W) Check for updates

Received: 3 July 2019 Revised: 7 November 2019 Accepted: 14 November 2019

DOI: 10.1002/spy2.106

RESEARCH ARTICLE WILEY

BackStreamDB: A stream processing engine for backbone
traffic monitoring with anomaly detection

Elias P. Duarte Jr'2® | Carmem Hara'? | Pedro Torres Jr'*? | Christian Gomes!?

!Department Informatics, Federal

University of Parana (UFPR), Curitiba, Abstract
Brazil BackStreamDB is distributed traffic monitoring system based on a stream pro-
*Brazilian Academic Network (RNP), cessing engine (SPE) designed to monitor the traffic of wide area backbones.

PoP-PR, Brazil BackStreamDB provides arbitrary metrics about the traffic in real time, taking

Correspondence into account the backbone as a whole. The system was developed for and suc-

Elias P. Duarte Jr, Department cessfully deployed on the Brazilian National Academic Network (RNP). In this
Informatics, Federal University of Parana

(UFPR), Brazil work, we describe the functionality for the detection of traffic anomalies. A

Email: elias@inf.ufpr.br large number of Internet attacks are continuously reported, and several types of
attacks result in anomalous traffic. In the proposed strategy for anomaly detec-

Funding information . . . L.

CNPq—The Brazilian Research Council, tion, the traffic is sampled by monitors that are distributed across the backbone,

311451/2016-0 which are accessed and processed by the SPE. BackStreamDB was extended with

stream processing modules for computing traffic entropy and principal compo-
nent analysis, which are the employed to detect traffic anomalies. Experimental
results are reported which were obtained to validate the effectiveness of the
proposed strategy for different types of attacks.

KEYWORDS

anomaly detection, entropy, principal component analysis (PCA), stream processing engine (SPE),
traffic monitoring

1 | INTRODUCTION

BackStreamDB is a distributed monitoring system for wide area backbones that integrates a stream processing engine
(SPE) and a flow monitoring tool within a framework designed for large-scale backbones. SPEs! were proposed to
provide the same basic features found in traditional database management systems (DBMSs), but operations are exe-
cuted in real time on continuous data streams. In the case of BackStreamDB, the data stream is the network traffic
itself. With this system, the network administrator can use a high level SQL-like language to issue arbitrary queries
about the network traffic. Query results are provided in real time, and are executed during a specifiable time frame.
It is possible to monitor the traffic between specific endpoints, a single segment, a set of segments, or even the whole
backbone.

BackStreamDB allows backbone traffic to be captured with different levels of granularity, according to the user's need.
Allowing the selection of monitoring metrics as a query is specified is flexible and convenient, as new information can be
obtained on the fly by just executing a different query. In addition, arbitrary measurements can be obtained without storing
any traffic logs, which is important as the amount of traffic in these networks is huge. Furthermore, it is possible to extend
the system by implementing new operators that manipulate traffic in real time. New operators are easily incorporated as
new modules.
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In Reference 2, we focus on the ability of BackStreamDB to process arbitrary queries about the backbone traf-
fic in real time. In the present work, we describe the features for detecting traffic anomalies. A very large number
of attacks are reported daily in the Internet, and most of them have an impact on the traffic. In computer networks,
traffic anomalies usually cause unpredictable behavior, often having a negative impact on the availability of services
and the network itself. Several different types of traffic anomalies have been reported, and they are usually classified
according to the way they affect the traffic.> The traffic anomaly detection approach we implemented is based on a
method originally proposed by Crovella et al.* This method employs statistical analysis of the traffic based on entropy
and principal component analysis (PCA) and allows the detection of traffic anomalies considering the network as a
whole.

Among the significant types of events that lead to traffic anomalies, some of the most important include denial of
service (DoS), flash crowds, port scans, and worms. DoS is usually a type of attack in which one or more hosts try to
turn a particular host or service unavailable so that the attacked entity cannot process legitimate requests. Flash crowds
cause a sudden increase on the number of accesses to a given service. Port scans® probe a range of ports of a given host
in order to discover vulnerabilities. Worms’ usually try to explore vulnerabilities by trying to communicate with several
hosts using a small set of ports.

Given the variety of events that may cause traffic anomalies, it is hard to attain a perfect solution to detect and classify
general anomalies in computer networks, in particular the Internet. Several existing approaches aim at a specific type
of anomaly. The objective of this work is to show that BackStreamDB is capable of detecting different types of traffic
anomalies in real time. Another objective of this work is to describe the extension of BackStreamDB with new operator
modules, and investigate the performance of running complex statistical operators on network traffic. We describe the
implementation of both entropy and PCA operators, which are the basis for detecting anomalies. We validate the proposed
traffic anomaly detection system using synthetic traffic including three different well-known types of anomalies: DoS,
port scans, and worms. The system proved to effectively detect all those types of anomalous traffic.

The rest of this paper is organized as follows. In the next section, we present an overview of related work. Next, in
Section 3, the BackStreamDB monitoring system is described. The traffic anomaly detection operators are described in
Section 4. Experimental results are reported in Section 5. Finally, Section 6 concludes the work.

2 | RELATED WORK

SPEs were first proposed motivated by the requirements of a new class of applications, characterized by the continuous
generation of data. They were designed to provide the same functionality as DBMSs, but applied to continuous data flows
or streams. The main feature of these systems is their ability to provide results in real time, without requiring data to
be locally stored. This is particularly useful for network monitoring. The main difference between DBMSs and SPEs is
related to how data and queries are handled.! DBMSs work with static data and dynamic queries, while SPEs work with
dynamic data and static queries. That is, traditional databases apply different queries on the same set of data; on the other
hand, SPEs apply the same queries on streaming (dynamic) data.

Several SPEs have been proposed. Borealis® is a second generation distributed SPE, which extends and modifies some
of the functionalities of the first generation centralized SPE Aurora® and multinode SPE Medusa.'? Other prototypes have
been developed in the context of TelegraphCQ!! and STREAM!? projects. Gigascope!? is a system, which uses an SPE
tailored for high speed network monitoring. Although reported results are promising, Gigascope is a proprietary (AT&T's)
commercial product.

Several applications have been developed on top of SPEs. The authors of Reference 14 describe a case study using
TelegraphCQ SPE.!! This case study involved a functionality analysis to determine whether the SPE can be used to provide
the same metrics of T-RAT, a tool developed for analyzing TCP packet traces. Other case studies include the use of Borealis
SPE in a multiuser game,!® and in a sensor network.!® MaD-WiSe!” is also a distributed monitoring system for managing
data streams generated by wireless sensor networks. These previous works either implement a specific application, or
compare their functionality and performance with other tools. In contrast, BackStreamDB? is a general purpose and
flexible network management system that has been developed on top of the Borealis SPE. Some of the main features
of BackStreamDB include the following: it allows data gathering from multiple data sources and features distributed
processing at multiple nodes. It is also based on an architecture with separate modules for data acquisition and query result
treatment, and it is able to process data in Netflow format, considering the whole backbone. Details on BackStreamDB
are presented in Section 3.
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The other field of which we describe related work is traffic anomaly detection.'® Anomaly detection usually consists
of two phases: the learning phase and a testing phase. In the first phase, a profile of normal traffic is defined, in the second
phase, the learning profile is applied to new monitored flows. The central premise of anomaly detection is that intrusive
activities are a subset of anomalous activities.

Statistical methods for anomaly detection observe traffic features and generate profiles to represent the behavior. The
profile typically includes measures such as how frequently the feature is observed (including the distributions observed).
The profile can also include simple metrics such as CPU usage. In general, two profiles are stored for each object: the
current profile and a history profile. As events are processed in the network, the intrusion detection system updates the
current profile and periodically compares the current profile with the history profile. If the evaluation results show a
difference for some feature greater than a certain threshold, the system generates an alert. An advantage of statistical
models is that they do not need prior knowledge of security flaws and/or attacks. As a result, such systems are capable of
detecting new attacks, without interference. But there are also disadvantages. Attackers with some experience can train
the system to accept abnormal behavior as being normal.

In the area of anomaly detection, the authors of Reference 3 propose heuristics based on rules to distinguish specific
types of anomalies in samples of the volume of traffic, but no evaluation with real data was reported. In Reference 4,
the authors suggest that the reason for the limited success of these two attempts to detect anomalies, is due to the fact
they are based on metrics that rely on traffic volume, and then they argue that volume in itself does not provide enough
information to distinguish several anomalies. They show that anomalies can be classified into distinct categories in a
systematic way.

Although it is possible to say that machine learning has the same objective of the statistical methods, machine learning
is more, as it allows the system to change its behavior, so that it can improve its performance based on previous results.
Thus, machine learning has been increasingly applied to anomaly detection with the purpose of building self-configuring
systems.

Network traffic monitoring and analysis is considered from the point of view of big data analytics in Reference
19. The Big-DAMA framework is presented, which can store and process both structured and unstructured data from
heterogeneous sources, with both stream and batch processing capabilities. The authors claim that as network data is
multidimensional, machine learning can effectively allow the detection and classification of network attacks and anoma-
lies. Big-DAMA implements several algorithms for anomaly detection and other security-related tasks using supervised
and unsupervised machine learning (ML) models. Experimental results obtained from running the system with network
measurements collected at the WIDE backbone network allow the authors to conclude that Big-DAMA is effective for
detecting a set of well-known attacks.

Yet another work that applies machine learning to network traffic processing is Reference 20, in which the
authors employ unsupervised machine learning algorithms coupled with real-time streaming and analytics to
detect and mitigate distributed denial of service (DDoS) attacks. Experimental results are presented for real DDoS
traces.

In Reference 21, a framework with expert system functionality, which also aims at detecting and mitigating DDoS
attacks. Traffic of a service is first aggregated based on common IP address prefixes, and attacks are detected as the aggre-
gated traffic deviates from what is considered to be regular. Upon an attack detection, traffic from suspicious sources is
discarded. The elastic and parallel-distributed SPE StreamCloud was employed to characterize and detect anomalies in
real time. An empirical evaluation shows the effectiveness of the system.

A related strategy is presented in Reference 22 that employs rule mining to detect anomalous flows in a large set of
flows. The strategy actually uses meta-data from histogram-based detectors to identify suspicious flows, and then apply
association rule mining to find and summarize anomalous flows. Results are presented which were executed with data
from a backbone network, and show that the strategy effectively finds the anomalous flows, generating a small number
of false positives.

Another strategy that relies on artificial intelligence is Reference 23, which proposes a virtualized network func-
tion (VNF) that implements a distributed stream processing technique for real-time threat detection. The proposed VNF
presents auto-scaling properties and is empirically shown to be able to process up to 5 million messages per second.
Another work that uses NFV technology to implement network monitoring architecture is presented in Reference 24. A
set of monitoring agents is distributed across the network implemented as VNFs. The management plane enables users
to process, analyze and visualize customized network monitoring data. An empirical evaluation shows that the proposed
is able to detect traffic anomalies in real time.
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TABLE 1 Summary of related work

Reference Summary
14 Employs the TelegraphCQ SPE for the analysis of TCP flows
ol Employs the Borealis SPE on sensor networks

Traffic anomaly detection: heuristics

= Traffic anomaly detection: analysis of traffic volume based on origin-destination flows

Traffic anomaly detection: network as a whole, method based on entropy and PCA

1220 Traffic anomaly detection based on machine learning

21 Traffic anomaly detection: expert system to detect DDoS attacks

22 Traffic anomaly detection: rule mining

3.2 Traffic anomaly detection using NFV technology
26 Employs SPE for intrusion detection
This work BackStreamDB detects diverse traffic anomalies with entropy and PCA operators

Several anomaly detection efforts have focused on traffic that passes on a single link. However, in Reference 4, the
authors propose to detect anomalies in the network as a whole, and the work described in Reference 25, which examines
the traffic volume in terms origin-destination flows.

Intrusion detection is related to anomaly detection, but intrusion detection methods are more effective at the network
edge, where it is feasible to collect and analyze packets in depth. The system presented in Reference 26 is focused on real
time intrusion detection. The system employs a complex event processing (CEP) engine, which runs on an auto-scaling
SPE. The idea is to allow self-adaptation to new attacks and to be able to optimize CEP rules, which is done using par-
ticle swarm optimization and bisection algorithms. Experimental results confirm that the system is effective in terms of
intrusion detection and efficient given the auto-scaling features.

In Table 1, we give a synthesis of all related work. SPE's have been applied to sensor networks,!¢!7 the analysis of
TCP flows,'* network intrusion detection.?® Multiple, diverse strategies for traffic anomaly detection have been proposed:
machine learning,'>?° expert systems,?! rule mining,?? NFV technology,?>?* besides the strategy implemented in the
present work which is the usage of entropy and PCA to detect traffic anomalies by monitoring the network traffic as a
whole.* It is possible to say that the major contribution of the present work is to employ an SPE extended with the oper-
ators to compute traffic entropy and PCA of the network as a whole in real time. We show that the strategy is not only
effective and efficient, but also that it is general enough to detect diverse types of attacks—DoS, port scan, worm.

3 | BACKSTREAMDB: A SPE-BASED TRAFFIC MONITORING SYSTEM

BackStreamDB is a distributed monitoring system that allows a network administrator to issue arbitrary queries to obtain
network traffic information from a multi-AS backbone. Different granularity is permitted as monitored objects may range
from individual segments to the backbone as a whole. Data is obtained from multiple flow data sources that are geograph-
ically distributed across the network, and traffic information is obtained and processed in a distributed fashion in real
time. This strategy is scalable, as it is possible to accommodate increasingly larger traffic loads by changing the system
configuration to distribute data to other existing nodes in the network.

BackStreamDB has been implemented on the Borealis SPE.® Borealis was chosen because of its distributed nature,
which enables a set of SPEs to be deployed across the network. Each Borealis SPE node receives as input a data stream, and
processes its records continuously. In this work, the input stream is provided by BackStreamDB, which collects NetFlow"
data. Queries on these streams may involve several operations, such as filtering, aggregation, and correlation. Operations
can be pipelined in a way that the output of one is forward as the input to the next until the final result is produced. An
example of a query is shown in Figure 1. This example determines the number of octets sent to each IP address to a port
number smaller than 1024. In the diagram, each box corresponds to an operation. First, the union operator is applied to a
set of input streams in order to generate a single stream as input to the filter operator. The output of the second operator
is composed of the records with destination port (dstPort) smaller than 1024, which are then grouped by destination IP
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(dstIP). For each group an output is generated every 60 seconds with the sum of octets. The input for the Borealis SPE
consists of XML files with the query specification and the structure of the input and output records.

Borealis has a set of predefined operators, such as union, filter and group by as illustrated in Figure 1. However, an
important feature is that new operators can be created and be used for expressing queries combining new and prede-
fined operators seamlessly. This feature allowed us to create two new operators, entropy and PCA for detecting network
anomalies, as described in Section 4.

The overall architecture of the BackStreamDB is shown in Figure 2. Borealis SPE nodes are deployed for processing
queries through a component called BigGiantHead. The BigGiantHead is responsible for continuously listening to query
invocation requests and for sending control data to SPE nodes, which consists of assignment tasks and flow information.
BackStreamDB has four other components: acquisition module, flowsender, universal receiver (ureceiver), and global
catalog, that are described below. Acquisition modules are in charge of receiving data flow, while flowsender is responsible
for converting them to Borealis conformant format and forwarding the flow to one or more SPE nodes for query processing.
Currently, BackStreamDB processes Netflow data. The acquisition module obtains data using the New Netflow Collector
(NNFC)." NNFC is a tool for capturing and storing Netflow data sent by a router. A NNFC plugin was developed to
allow communication using IPC (internet process communication) with flowsender. In short, the acquisition module and
flowsender are responsible for the interface between data sources and SPEs. A ureceiver (universal receiver) is responsible
for the interface between SPEs and visualization tools. Query results can also be stored for historical purposes.

In the standard Borealis distribution, it is necessary to develop a new receiver application for each distinct query result
format. This is because Borealis outputs query results in binary format, and the receiver is responsible for decoding these
values into typed output fields. We have changed this approach by coding the ureceiver with the capability to infer the
query output format based on the query definition. As a result, the system does not have to be recompiled when new
query results are defined, as in the standard Borealis distribution. When invoked, ureceiver waits for a connection from a
Borealis SPE, and when new query results arrive, they are output in either text or graphical form by a visualization tool.
That are being processed by SPEs are stored at the fourth component of the system: the global catalog. For each query,
the catalog maintains the query definition and information specifying the SPE nodes, which are executing the query. We
employ the same language adopted by Borealis, in which queries are expressed in an XML document, containing input,
output, and query definitions. BackStreamDB's query register tool reads the XML document, stores the information in the
global catalog, and communicates with BigGiantHead through the network in order to deploy the execution of queries
on different nodes.
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Query results can be either accessed in real time by a network administrator with visualization tools, or can also be
stored if required. Since the system does not log flow data, but only query results that have been individually specified
by the administrator, BackStreamDB can drastically reduce the storage cost. Query definitions are fed to the system by a
query register tool in a high-level query language, which makes queries easy to maintain and reuse.

There is a large spectrum of possible system configurations, ranging from a fully distributed system in which each
module is assigned to a distinct node, to a centralized system, in which a single node runs all modules. Ideally, when data
sources are geographically distributed, both an acquisition module, flowsender, and an SPE node should be deployed
close to the source. In this way, the source data can be locally filtered by the SPE node, reducing the volume of data to be
transmitted among SPE nodes and the ureceiver.

4 | USING ENTROPY AND PCATO DETECT ANOMALIES

In this section, we describe the implementation of the entropy and PCA operators in BackStreamDB for the detection of
traffic anomalies. Before describing the implementation, we give a brief overview of entropy and PCA.

41 | Entropy and PCA

Entropy is a measure of the uncertainty of a random variable.?” In the particular case of traffic monitoring, entropy
captures in a single value the probabilities of changes occurring to certain traffic features. By computing the entropy, one
extracts the properties of traffic feature distributions so that it is possible to then detect and classify anomalies.

Let E; be an event and p; the probability of the occurrence of this event. Consider n events Ej... E, with probabilities
p1-.. pn the summation of these probabilities is equal to 1. The rationale behind the concept of entropy is the fact that the
occurrence of events with low probabilities result in more information for the observer. Shannon?® proposed a logarithmic
function to express this concept which he called h(p;) which decreases as p; increases. h(p;) is defined as follows:

h(p:) = log, ( l}) 1)

h(p;) varies from oo to 0 as p; varies from O to 1. This function reflects the idea that the lower the probability of an
event, the greater is the amount of information obtained when the event occurs.

The entropy is computed as the weighted average of the N values of h(p;) each weighted by the probability of its
occurrence:

<l> H= )" pih(p) @)
bi i=1

1

PCA? is a statistical technique that receives as input high-dimensional data, and using the dependencies between the
variables represents the same data in more tractable format using less dimensions. PCA is considered to be a simple and
robust way to reduce the number of dimensions to make the data simpler to work with.

PCA transforms a random vector x € R™ into another vector y € R", n < m, projecting x on the n orthogonal directions
with greater variance—these are called the principal components. In general, most data variance can be explained by
a reduced number of components, it is thus possible to discard the remaining components without losing too much
information.

4.2 | Implementation of traffic anomaly detection in BackStreamDB

We implemented the entropy operator and the PCA operator to allow BackStreamDB to detect anomalies. The entropy
operator computes the entropy of four traffic features for the input stream during a certain time frame. The four features
considered are: source and destination addresses (srcIP, dstIP) and ports (srcPort, dstPort). The entropy operator uses
the feature data to generate a tuple which consists of the four entropy values and the corresponding timestamp, which
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is generated at the end of the time interval. These tuples are then sent as input to the PCA operator that infers whether
there are traffic anomalies in the observed traffic, as described below.

The data flow is shown in Figure 3. The PCA operator creates a matrix based on the four traffic features (srclp, destIP,
srcPort, and dstPort). Each matrix row consists of the tuples received from the entropy operator, computed for the corre-
sponding feature for an OD pair during a certain time interval, in our case 5 minutes. Four traffic matrices are built each
for a traffic feature. However, it is important to be able to detect changes across the four traffic features, and also taking
into account the whole set of OD flows, which can together represent an attack. In order to do this, a method based on
multivariate statistics is proposed,? that “unfolds” the four traffic feature matrices into a single large matrix, on which
anomalies are detected as described next.

The entropy and PCA operators were implemented taking into account a single OD pair. In this way, there are four
vectors representing the computed entropy for each time interval, one vector for each feature.

The PCA operator normalizes the columns of the matrix by dividing each element by the sum of all elements of the
corresponding column. In this way, the sum of all elements of a column is equal to 1. The PCA operator then computes
the eigenvectors—which correspond to the principal components—and the eigenvalues, which define their magnitude.
Then the components that represents what we call normal data, which covers 85% of the variance, and the component
that corresponds to the remaining residual data. Let y correspond to the normal data component and J represent the
residual data component. A traffic anomaly can be inferred using a function on the size of y, which is given by |[]|?.
Unusually large values of |[y]|? that are greater than a threshold 62 correspond to anomalies. The threshold 62 is computed
as a function of a: the desired false alarm rate.?

5 | EXPERIMENTAL RESULTS

In this section, we present experimental results obtained with the use of BackStreamDB for network wide traffic anomaly
detection. Two operators were implemented: the first for computing the traffic entropy and the other for PCA. Two sets
of experiments were implemented. The goal of the first set is to determine the effectiveness of the tool for detecting
anomalies, and the goal of the second set is to evaluate the efficiency. We have deployed BackStreamDB with a single
SPE node executing the query as shown in Figure 4, which applies the entropy and PCA operators on all traffic records
of the input stream. The figure shows a BackStreamDB processing node, the XML file that is given as input, which spec-
ifies both the query and the operators it requires—in this case, the only operators required are the entropy and PCA
operators. In the experiments, we employed a tool called dummysender for generating synthetic traffic. This approach
makes it easier to inject anomalies and determine whether the tool is able to correctly identify those anomalies. We must
note however that in a real setting the input flow can be originated from any network tool such as NetFlow, sFlow, or
IPFIX. The results reported in the following sections were collected with all BackStreamDB modules and the dummy -
sender running on a virtual machine with 512 MB of RAM and a 2.66 GHz Intel Xeon processor with Debian Linux
kernel version 2.6.26.
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5.1 | Experiments

In order to validate the ability of the tool to detect traffic anomalies, synthetic traffic was generated simulating 24 hours
of network traffic with the insertion of three well-known anomalies: port scan, worm, and DoS. We used three different
values for the false positive rate a: @ = 0.999 (actually meaning one false positive per 1000) « = 0.995 (5 false positives per
thousand) a = 0.70 (30% of results are false positives). For each value of a, we evaluated the effectiveness of the detection
of anomalies as well as the amount of false positives generated.

The results are shown in Figures 5 and 6. Figure 5 represents the volume of traffic in megabytes per second, while
Figure 6 reports the volume in packets per second. Figures 7-10 represent the entropy computed for the traffic generated
for the period of one day. Figure 11 represents the projection of the vector ||y]|? as given by the PCA method using the
thresholds based on the three different values of a.

As can be seen in Figures 7-10, some anomalies have a deep influence on the corresponding entropy values. The most
pronounced values occurred because the anomalies changed the distribution of source or destination IP addresses, source
or destination ports. The worm, for example, produces expressive changes on the entropy values computed for the source
IP address and destination port, but show no significant change for the entropy of the destination IP address.

As can be seen in Figure 11, there are four outstanding peaks in the generated graphic. The first peak represents a false
positive detected only for « = 0.70 (a 30% rate of false positives). The second peak represents a port scan attack detected for
all thresholds, and the third peak represents a worm, which was not detected with the most restrictive threshold a = 0.999
(which allows 1 in a thousand false positive rate), and the fourth peak was detected with all the thresholds. Based on
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these results, it can be concluded that a low value of « (0.70) is very sensitive to small changes on the traffic features,
but it can also mistakenly interpret normal flow as anomalous. On the other hand, a high value of « (0.999) presents
the results when detecting anomalies that cause significant changes on the traffic features; although it hardly commits
mistakes by considering normal flow to be anomalous, it does fail to detect certain anomalies. Using an intermediate
value for « (0.995), it was possible to adjust the anomaly detection and false positive rates, so that all injected anomalies
were detected and no false positives were generated.

5.2 | Performance evaluation

In this set of experiments, we evaluated the performance of the tool. We first measured CPU and memory usage as the
volume of traffic is varied. The same time window of 5 minutes was employed, but the number of flows per second was
increased at subsequent time windows. In this case, it was expected that the entropy operator would reach up to 100%
CPU usage and then packets would start to be dropped. However, what happened and is shown in Figures 12 and 13 is
that with an input of 4000 flows per second the CPU usage was only up to 50%. In terms of memory consumption, we
increased the number of flows until they started to be dropped as the 512 MB got full at nearly 4000 flows per second.
Note that if we decrease the window size and keep the flow rate constant, the number of flows that have to be kept in
main memory will also decrease.

Since traffic volume can be very high, and the PCA method is computationally intensive, we measured the time inter-
val from the instant the PCA operator received the input flow to the instant the output is produced. The results are shown
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in Figure 14. Data was generated each 5 minutes for a whole week. As shown in the figure, for 2016 tuples the PCA oper-
ator still required less than 0.3 seconds to complete its task, which confirms the feasibility of BackStreamDB to detect
anomalies with complex statistical methods.

6 | CONCLUSIONS

In this work, we presented BackStreamDB a general-purpose backbone monitoring system based on a SPE that can
detect traffic anomalies in real time. BackStreamDB has been deployed on the Brazilian National Academic Network
(RNP). Operators were implemented for computing both the traffic entropy and PCA, which characterize the flow
based on four traffic features: source address, destination address, source port, and destination port. The anomaly detec-
tion module uses the entropy of these features and the normalization applied by the PCA operator to identify the
occurrence of anomalies. Experimental results are presented which were obtained with synthetic traffic. In order to val-
idate the detector we have injected three different types of anomalies. Results show that our strategy has effectively
recognized the anomalies. Future work includes investigating system under different types of attacks, as well as com-
paring the performance of the statistical methods with operators based on machine learning for real-time anomaly
detection.
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