagnosis concentrated on

what is called one-step diagnosis, i.e., finding testing-graphs that provided

enough information for the central observer to perform diagnosis efficiently.

The concept of a fixed testing assignment changed when adaptive diagnosis

was introduced, as shown in the next section.

4.2 Adaptive System-Level Diagnosis

Early system-level diagnosis algorithms assumed that all the tests had to be

decided in advance. The tests were then executed, and from the obtained

results, it was determined which units were faulty. Those algorithms focused

on finding properties of the testing graph which would allow the observer to

identify the faulty units from the tests corresponding to the testing graph’s

edges.

An alternative approach, which requires fewer tests, is to assume that

each unit is capable of testing any other, and to issue the tests adaptively,

i.e., the choice of the next tests depends on the results of previous tests, and

not on a fixed pattern. Hakimi and Nakajima called this approach adaptive

[9]. Early adaptive system-level diagnosis results assumed the existence of the

previously mentioned central observer. Furthermore, a bound on the number

of faulty nodes was imposed for the system to achieve correct diagnosis.

Adaptive system-level diagnosis algorithms proceed in testing rounds, i.e.,

the period of time in which each unit has executed the tests it was assigned.

To evaluate adaptive algorithms two measures are normally used: the total

number of tests required per testing round and the diagnosis latency, or delay,

i.e., the number of testing rounds required to determine the state of the units.
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4.3 Distributed System-Level Diagnosis

Previously, Kuhl and Reddy [40, 41], introduced distributed system-level di-

agnosis, in which fault-free nodes reliably receive test results through their

neighbors, and each node independently performs consistent diagnosis. They

proposed the SELF distributed system-level diagnosis algorithm, that al-

though fully distributed, is non-adaptive, i.e., each unit has a fixed testing

assignment, and the number of faulty units in the system cannot exceed t.

We will use alternatively the word node for unit, and network for system.

Later, Hosseini, Kuhl and Reddy, [10] extended the SELF algorithm,

introducing the NEW-SELF algorithm, which also has a fixed inter-node

test assignment, but is executed on-line, permitting faulty nodes to reenter

the network after being repaired. NEW-SELF ensures the accuracy of test-

results by restricting the forwarding of test results to fault-free nodes. For

correct diagnosis, NEW-SELF requires that every fault-free node receive all

test results from all other fault-free nodes. To reduce the amount of network

resources required for diagnosis, the EVENT-SELF algorithm was proposed

by Bianchini et.al.[42] This algorithm uses event-driven techniques to im-

prove both the diagnosis latency and the impact of the algorithm on network

performance.

4.4 The Adaptive-DSD Algorithm

The Adaptive Distributed System-level Diagnosis algorithm, Adaptive-DSD,

was introduced by Bianchini and Buskens [11, 12]. Adaptive-DSD is at the

same time distributed and adaptive. Each node must be tested only one time

per testing interval. All fault-free nodes achieve consistent diagnosis in at

most N testing rounds. There is no limit on the number of faulty nodes for

fault-free nodes to diagnose the system.

Adaptive-DSD is executed at each node of the system at predefined test-

ing intervals. Each time the algorithm is executed on a fault-free node, it

performs tests on other nodes until it finds another fault-free node, or it runs
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out of nodes to test. A testing round is defined as the period of time in which

all nodes of the system have executed Adaptive-DSD at least once. After

one testing round, if there are at least two fault-free units, the testing graph

has the format of a ring, as shown in figure 4.2. In the example shown in

figure 4.2, node 1, node 4, and node 5 are faulty, and the rest are fault-free.

Node 0 tests node 1 and finds it faulty; so it goes on and tests node 2, which

is fault-free, and then stops testing. Node 2 then tests node 3 as fault-free,

and so on.

1

2

3

4

5

6

7

0

Fault-Free

Faulty

Figure 4.2: Example of test assignment in Adaptive-DSD.

Each node i that executes the algorithm has an array called

TESTED-UPi, that contains N entries, indexed by the node identifier. The

entry TESTED-UPi[k] = j means that the node i has received diagnostic

information from a fault-free node specifying that node k has tested j to be

fault-free. An entry TESTED-UPi[j] is “arbitrary” if node j is faulty.

When node i finds node j to be fault-free, it saves this information in

TESTED-UPi[i]. In the next testing round, this test data of i is taken by its

first fault-free predecessor, and so on, until all nodes get the information. In

this way, the diagnostic information in the TESTED-UP array is forwarded to

nodes in the reverse direction of the testing network. Using the information

in TESTED-UPi a node i has to diagnose the state of all nodes in system,

for this task, another algorithm, called Diagnose, is employed.

Adaptive-DSD has a diagnosis latency of N testing rounds. It is desirable
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to reduce this latency. In the original papers, Bianchini and Buskens use

event-driven mechanisms to reduce the latency, like employing multicast or

broadcast just after a new situation is identified. As none of the suggested

event-driven mechanisms are fault-tolerant themselves, there is no proof that

they can reduce the latency of Adaptive-DSD.

From next section, we present the Hierarchical Adaptive Distributed

System-level Diagnosis (Hi-ADSD) algorithm. Hi-ADSD is hierarchical in

the sense that it employs a divide-and-conquer testing strategy [43]. Hi-

ADSD is the first hierarchical diagnosis algorithm that is at the same time

adaptive and distributed. Previous hierarchical approaches include [44], [45],

[46] and [47]. Hi-ADSD has diagnosis latency of log2N rounds in the worst

case, without employing extra event-driven mechanisms, and requiring less

diagnostic information than Adaptive-DSD.

The results discussed here assume a fully connected network, no link faults

and the PMC fault model. Besides the PMC fault model, many other fault

models have been proposed. For example, a survey of probabilistic diagnosis

is presented in [48]. Diagnosis of link faults were treated in [49]. Diagnosis on

networks of general topology has received a great deal of attention recently,

e.g. [50], [51], [52], and [53].

4.5 Adaptive DSD with Intersections

In this section we briefly introduce ADSD with Intersections, an adaptive

distributed system-level algorithm that groups nodes in clusters to reduce

the latency of Adaptive-DSD, the algorithm is presented in detail in [43, 54].

In ADSD with Intersections, nodes are grouped in logical clusters, and within

each cluster nodes execute tests forming a ring, like in Adaptive DSD. But

all clusters have a point of intersection, which is a node that tests nodes in

all clusters. If there is a total of p clusters, it takes N/p testing rounds to

diagnose the state of all N nodes. At each testing interval, all nodes still

test one fault-free node, but the node at the intersection tests p nodes, one
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at each cluster.
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Intersection

ADSD

ADSD

ADSD

ADSD

 0 

Figure 4.3: Multiple simultaneous clusters run Adaptive-DSD with intersec-
tion.

In ADSD with Intersections the intersection node presents a number of

challenges. Not only does this node execute more tests, but also there should

be a procedure to provide an intersection fault-tolerance. An election scheme

is proposed in [54].

An interesting result is the best latency that this approach can give. For

a given system of N nodes, one must determine which number of clusters, p,

of which size, optimize the diagnosis latency of the system, while keeping the

number of messages as low as possible. The total number of messages in the

system per testing round is given by function f(p) = p + N/p. To find the

number of clusters that minimize the number of messages we have to find a

minimum of f(p). This minimum is reached when p =
√

N , i.e., the best

organization is to organize nodes in
√

N clusters of size
√

N . Which gives

an algorithm of diagnosis latency on the order of O(
√

N) testing rounds.

4.6 Hierarchical Adaptive System-Level Di-

agnosis

In this section the Hierarchical Adaptive Distributed System-Level Diagnosis

(Hi-ADSD) algorithm is presented, its correctness is formally proved, and
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it is compared to the Adaptive-DSD algorithm. Hi-ADSD maps nodes to

clusters, which are sets of nodes, and employs a divide-and-conquer testing

strategy to permit nodes to independently achieve consistent diagnosis in at

most log2N testing rounds.

Before the algorithm is specified, it is important to recall the concepts of

test and testing round, to avoid confusions. These concepts are the same used

by Bianchini and Buskens for Adaptive-DSD in [11, 12]. At specified time

intervals, for example 30 seconds, each fault-free node in the system executes

tests on other nodes of the system, until the testing node finds another node

that is fault-free, or tests all other nodes as faulty. For instance, if the

first node tested is fault-free, the tester stops testing; otherwise, it will test

another node, and so on, until a fault-free node is found. A testing round is

defined as the period of time in which every fault-free node in the system has

tested another node as fault-free, and has obtained diagnostic information

from that node, or has tested all other nodes as faulty. The diagnosis latency

of Hi-ADSD is defined as the number of testing rounds required for all fault-

free nodes in the system to achieve diagnosis.

4.6.1 Algorithm Specification

Consider a system S consisting of a set of N nodes, n0, n1, ..., nN−1. In this

paper we alternatively refer to node ni as node i. The system is assumed

to be fully connected, i.e., there is a communication link between any two

nodes (ni, nj). Each node ni is assumed to be in one of two states, faulty or

fault-free. A combination of the state of all nodes constitutes the system’s

fault situation. Nodes perform tests on other nodes in a testing interval, and

fault-free nodes report test results reliably.

In Hi-ADSD, nodes are grouped into clusters for the purpose of testing.

Clusters are sets of nodes. The number of nodes in a cluster, its size, is

always a power of two. Initially, N is assumed to be a power of 2, and the

system itself is a cluster of N nodes.

A cluster of n nodes nj, ..., nj+n−1, where j MOD n = 0, and n is a power of
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0 1

2 3

4 5

6 7

Figure 4.4: A hierarchical approach to test clusters.

two, is recursively defined as either a node, in case n = 1; or the union of two

clusters, one containing nodes nj, ..., nj+n/2−1 and the other containing nodes

nj+n/2, ..., nj+n−1. Figure 4.4 shows a system with eight nodes organized in

clusters.

In the first testing interval, each node performs tests on nodes of a cluster

that has one node, in the second testing interval, on nodes of a cluster that

has two nodes, in the third testing interval, on nodes of a cluster that has

four nodes, and so on, until the cluster of 2logN−1, or N/2, nodes is tested.

After that, the cluster of size 1 is tested again, and the process is repeated.

The lists of ordered nodes tested by node i in a cluster of size 2s−1, in

a given testing interval, are denoted by ci,s. The following is an expression

that completely characterizes list ci,s, for all i = 0, 1, ..., N − 1, and s =

1, 2, ..., logN . In the expression, a DIV b is the quotient of the integer division

of a by b, and a MOD b is the remainder of the same integer division.

ci,s =
{nt | t = (i MOD 2s + 2s−1 + j) MOD 2s−1+a+

(i DIV 2s) ∗ 2s + b ∗ 2s−1 ; j = 0, 1, ..., 2s−1 − 1}

Where:

a =







1 if i MOD 2s < 2s−1

0 otherwise
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s c0,s c1,s c2,s c3,s c4,s c5,s c6,s c7,s

1 1 0 3 2 5 4 7 6
2 2,3 3,2 0,1 1,0 6,7 7,6 4,5 5,4
3 4,5,6,7 5,6,7,4 6,7,4,5 7,4,5,6 0,1,2,3 1,2,3,0 2,3,0,1 3,0,1,2

Table 4.1: ci,s, for the system in figure 2.

b =



















1 if a = 1 AND (i MOD 2s + 2s−1+

j) MOD 2s−1+a + (i DIV 2s) ∗ 2s < i

0 otherwise

When node i performs a test on nodes of ci,s, it performs tests sequentially,

until it finds a fault-free node, or all other nodes are faulty. Supposing a

fault-free node is found, from this fault-free node, node i copies diagnostic

information of all nodes in ci,s. For the system in figure 4.4, for all i and s,

ci,s is listed in table 4.1.

If all nodes in ci,s are faulty, node i goes on to test ci,s+1 in the same

testing interval. Again, if all nodes in ci,s+1 are faulty, node i goes on to test

ci,s+2 and so on, until it finds a fault-free node, or all nodes are found to be

faulty. For example, figure 4.5 shows the testing hierarchy for 8 nodes, from

the viewpoint of node 0. When node 0 tests a cluster of size 22, it first tests

node 4. If node 4 is fault-free, node 0 copies diagnostic information regarding

nodes 4,5,6 and 7. If node 4 is faulty, node 0 tests node 5, and so on.

Hi-ADSD uses a tree to store information about the tests in all clusters.

To effectively diagnose the state of all nodes, it is sufficient to list all nodes

in the tree. Figure 4.6 shows the tree for node 0, for the case that all nodes

are fault-free.

A description of the algorithm in pseudo-code is given in figure 4.7.

It is important to observe that the system is asynchronous, i.e., at any

time, different nodes in the system may be testing clusters of different sizes.
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1

2 3

4 5 6 7

0

Figure 4.5: Each node adaptively tests all clusters.

1 2

3

4

5 6

7

0

Figure 4.6: A tree keeps all testing information.

In other words, a node running Hi-ADSD does not know which tests are

being performed by other nodes at any time. Even if nodes could be initially

synchronized, after some of them become faulty and recover, the system

would lose the initial synchronization. If there are at least two fault-free

nodes in the system, in a testing round of Hi-ADSD, each node has tested at

least one other fault-free node in ci,st
, but the other nodes don’t know which

st. This fact has major consequences on the performance of the algorithm,

as will be seen in the next subsection.

It is assumed that a node cannot fail and recover from that failure during

the time between two tests by another node. In Hi-ADSD this time may be

of up to logN testing rounds, in the worst case. This assumption can be

enforced by, for example, recording and storing fault events, or by reducing
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Algorithm Hi-ADSD;

{ at node i }

{ please refer to the text for c(i,s) }

{ j indexes the nodes of a given c(i,s) }

REPEAT

FOR s := 1 TO logN DO

REPEAT

node_to_test := next in c(i,s);

IF "node_to_test is fault-free"

THEN "update cluster diagnostic information"

UNTIL ("node_to_test is fault-free") OR

("all nodes in c(i,s) are faulty");

IF "all nodes in c(i,s) are faulty"

THEN "erase cluster diagnostic information";

END FOR;

FOREVER

Figure 4.7: The Hi-ADSD algorithm.

the testing interval between consecutive tests [11].

In Hi-ADSD, whenever a faulty node becomes fault-free, it doesn’t have

complete diagnostic information. The tester of such a node must not get

diagnostic information from this node, for it can be incorrect. An enough

amount of time, at most log2N testing rounds, should be allowed before

diagnostic information can be obtained from that node.

However, during the algorithm initialization, every node has incomplete

diagnostic information, for they have been fault-free for less than log2N

testing rounds. To guarantee the correct initialization, it is sufficient to have

all nodes diagnostic information initialized as fault-free. The nodes will have

the correct diagnostic information after the initial log2N testing rounds.

An alternative approach, is to use a third state, call it unknown. This

state is used whenever a node doesn’t know the state of another node. When-

ever a tested fault-free node has unknown information about nodes in the

cluster being tested, the tester continue testing.
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4.6.2 Correctness Proof

We now proceed to prove the correctness and the worst case of the diagnosis

latency of the algorithm. For this proof we assume a system fault situation

that doesn’t change for an enough amount of time, until all fault-free nodes

achieve diagnosis. The correctness proof of Adaptive-DSD also carried this

assumption.

We begin by defining the Tested-Fault-Free graph, T (S).

Definition 1 The Tested-Fault-Free graph T (S) is a directed graph whose

nodes are the nodes of S. For each node i, and for each cluster ci,s, there is

an edge (i, t), directed from i to t ∈ ci,s if i has tested t as fault-free in the

most recent testing interval in which it tested ci,s.

In T (S) for each node i and each ci,s, there is an edge directed from node

i to the last node that node i tested as fault-free in that ci,s. If, in the most

recent testing interval in which node i tested ci,s, all nodes in ci,s were tested

as faulty, then T (S) doesn’t contain an edge from node i to any node in that

ci,s.

For example, consider a system of 16 nodes. Figure 4.8 shows the Tested-

Fault-Free graph of that system, if all nodes are fault-free. It can be seen

that it is a hypercube. It contains a directed edge from any node i to the

last node that i tested as fault-free in ci,1, another edge to the last node that

i tested as fault-free in ci,2, another edge to the last node that i tested as

fault-free in ci,3, and another edge to the last node that i tested as fault-free

in ci,4.

Lemma 1 For any node i, any given s, and at any given instant of time ti,

it takes at most logN testing rounds for node i to test ci,s.

Proof: This follows from the definition of the algorithm, i.e., at a given

testing interval node i tests a cluster, and looks for a fault-free node in that

cluster. In one testing round, by definition, each fault-free node tests at

least another fault-free node, if there is one. There may be at most logN
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Figure 4.8: The Tested-Fault-Free graph for a system of 16 fault-free nodes.

clusters for node i to test. In logN consecutive intervals, at each interval a

different cluster is tested. Thus, if node i executes exactly one successful test

per testing round, it will take logN testing rounds for it to test all clusters.

Therefore, in the worst possible case, for ti immediately after a given cluster

is tested, it will take up to logN testing rounds for that cluster to be tested

again. 2

Theorem 1 The shortest path between any two fault-free nodes in T (S) con-

tains at most logN edges.

Proof: We will conduct an induction on t, for a system of 2t nodes.

First, consider a system of 21 nodes; each node tests the other, thus the

shortest paths in T (S) contain one edge.

Next, assume that for a system of 2t nodes, a shortest path between any

two nodes in T (S) contains at most t edges. Then, by definition, in the

system of 2t+1 nodes there are two clusters of 2t nodes. Consider a subgraph

of T (S) that contains only the nodes in one of these clusters. By definition,

this subgraph is isomorphic to the Tested-Fault-Free graph of a system of 2t

nodes. So, by the assumption above, the shortest path between any two nodes

in this subgraph has at most t edges. Consider any two nodes, i and j. If

i and j are in the same cluster of 2t nodes, the shortest path between them

in T(S) has at most t edges. Now, consider the case in which i and j are
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in different clusters of 2t nodes. Without loss of generality let’s consider the

shortest path from i to j. Node i tests one node in the cluster in which j

is contained, call this node p. In T(S), the shortest distance from i to p

contains one edge, and the shortest distance from p to j contains at most t

edges. Thus the shortest distance from i to j contains at most t+1 edges. 2

As an example, consider a system of size 22; this system has size four,

and each node tests two other nodes, and gets information about the fourth

node indirectly, through the tested nodes. This makes up a path of length

two. Now consider a system of size 23, there are two clusters of size 22, and

each node in one cluster tests one node in the other, thus, in T(S), there

is an edge from each node in one cluster to the other. Therefore, the paths

from a node in one cluster to the nodes in the other have lengths of the paths

within the cluster which are at most of length 2, plus 1, for the edge linking

the two clusters. Thus, in a system of size 23, the shortest path has length

at most 3. For example, look at node 5 and node 2 in figure 4.9. For node

5 to get information about node 2, node 5 tests node 1, which tests node 3

which tests node 2. In this system of 8 nodes, the maximum path has size

log8.

Now let’s consider each test in this worst case shortest path. How many

testing rounds does it take to execute one test, in the worst case? Consider

figure 4.9 again. If node 3 has tested node 2 just before it became faulty,

then only after three testing rounds node 3 will discover that node 2 is faulty.

Then, in the worst case, if node 1 tests node 3 just before node 3 tests node

2, it will take other three testing rounds for node 1 to discover that node 2

is faulty. If we are very unlucky and node 5 tested node 1 just before node

1 tested node 3, then it will take other three testing rounds for node 5 to

discover that node 2 is faulty. In other words, there are three tests in the

shortest path of longest length, and each one takes three testing rounds to

be executed in the worst case, thus, in total, it may take up to nine testing

rounds to execute all three tests.

Theorem 2 Consider the system fault situation at a given time. After at
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Figure 4.9: The shortest path from node 5 to node 2 has log8 = 3 edges.

most log2N testing rounds, each node that has remained fault-free for that

period correctly determines that fault situation.

Proof: It was proved in theorem 1 that the shortest path between any two

nodes in T (S) has at most logN edges. But, from lemma 1, each of the tests

corresponding to an edge in T (S) can take up to logN testing rounds to be

executed in the worst case. In other words, there are up to logN different

tests to execute, and each may take up to logN testing rounds to be executed.

So, in total, they may take at most logN*logN testing rounds to be executed.

Thus, it may take up to log2N testing rounds for a fault-free node to obtain

diagnostic information about an event in S. 2

We believe that, in average, nodes running Hi-ADSD achieve diagnosis in

less than log2N testing rounds, and our experimental results confirm this fact.

If nodes are roughly synchronized they will run the algorithm in O(logN)

testing rounds. If extra synchronization mechanisms are introduced better

bounds can be guaranteed.

It should be clear that in Hi-ADSD, like in Adaptive-DSD, there is no

limit on the number of faulty nodes for fault-free nodes to perform consistent

diagnosis. In the worst case, when N − 1 nodes are faulty, the number of

tests required is still N . For example, if N −1 nodes are faulty, the fault-free

node must test all other nodes to diagnose the system.

It is not necessary that the number of nodes, N , be a perfect power of 2.
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In this case, testing nodes must skip the 2dlogNe−N non-existing nodes during

test and diagnostic information transfer. For instance, the implementation

discussed in section 4 was done on a 37-node system.

Nevertheless the worst possible latency is dlog2Ne, as there are at least

some nodes for which the longest path in the Tested-Fault-Free graph have

length logN . For example, consider the system of eight nodes in figure 4.9.

If that system had six nodes instead of eight, i.e. if it didn’t have node 6 and

node 7, the length of the longest path would still be log8 = 3.

4.6.3 Comparison of Adaptive-DSD and Hi-ADSD

To compare Hi-ADSD and Adaptive-DSD we begin comparing the number

of testing rounds required by both algorithms. We then compare the number

of tests required, and conclude with the amount of diagnostic information

that must be exchanged by nodes in the system until the fault situation is

diagnosed.

The first difference between the two algorithms is their worst case diag-

nosis latencies, in terms of testing rounds. While Adaptive-DSD’s diagnosis

latency is N testing rounds, Hi-ADSD’s is log2N .

Table 4.2 lists the diagnosis latency in terms of testing rounds for both

algorithms, for networks having from 4 to 1024 nodes. The figures in this

table should be clearly understood. They show the number of testing rounds

that are needed for all nodes in the system to diagnose one event in the fault

situation. For example, if all nodes are fault-free, and one node becomes

faulty, that diagnostic information will take N testing rounds in Adaptive-

DSD, being transferred sequentially through N nodes until all nodes diag-

nose the situation. In Hi-ADSD, the diagnostic information will be trans-

ferred through a tree of depth logN and to reach all nodes it takes at most

log2Ntesting rounds. For networks of 4 and 16 nodes, the algorithms present

the same worst case latency. In one case, for a network of 8 nodes, Adaptive

DSD presents better latency than Hi-ADSD, but this changes quickly as the

number of nodes grows.
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N Hi-ADSD Adaptive-DSD
4 4 4
8 9 8
16 16 16
32 25 32
64 36 64
128 49 128
256 64 256
512 81 512
1024 100 1024

Table 4.2: Examples of diagnosis latency.

To compare the number of tests required by both algorithms we show the

number of tests required in one testing round. When all nodes are fault-free,

both algorithms employ exactly the same number of tests per testing round,

for each fault-free node executes tests until it finds another fault-free node.

However, if there are faulty nodes in the system, Adaptive-DSD needs N

tests per testing round, while Hi-ADSD may need more tests, depending on

which nodes are faulty, and which clusters are being tested in the testing

round.

These extra tests correspond to the situation in which two or more nodes

test a given faulty node in the same testing interval. In this case, those

nodes will run more tests. The lists of nodes to be tested in each cluster

(cis) described previously in this section make this situation unlikely, as all

entry points are specific for each node to its clusters. However, in the worst

possible case, if N/2 nodes are faulty, and they are all in the same cluster,

and all testers test this cluster in the same testing round, the total number

of tests is N2/4. It should be clear that this case is very rare, for even if N/2

are faulty, the probability that they are all in the same cluster is not large.

Now consider the total number of diagnostic messages transferred from

fault-free nodes required by the algorithms. Adaptive-DSD requires a total

of N2 messages for all nodes to achieve diagnosis, while Hi-ADSD requires
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Figure 4.10: Comparison of the amount of diagnostic units required.

N log2N messages in the worst case.

There is also a major difference in the size of diagnostic messages in

Adaptive-DSD and Hi-ADSD. Nodes running Adaptive-DSD get messages

with diagnostic information concerning all nodes in all testing intervals, in

contrast, Hi-ADSD’s diagnostic messages only contain information about the

nodes in each cluster being tested. Let’s call the information about one node

a diagnostic unit. Consider logN consecutive testing intervals, during this

period, a node running Adaptive-DSD requires NlogN diagnostic units, while

a node running Hi-ADSD requires only 20 + 21 + ... + 2logN−1 = N − 1 units

during the same period.

Figure 4.10, compares the total number diagnostic units required by both

algorithms, for all nodes to achieve diagnosis. It can be seen that Hi-ADSD

brings a significant improvement in terms of network bandwidth utilization.

The comparison shown in figure 4.10 is not meaningful if extra mecha-

nisms, like timestamps, could be employed to avoid transferring diagnostic

messages unless strictly necessary. Using these mechanisms, only informa-

tion regarding a new event is transferred. However, to use any mechanism

like this it is necessary to prove its correctness and impact on the algorithm.
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Number k of Tests Number of Nodes that
Executed Diagnosed the Event

1 1
2 3
3 7
4 8
5 10
6 14
7 21
8 35
9 63

Table 4.3: Number of tests required for 63 nodes to diagnose one event.

4.7 Simulation

In this section we present experimental results of diagnosis on large networks

using Hi-ADSD, obtained through simulation. The simulation was conducted

using the discrete-event simulation language SMPL [55]. Nodes were modeled

as SMPL facilities, and each node was identified by a SMPL token number.

Three kinds of events were defined: (1) test, (2) fault, and (3) repair. Tests

were scheduled for each node at each 30 ± σ units of time, where σ is a

random number between 0 and 3.

We modeled the fault as the facility being reserved, and the repair as

the facility being released. During each test, the status of the facilities are

checked and, if the node is fault-free, diagnosis information regarding the

cluster is copied to the testing node. If the tested node is faulty, the testing

nodes proceed testing as in the algorithm.

We conducted several experiments with networks of different sizes. In

this paper we present results of two experiments: in the first experiment,

on a network of 64 nodes, after a node becomes faulty, a second node also

becomes faulty, and after that they are sequentially repaired. These four

events were scheduled for times 100, 1000, 2100 and 3000, respectively. The
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Number k of Tests Number of Nodes that
Executed Diagnosed the Event

1 1
2 3
3 7
4 15
5 31
6 63
7 64
8 66
9 70
10 77
11 91
12 119
13 175
14 287
15 511

Table 4.4: Number of tests required for 511 nodes to diagnose one event.

second experiment was conducted on a network of 512 nodes, a fault occurs

at time 100, and the node is repaired at time 1100. Results of diagnosis pre-

sented here are representative from the large set of simulation runs executed

for each experiment.

Table 4.3 and table 4.4 show the number of tests it takes for fault-free

nodes to diagnose the first event of each experiment.

Table 4.3 shows that for the first event in the 64-node system, the 63

fault-free nodes take up to k = 9 tests to successfully diagnose the event.

For example, there is one node that successfully diagnoses the event after

one test, this node tested directly the faulty node.

Table 4.4 shows that for the first event in the 512-node system, the 511

fault-free nodes take up to k = 15 tests to successfully diagnose the event.

To compare with Adaptive-DSD, without extra event-driven mechanisms, we

point out that Adaptive-DSD would take 511 testing rounds for all fault-free
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nodes to diagnose any event in this 512-node system.
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Figure 4.11: Simulation of Hi-ADSD on a 64-node network.

As we discussed before, nodes running Hi-ADSD run tests asynchronously,

with consequences on algorithm performance. For each of experiments, we

ran a second simulation, in which each node starts testing from a random

cluster, as opposed to starting synchronized by testing cluster 1. The graphs

on figures 4.11 and 4.12 show results from both types of simulation.

Both graphs have the number of testing rounds as the x-axis and the

number of nodes that diagnosed the event as the y-axis. For the first event

of the 64-node system, the original simulation took up to 9 tests, while the

random version took up to 21 tests. For the second event, they took 8 and

18 tests respectively.

For the first event on the 512-node system, the first experiment took up

to 15 tests, the random experiment took 52 tests. The second event took 17

tests, and the random experiment took 50 tests.

These experiments confirm the impact of the asynchronous execution of

tests on Hi-ADSD’s performance.

As a final comment, the graph of diagnosis for the initially synchronized

512-node system, shown in figure 4.12, slow during some periods. During
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Figure 4.12: Simulation of Hi-ADSD on a 512-node network.

those periods, nodes are running tests on the faulty node as a small clus-

ter. After those slow periods, diagnosis speeds up again, in result of the

propagation of diagnostic messages to larger clusters.

4.8 Practical Implementation

In this section we present the application of Hi-ADSD to SNMP-based LAN

fault management. Initially we describe the role of the NMS (Network Man-

agement Station) when Hi-ADSD is used for fault management. This is

followed by the description of an approach to include monitoring of network

devices, the description of our implementation and finally the experimental

results obtained.

4.8.1 The Role of the Network Management Station

To apply system-level diagnosis to network fault management, it must be

taken into account that the primary goal of SNMP-based fault management is

to permit a central NMS to determine the state of all nodes in the network, in

a reliable and efficient way. By reliable, we mean that if any node fails in the
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network, the diagnosis process continues, even if the faulty-node is the current

NMS itself. By efficient, we mean that the diagnosis is accomplished within

a small delay, and the overhead imposed by diagnosis messages requires a

reasonable percentage of network bandwidth.

One of the goals of network management systems is to provide network

state information to the human manager at the NMS. The concept of a

central observation point is not contradictory with the previously presented

distributed approach: the NMS can be seen now as a management interface,

and not as the single monitor. This approach gives a number of advantages

to the human manager, as she/he has a choice of workstations to monitor the

network. Furthermore, there are obvious advantages in terms of the reliability

of the network monitoring system itself, as fault-free nodes achieve correct

diagnosis for any number of faulty nodes.

It has been shown that Hi-ADSD has a diagnosis latency of at most log2N

testing rounds. To further reduce this latency at the NMS, a feasible solution

is to employ SNMP traps, i.e., an agent reports any new state information as

soon as it is discovered. This combination of distributed monitoring and traps

gives the system high resilience over errors, while keeping delays conveniently

short. The NMS receives all changes in state information as soon as they

are discovered. Using a simple configuration mechanism, all stations know

the current NMS identity. Nevertheless, this event-driven approach is not

fault-tolerant. There is no assurance that traps will be correctly delivered.

However, even if the NMS is changed (or becomes faulty) soon after receiving

and acknowledging the trap, by the time another node assumes the role of

NMS, the information is delivered to this new NMS through the testing

network.

4.8.2 Network Device Fault Management

To permit Hi-ADSD to monitor the state of network devices, each unit is

classified into a testing node or a tested-only node. Testing nodes are usually

workstations, which are not only subject to tests, but are also capable of
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testing. In contrast, tested-only nodes are only tested, and don’t perform

any testing on other elements. A number of managed devices, like printers,

modems, terminals, among others are tested-only. Furthermore, to improve

the diagnosis delay, some workstations may be tested-only.

There are two possible approaches to include tested-only nodes in the

algorithm. In the first approach, each testing node has some associated tested-

only nodes, that are tested at each testing interval. Whenever a testing node

finds another testing node to be faulty it must test all tested-only nodes

associated with that faulty testing node. In the other approach, tested-

only nodes are simply tested as normal testing nodes, the only difference is

that they don’t carry diagnostic information. Thus a MIB variable identifies

of which class a given node is part. If the second approach is used, it is

interesting to distribute the tested-only nodes wisely through the network,

to avoid that specific nodes execute large number of tests.

We are working on a Java interface for the algorithm, allowing the network

to be monitored using any WEB browser. We expect it to be ready soon.

The current interface is based on log files.

4.8.3 Experimental Results

The implementation of Hi-ADSD was run on a 10 Mbps Ethernet LAN (Lo-

cal Area Network) that consisted of 37 Sun workstations, SPARCstation 20.

Several experiments were conducted. In this section we describe a represen-

tative set of experiments and diagnosis results.

The CMU SNMP public-domain packet [4] was used as a base to imple-

ment the diagnosis agent, in which we coded the Diagnosis MIB variables.

From the SNMP toolkit of the WILMA project [56] we used client programs

to access and update MIB variables.

The ASN.1 coding of the Hi-ADSD MIB, as implemented, is shown in

the Appendix.

The program that implements Hi-ADSD runs on top of SNMP, using its

services. In each test, initially an SNMP query is issued, and the correct reply
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is expected. As SNMP is an application layer entity, a correct reply implies

that the node is fully fault-free, except possibly for other applications.

However, as SNMP itself is not fault-tolerant, and uses the UDP (Inter-

net’s User Datagram Protocol) unreliable transport protocol, a timeout may

be caused by the SNMP server being faulty, or a lost message, not neces-

sarily by the tested node being faulty itself. To handle this situation, in the

second part of the test, a ping query is issued, and if there is a correct reply

it is concluded that the tested node is partially faulty, or that SNMP is not

replying to querries. If there is a ping timeout, it is concluded that the tested

node is faulty.

This strategy was also used for fault-injection. A specific MIB variable

was introduced, that, when querried, made the SNMP server “sleep” for a

specified amount of time. In that period the remaining nodes in the network

diagnosed that the node was not replying to SNMP, but also not faulty.

As SNMP tables indexes entries from 1, the nodes were assigned identifiers

from 1 to 37.

The testing interval was set at 40 seconds, for all nodes.

Figure 4.13 shows how diagnosis progressed for the first three initial

events. Initially, node 6 was actually faulty. Before the algorithm was ini-

tialized we didn’t know that, but all remaining 36 nodes diagnosed the fault

situation in 198 seconds, from the time they started testing.

After that, we did the first fault injection, and node 16’s SNMP server

stopped replying to queries. But, as the graph in figure 4.13 shows, at roughly

the same time, node 6 was repaired, and started replying to ping. This was

also an unexpected occurrence. From figure 4.13 it can be seen that although

the pace of diagnosis was different for both events, they were diagnosed in

roughly the same amount of time: 575 seconds for node 6’s fault, and 562

seconds for node 6’s partial recovery, considering for the latter case the time

since the first node diagnosed the event.

Next we proceeded to inject faults on 3 nodes, first at node 35, and after

some time, at nodes 20 and 21 simultaneously. The diagnosis of these events
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Figure 4.13: First three events of the experiment.

is shown in the graph of figure 4.14. The event at node 35 was diagnosed

in 346 seconds. The events at node 20 and node 21 were diagnosed almost

simultaneously, in 421 seconds, and 416 seconds. Not only the total amount

of time, but also the pace in which both events were diagnosed was very

similar, as can be confirmed by the fact that figure 4.14 seems to show the

diagnosis of two events and not the real three.

Now all four nodes in which faults were injected are repaired. For the

repair of node 16, the remaining nodes take 524 seconds, for the repair of node

35, they take 241 seconds, the second best latency we got. The remaining

two events are the repair of node 20 and node 21, which are also diagnosed

almost simultaneously, but not as much as was their previous fault diagnosis.

The time was, respectively, 474 seconds and 514 seconds. We believe this

slight difference is due to the fact that other nodes had been faulty and then

repaired and were issuing testing not synchronously with other nodes.

The average latency for all the ten experiments above is 427.1 seconds.

With a testing interval of 40s, latency could have been up to 1440 seconds.

These results, together with previously shown simulation results, might con-

firm our belief that in average Hi-ADSD’s latency is less than log2N testing
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rounds.

4.9 Conclusions

In this chapter we introduced the application of distributed system-level di-

agnosis to SNMP-based fault management. We presented the Hierarchi-

cal Adaptive Distributed System-level Diagnosis algorithm. Hi-ADSD maps

nodes to clusters, and uses a divide-and-conquer testing strategy to achieve

diagnosis in at most log2N testing rounds. In this way Hi-ADSD improves

the diagnosis latency of previous algorithms, while keeping the number of

tests conveniently low. The correctness and worst-case latency of the algo-

rithm were formally proved. Simulation results of diagnosis on large networks

of 64 and 512 nodes, obtained using simulation, were shown.

Hi-ADSD was implemented integrated to an SNMP-based network man-

agement system on a 37-node Ethernet LAN. Issues regarding the actual

deployment of the algorithm were discussed, experimental results of fault

and repair diagnosis were presented. As SNMP applications are currently
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Figure 4.15: Simulation of Hi-ADSD on a 64-node network.

widely deployed, but fault management is still based on rudimentary proce-

dures, this implementation by itself is also a significant contribution to the

field of network management.

The next step of our research is to work on Hi-ADSD for a dynamic fault

situation, in which any number of nodes become faulty and are repaired at

any time. Other important issues include checking if synchronization mecha-

nisms can guarantee a logN diagnostic latency, fault-tolerant mechanisms for

event-driven dissemination of events and for timestamps, that would guar-

antee the minimal amount of diagnostic information exchange.



Chapter 5

Non-Broadcast Network

Fault-Monitoring Based on

System-Level Diagnosis

Fault management is the set of activities required to guarantee network avail-

ability, even in the presence of network faults and performance degradation.

Fault management must thus be fault tolerant, for network faults should not

impair the system that is meant to solve them. Management can be broadly

subdivided into monitoring and control. Monitoring is the process employed

for obtaining information required about the components of a network, in

order to make management decisions and subsequently control their behav-

ior. In the previous chapter we introduced system-level diagnosis for fully

connected networks applied for LAN fault management. In this chapter we

present a fault-tolerant approach for non-broadcast network fault-monitoring

also based on distributed system-level diagnosis.

As we have discussed, current SNMP-based fault-management systems

are based on the manager-agent model, in which a fixed manager station

queries a set of agents for management information. This centralized scheme

is inherently unreliable, for if the manager becomes faulty, network manage-

ment stops on the entire network.

83
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System-level diagnosis offers a theoretically sound and practical frame-

work for fault-tolerant network monitoring: even if any part of the network

becomes faulty, fault-free nodes are able to diagnose the system.

In the previous chapter the Hi-ADSD algorithm for LAN fault-diagnosis

was introduced, and also its implementation based on SNMP. In this algo-

rithm, the number of tests is the same as in ADSD, but the testing topology

is initially a hypercube, and diagnosis is reduced to log2 N testing rounds.

Those algorithms employ a distributed strategy for fault management, in

which a collection of network nodes perform network diagnosis, and the

human manager may attach an interface to any of these nodes to receive

diagnostic information.

In this chapter we expand those results by introducing an algorithm for

diagnosis in non-broadcast networks, applied to point-to-point network fault

management. In the algorithm, a node tests links periodically, and dissem-

inates link time-out information to all its fault-free neighbors in parallel.

Upon receiving link time-out information a node computes which portion of

the system has become unreachable. This new approach to diagnosis, based

on link time-out and node unreachability is closer to reality than previous

approaches. There are two reasons for this improvement: (1) it is impossible

to distinguish a node fault from the fault on all the paths to that node; (2) in

previous algorithms, two fault-free nodes in disconnected components keep

the old status for each other, which may not correspond to reality.

A node joining the algorithm disseminates information about itself, and

collects diagnostic information from its neighbors. The diagnosis latency of

the algorithm is optimal, as nodes report events in parallel, and latency is

proportional to the diameter of the network. The dissemination step includes

mechanism to reduce the number of redundant messages introduced by the

parallel strategy. We present a MIB for the algorithm, and a SNMP-based

implementation. The evaluation of algorithm’s impact on network perfor-

mance shows that the amount of bandwidth required is less than 0.1% for

popular link capacities. We conclude demonstrating the integration of LAN
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and WAN fault diagnosis into a unified framework.

The rest of the chapter is organized as follows. Section 5.2 reviews system-

level diagnosis, including algorithms for LAN fault management. Section

5.3 reviews algorithms for diagnosis on networks of general topology, and

includes the specification of the new algorithm for non-broadcast networks.

In section 5.4 we present a MIB and a SNMP-based implementation of the

algorithm. In section 5.5 we evaluate its impact on network performance.

Section 5.6 concludes the chapter, showing the integration of LAN and WAN

fault diagnosis.

5.1 System-Level Diagnosis for Networks of

General Topology

In this section we review previously published algorithms for diagnosis in

non-broadcast networks, which can be applied for point-to-point network

fault management. We introduce our new algorithm in the next section.

In [51] Bagchi and Hakimi introduced an algorithm for system-level di-

agnosis in networks of general topology. Initially each fault-free node knows

only about its own state, and of its physical neighbors. Fault-free processors

form a tree-based testing graph. Diagnostic messages are sent along the tree.

The number of messages required by this algorithm to achieve diagnosis is

shown to be optimum. Unfortunately the algorithm is not executed on-line,

i.e., no processor can become faulty or be repaired during the execution of

the algorithm. This characteristic rules out the application of the algorithm

for WAN fault diagnosis.

In [57, 52] Bianchini et.al. introduced and evaluated through simulation

the Adapt algorithm. The Adapt algorithm can be executed on-line: when a

given node becomes faulty, a new phase begins in which other nodes reconnect

the testing graph. The underlying testing assignment of Adapt is a minimally

strongly connected digraph over the physical network. To build the testing

graph, Adapt employs a distributed procedure that requires massive amounts
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of large diagnostic messages to be exchanged among the nodes.

Recently Rangarajan et.al. [50] introduced another algorithm for system-

level diagnosis for networks of arbitrary topology that can be executed on-

line. The algorithm, which we call here RDZ, for the author’s initials, builds

a testing graph that guarantees the optimal number of tests, i.e., each node

has one tester. Furthermore it presents the best possible diagnosis latency by

using a parallel dissemination strategy. Whenever a node detects an event,

it sends diagnostic information to all its neighbors, which in turn send it to

all their neighbors, and so on.

A

B

C

D

Figure 5.1: A jellyfish fault configuration.

Although the RDZ algorithm presents the best possible diagnosis latency,

and the best possible number of testers per node, it does not diagnose link

faults and also a node fault configuration which the authors call jellyfish

faulty node configuration. In this fault configuration, between two connected

components there is a set of nodes such that part of those nodes test each

other in a cyclic fashion, and other tests emanate from the cycle. If all

nodes in the jellyfish become faulty simultaneously, nodes in the connected

components won’t diagnose that situation. It should be noted that a jellyfish

may involve from one to an arbitrary number of nodes.

Consider figure 5.1. All nodes form a jellyfish, in which there is a cycle

(node A and node B) and tests emanating from the cycle (from node B to

node C to node D). If both nodes A and B become faulty, nodes C and D

won’t be able to diagnose the fault. The same is true if nodes A, B, and

C become faulty, i.e., node D doesn’t detect the event. The RDZ algorithm

cannot be applied for network fault monitoring, for it is unacceptable to have

an arbitrarily large portion of the network to become faulty in an undetected
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fashion.

5.2 A New Algorithm for Diagnosis of Non-

Broadcast Networks

In this section, we introduce a new algorithm that diagnoses link time-outs,

and node reachability, using the minimum number of tests, i.e. one per link,

and also presenting the optimal latency. Before introducing the algorithm,

consider figure 5.2. In fault situation A the node is fault-free, but all links

leading to that node are faulty, in fault situation B, the node itself is faulty.

From test results it would be impossible for any other node in the system to

determine which is the actual situation. Our algorithm is based on this fact:

a link may time-out to a test, and if all links to a given node have timed-out,

then the node is unreachable. Thus links may be in one of two states fault-

free, timed-out and nodes may be fault-free or unreachable. This approach to

fault diagnosis on wide-area networks is closer to reality, for links are usually

made up of not only wires but may also involve a number of network devices,

hubs and gateways.

Fault Situation A Fault Situation B

Figure 5.2: Ambiguous fault configurations.

To keep the number of tests minimum, there is one tester per link. As a

link always connects two nodes, and nodes have unique identifiers, the node

with the highest identifier tests the link at each testing interval. If the link

times-out, i.e., the neighbor doesn’t reply to the test, and in the past testing

interval it did, then there is a new fault event. Analogously, if the link has
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timed-out in the past testing interval, and it does carry a reply this time,

then there is a repair event.

The algorithm employs a two-way test. This guarantees that the jellyfish

fault configuration is always detected, even keeping the minimum number

of tests. When node A is testing the link to node B, node A gets the local

time at B, and stores that result on B. In this way, not only node A knows

about the state of B, but also node B can monitor the tester activity. If

a threshold is decided for the maximum interval between link tests, then a

node can time-out the tester whenever the threshold is exceeded. When a

node detects a link time-out or a tester fault, it starts or continues testing

the link until it ceases to time out, such that, when the link recovers again,

only the node of highest identifier tests the link.

Each node keeps a state counter for each link in the system, which is

initially zero, and is incremented at each new event information received

for that link. This permits a node to identify redundant messages. After

a new event is discovered, each node propagates event information to all

neighbors. This parallel dissemination strategy is the same employed by the

RDZ algorithm. Besides the nodes identifier, and the status counter, each

diagnostic message carry information about which nodes have processed the

message. In this way, the number of redundant messages is reduced, and

messages do not cycle in the network. After receiving a message, each node

appends its own identifier to the list of nodes that has processed the message.

Furthermore it appends the identifiers of the neighbors to which the message

was already sent. For a full discussion and evaluation of this approach please

refer to [50]. It should be clear that, as messages are short, the impact of

this strategy on network performance is small. In section 5 we evaluate the

percentage of link bandwidth required to run the algorithm.

After a node receives information about a link event, it runs an algo-

rithm (like the breadth-first tree) to compute the system connectivity, thus

discovering which portions have become reachable or unreachable.

The data structures of the algorithm are thus:
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• A Link table indexed by link identifier, containing a status counter for

the link, and the last time the link was tested. The counter is initially

zero, and an even value indicates a fault-free state; The last-test-time

is updated only on nodes connected to the link and such that the node

doesn’t test the link, but its neighbor;

• A Link-Events table, containing at each entry the link identifier, the

state counter of the link, and a list of nodes that have already processed

the message as seen by the sending node.

The algorithm in pseudo-code is:

BEGIN

/* at node i */

DO FOREVER

FOR each link i-j, that connects node i to node j

IF (i > j) OR (node j is faulty)

THEN test link i-j; /* get local time at node j */

IF link i-j is fault-free

THEN set last-time-tested on j;

IF there is a new event

THEN add event to new-event table;

ELSE /* check link tested by neighbors */

IF last-time-tested > testing interval threshold

THEN add event to Link-Events table;

FOR each entry in Link-Events table

IF entry carries new information

THEN update link counters;

FOR each neighbor k of node i

IF k has not received the message

THEN set event information to k’s new-event table;

compute node reachability;

SLEEP(testing interval)

END;
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5.2.1 An Example Execution

Consider the example system in figure 5.4. Initially all links and nodes are

fault-free. Each node starts testing links as depicted by arrows, and exchange

test information with neighbors. Eventually each node receives information

about all links.

1 2

3

4

5

6

7 8 9

Figure 5.3: The testing assignment on an example non-broadcast network.

Now consider the first event depicted in figure 5.4, in which link 3-5 is

faulty and times-out. This time-out will be detected by node 5, and imme-

diately disseminated to node 7. This in turn will disseminate to node 8 (and

from there to node 9), and node 6. Node 6 disseminates information to node

4, and from there to node 3, node 2 and node 1. Node 2 disseminates the

information to node 3. Now, if node 3 timed-out out the tester (link 3-5)

before the information arrives from node 2, then node 3 will also disseminate

information on the time-out. If a node, say node 2, receives two diagnostic

messages about the same event it will only disseminate the first of them, be-

cause the second is recognized as old information. Thus, the highest number

of messages per event per link is two. After all nodes receive and process

diagnostic messages, they run an algorithm to compute system connectivity,

and conclude that all nodes are still connected.

In the second event depicted in figure 5.4, node 4 became faulty. Node 6

detects a time-out on link 6-4, and after the testing threshold expires, node

2 and node 3 detect time-outs on links 4-2 and 4-3 respectively. The system

now is divided into two connected components, one consisting of node 1,

node 2 and node 3, the other consisting of node 5, node 6, node 7, node

8 and node 9. As on each component a node detects and disseminates the

event, diagnostic information will eventually reach every fault-free node in
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1 2

3

4

5

6

7 8 9

2nd Event:

Node 4 becomes faulty

1st Event:

Link 3-5 Times Out 3rd Event:

Link 5-7 Times Out

4th Event:

Link 8-9 Times Out

Figure 5.4: A series of events occur in the network.

the system.

Now consider the third event, link 7-5 becomes faulty and times-out. The

resulting system has 3 connected components, the first consisting of node 1,

node 2, and node 3; the second of node 5 alone; and the third of node 6, node

7, node 8, and node 9. In the first component not one node detects the event,

because it is already disconnected from the rest of the system. In the second

component, node 5 eventually times out on the test of link 7-5 and realizes

it is disconnected from the system, i.e., every other node is unreachable. At

the third component, node 7 initially detects link 7-5 time-out and the event

is disseminated to the other nodes in the component.

If still another link, 9-8, becomes faulty and times-out, node 9 detects the

event and recognizes it is disconnected from the system. Node 8 times-out on

the testing threshold of link 9-8, and disseminates event information to node

7 and node 6. The other nodes in the network are already in disconnected

components.

After these events, when faults are repaired, nodes testing corresponding

links will detect the events, and disseminate the information to other nodes in

their connected components. Eventually the whole system becomes a unique

connected component, and every node receive diagnostic information about

all links.
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Correctness

Here we give an informal discussion of the correctness of the algorithm. Con-

sider a connected component of the system, made up of fault-free nodes and

such that between any pair of those nodes there is a fault-free path. The

neighborhood of the component is defined as the set of links that timed-out

in the previous testing-round. Clearly, any new event in the component or

in its neighborhood is detected by nodes in the component. This is assured

by the testing strategy, in which there is a two-way test on each link from

any node of the component. Now consider that one event has occurred. If

a fault-free node or link has become faulty, then one node in the compo-

nent will detect the fault, and forward it to other neighbors. As each node

forwards new information to all neighbors, information will eventually reach

all nodes in the component. If the fault breaks the component in two, then

nodes on both components will detect a link time-out, and disseminate the

information on their respective components. Now consider a repair event: if

a test succeeds on a link that had been timing-out, the two nodes (tested

and tester) exchange diagnostic information, and disseminate this informa-

tion to their neighbors. Thus event information is always disseminated to

every fault-free node in the component.

Event counters guarantee that old information is recognized as such. Fur-

thermore, those links that have odd event-counters are timed-out links and

those that have even-counters are fault-free links. This is guaranteed because

a counter is only incremented when a new event happens, from timed-out to

fault-free or opposite. As the counter is initially zero, for a fault-free initial

status, and when it times-out it is increased to 1 and so on, an even value

will always indicate a fault-free state, and an odd value a faulty state.

5.3 SNMP MIB and Implementation

In this section we present an implementation of the algorithm for non-

broadcast network fault management based on SNMP. Each node running
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the algorithm keeps two tables. The first table keeps information about each

link in the network: its identifier, the state counter, and the time it was

tested. The time field is only used by nodes that test a link to implement

the two-way testing strategy. We give below the corresponding ASN.1 table.

LinkState OBJECT-TYPE

SYNTAX SEQUENCE OF LinkStateEntry

ACCESS not-accessible

STATUS mandatory

DESCRIPTION

"Array that contains link status information."

::= { diagnosis 1 }

linkStateEntry OBJECT-TYPE

SYNTAX LinkStateEntry

ACCESS not-accessible

STATUS mandatory

DESCRIPTION

"Each entry of shows if a link is timing-out

or fault-free, according to the status counter"

INDEX { linkID }

::= { LinkState 1 }

LinkStateEntry ::=

SEQUENCE {

linkID DisplayString,

StatusCounter Counter,

TestedTime TimeTicks }

The second table, LinkEvents, is a dynamic table, in which event infor-

mation is added by the local agent and its neighbors. After each testing

interval, all entries in the table are processed. Each entry contains the iden-

tifier of the link that suffered the event, the timestamp for that event, and a



Non-Broadcast Network Fault-Monitoring Based on System-Level Diagnosis 94

string containing the identifiers of all the nodes that have already processed

the message. The ASN.1 table is given below.

LinkEvents OBJECT-TYPE

SYNTAX SEQUENCE OF linkEventsEntry

ACCESS not-accessible

STATUS mandatory

DESCRIPTION

"This is a dynamic table to which information

about new link events are added."

::= { diagnosis 2 }

linkEventsEntry OBJECT-TYPE

SYNTAX LinkEventsEntry

ACCESS not-accessible

STATUS mandatory

DESCRIPTION

"Each entry carries the link identifier,

the status counter for a new event, and

the identifiers of nodes that know the event"

INDEX { linkID }

::= { LinkEvents 1 }

LinkEventsEntry ::=

SEQUENCE {

LinkID DisplayString,

StatusCounter Counter,

Path DisplayString }

In our implementation nodes set neighbors tables, and thus security mea-

sures must be taken, specifically assignment of restricted access permission.

It should be clear that from the LinkState table that the complete network

configuration is available to each node, which can calculate the system con-

nectivity at any time. Works on generating network configuration informa-
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tion automatically have been reported [37], and can be employed to build

the LinkState table.

5.4 Impact on Network Performance
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Figure 5.5: Amount of link bandwidth required to run diagnosis.

At each testing interval, each link carries one message from the tester to

the neighbor. Furthermore, for any new event in the network, each link will

carry usually one, and at most two messages about the event. The reason

is that after updating the state counter, a node does not forward any other

message that contains known information. The link will carry two messages

only if both nodes send information at the same time. Thus, the total number

of messages per event required by the algorithm is at most 2 ∗ L, where L is

the number of links.

The graph in figure 5.5 shows the impact of the algorithm on network

performance, by showing the percentage of link bandwidth required by di-

agnostic messages. The graph shows links of different capacities, and results

are shown for different testing intervals, of 10 seconds, 20 seconds, and 30

seconds. We consider a fault rate λ of 0.001. The size of SNMP messages
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assumed is 128 bytes. Results show the percentage of bandwidth required is

always less than 0.1%, on links from 28.8Kbps to 1Mbps.

5.5 Conclusions

In this chapter we presented a new distributed algorithm for system-level di-

agnosis on non-broadcast networks. The purpose of the algorithm is to allow

each node to independently detect which portions of the network are faulty

or unreachable. We show that in some cases it is impossible to distinguish

between the two cases.

A node running the algorithm executes link tests at each testing interval.

The algorithm employs the minimum number of tests, i.e., one per link. Of

the two nodes connected by a link, the one with highest identifier is the link

tester. We assume nodes have local memory, and tests are built in such a

way that both ends of a link detect a link time-out in case of link or one node

failure.

Upon detecting a new event, diagnostic information is disseminated in

parallel, and the algorithm has the minimum diagnosis latency, i.e., propor-

tional to the diameter of the network. Mechanisms are included to reduce

the amount of redundant messages. As each message is small, containing

information about one event, and any link carries at most two messages, the

impact of the algorithm on network performance is small. A MIB and SNMP

implementation were presented.

As future work, there is a pressing need for integrated approaches to do

internet fault monitoring. This approach can be achieved by running spe-

cific algorithms for diagnosis on broadcast networks (LAN’s), like Hi-ADSD,

together with the algorithm introduced in this paper. Consider the small

internet in figure 5.6. Nodes with identifiers from 1 to 9 are connected to

broadcast networks. Node A, node C, and node D have a link to a broad-

cast network, and to a non-broadcast network. Node B takes part only in

the non-broadcast network. For the two algorithms to run cooperatively, it
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Figure 5.6: A small internet.

is sufficient that nodes only on a broadcast network run an algorithm for

diagnosis on the LAN to which it belongs; nodes not on a non-broadcast

network run the algorithm for diagnosis on that network; nodes that are on

a broadcast network, but also have a link to another network must run both

a LAN diagnosis algorithm, and a WAN diagnosis algorithm. This means

these nodes execute tests according to the two algorithms, and also carry the

necessary data structures to hold information about the entire system. In

this way, a truly fault-tolerant network management system can be deployed,

in which any fault-free node can diagnose the whole system.



Chapter 6

Conclusion

There is a pressing need for dependable network management systems. In

current systems, a fault in the network may cause a partial collapse of the

management entity. Considering that fault management is a key functional

area of network management systems, this situation constitutes a paradox:

the system is meant to solve faults, but those same faults impair the sys-

tem. To tackle this problem, we have worked on algorithms and tools for

fault-tolerant network monitoring. All theoretical work developed has been

implemented in the SNMP framework, which was briefly described in chapter

2. SNMP was selected because it is currently widely available and deployed.

However, the proposed solutions are in no way limited to this framework.

In chapter 3, we presented an approach to improve the dependability of

centralized systems based on the manager-agent paradigm. When there is a

fault on the route from the NMS to an agent or to a managed network, the

manager station is unable to determine the state of part of the network. As

network management is an application layer entity, it depends on the net-

work layer for all routing decisions. To solve this problem, we proposed that

the NMS use SNMP proxies to reach an agent, whenever it gets unreach-

able through the network layer route. In this way, a proxy can be used to

bridge communications between the manager and agents. Algorithms were

developed to locate proxies for each agent. The impact of this solution on

98
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the steady-state availability of the system was shown. An SNMP MIB im-

plementation of the proxy was proposed that allows any agent to become a

proxy at virtually no cost. For the future, we plan to work on expanding

the concept of the proxy as the basis for a distributed network management

system.

As network management is mission-critical, network monitoring must be

fault tolerant. In other words, no matter how many nodes in the network

were faulty, management would still be running on the fault-free nodes. To

achieve this objective we proposed the application of distributed system-level

diagnosis to network fault management. In chapter 4, we introduced system-

level diagnosis and the Hierarchical Adaptive Distributed System-Level Di-

agnosis (Hi-ADSD) algorithm. Hi-ADSD is a fully distributed algorithm that

has diagnosis latency of at most (log2N
2) testing rounds for a network of N

nodes. Nodes are mapped into progressively larger logical clusters, so that

each node executes tests in a hierarchical fashion. The algorithm assumes no

link faults and a fully-connected network, i.e. a LAN, in which all nodes share

the broadcast medium to communicate. There are no bounds on the number

of faults. Both the worst-case diagnosis and correctness of the algorithm

were formally proved. Experimental results were given through simulation

of the algorithm for large networks. Practical results were given from an

implementation of the algorithm on a 37-node Ethernet LAN using SNMP.

For the future, we plan to study the behavior of Hi-ADSD under a dynamic

fault situation. Another interesting extension is the study of a synchronous

version of Hi-ADSD.

In chapter 5, we proposed a new algorithm for system-level diagnosis of

non-broadcast networks. This algorithm can be applied for on-line diagnosis

of a WAN. In the algorithm, nodes test links periodically, and disseminate

link time-out information to all its fault-free neighbors in parallel. Upon

receiving link time-out information, a node computes which portion of the

network has become unreachable. This approach is closer to reality than

previous algorithms, for it is impossible to distinguish a faulty node from a
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node to which all routes are faulty. The diagnosis latency of the algorithm

is optimal, as nodes report events in parallel, and latency is proportional to

the diameter of the network. The dissemination step includes mechanisms to

reduce the number of redundant messages introduced by the parallel strat-

egy. We present a MIB which can be used to implement the algorithm using

SNMP. The evaluation of the algorithm’s impact on network performance

shows that the amount of bandwidth required is less than 0.1% for popular

link capacities. We proposed a MIB to implement the algorithm. The com-

bination of LAN and WAN diagnosis on a solution for diagnosis of internets,

which are a collection of LAN’s connected through a WAN is left as future

work.



Bibliography

[1] Y.Yemini. The OSI network management model. IEEE Communications

Magazine, pages 20–29, May 1993.

[2] K. Terplan. Communication Networks Management. Prentice-Hall, En-

glewood Cliffs, NJ, 1992.

[3] W. Stallings. SNMP, SNMPv2, and CMIP. The Practical Guide to

Network Management Standards. Addison Wesley, Reading, MA, 1993.

[4] M.T. Rose. The Simple Book. Prentice-Hall, Englewood Cliffs, NJ,

second edition, 1994.

[5] P. Jalote. Fault Tolerance in Distributed Systems. Prentice-Hall, Engle-

wood Cliffs, NJ, 1994.

[6] S. Katker and M. Paterok. Fault isolation and event correlation for

integrated fault management. In Proc. IFIP/IEEE Integrated Network

Management V (IM’97), pages 583–596, 1997.

[7] M.A. Rocha and C. Westphall. Proactive management of computer

networks using artificial intelligence agents and techniques. In Proc.

IFIP/IEEE Integrated Network Management V (IM’97), pages 610–621,

1997.

[8] F. Preparata, G. Metze, and R.T. Chien. On the connection assign-

ment problem of diagnosable systems. IEEE Transactions on Electronic

Computers, 16(6):848–854, 1968.

101



Conclusion 102

[9] S.L. Hakimi and K. Nakajima. On adaptive system diagnosis. IEEE

Transactions on Computers, 33(3):234–240, 1984.

[10] S.H. Hosseini, J.G. Kuhl, and S.M. Reddy. A diagnosis algorithm for

distributed computing systems with dynamic failure and repair. IEEE

Transactions on Computers, 33(3):223–233, 1984.

[11] R.P. Bianchini and R. Buskens. An adaptive distributed system-level

diagnosis algorithm and its implementation. In Proc. FTCS-21, pages

222–229, 1991.

[12] R.P. Bianchini and R. Buskens. Implementation of on-line distributed

system-level diagnosis theory. IEEE Transactions on Computers,

41(5):616–626, 1992.

[13] G. Berthet. Extension and Application of System-Level Diagnosis The-

ory for Distributed Fault Management in Communication Networks.

PhD thesis, Ecole Polytechnique Federale de Lausanne, 1996.

[14] M.T. Rose and K. McCloghrie. Structure and identification of man-

agement information for TCP/IP-based internets. RFC 1155, PSI Inc.,

May 1990.

[15] J.D. Case, M.S. Fedor, M.L. Schoffstall, and J.R. Davin. A simple

network management protocol. RFC 1157, SNMP Research Inc., May

1990.

[16] K. McCloghrie and M.T. Rose. Management information base for net-

work management of TCP/IP-based internets. RFC 1213, Hughes LAN

Systems, March 1991.

[17] W. Stallings. Network Management. IEEE Computer Society Press, Los

Alamitos, CA, 1993.

[18] M. Sloman. Network and Distributed Systems Management. Addison

Wesley, Reading, MA, 1994.



Conclusion 103

[19] L. Steinberg. Techniques for managing asynchronously generated alerts.

RFC 1224, IBM Corporation, May 1991.

[20] J.D. Case, K. McCloghrie, M.T. Rose, and S.L. Waldbusser. Introduc-

tion to version 2 of the internet-standard network management frame-

work. RFC 1141, SNMP Research Inc., April 1993.

[21] D. Comer. Internetworking with TCP/IP - Vol.1; Principles, Proto-

cols and Architecture. Prentice-Hall, Englewood Cliffs, NJ, 2nd edition

edition, 1991.

[22] E.P. Duarte Jr., G. Mansfield, and et al. Reliable network management

systems. In Proc. 9th IEEE International Conference on Information

Networking, 1994.

[23] A. Ben-Ari, A. Chadna, and U. Warrier. Network management of

TCP/IP networks: Present and Future. IEEE Network Magazine, July

1990.

[24] G. Mansfield and et al. An SNMP-based expert network management

system. The Institute of Eletronics, Information and Communication

Engineers Transactions, August 1992.

[25] C. Wang and M. Schwartz. Fault detection with multiple observers.

IEEE/ACM Transactions on Networking, 1(1), February 1993.

[26] G. Mansfield, E.P. Duarte Jr., and et al. Vines: Distributed algorithms

for a Web-based distributed network management system. In Proc. ACM

WWCA97 Lecture Notes in Computer Science. Springer Verlag, 1997.

[27] W. Norton. Network discovery algorithms for the NSFNET. ConneX-

ions, 1993.

[28] C. Alaettinoglu, A. Shankar, K. Dussa-Zieger, and I. Matta. Design and

implementation of mars: a routing testbed. Internetworking: Research

and Experience, 5:17–41, 1994.



Conclusion 104

[29] R. Sedgewick. Algorithms in C. Addison-Wesley, Reading, MA, 1990.

[30] C. Das, T. Kreulen, M. Thazhuthaveethil, and L. Bhuyan. Dependability

modeling for multiprocessors. IEEE Computer, 23(10), November 1990.

[31] B. Johnson. Design and Analysis of Fault-Tolerant Digital Systems.

Addison-Wesley, Reading, MA, 1989.

[32] A. Allen. Probability, Statistics, and Queueing Theory with Computer

Science Applications. Academic Press, San Diego, CA, 2nd edition edi-

tion, 1990.

[33] V. Paxson. End-to-end routing behavior in the Internet. In Proc. ACM

SIGCOMM, 1996.

[34] E.P. Duarte Jr., G. Mansfield, T. Nanya, and S. Noguchi. WAN event-

driven diagnosis based on SNMP delegates. FTS Technical Report,

IEICE, 1997.

[35] G. Mansfield, T. Johannsen, and M. Knopper. Charting networks in the

x.500 directory. RFC 1609, AIC Labs, 1994.

[36] T. Johannsen, G. Mansfield, M. Kosters, and S. Sataluri. Representing

ip information in x.500 directory. RFC 1608, AIC Labs, 1994.

[37] G. Mansfield G., K. Jayanthi, and et al. Techniques for automated

network map generation using SNMP. In Proc. INFOCOM’96, 1996.

[38] G. Mansfield and et al. Mapping communication networks in the direc-

tory. Computer Networks and ISDN Systems, 26(3), November 1993.

[39] S.L. Hakimi and A.T. Amin. Characterization of connection assignments

of diagnosable systems. IEEE Transactions on Computers, 23(1):86–88,

1974.

[40] J.G. Kuhl and S.M. Reddy. Distributed fault-tolerance for large multi-

processor systems. In Proc. 7th Annual Symp. Computer Architecture,

pages 23–30, 1980.



Conclusion 105

[41] J.G. Kuhl and S.M. Reddy. Fault-diagnosis in fully distributed systems.

In Proc. FTCS-11, pages 100–105, 1981.

[42] R.P. Bianchini, K. Goodwin, and D.S. Nydick. Practical application

and implementation of system-level diagnosis theory. In Proc. FTCS-

20, pages 332–339, 1990.

[43] E.P. Duarte Jr. and T. Nanya. Multi-cluster adaptive distributed

system-level diagnosis algorithms. Technical Report FTS 95-73, IEICE,

1995.

[44] M. Malek and J. Maeng. Partitioning of large multicomputer systems

for efficient fault diagnosis. In Proc. FTCS-12, pages 341–348, 1982.

[45] A. Bagchi. A distributed algorithm for system-level diagnosis in hyper-

cubes. In Proc. 1992 IEEE Workshop on Fault-Tolerant Parallel and

Distributed Systems, pages 106–113, 1992.

[46] M. Barborak and M. Malek. Partitioning for efficient consensus. In Proc.

26th Hawaii International Conference on System Sciences, Vol. II, pages

438–446, 1993.

[47] J. Altman, F. Balbach, and A. Hein. An approach for hierarchical

system-level diagnosis of massively parallel computers combined with

a simulation-based method for dependability analysis. In Proc. 1st Eu-

ropean Dependable Computing Conference, LNCS 852, pages 371–385,

1994.

[48] G. Masson, D. Blough, and G. Sullivan. Fault-Tolerant Computer Sys-

tem Design, chapter System Diagnosis. Prentice-Hall, Englewood Cliffs,

NJ, 1996.

[49] C.-L. Yang and G.M. Masson. Hybrid fault-diagnosability with unreli-

able communication links. In Proc. FTCS-16, pages 226–231, 1986.



Conclusion 106

[50] S.Rangarajan, A.T. Dahbura, and E.A. Ziegler. A distributed system-

level diagnosis algorithm for arbitrary network topologies. IEEE Trans-

actions on Computers, 44:312–333, 1995.

[51] A. Bagchi and S.L. Hakimi. An optimal algorithm for distributed

system-level diagnosis. In Proc. FTCS-21, June 1991.

[52] M. Stahl, R. Buskens, and R. Bianchini. Simulation of the adapt on-line

diagnosis algorithm for general topology networks. In Proc. IEEE 11th

Symp. Reliable Distributed Systems, October 1992.

[53] E.P. Duarte Jr., G. Mansfield, T. Nanya, and S. Noguchi. Non-broadcast

network diagnosis based on system-level diagnosis. In Proc. IFIP/IEEE

Integrated Network Management V, pages 597–609, 1997.

[54] E.P. Duarte Jr. and T. Nanya. Application of distributed system-level

diagnosis for SNMP-based internet fault management. In Proc. IEEE

ICOIN’95, pages 474–481, 1995.

[55] M.H. MacDougall. Simulating Computer Systems: Techniques and

Tools. The MIT Press, Cambridge, MA, 1987.

[56] J. Swoboda and et al. WILMA - Knowledge-Based LAN Manage-

ment. Technische Universitadt Munchen, http://www.ldv.e-technik.tu-

muenchen.de/dist/WILMA/.

[57] M. Stahl, R. Buskens, and R. Bianchini. On-line diagnosis on general

topology networks. In Proc. Workshop Fault-Tolerant Parallel and Dis-

tributed Systems, July 1992.


