)

Check for
updates

CUSCO: A Customizable Solution
for NFV Composition

Vinicius Fulber-Garcia'®), Marcelo Caggiani Luizelli?,
Carlos R. Paula dos Santos®, and Elias P. Duarte Jr.!

L Federal University of Parana, Curitiba, Brazil
{vfgarcia,elias}@inf.ufpr.br
2 Federal University of Pampa, Alegrete, Brazil
marceloluizelli@unipampa.edu.br
3 Federal University of Santa Maria, Santa Maria, Brazil
csantos@inf.ufsm.br

Abstract. Although Network Function Virtualization (NFV) has mul-
tiple advantages in comparison with traditional hardware middleboxes,
there are still many open problems. Some of the major challenges are
related to the service deployment process (composition, embedding, and
scheduling). In particular, current solutions for network service compo-
sition are limited, in the sense that they are not customizable, neither in
terms of the evaluation setup nor the operational behavior. In this paper,
we propose a new adaptive service composition solution that takes into
account multiple specific requirements of network operators. The pro-
posed solution uses a statistical method to conciliate different metrics,
disparate granularities, and conflicting objectives, and returns a compo-
sition result that maximizes the cost-benefit. We present a case study
and experiments to show the feasibility of the proposed solution.

1 Introduction

The Network Function Virtualization (NFV) paradigm aims to decouple the net-
work functions from dedicated hardware, employing instead a software plane [10].
Most important, NFV allows the creation of virtualized network services through
the connection of multiple network functions in a traffic forwarding/processing
structure called Service Function Chain (SFC) [12]. One of the most important
processes related to SFCs is their deployment. The deployment process of a net-
work service onto a virtualized environment consists of a series of inter-related
tasks [4]: composition, embedding, and scheduling. Several works have been pro-
posed to tackle the particular challenges of the deployment tasks [1,3,5,11].
Most existing service deployment solutions consider just the network topol-
ogy, including information about the physical resources available, and some
other predefined parameters. Thus, individual needs of clients and network oper-
ators are disregarded. In particular, the existing composition solutions, such
as [2,3,9,11,13,14] all include a pre-defined and hard-coded evaluation setup.
The evaluation setup requires specific information about the services to deploy

© Springer Nature Switzerland AG 2020
L. Barolli et al. (Eds.): AINA 2020, AISC 1151, pp. 204-216, 2020.
https://doi.org/10.1007/978-3-030-44041-1_19

CUSCO: A Customizable Solution for NFV Composition 205

including the operational behavior of the multiple network functions. Frequent
examples of evaluation setups include the computational resources requirements,
bandwidth requirements, traffic ratio, service chain size, and priority levels. It
is important to notice that these limited composition solutions are inflexible,
restrictive, and, will eventually become obsolete. Furthermore, the network oper-
ators are required to adapt their needs to the evaluation capacities of the avail-
able solutions, and not the other way around, as it should be.

Composition solutions should deal with different, and even conflicting, needs
of the network operators (e.g., minimizing the traffic, maximizing the computa-
tional capability, minimizing the energy consumption) and heterogeneous func-
tions/services (e.g., routing, security, load balancing). In this work, we present a
CUstomizable Service COmposition (CUSCO) solution that applies innovative
models to enable on-demand customization of the evaluation setup. CUSCO
uses a dynamic statistical method that can process these customized evalua-
tion setups. In order to conciliate the multiple needs of network operators, the
proposed solution computes a weighted function representing the cost-benefit of
each composition candidate, defining a unified index that reflects the suitability
of each alternative.

The rest of this paper is organized as follows. Section 2 presents an overview
of the composition task as well as relevant related works. In Sect. 3, we describe
and specify the proposed CUSCO solution. Section 4 presents a case study and
experiments of CUSCO applied to customize a service chain composition. Finally,
Sect. 5 concludes the paper.

2 Network Service Composition in a Nutshell

In NFV, network services are deployed on a virtualized infrastructure as a
sequence of interconnected network functions. The deployment process consists
of three tasks: composition, embedding, and scheduling. Particularly, composi-
tion solutions receive as input network service requests (document con-
taining every necessary information to execute the composition task) and output
the best composition result (including the strict order of the network func-
tions and connections) according to an evaluation setup.

Currently, the evaluation setup of existing composition solutions is stati-
cally defined and allow one or more predefined evaluation metrics (specific
information related to the network functions) used by a hard-coded objective
function (an optimization function is based on the evaluation metrics). The
objective functions compute candidates (possible composition results — which
are called service topologies). When objective functions are based of multiple
metrics, the evaluation result of a single metric is called a partial result
and the partial results are jointly considered to find the final result.

Finally, the solutions are either based on exhaustive search or heuristic search.
The exhaustive search model generates and evaluates all the possible ser-
vice toplogies that are candidates that solve the composition problem. The
heuristic search model iteratively composes a single service topology that

206 V. Fulber-Garcia et al.

is the composition result. Although the heuristic search model typically reduces
the computational complexity of the composition task, it does not guarantee the
optimal result. On the other hand, the exhaustive model requires more process-
ing time and computational resources to find the optimal result, and can only
be used if the search space is small, which is typically the case as services often
consist of a few funtions.

Related work includes several composition solutions proposed in recent years.
For example, in [9] and [2], partially ordered service topologies (i.e., topologies
with segments of network functions that can be located in different positions)
are processed to create candidates. In [9] both exhaustive and heuristic (greedy)
models are employed to compose a service that reduces the overall traffic ratio.
[2] employs a Pareto simulation model to minimize the service topology size,
traffic ratio, and computational resources requirements.

Other solutions explore the possible/allowed relationships between network
functions to do the service composition. In [11], an exhaustive search solution pre-
sented to minimize the expected traffic ratio and total computational resources
requirements. The tabu search meta-heuristic proposed in [3], in turn, aims to
minimize the bandwidth requirements to compose a requested network service.
Furthermore, the authors of [14] present an exhaustive search solution to mini-
mize link overload while maximizing the multi-tenant network functions usage.
Finally, in [13] an automatic composing solution is proposed. This solution iden-
tifies functions dependencies based on a description of their operational behavior,
thus iteratively creating and evaluating candidates in a Hasse diagram through
a priority objective function.

The state-of-art composing solutions, regardless of the performance for find-
ing composition results related to their objective functions, do not enable the
network operators to request a custom evaluation of particular objective func-
tions. Currently, multi-objective optimization a posteriori methods are usually
employed to achieve some flexibility in the evaluation of the candidates. For
example, a weighted-sum is used in [2] to define on-demand the importance
of each metric in the objective function. However, it is not possible to choose
the evaluation metrics themselves, neither the mathematical operations that are
applied in their evaluation.

3 CUstomizable Service COmposing

In this section we describe the proposed CUstomizable Service COmpos-
ing (Available at https://github.com/ViniGarcia/NFV-FLERAS) (CUSCO), a
novel solution for composing network service topologies. This section describes
the design of CUSCO, including its operation, the statistical evaluation method-
ology adopted, and the request data model.

Request Data Model. The request data model used by CUSCO is imple-
mented as a YAML document and has four main blocks: METADATA,
OBJECTIVES, SERVICE, and SPECIFICATION. Each block contains objects

CUSCO: A Customizable Solution for NFV Composition 207

and attributes that provide data about the network operator requirements, ser-
vice structures, and benchmark information to be computed during the compos-
ing task. Figure 1 shows a sketch of the CUSCO request data model.

REQUEST DOCUMENT

LR Aoenmonoonoenoeoo e R EEEEE R LR R frroemooenoenonoee R SRALCRIEEEECEEELEEEEE
METADATA (1) OBJECTIVES (1) SERVICE (1) ESTIMATES (1)
1-- ID(1) = METRIC (1..N) t-- TOPOLOGY (1) +-- BENCHMARK (1)
+-- DESCRIPTION (1) +-- 1D (1) +-- INGRESS (1) i 40 NF(1L.N)
" +-- OBJECTIVE (1) t-- EGRESS(1.N) | ! 1 ID()
+-- WEIGHT (1) +-- NF(1.N) i1 4 METRIC (1.N)
+-- INPUT (1) : [
i-. EVALUATION (1) == BRANCHING (1)
+-- UPDATE (1) +-- METRIC (1.N)
' - D ()
+-- SPLIT (1)

4+-- FACTORS (1..N)

Fig. 1. The CUSCO request data model

The first block, METADATA, is used for the identification of a particu-
lar request through two attributes: an ID (e.g., UUID) and a high-level text
DESCRIPTION. The OBJECTIVES block, in turn, defines the metrics that must
be evaluated in the composing task. This block is composed by one of more
METRIC objects, each of which contains six attributes: an exclusive metric ID;
the optimization OBJECTIVE (i.e., maximization or minimization); the rela-
tive importance of the metric in the overall objective function as a WEIGHT
(0 < WEIGHT <=1|Y WEIGHT = 1); an initial numerical value INPUT to
be iteratively evaluated and updated during the composition; and, finally, the
EVALUATION and the UPDATE operations (+, —, *, or /) to be applied between
the input and the network functions benchmark (discussed later).

The SERVICE block carries information about the requested service topol-
ogy and its elements. In this block, the attribute of TOPOLOGY speci-
fies a service through a context-free grammar, called Service ChAin Gram-
mar (SCAG - Available at https://github.com/ViniGarcia/NFV-FLERAS /tree/
master/SCAG). SCAG allows the creation of a myriad of services from straight-
forward linear topologies to topologies with terminal and non-terminal branch-
ing structures. We call a “branching structure” the part of the topology that has
branches (from the function that precedes the branches to a terminal or inter-
section point). Most important, SCAG enables the network operators to define
partially ordered segments where the network functions included can have their
position and connections exchanged among themselves. Other attributes in the
SERVICE block are INGRESS, EGRESS, and NF that specify the symbols of,
respectively, the ingress data node, egress data nodes, and network functions.

The last block, ESTIMATES, consists of two objects (BENCHMARK and
BRANCHING) that provide estimate information used to evaluate the objective
function and compose the service topology. The BENCHMARK object carries tests
of individual network functions that employ the evaluation metrics requested in
the OBJECTIVES block. This object has a sub-object called NF that, in turn, has

208 V. Fulber-Garcia et al.

two attributes: a network function ID previously defined in SERVICE.NF; and
a list METRIC with tuples relating each OBJECTIVES.METRIC.ID to a bench-
mark value of the respective network function ID. Observe that every network
function requested in the SERVICE block must have a BENCHMARK.NF object in
ESTIMATES.

Still in the ESTIMATES block, the BRANCHING object specifies the inputs
of the different branches for branching structures. This object uses the sub-
object METRIC that defines the attributes ID, SPLIT, and FACTORS. The ID
attribute identifies an evaluation metric in the BRANCHING, every evaluation
metric must have a corresponding BRANCHING.METRIC object. The SPLIT
attribute defines an operation (+, —, *, and /) to be applied between an
OBJECTIVES.METRIC.INPUT and the splitting factor of each branch segment
in a branching structure, specified as tuples of the FACTORS attribute. Each
tuple represents a particular branching structure and its elements are the split-
ting factor of each branch in that branching structure.

Operational Settings. CUSCO executes the composing task in two
phases: (i) topologies expansion and (ii) topologies evaluation. In the topology
expansion phase, a set of candidates is created through the processing of partial
ordering permutations and branching remodeling. The other phase, the topolo-
gies evaluation, is responsible to iteratively process (i.e., function to function)
the evaluation metrics for every available candidate, evaluate the partial results,
creating the candidates’ Suitability Index (SI), and compare the final results to
rank the candidates.

Topologies Expansion. The topologies expansion phase is sub-divided in two
procedures: (i) partial ordering permutations and (ii) branching remodeling. The
partial ordering permutations procedure acts on solving partially ordered seg-
ments of the requested service topology (specified with SCAG). A permutation
with constraints is executed for each partially ordered segment. We consider the
constraints as the network functions dependencies (ordering and coupling) that
limit the search space. CUSCO generates all possible permutations for each par-
tially ordered segment, thus verifying all of them and removing improper results
which violate some constraint. Finally, a Cartesian product is executed on the
valid permutations of different partially ordered segments. This procedure, sum-
marized in Fig. 2, returns an exhaustive set of valid service topologies with all
network functions pinned on a specific position.

Branching remodeling, in turn, consists of the processing of branching struc-
tures with fully ordered service topologies (i.e., with pinned functions). This
procedure aims to find identical network functions pinned in the same position
among every branch of a particular branching structure. Therefore, these net-
work functions can be reduced to a single instance and be allocated to a common
position in two cases: when they precede a branching structure and at the end of
a non-terminal branching structure. Observe that the network functions involved
in branching remodeling, besides the identical positions, must have compatible
administrative domain dependencies (if they exist) to be merged in a single
instance. Figure 3 depicts an example of the described procedure.

CUSCO: A Customizable Solution for NFV Composition 209

Partially Ordered Segment -y —>NF1—-NF2——-NF3——-> NF4 ——>
5 -

Al -7

—
—>NF1——>NF2——>NF3——>NF4——>

- - -» —>NF1——->NF3——>NF4——>NF2——>

Ordering
Dependency S~
NF3 > NF4 A NF1—>NF3—>NF2—>NF4—>

Fig. 2. Partial ordering permutation process

NF3—>NF4 —>
— >NF1 —>NF2<
a

NF3——>NF5 —>

SNF2—>NF3—>NF4 —> .~ NF2—>NF3—>NF4 —>
i > —>NF1<

SNF2i—> NF3-—> NF5 —>

NF2——>NF3——>NF5 —>

W NF4 —>

——>NF1 —>NF2—>NF3<
NF5 —>

Fig. 3. Branching remodeling process

Topologies Evaluation. In the topologies evaluation phase, the candidates are
processed with multiple metrics to generate partial results and, finally, evaluate
the objective function. First, in this phase, all the partial results are computed
to every candidate. Next, CUSCO generates the candidates’ suitability indexes
and ranks them. Thus, the topology evaluation is composed of two procedures:
(i) partial results generation and (ii) candidates evaluation. Before starting to
compute the candidates’ partial results in the first procedure, CUSCO maps each
requested evaluation metric to a mathematical function. This is done by creating
variables to receive the metric input and the network function benchmark, as
well as establishing the math operation that is executed between them. A sim-
ilar process is done to create the metric update functions, thus mapping them
to another mathematical function. Figure4 shows an example of the described
mapping process to a Traffic Ratio (TR) metric.

OBJECTIVES
+-- METRIC
! i-- ID: Traffic Ratio .
- OBJECTIVE: Minimization 1
- WEIGHT: 1.0 !
1

- INPUT:100 = = = = = = = = B \ \
 EVALUATION:* — — — — — — — ! INPUT = INPUT : BENCHMARK [UPDATE FUNCTION]

- UPDATE:* = = = = = = = = = = = = = = = = = = '

~ = = = From ESTIMATES.BENCHMARK.NF
________ R .

T
\

: EVAL = INPlUT * BENCHlMARK [EVALUATION FUNCTION]

1

R Sy
oo

Fig. 4. Evaluation metric mapping example

Both evaluation and update functions are used to generate the partial results
iteratively for each evaluation metric. The metrics’ inputs are evaluated in a
service topology node by node (i.e., corresponding to network functions) and
updated edge by edge (i.e., corresponding to virtual connections). Furthermore,
if a branching structure is reached during a metric update, an extra operation is

210 V. Fulber-Garcia et al.

triggered. In this case, estimations (provided in the service request) are used to
split the metric input among the upcoming branch segments. While traversing
a branching structure a single evaluation/update iteration consists of multiple
parallel sub-operations in the different branch segments, this is repeated until
the service topology ends in egress nodes (terminal branching) or the branching
structure ends in an intersection point (non-terminal branching). In the case
of non-terminal branching, another extra update operation is executed at the
intersection point. Thus, previously split metric inputs are re-aggregated in a
single value. At the end of this procedure, the partial results are formed by
the sum (metric by metric) of the evaluation results of every iteration. Figure 5
shows the partial results generation process using the previously presented TR
metric.

Iteration #4

! INPUT: 40
! EVAL.: 36 :
Iteration #1 Iteration #2 Iteration #3 . UPDT.: 36 .
i g NF4 ——>
! INPUT: 100 : i INPUT:80 : ! INPUT:80 INPUT:80; ench.: 0.9 '
! EVAL.:80 : ! EVAL.:80 ! | EVAL.:80 UPDT.:
INPUT:100 ;| yPDT.:80 :: UPDT.:80 : : UPDT.:80 [40,40] : :
—3> NF1 ——3> NF2 ——> NF3 Opat ™ 3 ! INPUT: 40 !

! EVAL.: 40
\UPDT.: 40

! Bench.: 0.8 : ! Bench.: 1.0 :

iBench.: 1.0 Fact.:

TR PARTIAL RESULT: N :
E EVAL = 80+80+80+(36+40) = 316

Fig. 5. Partial results generation example

The candidates evaluation procedure, in turn, is responsible for executing
a series of processes that transform the multiple partial results into a single
suitability index. First, the partial results retrieved in the last procedure are
normalized to a common range. In addition to avoiding that the granularity
of different metrics creates a biases on the candidates’ suitability indexes, the
normalization also keeps the SI in a known range of values regardless of the
requested evaluation metrics set. To do that, the partial results set regarding
each evaluation metric mtc is mapped from the range [@¢% a™i"] to the range
[0,1]. Note that aus. is the set of raw partial results of metric mte, a¢* is the
highest partial result found for the mitc evaluation of the available candidates,
while ™" is the lowest result. We employ the technique called Proportion
Of Maximum Scaling (POMS) [6] to do this mapping process and create the
normalized set of partial results called G ¢c-

To reduce the complexity of the suitability index, we designed it as a max-
imization problem (mono-objective). However, the evaluation metrics can be
assigned with a minimization objective in the service request. To circumvent
this objective incompatibility, we transform the minimization problem to a max-
imization problem. It is executed through the complementation of every partial
result b in B (Vb € Bmie : 1 —b). Finally, a weighted-sum [8] process is

CUSCO: A Customizable Solution for NFV Composition 211

applied to the pre-processed partial results regarding each particular candidate,
thus creating its suitability index. The higher a candidate’s SI is, better is the
composed service topology considering the requested evaluation metrics, their
objectives, and weights. At the end, CUSCO returns the ranked candidates as
the solution final output.

4 Case Study

In this section we describe an empirical evaluation of the CUSCO solution for
the composition of a HTTP/S-based network service topology. The case study
service uses seven different network functions, two of them were developed with
the Click Modular Router framework: Protocol/Port Filter - PPF and Traffic
Classifier - TC. The other five functions were developed with Python 3 and the
Scapy library: HTTPS Signature Inspector - HSI; HTTP Content Inspector -
HCI; Markup Filter (MF); HTTP/S Intrusion Prevention System - HIPS; and
Load Balancer - LB.

The HTTP/S security service balances HTTP/S requests among clients and
available servers. It is tailored to process only HTTP/S traffic, thus everything
different from these protocols is dropped by the PPF function. TC recognizes
the HT'TP and HTTPS requests and forwards them to be processed by differ-
ent branch segments of the service topology. Functions in these segments search
for prohibited signatures in HTTPS packets (HSI) and forbidden content in the
HTTP packets (HCI). If search returns positive results, the packets are marked
and then dropped by the MF function. Finally, HIPS searches and discards
anomalous packets that are probably malicious. Non-malicious packets are for-
warded to the LB function and then to the HT'TP/S servers. Figure 6 depicts
the case study service topology (i) and its SCAG specification (ii).

TR :0.66 TR :1.00 TR :0.66

RPC: 84 RPC: 44 RPC: 79
TS :1 TS :1 TS :1
TR :0.33 TR :1.00 HIPS M TR :1.00
RPC: 1023 RPC: 1038 _ Coupling Dep. |, RPC: 88
TS :1 TS :1 RS TS :1
Partially Ordered Segments LB——

(i) —>FPP ——>CT
-
\F Coupling Dep. |)
HIPS E\,DPI MIE

TR :0.66 TR :1.00 TR :0.66
RPC: 84 RPC: 96 RPC: 79
TS :1 TS :1 TS :1

(ii) FPP CT { [HIPS SDPI MF] (SDPI MF *) /[HIPS CDPI MF] (CDPI MF *) } LB

Fig. 6. Case study network service

Observe that the requested service specification has two partially ordered seg-
ments, each in a different branch of the topology. The first partially ordered seg-
ment includes network functions HSI, MF, and HIPS, while the second includes

212 V. Fulber-Garcia et al.

functions HCI, MF, and HIPS. The inspector functions (HSI and HCI) are both
coupled to the MF. Therefore, the MF must receive traffic from the inspectors.
As as example, consider three evaluation metrics forming the objective function:
minimization of the traffic ratio (TR), maximization of the HTTP/S request pro-
cessing capacity (RPC), and minimization of service topology size (TS — num-
ber of network function instances). The traffic ratio specifies how much traffic is
discarded according to characteristics of the functions and the expected incom-
ing traffic. The http-perf tool (https://www.npmjs.com/package/http-perf) is
employed of obtain a profile of the network functions in terms of their request
processing capacity. Finally, the topology size is computed by counting the num-
ber of instances of each candidate. Without loss of generality, we set up the same
weight (i.e. 0.3333) for each evaluation metric. The metrics specification (Exper-
iment setup available at: https://github.com/ViniGarcia/NFV-FLERAS /tree/
master/CUSCO /Experiments) for each network function is shown in Fig. 6.

After CUSCO processed the required service and evaluation metrics the out-
put consisted of nine candidate of which three were selected due to their results:
(i) the candidate with highest suitability index (IN FPP HIPS TC SDPI/CDPI
MF LB EN; SI 0.666, TR 0.333, RPC 0, and TS 0.333); (ii) the candidate with
the best request processing capacity (IN FPP TC HIPS SDPI MF/HIPS CDPI
MF LB EN; ST 0.500, TR 0.167, RPC 0.333, and TS 0); and (iii) the candidate
the worst suitability index (IN FPP TC SDPI MF/CDPI MF HIPS LB EN;
S10.327, TR 0, RPC 0.161, and TS 0.166).

The candidates were validated on two hosts connected on a Gigabit Ethernet,
one for clients (8GB RAM DDR3, Core 13 4410U, Ubuntu 14.04, and KVM
hypervisor) the other for the network service and HTTP/S servers (83GB RAM
DDR3, Core I5 3330, Debian 8, and KVM hypervisor). Each virtual machine was
configured with 512MB RAM and a single virtual processing unit, and they were
connected with Linux bridges. Clients and servers are in the same /24 network.
Four clients were deployed in this scenario, two sending HTTP requests and
two sending HTTPS requests. The network service was deployed between the
clients and servers and processes all the clients’ requests. We used the http-perf
tool to create valid HT'TP/S requests. Other types of traffic were generated and
injected into the system by using the nping tool [7]. The selected candidates
were deployed with the minimum number of virtual machines and lasted until
legitimate clients have completed 5000 requests.

We used the previously presented setup to conduct tests in three different
scenarios: (i) a scenario in which four clients, two making legitimate HT'TP and
two legitimate HTTPS requests at the maximum feasible rate; (ii) a scenario
with both HTTP/S and non-HTTP/S traffic in which two clients make legiti-
mate requests (one for HTTP and another for HTTPS) and the other two send
UDP packets (1450 bytes) at a rate of 10Mbps; (iii) a scenario with intensive
processing of payload under a low-rate DDoS attack. The last scenario presents
two clients sending legitimate requests while the other two fake HTTP/S traffic
with anomalous requests of 1450 bytes at a rate of 10Mbps that are not recogniz-
able by the web servers, thus the malicious clients aim to undermine the entire

CUSCO: A Customizable Solution for NFV Composition 213

service as it makes unavailable the network functions that process the packet
payload.

Figure 7 presents the results of the HTTP/S requests ratio. Observe that,
in scenarios (i) and (ii), results are very similar. It occurs because the system
is underloaded and the request ratio does not exceed the individual process-
ing capacity of the network functions. Also, all the HTTP/S requests are non-
malicious. The highest request ratio noted in the second scenario is a consequence
of the lower number of successful clients, remember that UDP traffic is dropped.

478 465 47
A &

: 335
| |||‘ (I = 25

4.9
Sce. ii Sce. iii Average

E Bsiosss Il Msrosoo [Esios2r ‘

HTTP/S Request Ratio (Req/s)

Fig. 7. HTTP/S requests ratio results

Scenario (iii) presents several different results regarding the request ratio. In
this scenario, the malicious traffic overloads all the selected candidates. However,
due to the duplication of the HIPS function in the first positions of the branch
segments (paralleling the processing of malicious traffic) and the high-capacity
of the FPP and TC functions, candidate SI 0.500 presented a higher request
ratio than the other candidates. Candidate 0.666 completes all the received non-
malicious requests, but at a smaller rate. This low request processing rate is a
consequence of the existence of a single HIPS function that drops the malicious
traffic early in service topology. Finally, candidate SI 0.327 is not able to establish
HTTP/S connections. In this case the HIPS function is after the branching
structure, thus all malicious traffic is processed by functions SDPI and CDPI
that present intense payload processing.

59.6

ML
2 1.9 2

Sce. i Sce. ii Sce. iii Average

E Estosss | Mstos00 fls10.327 ‘

60

40 27.8
202y

20

Traffic Ratio (Mbps)

Fig. 8. Traffic ratio results

Figure8 shows the results for the traffic ratio. Non-malicious HTTP/S
requests consist of small packets (60 to 80 bytes). Thus, as in the first scenario

214 V. Fulber-Garcia et al.

as all requests are non-malicious, the average traffic ratio is low for all candi-
dates. In the second scenario, in turn, the extra traffic from the ingress node
to the FPP function (20mbps of UDP traffic) causes the average traffic ratio to
increase, but the results is similar for all candidates. These results are due to
the fact that in the first scenario the traffic traverses all the service topologies
while in the second scenario, the FPP function that drops the invalid traffic is
located in the first position of the topologies of all candidates.

In the third scenario, the malicious traffic is dropped in different positions
of the selected candidate topologies. Candidate SI 0.327 is supposed to drop the
malicious traffic at the first position after the branching segment, thus malicious
traffic is processed by all network functions except the LB. Candidate 0.500 drops
the malicious traffic at the first positions of the branch segments, therefore it
is processed by the FPP and CT functions. In candidate 0.666, in turn, the
malicious traffic is processed only by the FPP function and is dropped at the
second topology position. The HTTP/S service is denied when candidate SI
0.327 is used due to the processing of malicious traffic by the payload-intensive
functions SDPI and CDPI. The other candidates resist to the DDoS. Candidate
ST 0.500 forwards the malicious traffic through more network functions, thus
increasing its average traffic ratio in the service. Finally, candidate SI 0.666 drops
the malicious traffic early and achieves the best average traffic ratio result.

Figure 9 presents the computational resources needed to do the minimal
deployment (i.e., minimal required resources without executing any scaling out
or scaling up) of the selected candidates. Observe that, as the minimal required
computational resources to instantiate a virtual machine are the same regardless
of the network function, the measurements in Fig. 9 are directly proportional to
the number of virtual instances in each candidate service topology. Thus, mini-
mizing the number of virtual instances will further minimize the amount of com-
putational resources required. Candidate SI 0.500 requires more computational
resources, as HIPS and MF functions are in both branch segments. Candidate
SI 0.327 also employs dedicated virtual instances, but only for the MF function.
The last candidate, SI 0.666, minimizes the computational resource requirements
by using common virtual instances for the HIPS and MF functions.

Computational Resources

Virt. Instances Memory (GB) Virt. CPUs Virt. Network Ifaces

E Esiosss Il Mstos00 fls10327 ‘

Fig. 9. Computational resource requirements

It is important to notice that the results matched the CUSCO partial results
and suitability indexes. Next, we discuss results considering the average RPC in

CUSCO: A Customizable Solution for NFV Composition 215

Fig.7, TR in Fig. 8, and the “Virtual Instances” in Fig.9 (TS). First, candidate
SI 0.327 achieved the worst average results for both the RPC and TR. Despite
requesting less virtual instances when compared to candidate SI 0.500, the other
results show that candidate SI 0.327 — as is suggested by its suitability index —
is not an adequate option. For the RPC metric, the CUSCO candidate SI 0.500
achieved the best average result in terms of the request ratio. Furthermore, this
candidate also presented the highest number of virtual instances in the service
topology and an under-optimized average traffic ratio (worse than candidate
ST 0.666). At last, also confirming the CUSCO results, candidate SI 0.666 has
both a lightweight service topology and presents the lowest average traffic ratio.
As discussed earlier, candidate SI 0.666 presents a lower RPC than candidate
SI 0.327. However, the optimized location of network functions in candidate SI
0.666 offsets this problem and makes it possible for this service topology to resist
the DDoS attack in the third scenario. Therefore, we conclude that candidate SI
0.666 presents the best service topology to provide the network service according
to the requested evaluation metrics and weights.

5 Conclusion

In this work, we proposed CUSCO, a flexible and customizable NFV/SFC com-
posing solution. CUSCO employs a dynamic statistical method to process eval-
uation metrics defined on-demand, thus returning candidate topologies, which
can be compared based on a suitability index. We validated CUSCO through the
composition of an HTTP/S security service that involved three custom metrics.
Experiments are presented in which the service is deployed according to different
alternatives which confirm the CUSCO evaluation results.

Future work includes an evaluation of the CUSCO processing overhead
caused by a growing number of metrics. Also, we will investigate other methods
for defining the priorities of the different evaluation metrics. The idea is to avoid
potential bias caused by the network operators that undervalue and/or overvalue
specific metrics. Finally, we will investigate how the Pareto fronts can be used
to create tiebreak mechanisms to be applied when two candidates present the
same suitability index.

References

1. Cappanera, P., Paganelli, F., Paradiso, F.: VNF placement for service chaining in
a distributed cloud environment with multiple stakeholders. Comput. Commun.
133, 24-40 (2019)

2. Dréaxler, S., Karl, H.: Specification, composition, and placement of network services
with flexible structures. Int. J. Netw. Manage. 27(2), 1963:1-20 (2017)

3. Gil-Herrera, J., Botero, J.F.: A scalable metaheuristic for service function chain
composition. In: Latin-American Conference on Communications, pp. 1-6. IEEE
(2017)

4. Herrera, J.G., Botero, J.F.: Resource allocation in NFV: a comprehensive survey.
IEEE Trans. Netw. Serv. Manage. 13(3), 518-532 (2016)

216

5.

10.

11.

12.

13.

14.

V. Fulber-Garcia et al.

Kulkarni, S.G., et al.: NFVnice: dynamic backpressure and scheduling for NFV
service chains. In: ACM Special Interest Group on Data Communication, pp. 71—
84. ACM (2017)

Little, T.: Longitudinal Structural Equation Modeling. Methodology in the Social
Sciences Series. Guilford Press, New York (2013)

Lyon, G.F.: Nmap Network Scanning: The Official Nmap Project Guide to Network
Discovery and Security Scanning. Insecure, Seattle (2009)

Marler, R.T., Arora, J.S.: The weighted sum method for multi-objective optimiza-
tion: new insights. Struct. Multi. Optim. 41(6), 853-862 (2010)

Mehraghdam, S., Keller, M., Karl, H.: Specifying and placing chains of virtual
network functions. In: International Conference on Cloud Networking, pp. 7-13.
IEEE (2014)

ETSI NFVISG: Network functions virtualization: White paper. Technical report,
European Telecommunications Standards Institute (2012)

Ocampo, A.F., et al.: Optimal service function chain composition in network func-
tions virtualization. In: International Conference on Autonomous Infrastructure,
Management and Security, pp. 62-76. Springer (2017)

Quinn, P., Nadeau, T.: Problem statement for service function chaining - RFC
7498. Technical report, Internet Engineering Task Force (2015)

Wang, Y., et al.: Enabling automatic composition and verification of service func-
tion chain. In: IEEE/ACM International Symposium on Quality of Service, pp.
1-5 (2017)

Wang, Z., Zhang, J., Huang, T., Liu, Y.: Service function chain composition, place-
ment and assignment in data centers. IEEE Trans. Netw. Serv. Manage. 16, 1638—
1650 (2019)

