
Journal of the
Brazilian Computer Society

Camargo and Duarte Jr. Journal of the Brazilian Computer
Society (2018) 24:5
https://doi.org/10.1186/s13173-018-0069-z

RESEARCH Open Access

Running resilient MPI applications on a
Dynamic Group of Recommended Processes
Edson Tavares de Camargo1,2* and Elias P. Duarte Jr.1

Abstract
High-performance computing systems run applications that can take several hours to execute and have to deal with
the occurrence of a potentially large number of faults. Most of the existing fault-tolerant strategies for these systems
assume crash faults that are permanent events are easily detected. This is not the case in several real systems, in
particular in shared clusters, in which even the load variation may cause performance problems that are virtually
equivalent to faults. In this work, we present a new model to deal with this problem in which processes execute tests
among themselves in order to determine whether the processors (or cores) on which they are running are
recommended or non-recommended. Processes classified as recommended form a Dynamic Group of Recommended
Processes (DGRP) that runs the application. The DGRP is formed only by processes that have not been tested as
non-recommended by all DGRP processes. A process not in the DGRP that is continuously tested as recommended
can rejoin the DGRP after a round of consensus executed by DGRP processes. Experimental results are presented
obtained from a MPI-based implementation in which the HyperQuickSort parallel sorting algorithm reconfigures itself
at runtime to tolerate up to N − 1 faults (in a system with N processes) while sorting up to 1 billion integers.

Keywords: Dynamic Group of Recommended Processes (DGRP), Resilience, Fault tolerance, MPI applications, HPC
systems

Introduction
High-performance computing (HPC) systems are used to
execute complex industrial and scientific simulations, as
well as other computing-intensive applications. These sys-
tems, in particular petascale and future exascale systems,
are required to cope with an increasingly smaller mean
time between failures (MTBF) [1]. For example, the Blue
Waters petascale system has an average MTBF of 4.2 h
[2]. Future exascale systems should present an even lower
MTBF and experience various kinds of faults [3, 4]. In
[5], the term “performance fault” is introduced to describe
performance anomalies that can harm the operation of
HPC applications as much as failures. For example, a pro-
cessor may reduce the core operation frequency when the
temperature rises above a safe threshold or tomaintain the
system within the power budget target.
The Message-Passing Interface (MPI), which is a de

facto standard to program parallel and distributed appli-
cations defined and maintained by the MPI Forum [6, 7],

*Correspondence: edson@utfpr.edu.br
1Department of Informatics, Federal University of Paraná (UFPR), Curitiba, Brazil
2Federal Technology University of Paraná (UTFPR), Toledo, Brazil

assumes a reliable underlying infrastructure [1, 8]. MPI
does not prescribe how implementations must deal with
failures [9, 10]. As a consequence, the most widely used
MPI implementations, such as OpenMPI and MPICH,
abort the entire application if a single process fails. The
applicationmust then restart from the beginning. In order
to circumvent that issue, the MPI Forum has recently
proposed the User Level Failure Mitigation (ULFM) pro-
posal [9]. The ULFM proposal has a set of primitives to
enable developers of a MPI application to deal with pro-
cess faults. ULFM assumes the fail-stop model, in which
every process that fails is identified and removed from the
system.
In this work, we describe a strategy for identifying and

maintaining a Dynamic Group of Recommended Pro-
cesses (DGRP) in a MPI-based HPC system. The DGRP
was inspired by group systems such as Isis [11]. A DGRP
can be seen as a wormhole [12] consisting of a dynamic
set of processes that continuously execute the applica-
tion. Processes execute tests among themselves in order
to determine whether the processors (or cores) on which
they are running are recommended or non-recommended.

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-018-0069-z&domain=pdf
http://orcid.org/0000-0002-6520-9142
mailto: edson@utfpr.edu.br
http://creativecommons.org/licenses/by/4.0/

Camargo and Duarte Jr. Journal of the Brazilian Computer Society (2018) 24:5 Page 2 of 16

In other words, a test procedure is defined to “measure”
whether the behavior of a given process is “good enough”
for the application at hand. The test procedure is modular
and can be defined for each particular system, depending
on the characteristics of the environment. For instance,
the tester may send a program to be executed by the
tested process and, depending on how long it takes to
receive the corresponding reply, classifies the tested node
as good enough to join the group or not. The test proce-
dure must be carefully chosen in order not to interfere on
the performance of the system itself.
A process that does not pass a test is considered to

be non-recommended by the tester. On the other hand,
a recommended process is one that presented the cor-
rect, expected behavior. Note that a process can be non-
recommended for a short period of time due for instance
to a load surge. Such a process may not be able to run
the application for that time interval but can later revert
the status and rejoin the system. On the other hand, some
other process may remain non-recommended most of
the time. These processes should be removed from the
systems as soon as possible. Figure 1 shows the perfor-
mance of a single processor of a shared cluster in which
a parallel MPI program for approximating � (pi) is exe-
cuted using 16 cores. This is a representative set of results
showing 100 consecutive executions. Note that the per-
formance presents a significant variation along the time.
The first executions took long to complete. Results such
as these can be used to assess whether this processor
is or is not good enough to run an application for a
given time frame. A process that is in the DGRP has not

Fig. 1 Performance variation for approximating pi—single node 16
cores

been tested as non-recommended by any other DGRP pro-
cess. Processes that are tested as non-recommended are
removed from the DGRP. A process not in the DGRP
that is tested as recommended for ζ consecutive tests by
others can rejoin the DGRP after a round of consensus
executed by DGRP process. DGRP is particularly suit-
able for moldable applications that can be reconfigured at
runtime [13].
The system model for deciding on the recommenda-

tions is based on system-level diagnosis theory [14]. The
objective of system-level diagnosis is to employ tests to
identify which units are working according to the spec-
ification and which are not. Diagnosis is thus based
on processing the results of the set of tests performed
between the units of a system. Most diagnosis models
assume that a fault-free unit executes tests and reports test
results reliably, i.e., a fault-free tester can always correctly
determine whether the tested unit is faulty or fault-free
[15, 16]. The model we propose in this work circumvents
this assumption in the sense that tests are not meant to
perfectly determine whether the tested entity is faulty or
fault-free but only that the test criterion was not met.
Furthermore, two different testers may reach different
conclusions about the state of a given tested process.
The DGRP abstraction was implemented using MPI on

top of ULFM. We report results for running the paral-
lel algorithm HyperQuickSort [17] for sorting up to 1
billion integers. This algorithm organizes the processes
as a virtual hypercube. In our work, HyperQuickSort
was adapted to reconfigure itself at runtime in order to
proceed even if up to N − 1 processes become non-
recommended (N is the total number of processes). The
overhead of DGRP is obtained by comparing the execu-
tion of HyperQuickSort over DGRP and with ULFM. We
also show the performance of DGRP for monitoring a
system as nodes are detected as non-recommended and
removed from the DGRP and also as nodes previously
classified as non-recommended rejoin the DGRP.
The rest of the paper is organized as follows: Related

work is described in the “Related work” section. The
proposed strategy is presented in “The Dynamic Group
of Recommended Processes” section. The implementa-
tion is described in the “DGRP implementation and case
study” section, and experimental results are presented
in the “Results” section. The conclusions follow in the
“Conclusion” section.

Related work
As DGRP is implemented on top of ULFM, it is
also capable of dealing with process failures. Related
works in this section describe different approaches to
make MPI systems fault-tolerant and also strategies for
MPI monitoring, including the detection of performance
anomalies.

Camargo and Duarte Jr. Journal of the Brazilian Computer Society (2018) 24:5 Page 3 of 16

MPI allows the development of parallel and distributed
applications based on the message-passing paradigm
[7, 8]. The MPI standard does not currently have a speci-
fication for fault tolerance [8]; there is no definition of the
precise behavior that MPI implementations must take to
deal with faults [9, 10]. Basically, a fault is treated as inter-
nal to an application, e.g., the violation of memory space.
Thus, process and network faults are treated as applica-
tion problems, and the responsibility to deal with them is
left to the application programmer. Note that the standard
does define error handlers that are associated with the
MPI communicator to handle application program errors.
Most approaches for the design of fault-tolerant MPI

applications (actually fault-tolerant HPC in general) are
based on checkpoint-restart [1]. By using checkpoint-
restart, an application can deal with a process failure
without completely losing previously computed results. It
has been noted though that checkpoint-restart may not
be effective against a short MTBF [1, 4, 18]. However,
recently, several checkpoint-restart protocols have been
proposed for dealing with a short MTBF in large HPC
systems, e.g., [4, 19, 20].
Several efforts have been made to add interfaces and

semantics to allow MPI to deal with faults. Fault-tolerant
MPI (FT-MPI) [21] is the first strategy proposed to offer
an alternative to traditional checkpoint-restart, defining
MPI primitives that enable the application to survive
faults. Both the MPI communicator and processes are
assigned states. Processes can be either ok, unavailable,
joining, or failed. After an error indicates the presence of
a fault, the system acts immediately taking into account
the state of the communicator and the recovery mode
adopted by the application. For example, in one recov-
ery mode, information about processes that have failed is
received by correct processes, and processes that failed are
removed from the system. The FT-MPI specification does
not include details about the strategy used for detecting
faults [22]. Despite representing by itself a key contribu-
tion, the FT-MPI standard was deprecated. Other works,
including [10, 22, 23] followed the same approach defining
MPI primitives that allow the application to survive faults.
Another strategy based on FT-MPI has been proposed:

Non-Stop and Fault-Resilient MPI (NR-MPI) [23]. NR-
MPI implements the semantics of FT-MPI on MPICH,
one of the most widely used MPI implementations [24].
NR-MPI assumes the fail-stop model. It is designed to
allow MPI itself to recover from faults internally and
automatically. If recovery is not possible, the state of
the world communicator (MPI_COMM_WORLD) becomes
invalid, meaning that unrecovered faults have occurred.
Faulty processes need to be replaced, either by spawn-
ing new processes or by using spare processes. One of
the main contributions of NR-MPI is that it includes
mechanisms for detecting faults. There are two modules

called Failure Arbiter (FA) and Failure Detector (FD).
These modules are integrated to a Resource Management
System (RMS); this is a separate system that provides
monitoring information. The RMS consists of a Resource
Manager and a Process Manager. The FA is located at the
Resource Manager and the FD is located at the Process
Manager. FDs detect process faults (crash) by monitoring
system calls. FA uses a periodic heartbeat to detect FD
faults. A drawback of NR-MPI is its strong reliance on the
external RMS.
The MPI Forum created in 2009 is a working group

with the responsibility of optimizing the MPI standard
to allow the development of portable, scalable, and fault-
tolerant HPC applications [25]. Efforts of the working
group resulted in two draft proposals: Run-Through
Stabilization (RTS) [25] and User Level Failure Mitiga-
tion (ULFM) [9]. ULFM is currently a proposed standard.
ULFM also aims at allowing the application to survive
despite the occurrence of faults. But, unlike FT-MPI,
recovery is not automatic. ULFM defines a set of prim-
itives that allow the application developer to implement
any suitable recovery strategy.
ULFM assumes the fail-stop model. Error handlers,

defined in the MPI standard, are used to inform the appli-
cation about faults. Fault detection is local, in the sense
that a fault is detected only by processes that directly com-
municate with the faulty process. Essentially, the fault is
detected whenever a correct process cannot communicate
with another process—which is then assumed to be faulty.
ULFM assumes that transient network and process faults
do not occur, but at the implementation level, it is possible
to deal with these types of faults. If a correct process iden-
tifies another process as unresponsive (even if that process
is not responding for a short period of time), the correct
process classifies this process as faulty and from that point
on ignores and discards any message received from the
faulty process.
A consensus protocol to build fault-tolerant HPC appli-

cations which proposes an agreement algorithm imple-
mented within the ULFM API is proposed in [26]. The
algorithm assumes the fail-stop model. The communica-
tion channels are reliable. In the algorithm, all processes
propose a unique value. The decided value is the result
of a combination of all values proposed. Previously, in
[27, 28], agreement algorithms were proposed to be used
within RTS.
Other approaches for programming fault-tolerant

MPI applications are based on Algorithm-Based
Fault Tolerance (ABFT) [29]. Chen and Don-
garra use ABFT to matrix computations, but they
modified the original ABFT strategy to allow its
application to more general HPC systems by sup-
porting process faults [30]; they assume the fail-
stop model. Using ABFT, the application can recover

Camargo and Duarte Jr. Journal of the Brazilian Computer Society (2018) 24:5 Page 4 of 16

it errors and process faults without using checkpoints
or message logs. A drawback of this technique is that
it is restricted to the application domain in which it is
proposed.
Fenix [31, 32] is a framework that allows transpar-

ent runtime recovery of MPI applications. The frame-
work makes use of the ULFM specification to survive
failures and employs the diskless checkpoint technique:
application data is saved in the memory of neighboring
nodes [33]. Primitives are available for the developer to
define checkpoints on essential data. Fenix adopts implicit
checkpoints calls which are saved in a non-coordinated
way; however, depending on where the checkpoints are
inserted into the code, there is a guarantee that consistent
global states are always generated by the application. The
evaluation of Fenix was performed using an MPI applica-
tion running thousands of processes. Unfortunately, the
framework is not publicly available.
Ferreira et al. [34] employ state-machine replication [11]

in the context of HPC systems. Despite the potentially
high cost of state-machine replication, high availability
is guaranteed. In case a MPI process fails, redundant
processes allow the application to continue its execution
transparently, without the need for rollback recovery.
Genaud et al. [35] also use replication as the means to

achieve reliability applied to a gridmiddleware called P2P-
MPI. The system has a module for fault detection based
on execution monitoring. Other works that apply fault
tolerance to MPI settings have been proposed, includ-
ing the detection and correction of silent errors before
they lead to system restart [36]. Despite these efforts, it
is well-known that running fault-tolerant large-scale MPI
applications is still an open problem.
Adaptive MPI (AMPI) [37] is an adaptive implementa-

tion ofMPI built on Charm++ [38]. Charm++ is an object-
based, message-driven parallel programming framework
that embodies the concept of processor virtualization.
AMPI inherits most of the advantages of Charm++, as
adaptive overlapping of communication and computation,
automatic load balance, and fault tolerance. One of the
drawbacks of AMPI is that to be used, it requires the MPI
code to be modified.
In [5], the authors introduce the term “performance

fault” to describe anomalous behavior in HPC systems.
They propose the design and implementation of a moni-
toring system that continuously inspects the evolution of
running applications, and report performance anomalies.
They use an approach which had been originally proposed
in [39] through which performance problems are detected
as discrepancies between (1) the actual execution of an
application and (2) a performance model. Sensors con-
tinuously inspect the evolution of running applications
and collect information about the application and system
“health”. The execution is considered to be correct if it

meets the performance levels dictated by the model. In
this way, the performancemodel can be used in runtime to
disambiguate false positives from real hardware/software
problems. A drawback of that approach is that the user
has to provide the model in advance. But an advantage
is that this approach provides a setting for adapting mul-
tiple performance models, in the sense that any specific
model can be plugged to the system without modifying
to the kernel-level monitoring system or the system mon-
itor interface. The main differences of that work to ours
is that we employ tests to evaluate and identify perfor-
mance anomalies at runtime; furthermore, we use the
obtained information to build the group of recommended
processes.
In [40], the authors state that there are few tools for

monitoring the performance of HPC systems at runtime.
According to the authors, performance data collected dur-
ing runtime can be useful to distribute and balance the
workload in different ways and for different purposes,
for example, to reduce power consumption. They build
an extension of the Integrated Performance Monitor-
ing (IPM) tool1 that provides online runtime access to
application execution performance data through a set of
primitives. Thus, it is possible to take decisions on how
to guide computations according to the observed perfor-
mance state. The performance data collected by the tool
could be used to build a performance model to detect
anomalies.
The works in [41, 42] built on top of Tuning and Anal-

ysis Utilities (TAU) [43] are tools for online monitoring.
TAU is a profiling and tracing toolkit for performance
analysis of parallel programs. It is capable of gather-
ing performance information through instrumentation of
functions, methods, basic blocks, and statements as well
as event-based sampling. TAUg [41] considers the prob-
lem of runtime support for application level access to
global parallel performance data. It uses the MPI library
in order to share performance data among processes.
TAUg allows users to access one metric at a time and
only provides raw performance data. TAUoverSupermon
[42] also uses TAU as a monitoring system, and Super-
mon [44] is used to collect the distributed measurements.
This system provides information on performance from
different contexts and delivers the data to monitoring
consumers.
Table 1 summarizes all proposals and the main strate-

gies described in this section. The table also presents
DGRP. Our group system allows not only to deal with
faults, once it is built on top of ULFM, but also with
performance issues—the purpose is to keep a group of
processes that have a high probability of presenting
good performance. Checkpoint-restart, ABFT, and state-
machine replication strategies can all be applied on top
of the group of recommended processes, that is, our

Camargo and Duarte Jr. Journal of the Brazilian Computer Society (2018) 24:5 Page 5 of 16

Table 1 Proposals and main strategies

Related work Main strategies adopted

FT-MPI (fault-tolerant MPI) [21],
Non-Stop and Fault-Resilient MPI (NR-MPI) [23],
Run-Through Stabilization (RTS) [25],
User Level Failure Mitigation (ULFM) [9],
Consensus Protocol [26–28],
Adaptive MPI (AMPI) [37]

Primitives for dealing with fault tolerance at the application
level

Fenix [31, 32] Checkpoint-restart at the application level

Dealing with process faults using ABFT [30] Algorithm-Based Fault Tolerance (ABFT)

Ferreira et al. [34], P2P-MPI [35], Fiala, et al. [36], Silent error [36] State-machine replication

Gioiosa et al. [5], Aguilar et al. [40], TAUoverSupermon [42] Monitoring system for performance

DGRP Monitoring system that recommends a group of processes to
run an application

contribution is orthogonal and can be used by these
strategies. The next section presents DGRP in detail.

The Dynamic Group of Recommended Processes
In this work, we describe a strategy for identifying and
maintaining a Dynamic Group of Recommended Pro-
cesses (DGRP) in MPI-based HPC systems. DGRP was
inspired by group systems such as Isis [11]. The similarity
is in the sense that a DGRP is a process group with self-
managed membership. However, Isis and other related
systems present so many expensive features that are not
required by a DGRP (virtual synchrony, atomic/causal
broadcast primitives, different levels of consistency, etc.);
thus, we believe they fall into a completely different cate-
gory. DGRP is simply a self-managed group of processes
that allocates the tasks of the next computing round based
on test results. A DGRP can be also seen as a worm-
hole [12] consisting of a dynamic set of processes that
are good enough to execute tasks of the parallel MPI
application. The wormholes distributed systemmodel was
proposed by Veríssimo [12]. According to this model, cur-
rent network environments often present a spectrum of
synchrony that varies from components that present per-
fectly predictable behavior to those that have a completely
uncertain behavior. These properties can be defined in
time, i.e., during the timeline of their execution, sys-
tems become faster or slower, presenting lower or higher
bounds to execute. These properties can also be defined
in space: some components are more predictable and/or
faster than others and actions performed in or among
these nodes present better defined and/or smaller bounds.
In the wormholes model, different loci of the system have
different properties which correspond to different sets of
assumptions.
The DGRP system model is defined based on system-

level diagnosis theory; a brief overview of the key con-
cepts of diagnosis is presented next. This is followed by

a description of the proposed DGRP and the proposed
model.

System-level diagnosis: a very brief overview
System-level diagnosis is an approach for systemmonitor-
ing based on the execution of tests among the system units
[14, 45]. The set of test results is called the syndrome. By
processing the syndrome, it is possible to determine which
nodes are faulty or fault-free (fault-free means behaving as
expected, according to the specification). The first system-
level diagnosis model, the PMCmodel [46], was proposed
50 years ago. Since then, a large number of models,
approaches, and theoretical results have been presented
and applied to an enormously broad spectrum of con-
texts, from the diagnosis of chip defects at the wafer-scale
integration level to diagnosis of multiprocessor comput-
ers based on several topologies to monitoring computer
networks, among many others.
The PMC model defines a diagnosis model for a sys-

tem S that consists of a set of N independent units that
execute tests on each other. A test involves the controlled
application of stimuli and the observation of the corre-
sponding responses from the tested unit. In fact, a test is
defined as a “diagnostic program” tailored for each system.
The PMC model assumes that a fault-free unit is able to
execute tests and report test results reliably. No assump-
tions are made about tests executed by faulty units, that is,
they may produce incorrect test outcomes. The definition
of which units test which other units is called the connec-
tion assignment and is represented by a direct graph. The
syndrome is processed by a reliable external entity which
diagnoses the system, that is, determines the state of all
system units. A system is said to be t-diagnosable if up to
t faulty nodes can be correctly diagnosed.
In adaptive diagnosis [47], instead of always executing

a fixed set of tests, a node determines which tests they
will execute based on the results of previously executed

Camargo and Duarte Jr. Journal of the Brazilian Computer Society (2018) 24:5 Page 6 of 16

tests. In distributed diagnosis [48], fault-free nodes pro-
cess the syndrome in order to diagnose the system (the
original PMC model employs a central observer responsi-
ble for that task). Nodes execute tests and exchange test
results with each other. Later, adaptive and distributed
diagnosis models and algorithms appeared that allowed
the theory to be implemented to monitor computer
networks [49].
A node running an adaptive and distributed diagnosis

algorithm executes tests at a periodic testing interval. A
testing round is the interval in which all fault-free nodes
have executed their assigned tests. If an event corresponds
to a fault-free node becoming faulty or vice versa, the diag-
nosis latency is the number of testing rounds it takes for all
fault-free nodes to diagnose an event. Most adaptive and
distributed diagnosis algorithms present the diagnosabil-
ity equal to N − 1, i.e., even if all but one node are faulty,
diagnosis still completes correctly.

DGRP: description
DGRP is based on a distributed and adaptive system-
level diagnosis model. Processes execute tests among
themselves in order to determine whether they are rec-
ommended or non-recommended. In other words, a test
procedure is defined to measure whether the behavior
of a given process is good enough for the application at
hand, if it is then the tested process is recommended. A
process that is in the DGRP has not been tested as non-
recommended by any other DGRP process. Processes that
are tested as non-recommended are thus removed from
the DGRP. Figure 2 shows a DGRP formed by nodes 0, 2,
5, and 7.
A process not in the DGRP that is tested as non-

recommended for ζ consecutive tests by others can rejoin
the DGRP after a round of consensus executed by DGRP
processes. Figure 3 shows a DGRP formed by nodes 2,
5, 6, and 7. Comparing DGRP of Fig. 3 with that of
Fig. 2 process 0 was tested as non-recommended and was

Fig. 2 DGRP formed by nodes 0, 2, 5, and 7

Fig. 3 DGRP formed by nodes 2, 5, 6, and 7

removed from DGRP. On the other hand, process 6 was
reintegrated to the DGRP.
Processes in the proposed model execute in comput-

ing rounds, in which tasks of the parallel application are
executed, along with diagnosis, as shown in Fig. 4. In
this figure, we show the application process executing (in
black), diagnosis is being concurrently executed (shown
in blue), and the barriers at which processes synchronize
(vertical bars). In a computing round, the parallel applica-
tion is executed up to a barrier, which is an abstraction
that allows processes to synchronize, i.e., a process only
goes through a barrier after all processes have arrived at
the barrier. Diagnosis runs concurrently, as an underly-
ing monitoring system. As processes arrive at a barrier,
they check the DGRP composition in order to reassign
tasks among recommended processes. The barrier can be
configured to determine how much time is spent on a
computing round, for example, taking into consideration
the expected MTBF.

DGRP: systemmodel
The system is represented as a complete undirected graph
G = (V ,E); the set of vertices V corresponds to the set of
processes and an edge i, j ∈ E | i, j ∈ V represents the abil-
ity of processes i and j to communicate directly, without
intermediates. The system is not synchronous, i.e., there
are no known bounds onmessage transmission delays and
the relative speeds of processes. Communication channels
are unreliable. Process i can be in one of two possi-
ble states: recommended or non-recommended. A process
executes a test procedure on another process in order to
determine its state. A tested process that passes a test is
classified as recommended; otherwise, it is considered to
be non-recommended. An event corresponds to a process
state toggling from recommended to non-recommended
or vice versa.
Tests are executed at periodic testing intervals, e.g.,

10 ms or 3 s. At each testing interval, a recommended
process in the system executes tests on other processes,

Camargo and Duarte Jr. Journal of the Brazilian Computer Society (2018) 24:5 Page 7 of 16

Fig. 4 A computing round ends on a barrier

according to the connection assignment or testing graph.
The testing graph T = (V ,A) is a directed graph in
which the set of vertices V corresponds to the set of pro-
cesses. A directed arc (i, j) ∈ A corresponds to a test node
i has executed on node j. Each process employs its local
clock to determine the testing interval. The test procedure
is assumed to be complete enough for the tester to assess
the state of the tested process (from its point of view).
Thus, the specification of a test often depends on the sys-
tem technology. A testing strategy defines which tests are
assigned to which testers. A testing round is defined as
the period of time by which every recommended process
in the system has executed its assigned tests. The diag-
nosis latency is defined as the number of testing rounds
required for all recommended nodes in the system to
complete the diagnosis of an event.
Each process stores information about the states of

all other processes locally. Actually, each node stores a
counter of events [50]; initially, every process is assumed
to be recommended and the corresponding counter is
set to 0; after an event is detected, the counter is incre-
mented to 1 (the new state is non-recommended) and so
on. An even counter corresponds to a recommended pro-
cess and an odd counter to a non-recommended process.
A recommended process that receives diagnostic informa-
tion from another recommended process checks whether
the state counter of any process is greater than that cur-
rently maintained locally. In this case, the state counter
is updated with the new information. Counters help the
identification of how often a process has been toggling
states.
TheDynamic Group of Recommended Processes - DGRP

is defined as follows: If process i ∈ DGRP then ∀j ∈ DGRP
| j tested i, i passed the test, i.e., i is tested as recom-
mended by all recommended processes. After a recom-
mended node is tested as non-recommended by a process
∈ DGRP, the tester disseminates this event information
to all other processes in the DGRP. Our implementation
employs reliable broadcast to disseminate newly detected
events. A tester waits until all its tests are executed to
report all events by reliably broadcasting a single mes-
sage with all information. Using the received information,
recommended processes update the DGRP membership.

Note that information received from processes /∈ DGRP is
ignored.
Note that this diagnosis model allows two different rec-

ommended (fault-free) processes (for example i and node j)
to test a given process (for example, k) in the same
round and obtain different results. In this case, as diag-
nosis information reaches both nodes, the tested node (k)
is removed from the DGRP before the next computing
round.
A non-recommended process can rejoin the DGRP if

it is tested as recommended for a sequence of ζ testing
rounds, and after these rounds, the DGRP processes exe-
cute consensus to agree on the recommendation of the
process. In our implementation, we used Paxos [51] as the
consensus algorithm.

DGRP implementation and case study
In this section, we describe a DGRP implementation. As a
case study, we implemented the parallel sorting algorithm
HyperQuickSort on top of DGRP.

DGRP implementation
DGRP was implemented using MPI. Each MPI process
i belongs to a single MPI communicator and has a
unique identifier, called the rank. The communicator is
the data structure that defines the communication con-
text and the set of processes that belongs to this context.
Processes exchange messages using the point-to-point
communication primitives primitives MPI_Send()
and MPI_Recv(), which in turn use the network trans-
port (e.g., TCP).
Each process i maintains in the local array syndromei[]

information about the test outcomes of all processes. An
entry syndromei[j] returns the counter of events for pro-
cess j. Initially, all counters are set to 0 assuming the
processes are recommended; after a test is executed, if the
tester detects that an event has occurred on the tested
node, the corresponding counter is incremented. Note
that if syndromei[j] is even, then j is considered to be
recommended by i; otherwise, it is considered to be non-
recommended. Process i may obtain the syndrome from
other processes. If syndromej[k] > syndromei[k] then
process i updates its local entry.

Camargo and Duarte Jr. Journal of the Brazilian Computer Society (2018) 24:5 Page 8 of 16

A tester uses its local clock to measure the total time it
takes to receive the corresponding reply. A recommenda-
tion threshold is adaptively computed based on how long
the tested node takes to reply. A node is considered to be
non-recommended if the test reply takes more than the
threshold to arrive. A timeout is also employed and is also
computed for each tested node adaptively. Timeouts are
important so that a tester does not wait indefinitely for a
reply. Note that MPI by itself does not recognize network
faults, for instance if the link between two processes is
broken and one process is waiting for a message from the
other process it will keep waiting indefinitely.
In our implementation, both the recommendation

threshold and the timeout are computed using a similar
version of TCP algorithm [52–54], with an added factor to
increase the delay tolerance, as described next.
In Algorithm 1, start_time and arrival_time are the

local clock times at which a test is started and the corre-
sponding reply arrives at the tester, respectively. Variable
test_time corresponds to the time a tester takes to receive
a reply. Variable mean maintains the weighted mean of
the time to receive replies. The dispersion of the time to
receive a reply is kept in variance and is also computed
as a weighted mean. The higher the variance, the larger
the timeout. Constants α and β were assigned 0.9 and 4,
respectively, which are frequently used as approximations
of the original values proposed by Jacobson [52]. Variable
threshold is computed by adding the timeout to a fac-
tor defined by the user. This factor is frequently added to
avoid false positives, i.e., incorrect suspicions.

Algorithm 1 Timeout and threshold (for each process p
testing q)

1: Initialization
2: test_time ← 0 {time to complete a test}
3: mean ← 0 {weighted mean}
4: variance ← 0
5: timeout ← 0
6: threshold ← 0

7: Begin
8: test_time ← arrival_time − start_time
9: mean ← (α ∗ mean) + (1 − α) ∗ test_time

10: variance ← α ∗ variance + (1 − α) ∗ |mean −
test_time|

11: timeout ← mean + β ∗ variance
12: threshold ← timeout+ getFactor()

End

The implementation was based on a fully connected
test assignment, i.e., each node tests all others. To be
considered recommended, the tested process must reply

correctly and within the time interval defined by the rec-
ommendation threshold. At the end of a testing interval, if
a tester has detected events in which at least one process is
considered to be non-recommended, it reliably broadcasts
the information to the other processes.
If a process not in the DGRP (i.e., non-recommended)

is tested as recommended for ζ consecutive testing inter-
vals, the DGRP processes run a consensus round to pos-
sibly reincorporate the process to the DGRP. Note that
consensus is executed within the DGRP.We claim that the
DGRP corresponds to a wormhole that preserves the tim-
ing properties required to run consensus effectively. The
leader is the DGRP process with the smallest rank. Ini-
tially, the leader receives a request from a DGRP process
that triggers the execution of consensus, sending the pro-
posal to the other processes in the DGRP. If extra requests
are received by the same process, they are ignored. A
participant agrees with the proposal if it has tested the
process as recommended for more than ζ/2 consecutive
testing rounds. The leader waits for replies, and if the
majority of the processes currently in the DGRP agrees,
the decision is sent.

HyperQuickSort algorithm
HyperQuickSort is a parallel sorting algorithm that
employs a hypercube as a logical topology representing
the communication among the processes [17]. In our
implementation, HyperQuickSort adapts itself and con-
tinues its execution even if up toN − 1 processes become
non-recommended/crash; N is the total number of pro-
cesses running the algorithm. Figure 5 shows the DGRP
architecture with HyperQuickSort as the application.
HyperQuickSort executes in sorting rounds which cor-

respond to the computing rounds in the DGRP execution
model. We use the MPI_Barrier to implement the bar-
rier described in our model which separates a computing
round from a diagnosis round.
The sorting problem on the hypercube consists in

using a set P of processes, P = {b0, b1, . . . , bp − 1},

Fig. 5 Proposed system architecture

Camargo and Duarte Jr. Journal of the Brazilian Computer Society (2018) 24:5 Page 9 of 16

where |P| is a power of 2 to sort a list K of numbers
K = {a0, a1, . . . , ak − 1}. Initially, the |K | numbers are
divided equally between the |P| processes. Each process is
responsible for sorting a list of |K |

|P| numbers. Sorting is exe-
cuted in rounds, in which each process i exchanges with
process j part of its assigned list using a pivot number. At
the end of log2 P sorting rounds, the lists are sorted so that
in each process bi, the largest number is less than or equal
to the lowest number on process bi + 1, 0 ≤ i ≤ |P| − 2.
Algorithm 2 shows HyperQuickSort’s pseudocode.

Algorithm 2 HyperQuickSort (for each process p run-
ning in parallel)

1: Initialization
2: dim ← log2 |P| {Hypercube dimension}
3: rank ← process_id {Each process has a unique id between

0..2dim − 1}
4: list ← K {Original list number at each process}
5: n ← |K | {List size at each process}

6: Begin
7: quicksort(list, n)

8: while dim > 0 do
9: clusteri ← processes(rank, dim)

10: root_process ← root(rank, dim)

11: if rank == root_process then
12: pivot ← median(list)
13: broadcast(root_process, pivot, clusteri)
14: create_lists(higher_list, lower_list, list, pivot)
15: partner ← rank ⊕ 2(dim−1)

16: if rank > partner then
17: send(lower_list, partner)
18: receive(new_higher_list, partner)
19: list ← union(higher_list, new_higher_list)
20: else if rank < parter then
21: send(higher_list, partner)
22: receive(new_lower_list, partner)
23: list ← union(lower_list, new_lower_list)
24: dim ← dim − 1
25: quicksort(list, n)

End

Initially, each process locally orders its list (line 7). The
processes are organized in virtual clusters of sizes that
decrease by a power of 2 at each sorting round (line 9).
Figure 6 shows the cluster sizes for a 3-dimensional hyper-
cube. In the first round, there are eight processes in a
single cluster. In the second round, there are two clus-
ters with four processes each. In the last round, there are

four clusters that group two processes each. For each dim
round, the algorithm runs the following steps.
Clusters are formed in the respective sorting round

(line 9). In a sorting round, the process with the lowest
rank in each cluster is defined as the root process (line 10).
The root process distributes its pivot (number) to the
other processes in its cluster (lines 11–13). The pivot is
the medium element of the list (line 12). After receiving
the pivot, each process divides its list into two lists: a list
of numbers less than the pivot and another list of numbers
greater than the pivot (line 14). Then, each process finds a
partner within the cluster using an exclusive or operation
on its rank (line 15). The lowest rank process sends the list
with numbers greater than the pivot to the partner with
a higher rank and receives the list of numbers less than
the pivot from the partner (16–23). After this exchange
of lists, each process merges the received list with its list
number that was not exchanged (line 19 and 23). Then,
each process sorts its new list (line 25).
Figure 6 shows an example execution of HyperQuick-

Sort for 8 processes. It takes 3 rounds to complete sorting
these numbers. In the first round, there is 1 cluster with 8
processes, and process 0 is the root process. The follow-
ing pairs of processes are established and exchange their
lists according to the pivot received from process 0: (0, 4),
(1, 5), (2, 6), and (3, 7). All processes rearrange their sub-
sets of numbers to sort. In the second sorting round, there
are two clusters each with 4 processes. Processes 0 and 4
are the pivots of their respective clusters. Each root pro-
cess sends its pivot number to the other processes of its
cluster. So, the lists are exchanged between the process
pairs in sorting round 2. Finally, in the third round, the
whole process is repeated considering clusters and process
clusters in accordance with sorting round 3. The execu-
tion of HyperQuickSort using a DGRP is described next.

HyperQuickSort using DGRP
At the beginning of each sorting round, each process
has a list containing the non-recommended processes.
Given the DGRP composition (some processes are rec-
ommended, others non-recommended, and only recom-
mended processes run the algorithm), a mapping function
was implemented to define the partners pi and pj in a
sorting round. In this mapping, each recommended pro-
cess becomes responsible for sorting lists of numbers
that were supposed to be sorted by non-recommended
processes. A process pi can handle up to n − 1
non-recommended processes (in case only one process
remains recommended). Process pi, besides performing
its tasks according the algorithm, also performs the task
of the non-recommended process. A process pj also
needs to know process pi, which assumes the tasks of
a non-recommended process. To implement these tasks,
we employed the Ci,s function defined in [49]. The Ci,s

Camargo and Duarte Jr. Journal of the Brazilian Computer Society (2018) 24:5 Page 10 of 16

Fig. 6 Parallel sorting with HyperQuickSort

function helps determining the clusters to which process
i belongs in sorting round s considering only recom-
mended processes. Ci,s is a function executed by node i
that returns the sequence of nodes in its s-th cluster clus-
ter. For instance, this function executed by node 0 returns
node 1 (the node to be tested by node 0) when s is equal to
1.

ci,s = (
i ⊕ 2s−1, ci⊕2s−1,1, . . . , ci⊕2s−1,s−1

)

The ci,s function considers that the processes are logi-
cally organized in a hypercube: i represents a process pi
and s is related to a particular sorting round. Initially,
s = dim. The symbol ⊕ represents the binary oper-
ation XOR. Table 2 shows an example of ci,s applied to
a 3-dimensional hypercube, i.e., a hypercube with 8 pro-
cesses. For example, the process p0 for s = 3 has the
following result: 4, 5, 6, and 7. That means that process p0
and p4 are partners in sorting round 3 whether both are
recommended.
The partners in each sorting round are established

according to Algorithm 3. As the algorithm shows, the
partner of a process pi in sorting round s is the first rec-
ommended process in ci,s. Therefore, for the first sorting
round, process p0 must exchange its list number with the
first recommended process in c0,3. If p4 is recommended,
then p0 and p4 are partners and exchange its list number
according to lines 16–23 in Algorithm 2 (assuming p0 also
is recommended). However, if p4 is non-recommended,
then p0 must exchange its number list with process p5.
But, if both p5 and p6 are non-recommended, then p0 does
not exchange its list with any process in the correspond-
ing sorting round. Each recommended process performs

Table 2 Ci,s for a system with 8 processes

s C0,s C1,s C2,s C3,s C4,s C5,s C6,s C7,s

1 1 0 3 2 5 4 7 6

2 2 3 3 2 0 1 1 0 6 7 7 6 4 5 5 4

3 4 5 6 7 5 4 7 6 6 7 4 5 7 6 5 4 0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0

a local checkpoint on a shared file upon finishing its task
in a sorting round.

Algorithm 3 Function to find a partner in a cluster dim
1: Function partner(rank, round)

2: nodes ← crank,round
3: j ← 0
4: while j ≤ size(nodes) do
5: if nodes[j] �∈ non-recommended then
6: return nodes[j]
7: j ← j + 1
8: return ⊥

Algorithm 4 Function to replace a partner in a cluster dim
1: function replace(rankNon-recommended, dim)
2: s ← 1
3: while s ≤ dim do
4: j ← 0
5: nodes ← crankNon-recommended,s
6: while j ≤ size(nodes) do
7: if nodes[j] �∈ non-recommended then
8: return nodes[j]
9: j ← j + 1

10: s ← s + 1
11: return ⊥

The process which replaces a non-recommended pro-
cess in a corresponding sorting round is chosen accord-
ing to Algorithm 4. A non-recommended process pi is
replaced by the first recommended process in ci,s, starting
from s = 1 and i is the identifier of a non-recommended
process. If there is no recommended process in clus-
ter s, then s is incremented until a recommended pro-
cess is found. For example, considering the first sorting
round and processes p0 and p4, if process p4 is non-
recommended, then p5 assumes p4 tasks in the corre-
sponding sorting round (c4,1 = 5, see Table 2). However,

Camargo and Duarte Jr. Journal of the Brazilian Computer Society (2018) 24:5 Page 11 of 16

if p5 is also non-recommended, then p4 is replaced by p6
because p6 is the first recommended process in c4,2.
Another example is given next. Suppose process 2 is

non-recommended in the first sorting round. This round
corresponds to the largest cluster (s = 3), as shown
in Fig. 6. In this sorting round, processes p2 and p6 are
supposed to form a pair whether both are recommended.
However, the first recommended process in c6,3 is process
p3, i.e, c6,3 = 3. Process p3 is responsible for process p2
because it is the first recommended process in c2,1. Then,
process p3 is then assigned the task of process p2. Process
p3 then reads the list number of process p2 and communi-
cates with process p6 replacing process 2. Remember that
process p3 also performs its task with process p7 because
both p3 and p7 are recommended in that sorting round.
At the end of each sorting round, each process saves its
sorted list on a shared file system. After completing their
tasks in a sorting round, each process reaches a barrier.

HyperQuickSort using ULFM
Next, we briefly give an overview of how we imple-
mented HyperQuickSort using ULFM. A function
similar to MPI_Barrier is used to detect process
faults. Whenever this function returns an error code
(MPI_ERR_PROC_FAILED), the MPI communicator is
revoked (MPI_Comm_revoke()). This function makes
the MPI communicator invalid. After this, all pro-
cesses call an agreement function (MPI_Agree()).
MPI_Comm_agree executes a collective operation
between the correct processes of the communicator. This
function notifies processes that the communicator is
invalid. The routines MPI_Comm_failure_ack() and
MPI_Comm_failure_get_acked() are used to iden-
tify which processes within a communicator are faulty.
After that, the MPI_Comm_shrink() routine allows the
application to create a new communicator, eliminating
all the failed processes. This primitive is collective and
executes consensus to ensure that all processes have
the same vision of the new communicator. A consensus
algorithm implemented in ULFM is the one proposed by
Herault et al. [26].

Results
In this section, we present experimental results obtained
from running the DGRP implementation described in the
previous section. The experiments were executed on the
LCPAD-UFPR cluster. This is a multi-user shared clus-
ter that runs applications of several users simultaneously.
The cluster consists of 18 machines each of which with
32 Intel(R) Xeon(R) CPU E5-2670 cores at 2.60 GHz with
128 GB of RAM and 20480 KB of cache, interconnected
by a Gigabit Ethernet network. The code was written in
the MPI/C language. We employed the Open MPI library
version 1.7 extended with ULFM2.

Two sets of experiments are presented. The first set
consists of results for DGRP itself, including the perfor-
mance of monitoring. The second set consists of results
obtained for the execution of the MPI implementation of
HyperQuickSort using DGRP and using ULFM.

DGRP: monitoring
In this subsection, we present results for the DGRP imple-
mentation with a focus on monitoring. Each machine
executes a single process; hosts/processes are assigned
identifiers from 0 to 17. The testing interval was set to
1 s. The test procedure consists of the computation of
the prime numbers between 1 and 1000. As mentioned
above, the recommendation threshold is computed using
the TCP timeout algorithm multiplied by a constant; ini-
tially, it was set to 8 s. As soon as the tests are executed
and the actual delays to receive test replies are measured,
the threshold gets closer to the mean time testers take to
receive a reply. This takes a couple of testing rounds. A
process is classified as recommended if it correctly sends
the test reply within the threshold interval. Otherwise, it
is classified as non-recommended. For all experiments, ζ
(the number of times a process must be tested as rec-
ommended before it can rejoin the DGRP) was set to 5
(ζ = 5).
Figure 7 shows the results for process 1 testing process

0 for 150 consecutive testing intervals. In this experiment,
we employed a recommendation threshold that is very
close to the time to execute a test. The continuous black
curve shows the time to a complete test. The dashed red
curve shows the corresponding recommendation thresh-
old. It is possible to conclude from the several peaks in

Fig. 7 Process 1 tests process 0

Camargo and Duarte Jr. Journal of the Brazilian Computer Society (2018) 24:5 Page 12 of 16

time to test curve that the process 0 very frequently takes
longer to reply than expected. The curves also show that
the recommendation threshold is updated according to
the variation of the time to test. Despite of this adaptation,
the time to test does exceed the threshold on some points,
and when this occurs, process 0 ends up being classified
as non-recommended by process 1.
Next, we present results obtained from monitoring the

18-node cluster for 30,000 consecutive testing intervals.
For this and the next experiments, the threshold was set to
two and a half times the value computed using TCP’s time-
out algorithm. In this experiment, process 11 remained
recommended during all testing intervals. Process 2 in the
end was classified as recommended, but it was the process
that most often became non-recommended, alternating
its status 11 times. Figure 8 shows the point of view of pro-
cess 11 (tester) about process 2 (tested). Figure 9 shows
the point of view of process 6 (tester) about the process 2
(tested). Process 6 tested process 2 as non-recommended
seven times. On the other hand, process 11 did not test
process 2 as non-recommended even once.
Figure 10 shows the point of view of process 0 (tester)

about process 11 (tested). Comparing results in Figs. 8 and
9 with those in Fig. 10, it is possible to see that in the first
two figures, process 2 presents a significant variation of
the time to send test replies. In Fig. 10, process 11 presents
little variation, a more stable behavior.
From the experiments, we learned that in the cluster,

the hosts with lower identifiers had almost always most
of their cores busy running jobs. Table 3 below correlates
the cluster load with the state of each process at the end
of the experiment. Each host has 32 cores. It is possible

Fig. 8 Process 11 tests process 2

Fig. 9 Process 6 tests process 2

to see that the host in which process 2 runs (host2) has
all its cores running jobs. This may explain why pro-
cess 2 presented the behavior described above. We could
conclude that processes that became non-recommended
fewer times were running on hosts with fewer jobs.
Figure 11 is a zoom on Fig. 9 and shows process 6 testing

process 2 from testing interval 13,200 to 13,700. It is pos-
sible to see that process 6 detects twice the instability of
process 2 (blue circles in Fig. 11). In testing round 13,226,
the test delay was 62.39 ms and the recommendation

Fig. 10 Process 0 tests process 11

Camargo and Duarte Jr. Journal of the Brazilian Computer Society (2018) 24:5 Page 13 of 16

Table 3 Cluster load and test results

host No. of jobs running state

host0 9 6

host1 33 10

host2 33 22

host3 32 14

host4 32 12

host5 32 12

host6 3 2

host7 2 4

host8 3 6

host9 4 6

host10 8 6

host11 5 0

host12 32 6

host13 2 2

host14 1 2

host15 31 12

host16 31 8

host17 31 14

threshold was equal 48.42 ms. In testing round 13,641, the
test delay was 68.16 ms and recommendation threshold
was equal to 62.1 ms.
Every time, non-recommended process 2 is tested as

recommended process 6 incremented the corresponding
counter. Figure 12 shows the variation of this counter.
When the counter reaches the target constant ζ = 5, a

Fig. 11 Process 6 tests process 2

Fig. 12 Zeta for node 2

consensus execution is triggered to possibly allow process
2 to rejoin the DGRP. Process 6 invoked Paxos nine times
in order to change the state of process 2 back to recom-
mended. Twice, process 6 voted favorably to reintegrate
process 2 to the DGRP. As previously mentioned, if a par-
ticipant has the counter greater than ζ/2 then its vote is
favorable. From testing interval 5000 to 8500, process 2
changed its state five times.
Figure 13 shows how the DGRP composition varied

along the 30,000 testing intervals. A zoom showing the
DGRP composition between testing intervals 1200 and
1300 is also shown. At the beginning, all 18 processes
are in the DGRP. Several times, one process was removed
from DGRP. A greater instability can be perceived in

Fig. 13 DGRP composition variation

Camargo and Duarte Jr. Journal of the Brazilian Computer Society (2018) 24:5 Page 14 of 16

testing round 1271, when DGRP consists of only four pro-
cesses. Soon after that, the recommended group recovers.
In testing round 1.298, the DGRP is formed by eight pro-
cesses. A similar situation happens again in testing round
13,149, when DGRP consists of only three processes.

Performance of HyperQuickSort over DGRP and ULFM
The performance of HyperQuickSort on top of DGRP was
evaluated both considering that non-recommended pro-
cesses can later rejoin the DGRP and have tasks assigned
and also considering that the non-recommended pro-
cesses are removed forever from the DGRP. Formeasuring
the overhead of DGRP, we also evaluated the performance
of HyperQuickSort using ULFM. In this implementation,
ULFM excludes faulty processes allowing the computa-
tion to proceed but they are never used again, i.e., in
this case, new processes are not launched to replace
faulty ones. HyperQuickSort was executed to sort 1 billion
integers.
Figure 14 shows the performance of HyperQuickSort

running on 16 processes. The 95% confidence interval is
shown for results. The following scenarios were executed:
(1) only recommended processes, (2) only one process
becomes non-recommended, (3) half of the processes
become non-recommended, and (4) only one process
remains recommended. Instability was injected randomly
during the algorithm execution; it was implemented by
killing our own application processes or making them
take longer to reply. As shown in Fig. 14, the darker bar
presents the performance of ULFM. The bar in the mid-
dle shows results for the implementation on DGRP that
eliminates non-recommended processes forever, i.e., with
no recovery. The lighter bar shows the performance of

Fig. 14 Results for 16 processes sorting 1.024 × 106 integer numbers

DGRP with non-recommended processes later rejoining
the DGRP.
The overhead of DGRP is around 9% when we com-

pare HyperQuickSort using ULFM with DGRP with no
recovery. On the other hand, in the last two scenarios, the
execution time of HyperQuickSort when processes can
later rejoin the DGRP is lower than the performance of
DGRP with no recovery. This is because even if a pro-
cess does not participate in a sorting a round, it can be
reintegrated in a subsequently sorting round.

Conclusion
In this work, we introduced a new approach for recom-
mending a group of processors to run applications in
MPI-based HPC systems. The recommendation is based
on tests executed on processes that eliminates both those
that have crashed and those that are presenting slow
responsiveness. A DGRP is defined as a self-managed
dynamic group of recommended processes that employs
monitoring and reconfiguration at runtime, allowing the
application to keep running even as processes become
non-recommended and are removed from the DGRP. A
non-recommended process can later rejoin the DGRP if it
passes a sequence of tests and after a round of consensus
executed by DGRP processes. The application execution
is organized in computing rounds that use barriers to
allow processes to synchronize, obtaining a fresh view of
the DGRP so that the application jobs can be properly
assigned to DGRP processes. Actually, the barrier can be
easily removed, but the removal would make it more com-
plex to describe the proposal. As they are used, they make
it very easy for processes to obtain the same DGRP view.
In order to remove the barriers, we need to create a call-
back system, i.e., as soon as an application process gets
a different view than expected, it needs to tell the others
about the reconfiguration. As a case study, we imple-
mented HyperQuickSort and report results from execu-
tions on a shared HPC cluster. DGRP is implemented on
top of ULFM, a recent specification for dealing with faults
in MPI systems. Results show that the proposed model is
efficient and effective.
Several different aspects of running resilient MPI appli-

cations on a DGRP can be explored as future work. First
of all, we believe the model itself can be extended so that
the DGRP can use more information from the diagnosis
system. For example, the fact that some processes eventu-
ally present much higher state counters can help classify
a process as stable or not. On another front, we believe
that the definition of MPI primitives to allow tasks to be
mapped to DGRP processes can make it straightforward
to allow arbitrary parallel applications to use the DGRP,
in particular we believe it is possible to extend ULFM to
include the DGRP functionality. Running other parallel
algorithms, using other diagnosis strategies besides those

Camargo and Duarte Jr. Journal of the Brazilian Computer Society (2018) 24:5 Page 15 of 16

presented in the paper and exploring other strategies to
maintain DGRP should also be done in the future. As
mentioned above, the barrier can also be removed from
the DGRP specification and replaced by a callback sys-
tem, i.e., as soon as an application process gets a different
view than expected, it needs to tell the others about the
reconfiguration. Future work also includes investigating
the applicability of DGRP to Spark [55] and Hadoop [56]
which have become increasingly important frameworks
for parallel and distributed computing.

Endnotes
1 http://ipm-hpc.sourceforge.net
2 http://fault-tolerance.org/ulfm/downloads/

Acknowledgments
We would like to thank the funding agencies and universities involved for the
support provided. We also thank the many contributions from the reviewers.

Funding
This work was partially supported by grant 311451/2016-0 from the Brazilian
Research Agency (CNPq) and by Conselho Nacional de Desenvolvimento
Científico e Tecnológico, award number: 311451/2016-0, recipient: Elias
Procópio Duarte Jr., Ph.D.

Availability of data andmaterials
Not applicable.

Authors’ contributions
Both authors contributed equally to this work. Both authors read and
approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

Received: 27 May 2017 Accepted: 31 January 2018

References
1. Egwutuoha IP, Levy D, Selic B, Chen S (2013) A survey of fault tolerance

mechanisms and checkpoint/restart implementations for high
performance computing systems. J Supercomput 65(3):1302–1326

2. Martino CD, Kalbarczyk Z, Iyer RK, Baccanico F, Fullop J, Kramer W (2014)
Lessons learned from the analysis of system failures at petascale: The case
of blue waters. In: 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks. pp 610–621. https://doi.org/10.
1109/DSN.2014.62

3. Snir M, Wisniewski RW, Abraham JA, Adve SV, Bagchi S, Balaji P, Belak J,
Bose P, Cappello F, Carlson B, Chien AA, Coteus P, Debardeleben NA,
Diniz PC, Engelmann C, Erez M, Fazzari S, Geist A, Gupta R, Johnson F,
Krishnamoorthy S, Leyffer S, Liberty D, Mitra S, Munson T, Schreiber R,
Stearley J, Hensbergen EV (2014) Addressing failures in exascale
computing. Int J High Perform Comput Appl 28(2):129–173. https://doi.
org/10.1177/1094342014522573

4. Tiwari D, Gupta S, Vazhkudai SS (2014) Lazy checkpointing: exploiting
temporal locality in failures to mitigate checkpointing overheads on
extreme-scale systems. In: 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks. pp 25–36. https://doi.org/10.
1109/DSN.2014.101

5. Gioiosa R, Kestor G, Kerbyson DJ (2014) Online monitoring system for
performance fault detection. In: International Parallel Distributed
Processing Symposium Workshops. pp 1475–1484. https://doi.org/10.
1109/IPDPSW.2014.165

6. Nielsen F (2016) Introduction to HPC with MPI for data science. 1st edn.
Springer, Switzerland

7. Fagg GE, Dongarra J (2000) Ft-mpi: Fault tolerant mpi, supporting
dynamic applications in a dynamic world. In: Proceedings of the 7th
European PVM/MPI Users’ Group Meeting on Recent Advances in Parallel
Virtual Machine and Message Passing Interface. Springer, London.
pp 346–353. http://dl.acm.org/citation.cfm?id=648137.746632

8. (2015) MPI Forum: document for a standard message-passing interface
3.1. Technical report, University of Tennessee

9. Bland W, Bouteiller A, Hérault T, Bosilca G, Dongarra J (2013) Post-failure
recovery of MPI communication capability: design and rationale. IJHPCA
27(3):244–254

10. Gropp W, Lusk E (2004) Fault tolerance in message passing interface
programs. Int J High Perform Comput Appl 18(3):363–372. https://doi.
org/10.1177/1094342004046045

11. Birman K (2010) Replication. In: A history of the virtual synchrony
replication model. Springer, Berlin. pp 91–120. http://dl.acm.org/citation.
cfm?id=2172338.2172344

12. Veríssimo PE (2006) Travelling through wormholes: a new look at
distributed systems models. SIGACT News 37(1):66–81. https://doi.org/10.
1145/1122480.1122497

13. Huang KC, Huang TC, Tsai MJ, Chang HY (2014) Moldable job scheduling
for HPC as a service. In: Park JJJH, Stojmenovic I, Choi M, Xhafa F (eds).
Future information technology: FutureTech 2013. Springer, Berlin,
Heidelberg. pp 43–48. https://doi.org/10.1007/978-3-642-40861-8_7

14. Masson GM, Blough DM, Sullivan GF (1996) Fault-tolerant computer
system design. In: System diagnosis. Prentice-Hall, Inc, Upper Saddle
River. pp 478–536

15. Ye TL, Hsieh SY (2013) A scalable comparison-based diagnosis algorithm
for hypercube-like networks. IEEE Trans Reliab 62(4):789–799. https://doi.
org/10.1109/TR.2013.2284743

16. Weber A, Kutzke AR, Chessa S (2012) Energy-aware test connection
assignment for the self-diagnosis of a wireless sensor network. J Braz
Comput Soc 18(1):19–27. https://doi.org/10.1007/s13173-012-0057-7

17. Wagar B (1987) Hyperquicksort: A fast sorting algorithm for hypercubes.
Hypercube Multiprocessors 1987:292–299

18. Cappello F, Geist A, Gropp W, Kale S, Kramer B, Snir M (2014) Toward
Exascale Resilience: 2014 update. Supercomputing Frontiers and
Innovations 1(1). http://superfri.org/superfri/article/view/14

19. Ropars T, Martsinkevich TV, Guermouche A, Schiper A, Cappello F (2013)
Spbc: Leveraging the characteristics of mpi hpc applications for scalable
checkpointing. In: International Conference for High Performance
Computing, Networking, Storage and Analysis. pp 1–12. https://doi.org/
10.1145/2503210.2503271

20. Bouteiller A, Herault T, Bosilca G, Dongarra JJ (2013) Correlated set
coordination in fault tolerant message logging protocols for many-core
clusters. Concurr Comput Pract Exp 25(4):572–585. https://doi.org/10.
1002/cpe.2859

21. Fagg GE, Dongarra JJ (2004) Building and using a fault-tolerant mpi
implementation. Int J High Perform Comput Appl 18(3):353–361. https://
doi.org/10.1177/1094342004046052

22. Batchu R, Dandass YS, Skjellum A, Beddhu M (2004) Mpi/ft: A
model-based approach to low-overhead fault tolerant message-passing
middleware. Clust Comput 7(4):303–315. https://doi.org/10.1023/B:CLUS.
0000039491.64560.8a

23. Suo G, Lu Y, Liao X, Xie M, Cao H (2013) Nr-mpi: A non-stop and fault
resilient mpi. In: International Conference on Parallel and Distributed
Systems. pp 190–199. https://doi.org/10.1109/ICPADS.2013.37

24. Gropp W, Lusk E, Doss N, Skjellum A (1996) A high-performance, portable
implementation of the mpi message passing interface standard. Parallel
Comput 22(6):789–828. https://doi.org/10.1016/0167-8191(96)00024-5

https://doi.org/10.1109/DSN.2014.62
https://doi.org/10.1109/DSN.2014.62
https://doi.org/10.1177/1094342014522573
https://doi.org/10.1177/1094342014522573
https://doi.org/10.1109/DSN.2014.101
https://doi.org/10.1109/DSN.2014.101
https://doi.org/10.1109/IPDPSW.2014.165
https://doi.org/10.1109/IPDPSW.2014.165
http://dl.acm.org/citation.cfm?id=648137.746632
https://doi.org/10.1177/1094342004046045
https://doi.org/10.1177/1094342004046045
http://dl.acm.org/citation.cfm?id=2172338.2172344
http://dl.acm.org/citation.cfm?id=2172338.2172344
https://doi.org/10.1145/1122480.1122497
https://doi.org/10.1145/1122480.1122497
https://doi.org/10.1007/978-3-642-40861-8_7
https://doi.org/10.1109/TR.2013.2284743
https://doi.org/10.1109/TR.2013.2284743
https://doi.org/10.1007/s13173-012-0057-7
http://superfri.org/superfri/article/view/14
https://doi.org/10.1145/2503210.2503271
https://doi.org/10.1145/2503210.2503271
https://doi.org/10.1002/cpe.2859
https://doi.org/10.1002/cpe.2859
https://doi.org/10.1177/1094342004046052
https://doi.org/10.1177/1094342004046052
https://doi.org/10.1023/B:CLUS.0000039491.64560.8a
https://doi.org/10.1023/B:CLUS.0000039491.64560.8a
https://doi.org/10.1109/ICPADS.2013.37
https://doi.org/10.1016/0167-8191(96)00024-5

Camargo and Duarte Jr. Journal of the Brazilian Computer Society (2018) 24:5 Page 16 of 16

25. Hursey J, Graham RL, Bronevetsky G, Buntinas D, Pritchard H, Solt DG
(2011) Run-through stabilization: an MPI proposal for process fault
tolerance. In: Cotronis Y, Danalis A, Nikolopoulos DS, Dongarra J (eds).
Recent advances in the message passing interface: 18th European MPI
Users’ Group Meeting, EuroMPI 2011, Santorini, Greece, September 18-21,
2011. Proceedings. Springer, Berlin, Heidelberg. pp 329–332. https://doi.
org/10.1007/978-3-642-24449-0_40

26. Herault T, Bouteiller A, Bosilca G, Gamell M, Teranishi K, Parashar M,
Dongarra J (2015) Practical scalable consensus for pseudo-synchronous
distributed systems. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC.
ACM, New York. pp 31–13112. http://doi.acm.org/10.1145/2807591.
2807665. https://doi.org/10.1145/2807591.2807665

27. Buntinas D (2012) Scalable distributed consensus to support mpi fault
tolerance. In: 26th International Parallel and Distributed Processing
Symposium. pp 1240–1249. https://doi.org/10.1109/IPDPS.2012.113

28. Hursey J, Naughton T, Vallee G, Graham RL (2011) A log-scaling fault
tolerant agreement algorithm for a fault tolerant MPI. In: Cotronis Y,
Danalis A, Nikolopoulos DS, Dongarra J (eds). Recent Advances in the
Message Passing Interface: 18th European MPI Users’ Group Meeting,
EuroMPI 2011, Santorini, Greece, September 18-21, 2011. Proceedings.
Springer, Berlin, Heidelberg. pp 255–263. https://doi.org/10.1007/978-3-
642-24449-0_29

29. Huang KH, Abraham JA (1984) Algorithm-based fault tolerance for matrix
operations. IEEE Trans Comput C-33(6):518–528. https://doi.org/10.1109/
TC.1984.1676475

30. Chen Z, Dongarra J (2008) Algorithm-based fault tolerance for fail-stop
failures. IEEE Trans Parallel Distrib Syst 19(12):1628–1641. https://doi.org/
10.1109/TPDS.2008.58

31. Gamell M, Katz DS, Kolla H, Chen J, Klasky S, Parashar M (2014) Exploring
automatic, online failure recovery for scientific applications at extreme
scales. In: SC14: International Conference for High Performance
Computing, Networking, Storage and Analysis. pp 895–906. https://doi.
org/10.1109/SC.2014.78

32. Gamell M, Teranishi K, Heroux MA, Mayo J, Kolla H, Chen J, Parashar M
(2015) Local recovery and failure masking for stencil-based applications at
extreme scales. In: SC15: International Conference for High Performance
Computing, Networking, Storage and Analysis. pp 1–12. https://doi.org/
10.1145/2807591.2807672

33. Zheng G, Ni X, Kalé LV (2012) A scalable double in-memory checkpoint
and restart scheme towards exascale. In: International Conference on
Dependable Systems and Networks Workshops (DSN). pp 1–6. https://
doi.org/10.1109/DSNW.2012.6264677

34. Ferreira K, Stearley J, Laros III JH, Oldfield R, Pedretti K, Brightwell R,
Riesen R, Bridges PG, Arnold D (2011) Evaluating the viability of process
replication reliability for exascale systems. In: Proceedings of International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC. ACM, New York. pp 44–14412. http://doi.acm.org/10.1145/
2063384.2063443. https://doi.org/10.1145/2063384.2063443

35. Genaud S, Jeannot E, Rattanapoka C (2009) Fault-management in
p2p-mpi. Int J Parallel Prog 37(5):433–461. https://doi.org/10.1007/
s10766-009-0115-8

36. Fiala D, Mueller F, Engelmann C, Riesen R, Ferreira K, Brightwell R (2012)
Detection and correction of silent data corruption for large-scale
high-performance computing. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, SC. IEEE Computer Society Press, Los Alamitos. pp 78–17812.
http://dl.acm.org/citation.cfm?id=2388996.2389102

37. Huang C, Zheng G, Kal’e L, Kumar S (2006) Performance Evaluation of
Adaptive MPI. In: Proceedings of the Eleventh ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. ACM, New York.
pp 12–21. http://doi.acm.org/10.1145/1122971.1122976. http://doi.org/
10.1145/1122971.1122976

38. Kale LV, Krishnan S (1993) CHARM++: A Portable Concurrent Object
Oriented System Based on C++. In: Proceedings of the Eighth Annual
Conference on Object-oriented Programming Systems, Languages, and
Applications. ACM, New York. pp 91–108. http://doi.acm.org/10.1145/
165854.165874. http://doi.org/10.1145/165854.165874

39. Petrini F, Kerbyson DJ, Pakin S (2003) The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance on the
8,192 Processors of ASCI Q. In: Proceedings of the 2003 ACM/IEEE

Conference on Supercomputing. ACM, New York. pp 55–. http://doi.acm.
org/10.1145/1048935.1050204. http://doi.org/10.1145/1048935.1050204

40. Aguilar X, Laure E, Fürlinger K (2013) Online performance data
introspection with ipm. In: 10th International Conference on High
Performance Computing. pp 728–734. https://doi.org/10.1109/HPCC.and.
EUC.2013.107

41. Huck KA, Malony AD, Shende S, Morris A (2006) TAUg: runtime global
performance data access using MPI. In: Mohr B, Träff JL, Worringen J,
Dongarra J (eds). Recent advances in parallel virtual machine and
message passing interface: 13th European PVM/MPI User’s Group
Meeting Bonn, Germany, September 17-20, 2006 Proceedings. Springer,
Berlin, Heidelberg. pp 313–321. https://doi.org/10.1007/11846802_44

42. Nataraj A, Sottile M, Morris A, Malony AD, Shende S (2007)
TAUoverSupermon: low-overhead online parallel performance
monitoring. In: Kermarrec A-M, Bougé L, Priol T (eds). 13th International
Euro-Par Conference. Springer, Berlin, Heidelberg. pp 85–96

43. Shende SS, Malony AD (2006) The tau parallel performance system. Int J
High Perform Comput Appl 20(2):287–311. https://doi.org/10.1177/
1094342006064482

44. Sottile MJ, Minnich RG (2002) Supermon: a high-speed cluster monitoring
system. In: International Conference on Cluster Computing. pp 39–46.
https://doi.org/10.1109/CLUSTR.2002.1137727

45. Duarte Jr. EP, Ziwich RP, Albini LCP (2011) A survey of comparison-based
system-level diagnosis. ACM Comput Surv 43(3):22–12256. https://doi.
org/10.1145/1922649.1922659

46. Preparata FP, Metze G, Chien RT (1967) On the connection assignment
problem of diagnosable systems. IEEE Trans Electron Comput
EC-16(6):848–854. https://doi.org/10.1109/PGEC.1967.264748

47. Hakimi SL, Nakajima K (1984) On adaptive system diagnosis. IEEE Trans
Comput 33(3):234–240

48. Hosseini SH, Kuhl JG, Reddy SM (1984) A diagnosis algorithm for
distributed computing systems with dynamic failure and repair. IEEE
Trans Comput C-33(3):223–233. https://doi.org/10.1109/TC.1984.1676419

49. Duarte EP, Nanya T (1998) A hierarchical adaptive distributed system-level
diagnosis algorithm. IEEE Trans Comput 47(1):34–45. https://doi.org/10.
1109/12.656078

50. Rangarajan S, Dahbura AT, Ziegler EA (1995) A distributed system-level
diagnosis algorithm for arbitrary network topologies. IEEE Trans Comput
44(2):312–334. https://doi.org/10.1109/12.364542

51. Lamport L (2001) Paxos made simple. ACM SIGACT News (Distrib Comput
Column) 32, 4 (Whole Number 121, December 2001). pp. 51–58

52. Jacobson V (1988) Congestion avoidance and control. In: Symposium
Proceedings on Communications Architectures and Protocols, SIGCOMM.
ACM, New York. pp 314–329. http://doi.acm.org/10.1145/52324.52356.
https://doi.org/10.1145/52324.52356

53. Paxson V, Allman M, Chu HKJ, Sargent M (2011) Computing TCP’s
retransmission timer. http://www.rfc-editor.org/rfc/rfc6298.txt

54. Moraes DM, Jr EPD (2011) A failure detection service for internet-based
multi-as distributed systems. In: 17th International Conference on Parallel
and Distributed Systems. pp 260–267. https://doi.org/10.1109/ICPADS.
2011.5

55. Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J,
Venkataraman S, Franklin MJ, Ghodsi A, Gonzalez J, Shenker S, Stoica I
(2016) Apache spark: a unified engine for big data processing. Commun
ACM 59(11):56–65. https://doi.org/10.1145/2934664

56. Manikandan SG, Ravi S (2014) Big data analysis using apache hadoop. In:
International Conference on IT Convergence and Security (ICITCS).
pp 1–4. https://doi.org/10.1109/ICITCS.2014.7021746

https://doi.org/10.1007/978-3-642-24449-0_40
https://doi.org/10.1007/978-3-642-24449-0_40
http://doi.acm.org/10.1145/2807591.2807665
http://doi.acm.org/10.1145/2807591.2807665
https://doi.org/10.1145/2807591.2807665
https://doi.org/10.1109/IPDPS.2012.113
https://doi.org/10.1007/978-3-642-24449-0_29
https://doi.org/10.1007/978-3-642-24449-0_29
https://doi.org/10.1109/TC.1984.1676475
https://doi.org/10.1109/TC.1984.1676475
https://doi.org/10.1109/TPDS.2008.58
https://doi.org/10.1109/TPDS.2008.58
https://doi.org/10.1109/SC.2014.78
https://doi.org/10.1109/SC.2014.78
https://doi.org/10.1145/2807591.2807672
https://doi.org/10.1145/2807591.2807672
https://doi.org/10.1109/DSNW.2012.6264677
https://doi.org/10.1109/DSNW.2012.6264677
http://doi.acm.org/10.1145/2063384.2063443
http://doi.acm.org/10.1145/2063384.2063443
https://doi.org/10.1145/2063384.2063443
https://doi.org/10.1007/s10766-009-0115-8
https://doi.org/10.1007/s10766-009-0115-8
http://dl.acm.org/citation.cfm?id=2388996.2389102
http://doi.acm.org/10.1145/1122971.1122976
http://doi.org/10.1145/1122971.1122976
http://doi.org/10.1145/1122971.1122976
http://doi.acm.org/10.1145/165854.165874
http://doi.acm.org/10.1145/165854.165874
http://doi.org/10.1145/165854.165874
http://doi.acm.org/10.1145/1048935.1050204
http://doi.acm.org/10.1145/1048935.1050204
http://doi.org/10.1145/1048935.1050204
https://doi.org/10.1109/HPCC.and.EUC.2013.107
https://doi.org/10.1109/HPCC.and.EUC.2013.107
https://doi.org/10.1007/11846802_44
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1109/CLUSTR.2002.1137727
https://doi.org/10.1145/1922649.1922659
https://doi.org/10.1145/1922649.1922659
https://doi.org/10.1109/PGEC.1967.264748
https://doi.org/10.1109/TC.1984.1676419
https://doi.org/10.1109/12.656078
https://doi.org/10.1109/12.656078
https://doi.org/10.1109/12.364542
http://doi.acm.org/10.1145/52324.52356
https://doi.org/10.1145/52324.52356
http://www.rfc-editor.org/rfc/rfc6298.txt
https://doi.org/10.1109/ICPADS.2011.5
https://doi.org/10.1109/ICPADS.2011.5
https://doi.org/10.1145/2934664
https://doi.org/10.1109/ICITCS.2014.7021746

	Abstract
	Keywords

	Introduction
	Related work
	The Dynamic Group of Recommended Processes
	System-level diagnosis: a very brief overview
	DGRP: description
	DGRP: system model

	DGRP implementation and case study
	DGRP implementation
	HyperQuickSort algorithm
	HyperQuickSort using DGRP
	HyperQuickSort using ULFM

	Results
	DGRP: monitoring
	Performance of HyperQuickSort over DGRP and ULFM

	Conclusion
	Acknowledgments
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

