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Abstract—Network Neutrality states that all traffic in the
Internet must be treated equally and thus cannot suffer unfair
traffic differentiation (TD). Several solutions for detecting the
presence of TD in the Internet have been proposed. However,
locating where in the network TD is happening is still an
open problem. In this work, we propose a strategy to locate
Autonomous Systems (ASes) that are differentiating traffic. The
proposed strategy takes advantage of AS-level routing properties
to identify valid AS-level paths between end-hosts. It is then
possible to select measurement points between which the AS-
level paths traverse suspect ASes. Probes are sent from the
measurement points and processed using end-to-end TD detectors
based on statistical inference. The main idea is to check suspect
ASes until only the AS that is actually discriminating traffic is
filtered out. We first present results of experiments executed to
validate the routing properties employed. Then the efficiency of
the proposal for locating TD is evaluated using simulation. The
results show that the proposed strategy is effective and efficient.

Index Terms—Network Neutrality, Traffic Differentiation,
Valley-free Paths, AS-level Paths, Internet Routing

I. INTRODUCTION

Network Neutrality (NN) states that all traffic in the Internet
must be treated equally, regardless of its origin, destination
and/or content, i.e., traffic differentiation (TD) is not allowed
[1]. The main motivation for NN is to ensure the Internet
continues to be an open environment for innovation, fair
competition, and consumer’s freedom of choice [2]. On the
other side, Internet Service Providers (ISPs) may employ
discriminatory traffic management techniques to handle con-
gestion, to increase revenue under commercial agreements, or
even to benefit their own services, for example. NN regulations
have been implemented around the world. But regulations
alone may not be enough to ensure ISP compliance. Further-
more, regardless of regulations, transparent traffic management
practices may contribute to a more competitive market.

Multiple solutions for detecting TD have been proposed
[1], each employing different measurement and inference
techniques. Nevertheless, there are still only a few solutions
for locating where in the network TD is happening [3]–
[6]. We argue that locating instead of just detecting TD is
important both to help enforce regulations and/or to increase
transparency and empower consumers.

In this work, we propose a strategy for locating which
Autonomous Systems (AS) is employing TD in the Internet.

The rationale is that if a particular AS is in all possible
paths between two end-hosts, then TD detection probes are
guaranteed to traverse that AS, and thus its behavior can be
assessed. Our strategy investigate suspect ASes until only the
AS that is actually discriminating traffic is filtered out. We
take advantage of AS-level routing properties to select well-
positioned measurement points – end-hosts from which TD
detection probes are issued. TD is then located by combining
the probes, taking into account the AS-level paths between the
measurement points. AS-level paths in the Internet follow a set
of routing policies based on the relationship between ASes
[7], i.e. how they exchange traffic. In the proposed strategy,
measurement points are selected in a way that AS-level paths
between them traverse the ASes that are suspected of having
discriminatory behavior. We argue that our proposal presents
an innovative use of AS-level routing properties.

We conducted experiments on a global testbed [8] to val-
idate our assumptions regarding the properties of AS-level
paths. Then several simulations for assessing the efficiency of
our proposal for locating TD were executed. These simulations
also evaluated different metrics for selecting measurement
points. The results obtained on the testbed experiment confirm
that the majority of AS-level paths observed complied with
the AS-level routing properties assumed. These experiments
also show that some techniques employed by other existing
solutions may not be reliable. The simulations show that our
proposal is capable of locating TD between several different
pairs of ASes. Furthermore, issuing measurements from a
few core Internet ASes achieves similar results to issuing
measurements from a large number of ASes on the edge.
Results also show which metrics are better for selecting
measurement points.

The rest of this paper is organized as follows. Section II
presents related work. Next, an overview of AS-level routing
in the Internet is presented in Section III. Our proposal for
locating TD is then described in Section IV. Experiments
for validating the AS-level routing properties assumed are
described in Section V. Next, simulations for evaluating our
strategy for locating TD are presented in Section VI. We
conclude the paper in Section VII.

II. RELATED WORK

Several solutions for detecting TD have been proposed in
the last decade. A survey describing such proposals can be978-1-7281-8086-1/20/$31.00 c©2020 IEEE

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on September 14,2021 at 19:12:13 UTC from IEEE Xplore.  Restrictions apply. 



found in [1]. These solutions are based in network measure-
ments and statistical inference. The idea is to issue probes
from one or more end-hosts, employing multiple types of
traffic, or passively measure ongoing traffic. The obtained
measurements are then compared in order to check if there
were any significant differences between measurements taken
for different types of traffic. However, these proposals only
detect if TD happened, but do not locate where TD occurred.

There are few proposals about locating TD. In [3]–[5]
path discovery techniques, such as the traceroute tool [9],
are employed to obtain the exact host-level path between
end-hosts. Unfortunately, these techniques may not succeed
in obtaining the exact path between end-hosts, which may
turn those proposals to locate TD ineffective. Furthermore,
application traffic may traverse a different path than traceroute
probes. We evaluate the limitations of such techniques in
Section V. In this work, we propose a strategy that does not
rely on path discovering techniques: we consider all possible
paths the traffic may take, making inferences only about ASes
that were surely traversed.

Another proposal [6], based on network tomography, com-
bines measurements from several different end-hosts to infer in
which host TD occurred. Complete knowledge of the network
host-level topology is assumed, as well as knowledge of the
exact path traffic takes between end-hosts. These assumptions
are not realistic for running the solution on the Internet since
the host-level topology is not only hard to obtain, it is also
constantly and rapidly changing. In this work, we assume
knowledge of the AS-level topology, which is feasible to be
obtained [10]. Furthermore, we do not assume which exact
path traffic actually traverses. We also evaluate metrics for
choosing good measurement points.

III. AS-LEVEL ROUTING

As is well known, the Internet is the interconnection of
multiple administrative domains, the so-called Autonomous
Systems (ASes). Each AS is assigned a set of IP prefixes and
can be connected to other ASes. In this section, we present an
overview of the AS-level routing properties we assume.

Traffic from one end-host in the Internet to another may
traverse several ASes. The sequence of traversed ASes is
called an AS-level path, which in this work we simply call
a path. ASes decide to which neighbor AS to forward packets
as they arrive. This decision depends on the packet final
destination and on the traffic exchange agreements the AS
has with its neighbors.

The relationships between ASes can be abstracted into
three types [10]: (i) customer-to-provider (c2p), or provider-
to-customer (p2c) in the opposite direction; (ii) peer-to-peer
(p2p); and (iii) sibling-to-sibling (s2s). An AS connects to
another AS in order to gain access to other parts of the Internet.
In a c2p relationship, a customer AS pays a provider AS
for transit services, i.e., for access to part of the Internet. In
a p2p relationship, ASes mutually exchange traffic without
payments, but only between the two ASes themselves and their

customers. In a s2s relationship, the two ASes belong to the
same organization, thus exchange traffic freely.

The Gao-Rexford model is widely accepted for describing
paths in the Internet [7]. According to this model, a path
between two ASes is defined as a sequence of ASes in which
for every AS providing transit (a transit provider), there is
a customer AS adjacent to the transit provider. Therefore,
there is always an AS paying for the transit service. Thus a
path must have the following pattern: zero or more c2p links,
followed by zero or one p2p link, followed by zero or more
p2c links. Moreover, any number of s2s links may appear in
the path. This pattern corresponds to the so-called valley-free
property. A path that follows this property is a valley-free path,
and a path that does not follow the property is a valley path.

There may exist several possible valley-free paths between
two ASes. Any of the possible paths may be the actual path
traversed by traffic [11]. Furthermore, the actual traversed path
may change over time [12].

IV. STRATEGY FOR LOCATING TD

In this section, we propose a strategy for locating which
AS is employing TD. Our proposal takes advantage of the
valley-free property in order to select measurement points in
a way that AS-level paths between them traverse the ASes
suspected of employing TD. If a suspect AS is in all possible
paths between two measurement points, then the TD detection
probes issued between them are guaranteed to have traversed
that AS, and thus its behavior can be assessed. From an initial
set of suspects, the main idea is to rule out the ASes that are
not employing TD until a remaining AS is left that can be
identified as the responsible for TD.

Our proposal relies on five assumptions. We assume that
the AS-level topology of the Internet is known, along with the
relationships between ASes. Several datasets that infer AS-
level topology are available, mainly based on BGP routing
tables. We also assume that the valley-free property is valid,
which is considered a fundamental BGP routing policy [13].

The availability of an end-to-end TD detector for checking
the presence of TD between two end-hosts is also assumed.
Several solutions exist as we described in Section II. Another
assumption is that we are able to execute the TD detector
on some set of ASes – the so-called measurement ASes or
measurement points. This can be done by having access to
end-hosts connected to those ASes, for example.

Finally, we assume that if an AS discriminates some type of
traffic, this discrimination will occur regardless of the origin
and/or destination of the traffic. Therefore, if an AS discrimi-
nates a specific application, all traffic from that application will
be affected, regardless of where it is coming from or going to.
Note that in this work we consider only TD based on content,
not TD based on origin/destination of the traffic.

In this work, we refer to the concepts of discriminatory
and neutral AS pairs, as well as discriminatory, neutral, and
suspect ASes. A discriminatory AS pair is a pair of ASes
between which TD was detected by an end-to-end TD detector,
while between a neutral AS pair no TD was detected. An AS
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that was found to be employing TD is a discriminatory AS,
while an AS that was found to employ no TD is a neutral AS.
A suspect AS may be discriminatory or neutral, but there is
not enough data to infer its behavior.

The proposed strategy relies on checking valley-free paths
between ASes. In order to search for these paths, we model the
AS-level topology of the Internet as a directed graph in which
the vertices correspond to the ASes, and the edges correspond
to the relationship between the respective ASes. The search
is then performed employing a modified breadth-first search,
which discards paths that contain “valleys”. To keep the search
feasible, parameter σ is employed to establish a limit of the
maximum path size with respect to the corresponding shortest
valley-free path. In other words, we always search for valley-
free paths with sizes that are at most σ links larger than the
shortest valley-free path. Note that in the Internet real paths
employed are often larger than the shortest possible path, as
we observed in the experiments described in Section V.

Our proposal follows 5 steps: Initialization, AS Pair Selec-
tion, TD Detection, Inference, and Completion. An overview
of our strategy is shown in Figure 1. In the Initialization, our
solution receives the input and creates a set of suspects (the
ASes suspected to be discriminatory). In the next step, AS Pair
Selection, the pairs of measurement ASes from which probes
will be issued are selected. The probes are effectively issued
in the TD Detection step, and the outcomes of these probes
are examined in the Inference step. The TD locating process
returns then to the AS Pair Selection step, or finishes in the
Completion step if an ending condition is met. We further
describe each step below.

Figure 1: Overview of the proposed strategy for locating TD.

1) Initialization: The proposed strategy receives as input:
(i) the AS-level topology of the Internet; (ii) a pair of initial
ASes between which TD will be located; and (iii) a set of ASes
available to perform measurements from. In this step, the set
of suspects is initialized containing all the ASes present in the
valley-free paths between the initial pair. If an AS is doing
TD, it is one of these ASes.

2) AS Pair Selection: This step selects a pair of measure-
ment ASes that will help infer the behavior of a suspect. Thus
this step starts by selecting one suspect AS to be investigated.
Then, we search for a pair of measurement ASes between
which all valley-free paths traverse the selected suspect AS.
The first time this step is performed, if the initial pair of ASes
is available for measurement, then it is selected.

The suspect that appears less times in the paths between
discriminatory AS pairs is selected to be investigated. The
rationale is that such suspects are less likely to be discrimi-
natory, and the idea is to identify and eliminate neutral ASes

first. If no discriminatory pair has been found yet, the first
suspect in the set is selected. We then search for a pair of
measurement ASes that has not been selected previously and
satisfy the criterion above (all paths traverse the suspect). We
limit this search with parameter δ, which sets the maximum
valley-free distance from the selected suspect up to which
measurement ASes are checked on the graph. Therefore, the
proposed strategy tries to form an AS pair starting from
measurement ASes closer to the suspect, up to measurement
ASes that are at distance δ to the suspect. The valley-free
property makes this search computationally feasible since it
limits the possible paths between ASes. Is there are no more
pairs to investigate a suspect, the next suspect is chosen.

3) TD Detection: In this step, an end-to-end TD detector
is executed to detect the presence of TD between the AS pair
selected in the previous step.

4) Inference: In this step, the outcomes of the TD detection
measurements, issued in the TD Detection step, are combined.
The idea is to filter the suspects, eliminating neutral ASes until
only the discriminatory AS remains. The rationale is that while
there are two or more suspect ASes in the same set of paths
between a discriminatory pair, it is not possible to infer which
one is practicing TD, since we do not know which of them
were actually traversed by the TD detection traffic. Inference is
done in two parts. First, the neutral pairs of ASes are examined
to search for neutral ASes. Then, the discriminatory pairs of
ASes are examined to search for discriminatory ASes.

In the first part, for each neutral AS pair, we search for the
set of ASes that are present in all valley-free paths between
the ASes in the pair. The ASes in this set are guaranteed to
have been traversed by the TD detection probes since they are
in all possible paths. The ASes in this set are thus classified
as neutral and are no longer suspects – this includes at least
the ASes in the neutral pair, and the suspect for which the
pair was selected on the AS Pair Selection step.

Then, for each discriminatory AS pair, we take all valley-
free paths between the pair and remove the neutral ASes from
such paths. If there is a single suspect AS left in all non-
empty paths, then such AS is classified as discriminatory. The
rationale is that all other suspects were found to be neutral,
so the remaining AS is the only that could have been the
responsible for TD. If there is more than one AS left in the
paths, they remain as suspects.

5) Completion: The TD locating process may complete
under three conditions: (i) a discriminatory AS between the
initial pair is found; (ii) all ASes between the initial pair are
classified as neutral; or (iii) there are no more measurement
AS pairs available. In the first two cases, the process is
considered to have finished successfully, while in the last case
the process did not succeed. The output consists of three sets:
neutral ASes, discriminatory ASes, and suspect ASes.

V. AS-LEVEL PATHS IN THE INTERNET: VALIDATION

In this section, we present an experiment executed on the
PlanetLab global testbed. The goal is to validate our assump-
tions regarding AS-level routing properties. First, we briefly
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describe the AS-level topology graph and the dataset from
which the graph was built, employed both in this experiment
and in the simulations presented in the next section. Then we
describe the experiment and the results.

The AS-level topology graph employed in our evaluations
was built from the dataset published by CAIDA within their
AS Rank project1. This dataset contains the relationship
between numerous ASes, inferred based on BGP data [10].
However, some ASes in the dataset have no relationship with
other ASes. We thus ignored those ASes in our evaluations.
The dataset we employed was obtained in October 2018. It
contains 86622 different ASes, from which 24815 have no
inferred relationships with other ASes: 61807 ASes are thus
considered in our evaluations.

We measured the AS-level paths between 29 PlanetLab
hosts and a large amount of Internet IP prefixes. We employed
the list of Internet prefixes and corresponding ASes published
in May 2018 by CAIDA2. Several ASes control more than
one prefix. In these cases, one prefix was chosen for each AS.
Furthermore, some ASes from the prefix list were not present
in our AS-level topology graph, and were thus discarded. The
resulting list contained 60578 prefixes/ASes.

From each PlanetLab host, we continually measured the
paths to all prefixes from our list using the traceroute tool.
The experiment took place from January 10, 2019 to February
1, 2019 (22 days of measurements). For each measurement
obtained, we mapped the IP addresses to the corresponding
ASes, using the list of prefixes from CAIDA. Thus we
converted the host-level paths acquired by traceroute to AS-
level paths. However, it is common for some hosts not to reply
traceroute probes, or to reply with an invalid IP address. In
such cases, we can not know the corresponding AS is in the
path, unless another host within the same network replies to
another probe during the same measurement.

We then classified all paths measured as valley, valley-
free, or unknown. Paths that follow the valley-free property
in the graph are classified as valley-free, otherwise they are
classified as valley. A portion of the measured paths pre-
sented measurement errors, as described above. These errors
resulted in incomplete paths: for some hosts of these paths the
corresponding ASes were missing. Whenever ignoring these
errors caused the resulting path to be valley-free, then it was
classified as valley-free: in those cases, we considered that
another host of the same AS replied correctly. Otherwise,
paths are classified as unknown, since we failed to obtain
the complete set of ASes and thus cannot know the actual
classification. We excluded from our results the paths that
contained links not in the graph.

A total of 75597104 traceroute measurements were is-
sued, but 1801089 were excluded due to missing links
(2.38%). From the remaining 73796015 measurements,
55.34% (40837151, more than half) resulted in unknown paths,
which clearly shows the limitation of measuring paths with

1http://as-rank.caida.org/
2http://www.caida.org/data/routing/routeviews-prefix2as.xml

the traceroute tool. 44.31% (32703036) of the measurements
resulted in valley-free paths, the vast majority of measurements
that were not unknown, while 0.35% (255828) of the measure-
ments resulted in valley paths. The valley-free paths reached
48283 different ASes (79.7% of all prefixes measured).

We also evaluated the sizes of the measured valley-free
paths, taking into account the parameter σ. We compared
the size of measured valley-free paths with the size of the
corresponding shortest paths in the graph. In our experiment,
55.78% of valley-free measurements corresponded to shortest
paths, while 31.87% traversed paths with one more edge in
comparison with the corresponding shortest paths, and 10.34%
were two edges larger.

VI. LOCATING TD: SIMULATIONS

In this section, we present simulation results for evaluating
the proposed strategy to locate TD. A large number of sim-
ulations under different conditions were executed. The goals
of these simulations are to evaluate if the proposed strategy
is capable of locating TD and to identify which ASes are
better measurement points. We employ three main criteria
for comparing sets of measurement ASes: the success rate,
which is the portion of the simulations in which TD was
successfully located; the average number of probes; and the
number of ASes available for measurement. The optimal set of
measurement ASes is the one that achieves the largest success
rate, issuing the least amount of probes, and containing the
least amount of ASes available for measurement. The rationale
is that it may not be feasible to have access to a large number
of different ASes. Furthermore, issuing a large number of
probes presents an overhead to the network.

In our simulations, we employed the same AS-level topol-
ogy graph described above in Section V. We executed several
groups of simulations. All groups employed the same set
of initial pairs (the ASes between which TD should be
located), but each employed a different set of measurement
ASes (the ASes available for measurement). In each group
of simulations, for each initial pair, we take all ASes present
in the valley-free paths between that pair. For each of these
ASes, we then execute one simulation, fixing that AS as
the discriminatory AS for that simulation. The simulation is
successful if TD is located in that AS. We also execute a
simulation considering that no AS is employing TD, in which
case the simulation is successful if all ASes between the initial
pair are classified as neutral.

The sets of measurement ASes employed in our simulations
were built based on metrics extracted from the graph, as well
as on the classification of ASes available on the PeeringDB
website [14]. PeeringDB is an online database where operators
contribute information about their networks. The metrics em-
ployed for listing ASes from the graph are degree, betweenness
centrality, and valley-free betweenness centrality.

Betweenness centrality measures to which extent a vertex is
present in paths between all other vertices. The betweenness of
a vertex is the sum of the fractions of shortest paths between
all other pairs of vertices in which the vertex is present
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[15]. The valley-free betweenness centrality is a variation that
takes into account only the shortest valley-free paths. The
rationale is that, since our proposal searches for measurement
ASes that are in paths traversing certain ASes (the suspects),
the betweenness centrality may be a good indicator of how
effective an AS is to be used for measurements – ASes with
higher betweenness belong to more paths, therefore are more
likely to be selected as a measurement AS.

Table I shows the sets of measurement ASes selected. The
columns of the table indicate for each set: name, description,
and number of ASes. The first three sets were taken from
the PeeringDB website, on June 20th, 2019. The last three
sets consist of the n ASes with the largest values for the
corresponding metrics. The values of n we employed were:
10, 50, 100, 500, and 1000.

Table I: Sets of Measurement ASes

Name Description Size
pdb-access Access providers from PeeringDB 5263
pdb-transit Transit providers from PeeringDB 2293
degree-le-2 ASes with degree ≤ 2 in the graph 41247
degree-top-n ASes with the largest degree n
vfbet-top-n ASes with the largest valley-free betweenness n
bet-top-n ASes with the largest betweenness n

The set of initial pairs employed on the simulations pre-
sented in this work was built using the ASes from the
set of measurement ASes pdb-access. It contains 1000 AS
pairs randomly selected from pdb-access, i.e., from all the
possible pairs between access providers (from PeeringDB), we
randomly picked 1000 pairs. This set represents a common
situation in the Internet: two end-hosts, connected to access
providers, communicating with each other. Using this set
of initial pairs, each group of simulations resulted in 7818
simulations. 18 groups of simulations were executed (one for
each set of measurement ASes), thus 140724 simulations were
executed in total.

In each simulation, we assume that the ASes in the initial
pair are also available for measurement. Furthermore, to run a
simulation, an end-to-end TD detector is required. We simulate
the TD detector with an “oracle” detector instead of generating
real measurement traffic. The oracle detector receives as input
two ASes, between which the presence of TD is to be checked.
The oracle works by checking if the AS responsible for TD
in the current simulation is in any valley-free path between
the two input ASes. If it is not present in any path, then there
is no TD and the given AS pair is neutral, since traffic does
not traverse the discriminatory AS for that simulation and thus
can not be discriminated. Otherwise, the oracle assumes the
worst case, which corresponds to traffic traversing the path
containing the discriminatory AS, and thus the given AS pair
is discriminatory. In the case of simulations with no TD, the
oracle always returns neutral.

We employed two extra parameters for selecting AS pairs,
mp and mt, in addition to δ and σ. Parameter mp is the
maximum number of AS pairs that may be selected to
investigate a suspect. If mp AS pairs have already been

checked to investigate a suspect, that suspect will no longer be
investigated. mt is the maximum number of times our strategy
tries to form a pair a given measurement AS. If for mt times
the paths between pairs containing the same AS do not all
traverse the suspect, we no longer try to form measurement
pairs using that AS for the suspect under investigation. These
parameters limit the search space for AS pairs, making it
feasible to execute a large number of simulations.

The following values for the parameters were employed.
Parameter δ = 2, thus only measurement ASes up to 2 hops
away from the suspects are considered. Parameter mp = 40,
thus up to 40 AS pairs are selected for each suspect, and
mt = 20, thus we discard a measurement AS after 20 attempts
when searching for AS pairs for each suspect. Larger values
for these parameters significantly increase the search space and
execution times, but achieve similar results. Parameter σ = 0,
thus we examine only the shortest valley-free paths between
ASes. Larger values for σ resulted in similar success rates and
more probes, but the same conclusions are drawn.

We now present the results. First, we compare the metrics
degree, betweenness and valley-free betweenness centrality.
Figure 2a shows the success rates achieved by the sets of
measurements ASes degree-top-n, bet-top-n and vfbet-top-n –
n ∈ {10, 50, 100, 500, 1000}. For all sizes, sets degree-top-n
achieved the smallest success rates, while vfbet-top-n achieved
the highest values, ranging from 29% for vfbet-top-10 to 93%
for vfbet-top-1000. Since the vfbet-top-1000 set achieved the
best success rate, we will show no more results for the other
sets in this work. ASes in the vfbet-top-n sets are generally
closer to the suspects when compared to ASes in degree-top-n
and bet-top-n sets. There are usually less possible paths and
less ASes between the selected AS pairs from vfbet-top-1000,
and thus the discriminatory AS in each simulation appears less
often in these paths, making it easier to filter the neutral ASes.

Next, we compare the following sets of measurement ASes:
degree-le-2, pdb-access, pdb-transit, and vfbet-top-1000. Fig-
ure 2b shows the success rates achieved by each set, while
Figure 2c shows the average number of probes for all sim-
ulations, including those that were successful and those that
did not succeed. The values beside each set of bars in the
Figure indicates the number of different ASes selected for
measurement across all simulations for the corresponding
set of measurement ASes, as well as the total number of
measurement ASes available.

Results show that the degree-le-2 and vfbet-top-1000 sets
achieved the best success rates, 94% and 93%, respectively.
However, degree-le-2 employed a significantly larger number
of probes on average. This happens because the ASes selected
for measurement from degree-le-2 are usually farther from
each other than the AS pairs selected from vfbet-top-1000.
ASes in degree-le-2 are on the edge of the Internet, while ASes
in vfbet-top-1000 are on the core. Therefore, more AS pairs
were needed in simulations with degree-le-2, since several of
the selected pairs do not help to filter the suspects in the
inference step of our strategy. 8269 different ASes (from a total
of 41247) were selected for measurement from the degree-le-2
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(a) (b) (c)

Figure 2: Results: comparing multiple sets of measurement ASes.

set, and 615 (from a total of 1000) from vfbet-top-1000.
Furthermore, pdb-transit achieved a slightly smaller success

rate than vfbet-top-1000 (88%), with a similar amount of
probes. However, more ASes were employed on measurements
(811 from a total of 2293). The set pdb-access achieved
the smallest success rates, 71%. For all sets of measurement
ASes, the average number of probes employed in unsuccessful
simulations is significantly larger than those of successful
simulations. This is due to the termination conditions we
adopted: all the possible measurement AS pairs for all suspects
are selected in every simulation that does not succeed.

The results presented in this section show that the proposed
strategy is capable of locating TD under the assumptions
made. Furthermore, we show that the valley-free betweenness
centrality is a good metric for selecting measurement points.
Having few measurement ASes (1000 from the vfbet-top-1000
set) on the core of the network led to similar success rates as
having a larger number of measurement ASes on the edge
(41247 from the degree-le-2 set). Moreover, using ASes on
the core resulted in much fewer probes. ASes on the core are
generally closer to a larger portion of the network, while ASes
on the edge are often farther away. Therefore, to achieve good
success rates using ASes on the edge, there should be a much
larger number of them available for measurement at several
parts of the network, in order to “cover” several vantage points.

In the wild, it is possible that TD is mistakenly detected
or traffic traverses valley paths. It is also possible that an
AS treat traffic differently depending on which portion of
its network the traffic is traversing. Furthermore, the inferred
AS-level topology may be incomplete. In all these scenarios,
false-positives or false-negatives might happen when running
the proposed strategy. On the other hand, the oracle detector
always assumed the worst case, i.e. it considered the traffic
would always follow the path containing the discriminatory
AS in each simulation. However, if the actual path may
not traverse the discriminatory AS, fewer probes might be
necessary to locate TD, since suspects might be filtered earlier.

VII. CONCLUSION

In this work, we proposed a strategy for locating which
AS between two end-hosts is employing TD. The proposed
strategy investigates several suspect ASes until only the dis-
criminatory AS remains. We take advantage of the valley-
free property of AS-level paths to select measurement points
between which valley-free paths traverse the suspects. End-to-
end measurements between the measurement points then help

infer the behavior of the suspects. We argue that our proposal
presents an innovative use of AS-level routing properties.
To evaluate our proposals, we first conducted an experiment
on PlanetLab that validated the AS-level routing properties
assumed. We then executed a large number of simulations that
show the efficiency of our strategy to locate TD. The simula-
tions also show that the valley-free betweenness centrality is
a good metric for selecting measurement ASes.

Future work includes evaluating our strategy under more
different scenarios, varying the parameters and inputs, such
as employing different sets of initial pairs. Another idea is to
create a system that, after locating which AS is discriminating
traffic, deviates traffic through a path known to be fully neutral,
circumventing the discriminatory AS.
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