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Abstract

Users of large scale network testbeds often execute ex-
periments that require a set of nodes that behave and com-
municate among themselves in a reasonably stable pattern.
In this work we call such a set of nodes a stable clique, and
introduce a monitoring strategy that allows their detection
in PlanetLab, a non-trivial task for such a large scale dy-
namic network. Nodes monitor each other by sampling the
RTT (Round-Trip-Time) and computing its variation. Based
on this data and a threshold, pairs of nodes are classified as
stable or unstable. A set of graphs is generated, on which
maximum sized cliques are computed. Three experiments
were conducted in which hundreds of nodes were monitored
for several days. Results show the unexpected behavior of
some nodes, and the size of the maximum stable clique for
different time windows and different thresholds.

1. Introduction

As new alternatives for the Internet architecture are pro-
posed, large scale realistic testbeds become increasinglyim-
portant [14]. These testbeds are heterogeneous wide-area
networks in which protocols, distributed applications and
services can be deployed and evaluated on supposedly real
conditions. PlanetLab [4] is one of such global research net-
works that supports the development of new protocols and
services. PlanetLab is arguably the largest and most impor-
tant of these wide-area research testbeds. At the time this
work was done, PlanetLab consisted of 1060 nodes at about
491 sites, located all over the world. Nodes are TCP/IP
hosts connected among themselves through the Internet.
Each node is kept by an autonomous organization that is
affiliated to the PlanetLab. Different nodes have widely dif-
ferent capabilities and are connected to networks which are
configured and managed in various ways, which results in
an environment of great instability.

Researchers need a real environment, subject to real con-
ditions, such as occasional loss of connectivity and conges-

tion, in order to evaluate their proposals. Nevertheless, de-
pending on the level of instability it may even become im-
possible to run an application that involves node communi-
cation. In order to execute a protocol or a distributed appli-
cation it is frequently necessary to have a set of nodes that
present a minimum level of stability. This was exactly the
case when we executed HyperBone [3] in PlanetLab. Hy-
perBone is a an overlay network that allows the execution
of distributed applications on a virtual hypercube.

In order to execute parallel and distributed tasks, Hyper-
Bone requires a set of nodes that present a reasonably stable
behavior. We found out that it is not trivial to find such a
large set of such nodes in PlanetLab. Sometimes it is not
easy even to find a set of nodes each of which can commu-
nicate with all others. At a given time, a large set of such
nodes might not even exist. Another characteristic we found
out is that a communication channel is frequently not sym-
metric: if a node considers another to be stable, the opposite
might not be true. Moreover, a given node might consider
two other nodes to be stable, but those two nodes may not
consider each other stable. Several communication patterns
were observed.

We thus developed a monitoring strategy to find a set of
reasonably stable nodes in PlanetLab, on which we could
execute our experiments. We call such a set of nodes asta-
ble clique: if PlanetLab is represented as graphG = (V,E),
a clique [6] is a complete subgraph ofG in which all edges
correspond to communication channels classified as stable.
These cliques can be seen as a stable portion of an unstable
network.

In order to find a stable clique, nodes continuously moni-
tor each other. A node samples the RTT (Round-Trip-Time)
and computes the variation of the perceived RTT to every
other node. Based on this data and a threshold, pairs of
nodes are classified as stable or unstable. A set of graphs is
generated, on which maximum sized cliques are computed.

In this work we describe three experiments in which
from 200 to 461 PlanetLab nodes were monitored for sev-
eral days. A monitoring daemon was run on all nodes in
which we could set up the monitoring environment and



were not turned off for the whole experiment time. Each
node monitors all others. We present experimental results,
describing the unexpected behavior of some nodes, and
show the size of the maximum stable clique for different
time windows and different stability thresholds.

Related work includes other PlanetLab monitoring tools,
such as CoMon [16] and Ganglia [13] which measure the
state/load of nodes and slices by themselves – not their in-
teraction, as we do. PlanetFlow2 [8] is a tool for Planet-
Lab traffic monitoring. netEmbed [12] employs heuristic
algorithms for grouping and selecting nodes but requires an
external monitoring system. Vivaldi [5] computes the RTT
among nodes. MON [11] selects fault-free nodes for exe-
cuting an experiment and monitors its execution. SWORD
[1] runs as a PlanetLab service for selecting nodes for run-
ning experiments based on monitoring data obtained from
Ganglia and Vivaldi. None of these tools employ historical
monitoring data to determine cliques of nodes that present
a stable communication pattern.

The rest of this paper is organized as follows. Section
2 defines the proposed monitoring strategy. Section 3 de-
scribes the algorithm employed for finding stable cliques.
Experimental results are given in section 4. The conclusion
follows on section 5.

2. Monitoring Strategy

In this section we describe the PlanetLab monitoring
strategy. Each node executed a monitoring daemon, which
periodically sent a query to all other nodes. As a reply
arrived, the node computed and recorded the Round-Trip-
Time (RTT) and the RTT variation, using a approach based
on van Jacobson’s TCPTimeOut(TO) interval [9]. Each
experiment lasted from 1 to 2 weeks. After the conclusion,
we downloaded the data recorded by all nodes. We used this
data to model the system as a set of undirected graphs. A
graphGt = (V,Et) was computed for time instantt, where
V is the set of nodes which ran the experiment andEt the
set ofstableedges that were present at timet. An edge be-
tween two nodes represents the fact that they can communi-
cate with each other. Thus for an edge to be included in the
graph, the communication test must have succeeded in both
ways. We found several instances in which a given node
i could communicate withj but j could not communicate
with i. In these cases edge(i, j) /∈ Et.

Figure 1 shows the perceived RTT variation of a node
classified as unstable by most nodes during the whole mon-
itoring period. These particular RTT samples were obtained
from the point of view of the node that presented the highest
degree in all graphs generated in experiment 1.

After graphGt is built, we run an algorithm for finding

Figure 1. RTT variation of an unstable node

what we call astable cliqueonGt, i.e., a subgraph ofGt in
which there is an edge from every node to every other node.
In the experiments, a graph was generated every 15 min-
utes. As mentioned above, in order to determine whether
a given pair of nodes presents a stable communication pat-
tern, we considered the RTT variation as the parameter of
choice. The strategy used to classify the node communi-
cation as stable or not employs van Jacobson’s TO, which
heavily relies on the observed RTT variation. Besides the
TO itself, our classification employs an adjustable thresh-
old value which is computed empirically. If a function of
the TO of a given pair of nodes is below the threshold, then
the pair of nodes is classified as unstable. Otherwise it is
classified as stable. Note that as time passes the classifi-
cation of a specific pair of nodes may change from stable
to unstable and vice versa. We evaluated clique sizes for
several thresholds.

The TO is updated for each RTT samplei. Let TOi, be
the weighted mean of previously computed TO values and
the current RTT sample. This mean acts as a statistical filter
to remove noise from the TO curve, making it easier to find
the TO valleys, described below. The TO is computed with
the following expression. In this expression∆RTTi) is the
weighted mean of the RTT samples.|∆(RTTi) − RTT |
corresponds to the difference of the last RTT sample and
the weighted mean. In the experiments we usedα = 0.9
andβ = 4.

TOi = α∗TOi−1+(1−α)∗(∆(RTTi)+β∗|∆(RTTi)−
RTT |)

It is important to compute a “fair” threshold which al-
lows nodes to be classified as stable/unstable. Considering
the TO curve, an example of which is shown in figure 2, it
often presents a series of peaks and valleys. A valley cor-
responds to lower values of the TO, and the variation of
RTT is also low. A peak corresponds to periods in which



there is a higher variation of consecutive samples of the
RTT. The threshold is determined by observing the varia-
tion of the RTT and the TO curves. Initially the curve com-
puted for a pair of nodes is smoothed with a statistical filter.
The communication between the pair of nodes is consid-
ered to be stable during the periods in which the valleys of
the smoothed curve are below the threshold.

The example in figure 2 shows the use of a 400ms thresh-
old to determine the stability of a node. This TO curve was
computed for a node that was monitored for 4 hours and 30
minutes in experiment 1 (details are given in section 4). The
little circles show the valleys of the TO. Until 03:30 of Oc-
tober 15th, the RTT presented a high variation, and the TO
valleys are also high. The RTT variation then reduces, and
so do the TO valleys. In the period in which the TO val-
leys are mostly above the threshold, the node is classified as
BAD (unstable). Otherwise, when the TO valleys are below
the threshold, the node is classified as GOOD (stable). The
graph also shows that our classification criterion does not
take into account brief variations of the TO, which could
lead to a misclassification.

Figure 2. A threshold is used to classify
nodes as stable

Based on this data the algorithm described in the next
section is employed for computing the stable cliques.

3. Computing the Node Cliques

As is well known, the problem of computing a maximum
clique (MC, for short) in an arbitrary graph isNP-hard.
Indeed, the corresponding decision problem (“given a graph
G and an integerk, doesG has a clique of sizek?”) is
one of the21 problems in [10], as well as one of the “six
basicNP–complete problems” chosen as “the ‘basic core’
of NP–complete problems for the beginner” in [7].

There are several algorithms for the exact solution of
MC (see, for example, [18] and [15], or [2] for a survey on
the subject). Reported experimental results show that many
instances of practical interest of the problem can be solved
with reasonable computational resources. Fortunately, this
is the case of the graphs generated by the experiment at
hand.

Some of the most successful approaches in solving prac-
tical instances of MC areBranch & Bound based ones
which can be described as follows. LetG be an undirected
graph and letK be a clique inG. Consider the setNK

given by the intersection of the neighborhoods of the ver-
tices inG, that is,NK =

⋂
v∈K

Γ(v). Note thatK is a
maximal clique inG if and only if N = ∅. Otherwise,
for everyu ∈ NK , the setK ∪ {u} is a clique inG and
NK∪{u} = NK ∩ Γ(u).

The following (schematic) algorithm for finding a max-
imum clique in a given graphG is based on the remarks
above. The algorithm works keeps a cliqueC in G and
a list S of pairs (K,NK). Initially, C is empty andS
contains only the pair(∅, V (G)). At each step, the algo-
rithm removes a pair(K,NK) from S. If Nk is empty,
thenK is a maximal clique inG. If |K| > |C|, the al-
gorithm letsC ← K. If Nk is not empty, the algorithm
computes an upper boundb on the size of the maximum
clique inG[K ∪NK ]. If b ≤ |C|, the pair(K,NK) is dis-
carded; otherwise, a vertexv is chosen fromNk and the
pairs(K ∪ {v},K ∩ Γ(v)) and(K,NK − {v}) are added
to S.

MaximumClique(G)

C ← ∅
S ← push(∅, V (G))
while S 6= ∅ do

(K,N)← pop(S)
if N = ∅ then

if |K| > |C| then
C ← K

else
if |K|+ Bound(G,N) > |C| then

v ← pop(N)
S ← push(K,N)
S ← push(K ∪ {v}, N ∩ Γ(v))

return C

In the algorithm,S ← push(e) denotes the operation
of adding the elemente to setS. Likewise,e ← pop(S)
denotes the operation of removing some element from set
S and storing this element ine. Bound(G,N) returns an
upper bound on the size of the maximum clique inG[N ].
Using the schematic algorithmMaximumClique(G) above
as a reference, different concrete algorithms forMC result
from choosing the data structures implementing setsS, K
andN (and their respective insertion/deletion policies), and



the bounding functionBound(G,N).

For the determination of the cliques in the graphs pre-
sented in this work, we have implemented1 an algorithm
along the lines of the one described in [18]. In our im-
plementation, setS is implemented as a stack and the
sets K and N as balanced search trees. The function
Bound(G,N) computes a (not necessarily minimal) col-
oring ofG[N ] and returns the number of colors used in this
coloring.

4. PlanetLab Experiments

PlanetLab is a global research network that supports the
development of new network services [4]. As of December
2009, PlanetLab consisted of about1060 nodes located at
491 sites all over the world, connected to each other through
the Internet. Nodes have widely different capabilities and
are connected to networks which are configured and man-
aged in various ways, which results in an environment of
great instability.

Three experiments in which the monitoring scheme de-
scribed in section 2 were executed, we refer to these as ex-
periments1, 2 and3.

Experiment1 was started at October 2008, lasted7 days,
from October 11th 2008, 00:00:00 (GMT -3) until October
18th 2008, 00:00:00 (GMT -3) and involved519 nodes, of
which only200 are considered here due to the reasons ex-
plained in section 2; experiment2 was started at July 2009,
lasted8 days, from July 8th 2009, 00:00:00 (GMT) un-
til July 16th 2009, 00:00:00 (GMT) and involved631, of
which only 400 are considered; experiment3 was started
at October 2008, lasted12 days, from October 18th 2009,
00:00:00 (GMT) until October 30th 2009, 00:00:00 (GMT)
and involved638 nodes, of which only461 are considered.
In each of the3 experiments, the time interval between
snapshots was15 minutes. Therefore, experiment1 com-
prises7 × 24 × 4 = 672 snapshots, experiment2 com-
prises8× 24× 4 = 768 snapshots, experiment3 comprises
12× 24× 4 = 1152 snapshots.

As described in section 2, a threshold is employed in or-
der to classify a node as stable or unstable from the point of
view of another node, given the monitoring data. This al-
lows the computation of characteristics such as asymmetric
views, in which a node is considered to be stable by another,
but the opposite is not true. Figure 3 shows the percentage
of asymmetric views obtained in experiment1, for different
values of the threshold, considering all node pairs that were
monitored.

1The implementation was coded inC++, using theBoost Graph Li-
brary [17]. The resulting code was executed in set ofDebian/GNU Linux
systems using different hardware platforms available atC3SL (http:
//www.c3sl.ufpr.br)

After the stability is computed for all pairs of nodes, an
undirected graph is built corresponding to a snapshot. In
this graph, the vertices are the nodes themselves and there
is an edge adjacent to nodesu and v if and only if both
nodes classify each other as stable, i.e. they do not present
asymmetric views.

We studied the behavior of the system for different val-
ues of the threshold. For experiment1, threshold values of
400ms,600ms,1000ms and2000ms were used; for exper-
iments2 and3 threshold values of200ms, 400ms, 600ms
were used. In experiment1, 672 × 4 = 2688 graphs were
built, in experiment2, 768 × 3 = 2304 graphs were built,
and experiment3 generated1152 × 3 = 3456 graphs. In
total8448 graphs were built. These are the graphs on which
we compute the maximum cliques using the algorithm de-
scribed in section 3.

Figures 4, 5 and 6 show the size of the maximum clique
of each graph in experiments1, 2 and3. As expected, the
maximum clique size increases as the threshold increases.
It should be noted however, that as the threshold increases,
the distinction between stable and “not so stable” becomes
blurred, as several communication patterns fall within the
allowed level of stability. Indeed, when a higher threshold
is employed several pairs of nodes presenting different lev-
els of RTT variations are classified as stable; while a lower
threshold would set them apart.

Figure 3. Node classification asymmetry

Another interesting result was obtained when the the
maximum clique was computed from the intersection of all
the graphs of a given experiment with a given threshold.
This clique corresponds to a group of nodes that remained
as a clique along the whole experiment, i.e., each node in
the clique classifies each other as stable in all graphs. Table
1 shows the maximum clique sizes for each experiment and
threshold.

Yet another interesting result is the size of the maxi-



Figure 4. Maximum clique size variation for
experiment 1

Figure 5. Maximum clique size variation for
experiment 2

mum clique in the graph resulting from the intersection of
consecutive graphs of each experiment. Obtaing this result
was motivated by the fact that some distributed applications
need very stable nodes but run for time intervals which are
much shorter than the length of our experiments. In such
cases, the knowledge of the largest group of nodes that
forms a clique for a short time interval is the information
required.

For each of the experiments and thresholds, we com-
puted the maximum clique in the graphs that were built dur-
ing one day and one hour. The results are shown in table 2
and 3, respectively. Table 2 shows the average maximum
clique size computed every day for each experiment and
threshold. Table 3 shows the average maximum clique size
computed every hour for each experiment and threshold.

Figure 6. Maximum clique size variation for
experiment 3

Experiment Threshold Size
1 400 59
1 600 91
1 1000 117
1 2000 149
2 200 78
2 400 153
2 600 196
3 200 42
3 400 85
3 600 114

Table 1. Maximum clique size on the intersec-
tions

5. Conclusions

Based on our experience of running a large scale net-
work overlay on PlanetLab we found out it is hard to select
a group of nodes that present a reasonably stable behavior
and can fully communicate among themselves. In this work
we described and evaluated an approach for finding stable
cliques of PlanetLab nodes. All pairs of nodes of a stable
clique can be considered to be reasonably predictable, i.e.
based on the monitoring history it is not unrealistic to bet
that these nodes are good choices for running experiments
in PlanetLab. The monitoring strategy is based on having
nodes measure their RTT to other nodes and compute the
RTT variation. We ran three experiments, monitoring hun-
dreds of nodes for several days on three different occasions
in 2008 and 2009. Based on the monitoring data we checked
several thresholds in order to classify nodes as stable, build
the corresponding graphs, and run an algorithm for finding a



Experiment Threshold Average size
1 400 90.142
1 600 118.285
1 1000 147.000
1 2000 173.714
2 200 103.375
2 400 185.500
2 600 228.125
3 200 79.416
3 400 151.250
3 600 196.250

Table 2. Average maximum clique size for the
period of one day

Experiment Threshold Average size
1 400 114.130
1 600 143.113
1 1000 167.541
1 2000 185.720
2 200 128.322
2 400 212.307
2 600 257.505
3 200 108.805
3 400 192.642
3 600 243.465

Table 3. Average maximum clique size for the
period of one hour

clique on those graphs. We measured the size of the cliques
for different time windows employing different thresholds,
results include the sizes of the largest cliques and the num-
ber of nodes present in all cliques.

Future work includes developing a tool for PlanetLab
users that accepts as input the size of a desired clique, as
well as other desired parameters, and returns a suggested
set of nodes to be employed. The node load and other per-
formance metrics are certainly parameters that have to be
considered. One of the challenges of finding cliques on-
line is the complexity of the algorithms for finding cliques
themselves, and alternatives must be investigated. Another
concept that can be expanded in the future is the classifica-
tion of stability. The use of an adaptive threshold seems to
be an attractive alternative for on-line continous monitoring.
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