
Received 25 February 2007
Revised 5 March 2007

Copyright © 2007 John Wiley & Sons, Ltd. Accepted 18 March 2007

ANEMONA: a programming language for network

monitoring applications

Elias Procópio Duarte Jr*,†,1, Martin A. Musicante2 and Henrique Denes H. Fernandes1

1Federal University of Paraná, Department of Informatics, PO Box 19018, Curitiba 81531-990 PR, Brazil e-mail: elias@inf.ufpr.br
2Federal University of Rio Grande do Norte, Department of Computer Science, Campus Universitário Lagoa Nova,

Natal 59072-970 RN, Brazil

SUMMARY

This work presents ANEMONA: A language for programming NEtwork MONitoring Applications. The compilation
of an ANEMONA program generates code for configuring a policy repository and the corresponding policy deploy-
ment and event monitoring. The language allows the definition of expressions of managed objects that are moni-
tored, as well as triggers that when fired may indicate the occurrence of associated events, which are also defined
by the language. A translator for the language was implemented that generates code for configuring both the policy
repository and deployment. The current implementation of the language employs the Expression MIB and Event
MIB. Experimental results are presented, including an ANEMONA program that detects TCP Syn Flooding attacks,
and a program for detecting steep variations in the utilization of monitored links. Copyright © 2007 John Wiley &
Sons, Ltd.

1. INTRODUCTION

As current network management systems are responsible for monitoring and controlling increasingly
large and complex networks and systems, distributing management tasks is often required. The policy-
based management paradigm [1–3] has been seen as the architecture of choice for dealing with the new
challenges and requirements. Policy-based network management provides the expected functionality,
and at the same time has the potential to keep a low impact on network performance while increasing
the network’s dependability. This work describes the ANEMONA (A NEtwork MONitoring Application)
language. ANEMONA is a simple programming language that allows the definition of policies which are
expressions of managed objects, stored at a policy repository [4]. The language is used to define condi-
tions related to monitored objects that when detected cause the generation of alarms or the execution of
predefined procedures. Through ANEMONA it is possible to generate code for specifying, deploying
policies and monitoring the corresponding events within the Internet standard SNMPv3 (Simple Network
Management Protocol version 3) framework.

The SNMPv3 management architecture defines management entities that fit a distributed policy-based
management paradigm [5]. Management entities may assume different roles, keeping a Management
Information Base (MIB) that provides both an interface to the data available at the entity and the behav-
ior of that entity.

In the current implementation of ANEMONA, we have employed two well-known but seldom
employed standards: the Expression MIB [6] and the Event MIB [7]. The Expression MIB allows the def-
inition and evaluation of expressions built from readings of managed objects. The Event MIB [7] defines

INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT
Int. J. Network Mgmt 2008; 18: 295–302
Published online 4 June 2007 in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/nem.655

*Correspondence to: Elias Procópio Duarte Jr, Federal University of Paraná, Department of Informatics, PO Box 19018, Curitiba
81531-990 PR, Brazil.
†E-mail: elias@inf.ufpr.br

a set of objects to be monitored and associated conditions: an event is triggered upon the occurrence of
a condition which causes either the emission of alarms or the execution of a procedure.

A compiler was developed for the language which generates code that configures both the Expression
MIB and Event MIB. The manual configuration of these MIBs is a hard task that requires the manager to
learn details of the internal details of those MIBs. By using ANEMONA the manager can easily use the
MIBs without needing to understand their internal structure or to write a long list of configuration
commands.

The rest of the paper is organized as follows. Section 2 describes the ANEMONA language, as well as
the proposed compiler. Section 3 describes the current implementation of the language, including descrip-
tions of both the Expression MIB and the Event MIB. Section 4 describes case studies, including an
ANEMOMA program that detects TCP Syn Flooding attacks and another program for determining a
steep increase in the utilization of a monitored link.

2. THE ANEMONA LANGUAGE

A program in ANEMONA has three main parts: a prologue defining the location of the agent to be con-
figured, a declarations part to define the managed objects, and a control part.

A program in ANEMONA has the form1:

watch ‹Monitor› using ‹Community›
‹Declarations›
begin
‹Commands›
end

The first line corresponds to the prologue. It contains just the watch directive. The ‘Monitor’ field must
contain the host in which the agent being configured is executed. The field ‘Community’ is mandatory.
ANEMONA ‘Declarations’ and ‘Commands’ are described below.

Declarations in ANEMONA contain directives of the form:

‹OID› is ‹Type›:‹sampling›

where ‘OID’ is an object identifier (being declared). The field Type defines the type of object, while the
field sampling corresponds to the sampling method used for the object. ANEMONA supports the prede-
fined types: Integer, OctetString, OID (object identifier), IPAddress, Counter32, Unsigned, TimeTicks and
Counter64. These types are a subset of those defined for SMI [8].

The sampling methods include absolute, delta and modified, corresponding respectively to absolute
values, delta values, and a Boolean, which is true if the object’s value is changed.

The control directives in ANEMONA include expressions (returning values), commands, macros, trig-
gers and function definitions. Each of these classes of directives is explained in the following subsections.

2.1 Expressions

ANEMONA possesses a rich set of expressions, including arithmetic, relational, Boolean, bit-wise, string
concatenation and conditional expressions.

Arithmetic operations include the four basic operations as well as integer modulo (%). Arithmetic oper-
ators can be applied to operands of the following types: Integer32, Counter32, Counter64, IpAddress,
Unsigned and TimeTicks. Arguments to the arithmetic operators can be of mixed types. Conflicts are
solved using the following rules, listed in order of precedence:

296 E. P. DUARTE JR, M. A. MUSICANTE AND H. D. H. FERNANDES

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2008; 18: 295–302
DOI: 10.1002/nem

1Reserved words and program syntax are written with this typeface, while nonterminals are written ‹like this›.

 10991190, 2008, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.655 by U
FPR

 - U
niversidade Federal do Parana, W

iley O
nline L

ibrary on [23/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

1. The unary subtraction ‘−’ always returns a value of type Integer32.
2. If both operands of a binary operator are of the same type, then the result of the operation will be

of that same type.
3. If one operand of a binary expression is of type Counter64, then the result of the operation will be

of type Counter64.
4. If one operand of a binary expression is of type IpAddress, then the result of the operation will be

of type IpAddress.
5. If one operand of a binary expression is of type TimeTicks, then the result of the operation will be

of type TimeTicks.
6. If one operand of a binary expression is of type Counter32, then the result of the operation will be

of type Counter32.
7. In all other cases, the result of the operation will be of type Unsigned.

Relational operators in ANEMONA include equality (==), inequality (!=), greater-than (>), greater-or-
equal-than (>=), less-than (<) and less-or-equal-than (<=). Their evaluation returns an Unsigned value.
They follow the rules of the C language.

Boolean operators include conjunction (and), disjunction (or) and negation (not). Their evaluation
returns an Unsigned value.

Bitwise operations include bit-wise and (AND), bit-wise or (OR), bit-wise not (NOT) and bit-wise exclu-
sive or (XOR). Both operands of these operators must be of the same type (which is also the type of the
result). The only permitted types for these expressions are OID and IPAddress.

For types OctetString and OID, the concatenation operation ‘+’ is defined. Both operands must be of
the same type.

ANEMONA defines some predefined functions for casting and information about objects. For instance,
the function Counter32(. . .) converts any integer value to the type Counter32. The function exists(. . .)
takes an object and returns an unsigned (representing a truth-value). This function indicates whether the
argument is a valid instance of an object.

Expressions can be grouped by using parentheses.

2.2 Macro Definitions

Macro definitions are used to bind an identifier (the name of the macro) to an object or to the result of
an expression. Macros can be used anywhere in the program, simplifying the programmer’s task.
However, the main use of macro definitions in ANEMONA is in order to reference the entries of the
results table on the Expression MIB. Macro names will reference those entries whose expressions are
defined within the program. After the execution of an ANEMONA program, the tool will report the name
of the object bound to each macro definition, so that the administrator can collect the result of interme-
diary expressions.

The syntax of macro definitions is given below:

bind ‹MacroName› to ‹Expression›

where ‹MacroName› is an identifier (the name of the macro) and ‹Expression› is any expression of the
language.

2.3 Basic Commands

The basic commands in ANEMONA include conditional statements, assignments and notifications.
Conditional statements in ANEMONA are implemented by an operation that keeps updated the value

of an object. The statement

if ‹Expression› then ‹Value1›
else ‹Value2›

rec by ‹OID | MacroName›

ANEMONA 297

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2008; 18: 295–302
DOI: 10.1002/nem

 10991190, 2008, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.655 by U
FPR

 - U
niversidade Federal do Parana, W

iley O
nline L

ibrary on [23/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

represents a conditional statement in which the object being updated is given by a macro name or an
object ID (appearing after the keyword rec by. The value of this object will become ‹Value1› or ‹Value2›,
depending on the truth-value of the expression.

Assignment commands in ANEMONA are implemented by the set primitive, whose syntax is given
as follows:

set ‹OID› at ‹IpAdd› using ‹Community› to ‹IntegerValue›

In this command, the value of the object ‹OID› will be changed to ‹IntegerValue›. The IP address and
community used by the object are mandatory.

Notice that the value to be assigned must be an integer.
Notifications in ANEMONA are signaled by using the directive notify, whose syntax is defined as

follows:

notify ‹IpAdd› ‹Community› ‹OID›

This command simply sends a notification to a given manager. The contents of the trap is given by an
object. Notice that the community is mandatory.

Triggers

Triggers in ANEMONA are implemented by the directive when, whose syntax is given as follows:

when ‹Expression› do
‹List of Commands›

end

The above command is implemented in such a way that when the guard of the command becomes
true then the list of commands is executed. This command is implemented by:

• programming the expression within the Expression MIB;
• for each command of the list, use the Event MIB to:

— configure a trigger to monitor the result of the expression;
— configure an event for each action to be taken.

3. THE CURRENT COMPILER

The ANEMONA system includes a compiler and a run-time system. The compiler was constructed using
standard techniques [9]. The run-time system is composed by an implementation of a subset of the Event
and Expression MIBs. ANEMONA is a front-end tool: it takes a higher-level description of the manage-
ment information and generates a set of basic operations, such as snmpget and snppset, to configure the
Expression and Event MIBs, described below.

The Expression MIB [6] allows the definition of expressions which are built with existing management
objects. After an expression is evaluated the result is available as a MIB object. Thus, the Expression MIB
is a way to create new, customized MIB objects for monitoring.

The Expression MIB supports three different types of sampling: absolute, delta (difference from one
sample to another), and changed (indicates whether or not the value of the object has changed since the
last sample). If there are no delta or changed values in an expression, the evaluation occurs on demand.
For expressions with delta or change values, the evaluation goes on continuously, every sampling inter-
val. In this case requesters get the value as of the last sample period.

The Expression MIB has three sections: Resource, for management of the MIB’s use of system resources;
Definition, which contains tables that define expressions; and Value, which contains values of evaluated
expressions.

298 E. P. DUARTE JR, M. A. MUSICANTE AND H. D. H. FERNANDES

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2008; 18: 295–302
DOI: 10.1002/nem

 10991190, 2008, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.655 by U
FPR

 - U
niversidade Federal do Parana, W

iley O
nline L

ibrary on [23/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

The Definition section contains the two main tables used to define expressions. The expression table,
indexed by expression owner and expression name, contains the parameters that apply to the entire
expression, such as the expression itself, the data type of the result, and the sampling interval if it con-
tains delta or changed values. The object table, indexed by expression owner, expression name and object
index within each expression, contains the parameters that apply to the individual objects that go into
the expression, including the object identifier and sampling type.

The syntax of expressions, as well as the procedure for MIB configuration is given in Kavasseri and
Stewart [6].

The Event MIB [7] allows a local or remote object to be monitored; when a trigger condition is met, an
action is executed, which is the generation of a notification or setting a MIB object, or both.

The MIB has four sections: triggers, objects, events, and notifications. Triggers define the conditions
that lead to events. Events may cause notifications. The trigger table lists what objects are to be moni-
tored and how, besides relating each trigger to an event. Other tables exist that define the type of test to
be done for the trigger. The objects table lists objects that can be added to notifications based on the
trigger, the trigger test type, or the event that resulted in the notification.

Two types of tests can be defined: Boolean and existence. A Boolean test requires the type of monitored
object to be integer, and the definition of a test. In the trigger section a reference value is defined and is
compared with the sampled value. If the execution of the comparison returns true, given the defined test,
then an event occurs. An existence test leads to an event when the monitored object instance exists, or
does not exist, or even if its value has changed since the previous sampling.

The event table defines what happens when an event is triggered: sending a notification, setting a MIB
object, or both. It has supplementary, companion tables for additional objects that depend on the action
taken. The notification section defines a set of generic notifications to go with the events.

The Expression MIB provides custom objects for the Event MIB [7]. A complex expression can be eval-
uated and then be subject to testing as an event trigger, resulting in an SNMP notification. Without these
capabilities such monitoring would be limited to the objects in predefined MIBs. The combination of the
Expression MIB and the Event MIB provide powerful tools for the self-management of large and complex
systems.

4. CASE STUDIES

This section describes two case studies, which consist of ANEMONA programs employed for practical
network monitoring, and experimental results obtained from their execution. The first program gener-
ates a notification for the administrator whenever a TCP SYN Flooding attack is detected. The second
program detects steep variations in the utilization of monitored links.

The environment in which experiments were executed for both case studies described here consisted
of Intel and AMD processor-based hosts running Linux, NET-SNMP [10] agents, our own implementa-
tions of both the Expression and Event MIBs, our ANEMONA translator, HTTP, FTP and telnetd servers.
The network connecting the hosts was a 100 Mb/s Ethernet.

4.1 The Detection of TCP Syn Flooding Attacks

In the attack known as TCP SYN Flooding a host is flooded with TCP connection request segments with
their flag SYN set, but an unreachable source IP address. The host then replies with a segment in which
flags SYN and ACK are set. The three-way handshake is never completed, and the host will not receive
any reply, as the timeout goes off. The number of connection requests may be enough to fill the request
queues, leaving the host’s services unavailable to process valid requests.

Program Neptune [11] was used in this case study in order to attack a host running an ANEMONA
program written to detect such an attack. Neptune generates segments with source and target addresses
and ports given by the user.

ANEMONA 299

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2008; 18: 295–302
DOI: 10.1002/nem

 10991190, 2008, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.655 by U
FPR

 - U
niversidade Federal do Parana, W

iley O
nline L

ibrary on [23/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

In order to detect an attack like this, object tcp.tcpAttemptFails may be used, which counts how
many times TCP changes from state SYN-SENT or SYN-RCVD to the state CLOSED, plus the number of
times it changes from state SYN-RCVD to state LISTEN. Since object tcp.tcpAttemptFails is a
counter, it was sampled as a delta, using intervals of 6 s, by using the Expression MIB configured by our
ANEMONA translator.

With the network under normal operation conditions, connections to FTP, HTTP and telnetd services
were established.

The first attack was issued against port 23, used by telnet. 5000 segments were generated, and we
obtained the delta values shown in Table 1. After 30s, the delta value of tcp.tcpAttemptFails reached
a steady state in 300. By the end of this attack, the absolute value of tcp.tcpAttemptFails was 4887.

Based on these results, we assigned 25 as the delta value for tcp.tcpAttemptFails, using intervals
of 6s between samples. The following ANEMONA program implements the application above:

watch: victim.inf.ufpr.br using private
tcp.tcpAttemptFails.0 is Counter32: delta
begin
when tcp.tcpAttemptFails.0 › 25
do
notify admin.inf.ufpr.br private tcp.tcpAttemptFails.0

end
end

The program above watches host victim.inf.ufpr.br sampling object tcp.tcpAttemptFails as
a delta. When the delta value from this object is greater than 25, a notification is sent to
admin.inf.ufpr.br, holding tcp.tcpAttemptFails. The actions produced by the translation of this
program are available in Denes et al. [12]. Considering a number of attacks observed, it took an average
of 7s for a notification to be generated.

4.2 Detection of Link Utilization Upsurge

This experiment consists of the execution of an ANEMONA program that generates a notification when
there is a quick, steep increase on the utilization of a link. In order to evaluate this solution, another
program that generates a stream of UDP (User Datagram Protocol) segments was employed. This
program sends a large number of UDP segments to a given destination process, increasing the utiliza-
tion of the communication link to that process.

SNMP objects ip.ipInReceives and ip.ipOutRequests count the number of IP datagrams
received by and sent to a given host. The summation of these two values was employed in order to
monitor the utilization of a given link. Since objects ip.ipInReceives and ip.ipOutRequests are
counters, they were sampled as delta, using intervals of 6 s. The following ANEMONA program samples
these objects as deltas, performs their summation and assigns the result to an instance of the Expression
MIB results table, called utilization.

300 E. P. DUARTE JR, M. A. MUSICANTE AND H. D. H. FERNANDES

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2008; 18: 295–302
DOI: 10.1002/nem

Time of the attack tcp.tcpAttemptFails

(sampled as delta, interval 6 s)

0 s 0
6 s 0
12 s 170
18 s 300
24 s 301
30 s 300

Table 1. Case study 1: detection of a TCP Syn Flooding attack

 10991190, 2008, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.655 by U
FPR

 - U
niversidade Federal do Parana, W

iley O
nline L

ibrary on [23/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

watch: ahost.inf.ufpr.br using private
ip.ipInReceives.0 is Counter32: delta
ip.ipOutRequests.0 is Counter32: delta
begin
bind utilization to (ip.ipInReceives.0 + ip.ipOutRequests.0);

end

The program above was executed in two different situations: under a low network utilization and with
a heavy utilization. When the network load was low, representative values of number of datagrams
counted (achieved by summing ipInReceives and ipOutRequests, sampled as deltas), registered at inter-
vals of 1min, ranged from 80 to 88.

In order increase the network utilization, we established a number of FTP connections to the moni-
tored host. Initially one FTP session was established, and then two, three and four sessions.

To each new session, the number of datagrams transmitted through the network was computed three
times, at intervals on 1 min; results are shown in Table 2.

After that, the number of UDP datagrams was monitored In the beginning, the stream was monitored
in only one way, with the monitored host running the server and the client installed in another computer
of the network. Then, the stream was monitored in two ways, with servers and clients running in each
one of the hosts used. Table 3 shows representative values for the number of datagrams counted, using
intervals of 6 s, considering the stream generator running in one way and also in two ways.

Considering the results in Table 3, we chose 8000 as a critical value for the delta of the number of data-
grams. The program below samples ip.ipInReceives.0 and ip.ipOutRequests.0 as deltas and
performs their summation, assigning the result to an entry of the Expression MIBs table of results, called
utilization. When the value assigned to utilization is greater than the critical value, 8000 in this
case, a notification is sent to the specified host with the object instance assigned. In a representative result,
after 19s a notification was delivered to the monitored host.

watch: denes.cce.ufpr.br using private
ip.ipInReceives.0 is Counter32: delta
ip.ipOutRequests.0 is Counter32: delta
begin
bind utilization to (ip.ipInReceives.0 + ip.ipOutRequests.0);
when utilization › 8000

ANEMONA 301

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2008; 18: 295–302
DOI: 10.1002/nem

Number of FTP sessions

1 min interval 2 min interval 3 min interval

1 session 2055 2926 3003
2 sessions 3052 3244 2762
3 sessions 3686 3318 3837
4 sessions 3796 3569 3230

Table 2. Case study 2: traffic generated by FTP sessions

Interval One-way Two-way

0 s 90 86
6 s 16 091 96 463
12 s 55 483 57 489
18 s 81 360 62 784
24 s 65 859 125 463
30 s 78 524 124 944

Table 3. Case study 2: number of IP datagrams counted

 10991190, 2008, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.655 by U
FPR

 - U
niversidade Federal do Parana, W

iley O
nline L

ibrary on [23/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

do
notify admin.inf.ufpr.br private utilization

end
end

The actions generated by the translation of the programs in this paper are available in Denes et al. [12],
where the reader can check the large number of complex commands required to manually configure the
Expression and Event MIBs, which are automatically generated by compiling ANEMONA programs.

5. CONCLUSIONS

ANEMONA is a language for programming network monitoring applications. A compiler was devel-
oped that configures a policy repository and the corresponding policy deployment and event monitor-
ing. In the current implementation a compiler was developed that generates code for configuring both
the Expression MIB and the Event MIB.

Writing an ANEMONA program is much simpler than configuring a policy repository manually. Two
case studies were presented, which generate notifications when a TCP SYN Flooding attack and a steep
increase in the utilization of a link are detected.

Future work will include extending the language to monitor QoS (Quality of Service) parameters, and
the integrated use with COPS (Common Open Policy Service) [13] and COPS-PR (COPS Usage for Policy
Provisioning) [14].

REFERENCES

1. Tsarouchis C, Denazis S, Kitahara C, Vivero J, Salamanca E, Magana E, Galis A, Manas JL, Carlinet L, Mathieu
B, Koufopavlou O. A policy-based management architecture for active and programmable networks. IEEE
Network 2003; 17(3): 22–28.

2. Nikolakis Y, Magaña E, Solarski M, Tan A, Salamanca E, Serrat J, Brou C, Galis A. A policy-based management
architecture for flexible service deployment in active networks. Lecture Notes in Computer Science 2004; 2982:
240–251.

3. Guo X, Yang K, Galis A, Cheng X, Yang B, Liu D. A policy-based network management system for IP VPN. In
Proceedings of the International Conference on Communication Technology (ICCT 2003), Beijing, China, 2003.

4. Westerinen A, Schnizlein J, Strassner J, Scherling M, Quinn B, Herzog S, Huynh A, Carlson M, Perry J,
Waldbusser S. Terminology for policy-based management. RFC 3198, November 2001.

5. Harrington D, Presuhn R, Wijnen B. An architecture for describing SNMP management frameworks. RFC 2271,
January 1998.

6. Kavasseri R, Stewart B. Distributed management expression MIB. RFC 2982, October 2000.
7. Kavasseri R, Stewart B. Event MIB. RFC 2981, October 2000.
8. McCloghrie K, Perkins D, Schoenwalder J. Structure of management information version 2 (SMIv2). RFC 2578,

April 1999.
9. Aho AV, Sethi R, Ullman JD. Compilers: Principles, Techniques and Tools. Addison-Wesley: Reading, MA, 1986.

10. The NET-SNMP Project Home Page. http://net-snmp.sourceforge.net [14 April 2007].
11. Project Neptune. Phrack Magazine http://www.phrack.org/archives/48/p48-13/ [23 May 2007] 1996; 7(48).
12. Denes H, Musicante M, Duarte EP Jr. ANEMONA code examples. Technical Report 001/2007, UFPR/DInfo.

http://www.inf.ufpr.br/info/techrep/ [14 April 2007].
13. Walker J, Kulkarni A (eds). Common open policy service (COPS) over transport layer security (TLS). RFC 4261,

December 2005.
14. Chan K, Seligson J, Durham D, Gai S, McCloghrie K, Herzog S, Reichmeyer F, Yavatkar R, Smith A, COPS usage

for policy provisioning (COPS-PR). RFC 3084, March 2001.

302 E. P. DUARTE JR, M. A. MUSICANTE AND H. D. H. FERNANDES

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2008; 18: 295–302
DOI: 10.1002/nem

 10991190, 2008, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nem

.655 by U
FPR

 - U
niversidade Federal do Parana, W

iley O
nline L

ibrary on [23/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

