
Computer Networks 168 (2020) 107041

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

FT-Aurora: A highly available IaaS cloud manager based on replication

Gustavo B. Heimovski a , Rogério C. Turchetti b , ∗, Juliano A. Wickboldt c ,
Lisandro Z. Granville

c , Elias P. Duarte Jr a

a Department Informatics Federal University of Parana (UFPR) Curitiba PR Brazil
b CTISM Federal University of Santa Maria (UFSM) Santa Maria RS Brazil
c Institute of Informatics Federal University of Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil

a r t i c l e i n f o

Article history:

Received 19 December 2018

Revised 25 October 2019

Accepted 29 November 2019

Available online 30 November 2019

Keywords:

Fault tolerance

Robust cloud

Data center

a b s t r a c t

In this work we describe FT-Aurora, a highly available IaaS (Infrastructure as a Service) cloud manager

that allows cloud resources to be accessed even if the manager itself crashes. FT-Aurora provides flex-

ible and efficient resource management by supporting network programmability. FT-Aurora is based on

clusters of cloud managers running on multiple datacenters. After a manager crashes, the corresponding

resources remain accessible from any other manager in the cluster. A cluster consists of a group of man-

agers that use fine-grained multi-master replication to share information. Replicated data and resources

include both management information stored at the Aurora database, and information used to keep vir-

tual machine images and processes. Replication and monitoring the multiple Aurora instances are avail-

able as services that can be easily activated through a GUI button. Experimental results are presented for

both the performance and robustness of FT-Aurora.

© 2019 Published by Elsevier B.V.

1

b

c

a

v

[

o

u

d

p

a

a

a

[

c

v

t

i

m

t

g

c

a

t

m

m

f

c

t

e

c

t

m

d

a

a

r

s

c

t

c

h

1

. Introduction

A very large number of systems and applications are currently

ased on cloud computing platforms, and this trend is likely to

ontinue growing for several years [1] . Clouds are very convenient,

s they allow users to share resources that can be rapidly pro-

isioned and released and are maintained by the cloud provider

2,3] . Among the different types of clouds, in this work we focus

n those that offer Infrastructure as a Service (IaaS), which enables

sers to access computing resources, storage, and networking, to

eploy applications and systems [4–7] .

As the number of organizations and individuals that rely on

ublic and private cloud platforms for running their systems and

pplications grows, clouds face serious performance and depend-

bility challenges [8–10] . Not only security has been considered

 top dependability priority, but also high availability is essential

11,12] . Cloud outages can be very damaging for businesses that

ritically depend on the availability of the cloud to offer their ser-

ices. Although there are several aspects of current cloud archi-

ectures that must be addressed to increase cloud dependability,

n this work we focus on a critical component which is the cloud

anager . This is usually a centralized component through which
∗ Corresponding author.

E-mail addresses: gbheimovski@inf.ufpr.br (G.B. Heimovski),

urchetti@redes.ufsm.br (R.C. Turchetti), jwickboldt@inf.ufrgs.br (J.A. Wickboldt),

ranville@inf.ufrgs.br (L.Z. Granville), elias@inf.ufpr.br (E.P. Duarte Jr).

a

s

p

A

ttps://doi.org/10.1016/j.comnet.2019.107041

389-1286/© 2019 Published by Elsevier B.V.
loud resources are both accessed and managed. If the cloud man-

ger crashes, the whole cloud becomes unavailable.

We propose a robust cloud infrastructure based on a crash-

olerant cloud manager. Multiple manager instances located on

ultiple datacenters employ replication to form a cluster of cloud

anagers. Replicated data and resources include management in-

ormation data as well as virtual machine information and other

omponents required to keep the resources of a given datacen-

er available even if the local cloud manager crashes. Two differ-

nt scenarios are possible. In the first scenario, two or more repli-

ated instances of the cloud manager run on the same datacen-

er. In the second scenario, replicas of the manager run on two or

ore datacenters, each responsible for the resources of the local

atacenter. In both scenarios, each replication instance of the man-

ger has access to all cloud resources. In case the manager crashes,

nother manager instance allows access to the corresponding

esources.

In the scenario based on two or more datacenters, they are as-

umed to be connected across the Internet. If one of the managers

rashes, another manager running on a different datacenter is used

o access resources of the datacenter in which the cloud manager

rashed. Note that all managers have access to all datacenters; thus

ll resources are available to all managers, which also allows to

hare resources across different clouds. Thus the solution can also

erform load balancing among the several managers.

We implemented our highly available cloud manager on the

urora cloud platform [13] . Aurora is an IaaS platform that

https://doi.org/10.1016/j.comnet.2019.107041
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2019.107041&domain=pdf
mailto:gbheimovski@inf.ufpr.br
mailto:turchetti@redes.ufsm.br
mailto:jwickboldt@inf.ufrgs.br
mailto:granville@inf.ufrgs.br
mailto:elias@inf.ufpr.br
https://doi.org/10.1016/j.comnet.2019.107041

2 G.B. Heimovski, R.C. Turchetti and J.A. Wickboldt et al. / Computer Networks 168 (2020) 107041

m

i

t

a

s

a

c

i

l

R

i

s

T

g

S

t

i

g

m

m

s

f

M

i

c

s

T

t

f

f

V

t

i

b

3

c

i

a

g

m

fi

i

D

m

a

k

c

r

s

A

c

a

d

l
allows flexible resource management through network pro-

grammability features. A simple object-oriented API can be used by

administrators to describe and run personalized programs for both

application deployment and optimization. Multi-master replication

[14,15] was used so that replicas form a cluster of cloud managers

running on multiple datacenters. Not only the database that stores

key cloud management information is replicated, but also the di-

rectories with files that keep virtual machine images, optimization

programs, among other configuration information. Finally, we note

that replication and monitoring of the multiple Aurora instances

were implemented as services that can be easily activated by push-

ing a GUI button. We note that although some other cloud plat-

forms offer similar functionalities, they all require knowledge of

minute details and configuration of the system to achieve the same

results.

The performance and robustness of the proposed system were

evaluated experimentally. Results show the time to (1) incorporate

a new manager instance to a cluster; (2) recover after a failure and

(3) replicate data in different scenarios. The impact of the proposed

solution was evaluated by measuring CPU and network usage. A

stress test in which the link delay between two datacenters grows

up to the limited supported by the replication solution is also re-

ported. Finally, we also evaluated the system availability as a func-

tion of the MTBF (Mean Time Between Failures).

The remainder of this work is organized as follows. In

Section 2 we present the Aurora Cloud Manager. Next, in

Section 3 we describe FT-Aurora, the proposed robust IaaS cloud

platform. The implementation and experimental results are pre-

sented in Section 4 . Section 5 gives a overview of how some cur-

rent cloud platforms deal with high availability.The conclusion fol-

lows in Section 6 .

2. The aurora cloud manager

Aurora [13] is an IaaS cloud management platform that has ‘pro-

grammability’ features that allow flexible resource management. A

simple object-oriented API allows the network operator to spec-

ify and run personalized programs for both protocol/application

deployment and optimization. Aurora resources are those usually

provided by IaaS cloud managers, i.e. computing, storage, and net-

working. Computing resources correspond to virtual machines and

has features such as the number of CPUs and memory available.

Storage corresponds to persistent data volumes which are allocated

and managed on the datacenter. Finally, networking allows virtual

resources to communicate.

Aurora supports virtual computing and storage by using the Lib-

virt 1 library. Networking is based on both OpenFlow [16] and the

cloud monitoring tool FlexACMS (Flexible Automated Cloud Moni-

toring Slices) [17] which also employs Nagios 2 for monitoring both

the virtual and physical layers of the managed infrastructure.

The architecture of the Aurora cloud manager is shown in Fig. 1 .

Two types of actors interact with the system: End-users and Ad-

ministrators. An End-user requests virtual resources for deploying

services or applications on the cloud. The Administrator works on

behalf of the cloud provider, which is on the other side of a busi-

ness relationship with the End-user. The main Aurora modules in-

clude: Aurora Platform GUI – this module corresponds to the sys-

tem interface and that provides access to the system functionali-

ties as well as Cloud Slice information to both Administrators and

End-users; Slice Space – module that processes user requests for

cloud resources; and Programmable Space – module that enables

programmability. Other modules include the Unified API that pro-

vides a simple interface for manipulating all types of resources that
1 http://www.libvirt.org .
2 http://www.nagios.org/ .
ay compose a Cloud Slice , including virtual machines, networking

nterfaces, virtual storage, among others; Event Space which is used

o set up alarms; and the Drivers that implement the virtual device

bstractions.

A Cloud Slice corresponds to an internal representation of the

et of resources that compose the virtual infrastructure on which

pplications are deployed. After the creation of a Cloud Slice , the

omponents of the Programmable Space, Event Space , and Slice Space

nteract to set up and manage resources throughout the application

ifecycle. The operation of all these components is defined by the

esource Management Programs & Metrics specified by the Admin-

strator.

The Unified API contains all operations for handling virtual re-

ources, which are performed to set up and manage Cloud Slices .

his API is unified in the sense that it provides a simple and sin-

le interface for resources that can be of four types: Computing,

torage, Networking and Monitoring . The Computing operations are

hose related to the usage and management of virtual machines,

ncluding operations to create, start (and re-start), stop, and mi-

rate VMs. There are also the operations related to the manage-

ent of operating system images to be deployed on the virtual

achines. The Storage component allows the allocation of virtual

torage volumes. The Networking component implements interfaces

or the creation of virtual links and virtual routers. Finally, the

onitoring component of the Unified API is set up as the Cloud Slice

s deployed. Among other monitoring features, this component in-

ludes the Event Manager that defines the event abstraction, which

ets up alarms that are triggered as specified conditions occur.

Virtual device abstractions are implemented by a set of drivers.

hese drivers are technology-specific, and play two main roles:

hey provide an abstraction for using and setting up parameters

or the configuration of devices. The Libvirt 3 library is employed

or Computing and Storage components, while Openflow and Open-

Switch 4 are used for Networking . Finally, FlexACMS and Nagios are

he core of the Monitoring component. Most of the platform code

s written in Python and implemented as a Web-based application

uilt with the Django. 5

. FT-Aurora: A robust cloud manager

In this section, we describe FT-Aurora, the proposed robust

loud manager based on replication. A cluster of cloud managers

s defined that share the data and information required to operate

nd manage any cloud managed by the cluster. The purpose is to

uarantee the continuous operation of the cloud, even if a cloud

anager fails. Two different types of replication are employed. The

rst is the replication of the database which is responsible for stor-

ng management information specifying the hosts (IP address and

NS names), the list of virtual machines installed, as well as infor-

ation about routers, switches, the list of Cloud Slices deployed,

mong other resources. Furthermore, the directories with files that

eep virtual machine images, optimization programs, among other

onfiguration information are also replicated.

Fig. 2 shows the architecture of FT-Aurora, in the figure three

eplicated cloud managers are running on two datacenters. We as-

ume that crashes do not disrupt the communication between the

urora instances. In addition, the communication channel does not

reate, alter or loose messages. The cloud Administrator can access

ny of the three Aurora instances by using a single Virtual IP ad-

ress. This single IP address is implemented with the HAProxy 6

oad balancer, which is also responsible for enabling load balancing
3 http://www.libvirt.org .
4 http://openvswitch.org/ .
5 https://www.djangoproject.com .
6 http://www.haproxy.org/ .

http://www.libvirt.org
http://www.nagios.org/
http://www.libvirt.org
http://openvswitch.org/
https://www.djangoproject.com
http://www.haproxy.org/

G.B. Heimovski, R.C. Turchetti and J.A. Wickboldt et al. / Computer Networks 168 (2020) 107041 3

Fig. 1. Architecture of the aurora cloud manager [13] .

Fig. 2. FT-Aurora architecture: replicated cloud managers running on multiple datacenters.

4 G.B. Heimovski, R.C. Turchetti and J.A. Wickboldt et al. / Computer Networks 168 (2020) 107041

Fig. 3. Time for a new instance to join an Aurora cluster.

n

A

w

a

t

t

a

m

b

t

2

t

r

u

t

t

d

b

l

n

s

e

a

t

l

g

d

b

d

o

2

c

t

s

c

c

g

t

F
by distributing user accesses across the Aurora instances that run

on a single datacenter. By default, HAProxy implements load bal-

ancing using a round-robin strategy. In case there is only a single

Aurora instance running on a given datacenter, a client always ac-

cesses that Aurora instance unless that instance has failed, in this

case an instance on another datacenter is accessed providing trans-

parent failover. Of course this also happens if there are multiple

Aurora instances and all have failed. As shown in Fig. 2 an HAProxy

instance runs on each datacenter, so that instances can fail but the

service remains available. These processes are monitored with the

Keepalived 7 tool which is used to detect and report crashes.

FT-Aurora replicates information about new resources added to

a cloud managed by any one of the Aurora instances. For example,

in the figure if the administrator adds a new host to the cloud in

datacenter1, this information is replicated to a cloud manager in

datacenter2, thus all Auroras instances have access to all the hosts,

five in the figure, Host1_1, Host1_2, Host1_3, Host2_1 and Host2_2 .

A Virtual Private Network (VPN) link is established between the

datacenters to allow any cloud manager to communicate securely

with any resource on any datacenter. The communication between

instances on a single datacenter employs an encrypted ssh tunnel.

FT-Aurora employs multi-master replication, which keeps the

multiple Aurora instances consistent and also allows reading and

writing data to/from any instance. The main purpose is to keep

each instance independent, but in case one of the instances

crashes, the other instances can be used instead to access the cor-

responding resources. As mentioned above two types of replica-

tion were implemented, both of the database and of other direc-

tories/files keeping multiple resource information. We employed

the MySQL database and for replication the Galera Cluster MySQL

plugin

8 , which implements multi-master replication among other

strategies. The rsync [18] tool is used for remote file synchroniza-

tion.

In order to use the replication features, the user just presses

the Aurora Cluster button of the system GUI. Among other func-

tionalities, the cluster is displayed including the list of participat-

ing Aurora instances and the state of each instance (crashed/alive).

During the activation of the multi-master replication, it is neces-

sary to restart the MySQL service. At this point, a new file is be

created with information such as: cluster name, IP address of each

Aurora instance that belongs to the cluster , among others. Galera

provides notification features that are used to monitor the Aurora

instances that belong a cluster. Notifications are generated when-

ever a cluster changes, e.g. a new Aurora instance joins a cluster

or an instance crashes. Monitoring information is disseminated to

all instances in the cluster. The Administrator is also notified of

changes by e-mail.

4. Experimental results

In this section we report results of experiments executed to

evaluate FT-Aurora. Three sets of experiments are presented. The

first set was executed to evaluate the time that a new Aurora in-

stance takes to join the Aurora cluster. The second set of experi-

ments was designed to evaluate the replication latency, including

the time to replicate the database and all the remote files that rep-

resent virtual machine images, optimization programs and metrics.

We first evaluated the case in which all Aurora instances run in the

same datacenter, and then evaluate a case in which replicas are in

two different datacenters. The last set of experiments was executed

to evaluate the availability of the system as the MTBF varies. Each

Aurora instance was executed on a virtual machine with 512 MB

of memory running Linux Ubuntu 14.04.02 LTS.
7 http://www.keepalived.org/ .
8 http://galeracluster.com

(

9

r

t
The first experiment was executed to measure the time that a

ew Aurora instance takes to join a cluster that consists of two

urora instances. The process involves synchronizing information

ithin the Aurora cluster. The new instance communicates with

n instance which is already in the cluster. In order to evaluate

he time it takes to complete the process, we increased the clus-

er size and thus the size of the corresponding database as shown

long the x-axis of Fig. 3 . It is clear that as the number of virtual

achines increases, the time to join in the cluster also increases,

ut moderately. When there is only a single virtual machine, the

ime that the new instance takes to join in the cluster is about

0 s. As the number of virtual machines grows to 50 0 0, the time

o join the cluster only doubles to 40 s. This result shows that the

eplication strategy scales well as the number of resources running

nder the cloud manager grows.

The second set of experiments was executed to measure

he replication latency. Three different experiments were run. In

he first experiment we first measured the latency to replicate

atabase information just after new configuration information had

een added to an instance. Then, also in the first experiment, the

atency to replicate virtual machine images was measured after a

ew virtual machine had been created on an Aurora instance. The

ize a virtual machine image is approximately 2.5 MB. The second

xperiment was executed to measure the replication latency as the

mount of new data added to an Aurora instance increases. In the

hird experiment the replication latency was measured as the de-

ay of the communication channel connecting the Aurora instances

rew, considering a scenario with a remote Aurora instance.

The first experiment of the second set was executed on a single

atacenter, initially with two Aurora instances, and next this num-

er was increased to three instances. The time to synchronize the

atabase by replicating information across two Aurora instances in

n the order of milliseconds: as shown in Table 1 the average was

1.63ms. Each experiment was executed 30 times. Then to repli-

ate the virtual machine images which were done using the Rsync

ool, the latency was in average 4.7s. As the number of Aurora in-

tances increases from two to three, the replication time also in-

reases, reaching up to 36.95ms in average for the database repli-

ation while the image replication takes about 5.96s.

Next, an experiment is reported that was executed to investi-

ate the latency (replication time) as the amount of information

o replicate increases by the addition of new virtual machines.

urthermore we also measured the impact on CPU and network

bandwidth) usage. Note that memory usage kept constant, around

5% of the 512MB available at each virtual machine running an Au-

ora instance. This experiment was also executed first on two and

hen on three Aurora instances. Results are shown in Figs. 4 and 5 .

http://www.keepalived.org/
http://galeracluster.com

G.B. Heimovski, R.C. Turchetti and J.A. Wickboldt et al. / Computer Networks 168 (2020) 107041 5

Table 1

Data replication latency.

Replication Type/Scenario 2 Auroras 3 Auroras

Average Standard Deviation Average Standard Deviation

MySQL Replication 21,63 ms 11,45 ms 36,95 ms 17,33 ms

Rsync Replication 4,7 s 0,95 s 5,96 s 1,56 s

c

t

r

l

t

r

a

t

r

F

u

F

m

a

u

m

p

s

w

t

r

i

i

d

i

c

c

w

b

d

F

c

a

t

W

c

t

p

l

h

d

o

t

p

t

f

5

Fig. 4 shows the replication time as the number of virtual ma-

hines increases. There are two curves, one corresponds to a sys-

em running two Aurora instances, and the other with three Au-

ora instances. We can see that the replication time grows roughly

inearly as the number of virtual machines increases. The replica-

ion time also grows as the number of Aurora instances increases,

eaching up to approximately 750ms using two Aurora instances

nd 40 0 0 virtual machines, and up to approximately 1290ms for

hree Aurora instances. It is worth mentioning that these results

eflect exactly the expected behavior.

Next we evaluate the overhead of the proposed strategy.

ig. 5 shows (a) CPU utilization and the (b) network bandwidth

sed as the number of virtual machines increases. As shown in

ig. 5 (a), CPU utilization increases up to 92%, after which it re-

ains roughly constant. The same pattern was observed for two

nd three Aurora instances. The amount of network bandwidth

sed shown in Fig. 5 (b) also increases as the number of virtual

achines grows. It is clear that the bandwidth required is roughly

roportional to the number of virtual machines managed by the

ystem. In terms of the number of Aurora instances, network band-

idth roughly doubles as the number of instances grows from two

o three. The reason is that the time for three instances to run the

eplication requires an extra step in which data received from an

nstance has to be replicated to the other instance. Thus with three

nstances the time to replicate all the data among all instances

oubles: the bandwidth required for a system with three instances

s 9600 kB/s which it is 4360 kB/s for a system with two instances.

Next we describe an experiment designed to evaluate the repli-

ation time across two remote datacenters. We emulated the link

onnecting the remote sites by controlling the network delays

ith the tc (Traffic Control) tool. Database replication was triggered

y the addition of new configuration to an Aurora instance. The

atabase replication time was measured through the database logs .

ig. 6 shows the replication time as the link delay gradually in-

reases. Note that we increased the delays up to the limit, i.e.

 point from which the replication stops working. We found out

hat as the link delay reaches 40 0 0ms the system stops working.
Fig. 4. Replication time as the number of managed virtual machines increases.
hen this limit is reached, Galera is not able to execute the repli-

ation process, in particular it cannot obtain the lock and write

he transaction to the database anymore. In the figure it is also

ossible to see that as the delay reaches 10 0 0ms the replication

atency surges, which corresponds to the fact that it is increasingly

ard for Galera to obtain the lock and write the transaction to the

atabase.

In another experiment we increased the amount of RAM mem-

ry of each virtual machine to 1024 MB. The main purpose of

his experiment was to investigate whether this causes any im-

rovement on the replication latency. Actually, we observed that

here is an improvement, in particular the limit of the link delay

rom which the system stopped working changed from 40 0 0ms to

0 0 0ms.
Fig. 5. Database replication: CPU utilization and network bandwidth required.

6 G.B. Heimovski, R.C. Turchetti and J.A. Wickboldt et al. / Computer Networks 168 (2020) 107041

Fig. 6. Replication across two remote datacenters: reaching the limit.

Fig. 7. FT-Aurora Availability: reaching the 99.999% level.

v

a

I

n

i

c

c

a

a

n

9

a

t

t

t

w

a

l
Table 2 shows how the replication delay and the time to access

an Aurora instance increase as the communication delay increases.

Each experiment was executed 50 times, averages are shown. As

mentioned above, as the communication delay reaches 4s the sys-

tem stops working.

The last set of experiments was executed to evaluate the system

availability. Both the failure detection time and the time to recover

after a failure were measured. The availability was computed as a

function of the Mean Time Between Failures (MTBF). Monitoring

was set up so that an Aurora instance is polled in intervals of 2s,

and is considered to have crashed when polling fails twice; thus

the detection time is 4s. After an Aurora instance crashes, all ac-

cesses are directed to other instances. On the other hand, Galera is

employed to determine whether MySQL has crashed. In this case

the detection time is shorter, in fact it has been measured to be at

most 15 ms. Note that Galera also detects partitions. If an Aurora

instance gets unreachable for 5 s it is suspected to have failed, but

it is only removed from the cluster after 15 s.

The MySQL recovery time also was measured. In this experi-

ment the crash of a MySQL server was forced, and then this server

was restarted. The experiment was executed in clusters with two

and three Aurora instances. The recovery time was 16 s in the sys-

tem with two Aurora instances, and 18 s for 3 instances.
Table 2

Impact of the communication delay on the replication time.

Delay (ms) Communication Delay (ms) Replication Latency (ms)

0 0.485 0.521

10 10.834 10.914

20 20.736 20.875

30 30.713 30.754

40 40.749 40.813

50 50.753 50.824

60 60.886 60.905

70 70.452 70.678

80 80.742 80.905

90 90.797 90.956

100 100.814 101.894

200 200.812 201.252

300 300.930 302.083

400 400.714 401.800

500 500.768 502.681

1000 1000.883 1002.478

2000 2000.740 2832.474

3000 3000.905 4498.797

4000 4000.857 ——–

a

e

c

i

m

f

i

W

F

9

w

i

a

i

c

a

i

t

r

l

r

o
Table 3 shows the system availability computed as the MTBF

aries. The availability was computed as follows:

 v ail abil ity =

(MT BF − (im ∗ ns)) ∗ 100)

MT BF

n the expression, im is the monitoring interval, ns represents the

umber of times an instance must be considered suspect before it

s classified as crashed. We consider that the monitoring interval

orresponds to the time the time the system is unavailable. We

omputed the availability for a MTBF of 1 minute, 30 min, 1 h, 2 h

nd 4 h. The number of suspicions required (ns) was equal to 1, 2

nd 5. For example, if the MTBF is 30 min (180 0 0 s), im is 2 s and

s is 5 s, the availability is equal to ((1800 − (2 ∗ 5)) ∗ 100) / 1800 =
9 , 44% . The parameters do have an impact on the availability and

ccuracy, and have to be set accordingly. For example, when ns = 5

he availability is lower in comparison to ns = 2 or ns = 1 , however

he accuracy is greater in the sense more suspicions are required

o conclude that a crash has actually happened.

According to the IEEE document [19] , the power industry –

hich has some of the strictest specifications – requires an avail-

bility is 99.999% (five9’s). The FT-Aurora architecture actually al-

ows parameters to be set so that the required availability levels

re reached. In particular, the monitoring interval can be set low

nough so that failures are quickly detected and the system is re-

onfigured to keep the downtimes as low as possible. Nevertheless

t is important to see that the availability is also dependent on the

ean time between failures (MTBF). Thus if failures are extremely

requent the availability will drop, no matter how short the mon-

toring interval is and how efficient the recovery procedures are.

e ran a new experiment and show results for the availability in

ig. 7 , Section 4 . The experiment shows that FT-Aurora reaches the

9.999% availability level even if the MBTF is as low as 170 min

ith the monitoring interval set to 100 milliseconds.

As a final comment, we would like to recall that, as described

n Section 3, a user communicates with the cloud manager using

 virtual IPaddress. As the local manager crashes, the IP address

s reconfigured as the address of another working manager of the

luster. Thus accessing virtual resources with a failed local man-

ger is completely transparent to the user. Now consider the time

t takes to access resources if the manager fails. This corresponds

o the round trip time to the working manager. If this instance is

unning on the local datacenter, the round trip time is less a mil-

isecond. If, on the other hand, it is on a remote datacenter, the

ound trip time takes from a few milliseconds to a few hundreds

f milliseconds depending on how far the datacenters are in the

G.B. Heimovski, R.C. Turchetti and J.A. Wickboldt et al. / Computer Networks 168 (2020) 107041 7

Table 3

System availability.

MTBF Monitoring Interval (im) Number of Suspicions (vf) Availability (%)

1 min 2 s 1 96,66

2 93,33

5 83,33

30 min 2 s 1 99,88

2 99,77

5 99,44

1 h 2 s 1 99,94

2 99,88

5 99,72

2 h 2 s 1 99,97

2 99,94

5 99,86

4 h 2 s 1 99,98

2 99,97

5 99,93

I

a

5

o

t

l

c

h

v

d

o

m

f

a

t

O

s

k

a

a

H

r

t

d

w

m

t

l

r

b

m

t

r

s

p

v

h

d

c

e

s

s

o

p

t

o

c

m

t

f

6

c

t

c

o

t

t

w

t

t

i

e

t

F

t

D

nternet. As a comment, if required one can place replicas as close

s possible in order to reduce the latency in case of failures.

. Related work

In this section, we briefly describe related work, with a focus

n the strategies adopted by popular cloud computing platforms

o deploy highly available resource management.

OpenStack 9 is an IaaS cloud platform which can be deployed on

arge systems and can manage a large number of resources which

an be dynamically allocated on demand. OpenStack implements

igh availability by duplicating all the components of a given ser-

ice and running them on different controllers. 10 That is a major

ifference to our approach as we employ fine grained replication

f the basic resources needed for a cloud manager to be able to

anage resources of another cloud manager. OpenStack allows dif-

erent strategies to be used such as basic master-slave replication

nd also multi-master replication which defines replication clus-

ers. But all the software required to run the replication and the

penStack high-availability set up must be manually configured

tep by step by the user that needs the feature. This is another

ey difference to FT-Aurora.

CloudStack 11 is a another cloud platform designed to deploy

nd manage large IaaS clouds. In order to increase manager avail-

bility, the human manager can replicate the management server.

owever, replication is only allowed within one datacenter. 12 Also

elated to high-availability is the CloudStack strategy to replicate

he storage which defines data zones, one of which runs a primary

atabase , while the others run backups, which are synchronized

ith the primary.

Eucalyptus 13 is an IaaS infrastructure designed to implement,

anage and provide both private and hybrid clouds. The Eucalyp-

us architecture provides fault tolerance mechanisms at the host

evel, i.e. a host (and the services running on that host) can be

eplicated so that if the original host crashes it is replaced by the

ackup in a transparent way. Regarding the availability of the cloud

anager, it is not yet provided but seems to be planned for the fu-

ure. 14
9 http://openstack.org/ .
10 http://docs.openstack.org/ha-guide/ .
11 https://cloudstack.apache.org/ .
12 http://docs.cloudstack.apache.org/projects/cloudstack-administration/en/4.8/

eliability.html#limitations- on- database- high- availability .
13 http://www.eucalyptus.com/ .
14 https://docs.eucalyptus.com/eucalyptus/4.0.2/install-guide/ha _ planning.html .

a

r

t

OpenNebula 15 is a cloud computing platform that presents a

imple architecture to allowing the creation and management of

ublic and private IaaS clouds on a datacenter. OpenNebula pro-

ides strategies for the replication of both virtual machines and

osts by using the basic master-slave approach. OpenNebula uses a

istributed consensus protocol to provide fault-tolerance and state

onsistency across the replicas.

Related work also includes [12] , which presents a performance

valuation of different data replication strategies for the cloud. A

urvey of data replication techniques for cloud computing is pre-

ented in [11] , with a taxonomy that encompasses multiple aspects

f the different strategies. In [10] , Nielsen and others propose a

rotocol for replicating data across data centers with a focus on

he sensitivity to packet losses and varying round-trip times. An-

ther work that explores data replication in the context of cloud

omputing is [9] , which presents a strategy based on parallel state

achine replication. In [7] , the authors highlight that improving

he availability of cloud computing is one of the main challenges

or the future.

. Conclusion

In this work we presented FT-Aurora, a highly available IaaS

loud manager that employs fine-grained replication across clus-

ers of managers running on multiple datacenters. After a manager

rashes, the corresponding resources remain accessible from any

ther manager in the cluster. All functionality related to replica-

ion and high-availability can be easily actived through the GUI in-

erface. The performance and robustness of the proposed solution

ere empirically evaluated. We performed experiments to measure

he time to incorporate a new manager instance to an Aurora clus-

er as well as the latency to replicate data in different scenarios,

ncluding clusters with managers located in different datacenters,

ach responsible of a set of resources. We also computed the sys-

em availability based on the time to detect failures and recover.

uture work includes building clusters of multiple remote datacen-

ers that share resources through a cloud federation.

eclaration of Competing Interest

This manuscript has not been submitted to, nor is under review

t, another journal or other publishing venue.

The authors have no affiliation with any organization with a di-

ect or indirect financial interest in the subject matter discussed in

he manuscript.
15 https://opennebula.org/ .

http://openstack.org/
http://docs.openstack.org/ha-guide/
https://cloudstack.apache.org/
http://docs.cloudstack.apache.org/projects/cloudstack-administration/en/4.8/reliability.html#limitations-on-database-high-availability
http://www.eucalyptus.com/
https://docs.eucalyptus.com/eucalyptus/4.0.2/install-guide/ha_planning.html
https://opennebula.org/

8 G.B. Heimovski, R.C. Turchetti and J.A. Wickboldt et al. / Computer Networks 168 (2020) 107041

o

v

e

H

i

U

(

ber of the IEEE.
CRediT authorship contribution statement

Gustavo B. Heimovski: Conceptualization, Methodology, Soft-

ware, Validation, Data curation, Writing - Original Draft, Writing -

Review & Editing, Funding acquisition. Rogério C. Turchetti: Con-

ceptualization, Methodology, Software, Validation, Data curation,

Writing - Original Draft, Writing - Review & Editing, Funding ac-

quisition. Juliano A. Wickboldt: Conceptualization, Methodology,

Software, Validation, Data curation, Writing - Original Draft, Writ-

ing - Review & Editing, Funding acquisition. Lisandro Z. Granville:

Conceptualization, Methodology, Software, Validation, Data cura-

tion, Writing - Original Draft, Writing - Review & Editing, Fund-

ing acquisition. Elias P. Duarte Jr: Conceptualization, Methodology,

Software, Validation, Data curation, Writing - Original Draft, Writ-

ing - Review & Editing, Funding acquisition.

Acknowledgement

This work was partially supported by the Brazilian Re-

search Council - CNPq grants 311451/2016-0, 312392/2017-6, and

313893/2018-7.

References

[1] R. Buyya , S.N. Srirama , G. Casale , R. Calheiros , Y. Simmhan , B. Varghese ,

E. Gelenbe , B. Javadi , L.M. Vaquero , M.A.S. Netto , A.N. Toosi , M.A. Rodriguez ,

I.M. Llorente , S. Vimercati , P. Samarati , D. Milojicic , C. Varela , R. Bahsoon ,
M.D. Assuncao , O. Rana , W. Zhou , H. Jin , W. Gentzsch , A.Y. Zomaya , H. Shen ,

A manifesto for future generation cloud computing: research directions for the
next decade, ACM Comput. Surv. 51 (5) (2019) 1–38 .

[2] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, M. Zaharia, A view of cloud computing, Com-

mun. ACM 53 (4) (2010) 50–58, doi: 10.1145/1721654.1721672 .

[3] Q. Zhang, L. Cheng, R. Boutaba, Cloud computing: state-of-The-Art and re-
search challenges, J. Internet Serv. Appl. 1 (1) (2010) 7–18, doi: 10.1007/

s13174- 010- 0 0 07-6 .
[4] P.M. Mell , T. Grance , SP 800-145. The NIST Definition of Cloud Computing,

Technical Report, National Institute of Standards & Technology, Gaithersburg,
MD, United States, 2011 .

[5] K. Tsakalozos, M. Roussopoulos, A. Delis, VM Placement in non-Homogeneous

IaaS-Clouds, in: G. Kappel, Z. Maamar, H. Motahari-Nezhad (Eds.), Service-
Oriented Computing, Springer Berlin Heidelberg, 2011, pp. 172–187, doi: 10.

1007/978- 3- 642- 25535- 9 _ 12 . volume 7084 of Lecture Notes in Computer Sci-
ence

[6] R. Jhawar , V. Piuri , Fault tolerance management in iaas clouds, in:
2012 IEEE First AESS European Conference on Satellite Telecommunica-

tions (ESTEL), 2012, pp. 1–6 .

[7] A. Taherkordi , F. Zahid , Y. Verginadis , G. Horn , Future cloud systems design:
challenges and research directions, IEEE Access (2018) .

[8] M.A .K. Kholghi, A . Abdullah, R. Latip, S. Subramaniam, M. Othman, Disaster
recovery in cloud computing: a survey, Comput. Inf. Sci. 7 (4) (2014) 39–54,

doi: 10.5539/cis.v7n4p39 .
[9] L. Wu , W. Wu , N. Huang , Z. Chen , Pdfe: flexible parallel state machine repli-

cation for cloud computing, in: 2018 IEEE International Conference on
Cluster Computing (CLUSTER), 2018, pp. 456–465 .

[10] L.H. Nielsen , B. Schlie , D.E. Lucani , Towards an optimized cloud replication

protocol, in: 2018 IEEE International Conference on Smart Cloud (Smart-
Cloud), 2018, pp. 105–110 .

[11] B.A. Milani , N.J. Navimipour , A comprehensive review of the data replication
techniques in the cloud environments: major trends and future directions, J.

Netw. Comput. Appl. 64 (2016) 229–238 .
[12] S. George , E.B. Edwin , A review on data replication strategy in cloud com-

puting, in: 2017 IEEE International Conference on Computational Intel-

ligence and Computing Research (ICCIC), 2017, pp. 01–04 .
[13] J.A. Wickboldt, R.P. Esteves, M.B. de Carvalho, L.Z. Granville, Resource Manage-

ment in IaaS Cloud Platforms Made Flexible Through Programmability, Comput.
Netw. 68 (0) (2014) 54–70. Communications and Networking in the Cloud doi:

10.1016/j.comnet.2014.02.018
[14] , Replication: Theory and Practice, B. Charron-Bost, F. Pedone, A. Schiper (Eds.),

Springer-Verlag, Berlin, Heidelberg, 2010 .

[15] B.P. Gautam , K. Wasaki , A. Batajoo , S. Shrestha , S. Kazuhiko , Multi-master repli-
cation of enhanced learning assistant system in iot cluster, in: 2016 IEEE

30th International Conference on Advanced Information Networking and Ap-
plications (AINA), 2016, pp. 1006–1012 .

[16] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-
ford, S. Shenker, J. Turner, Openflow: enabling innovation in campus networks,

SIGCOMM Comput. Commun. Rev. 38 (2) (2008) 69–74, doi: 10.1145/1355734.

1355746 .
[17] M. Barbosa de Carvalho , R. Pereira Esteves , G. da Cunha Rodrigues , L. Zam-
benedetti Granville , L.M. Rockenbach Tarouco , A Cloud Monitoring Framework

for Self-Configured Monitoring Slices Based on Multiple Tools, in: 9th In-
ternational Conference on Network and Service Management (CNSM), 2013,

pp. 180–184 .
[18] A. Tridgell , Efficient Algorithms for Sorting and Synchronization, Australian Na-

tional University Canberra, 1999 Ph.D. thesis .
[19] I.R. Practice, IEEE Recommended practice for the use of probability methods for

conducting a reliability analysis ofindustrial and commercial power systems,

IEEE Std 3006.5–2014 (2015) 1–50, doi: 10.1109/IEEESTD.2015.7034995 .

Gustavo B. Heimovski received the M.Sc. degree in com-
puter science from Federal University of Parana, Brazil,

2015, where he was also a student member of the Com-

puter Networks and Distributed Systems Lab (LaRSis). His
recent research is focused on the dependability in Dis-

tributed Systems.

Rogerio C. Turchetti is an Adjunct Professor at Federal

University of Santa Maria, Santa Maria, Brazil. He re-
ceived a Ph.D. degree in computer science from Fed-

eral University of Parana, Brazil, 2017, the M.Sc. degrees
in production engineering with emphasis on information

systems from Federal University of Santa Maria, Santa
Maria, Brazil, in 2006. His research interests include Com-

puter Network and Distributed Systems, their Depend-

ability and Algorithms. His recent research is focused on
the dependability in Network Function Virtualization and

Software Defined Network.

Juliano Araujo Wickboldt is an associate professor at the
Federal University of Rio Grande do Sul (UFRGS) in Brazil.

He holds both M.Sc. (2010) and Ph.D. (2015) degrees in
computer science from UFRGS. Juliano was an intern at

NEC Labs Europe in Heidelberg, Germany for one year be-

tween 2011 and 2012. In 2015, Juliano was a visiting re-
searcher at the Waterford Institute of Technology in Ire-

land. His research interests include softwarized network-
ing and 5G technologies.

Lisandro Zambenedetti Granville is a professor at the

Federal University of Rio Grande do Sul. He served as
the TPC Co- Chair of IFIP/IEEE DSOM 2007 and IFIP/IEEE

NOMS 2010, the General Co-Chair of IFIP/IEEE CNSM 2014,
the TPC Co-Chair of IEEE NetSoft 2018, and the TPC Vice-

Chair do IEEE ICC 2018. He is President of the Brazil-

ian Computer Society (SBC). Lisandro’s interests include
network management, software-defined networking, and

network functions virtualization.

Elias P. Duarte Jr. is a Full Professor at Federal Univer-
sity of Parana, Curitiba, Brazil, where he is the leader

of the Computer Networks and Distributed Systems Lab

(LaRSis). His research interests include Computer Net-
works and Distributed Systems, their Dependability, Man-

agement, and Algorithms. He has published nearly 200
peer-reviewer papers and has supervised more than 125

students both on the graduate and undergraduate lev-
els. Prof. Duarte is currently Associate Editor of the IEEE

Transactions on Dependable and Secure Computing, and

has served as chair of more than 20 conferences and
workshops in his fields of interest. He received a Ph.D. de-

gree in Computer Science from Tokyo Institute of Technol-
gy, Japan, 1997, M.Sc. degree in Telecommunications from the Polytechnical Uni-

ersity of Madrid, Spain, 1991, and both BSc and MSc degrees in Computer Sci-
nce from Federal University of Minas Gerais, Brazil, 1987 and 1991, respectively.

e has chaired the Special Interest Group on Fault Tolerant Computing of the Brazil-
an Computing Society (20 05–20 07); the Graduate Program in Computer Science of

FPR (20 06–20 08); and the Brazilian National Laboratory on Computer Networks

2012–2016). He is a member of the Brazilian Computing Society and a Senior Mem-

http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0001
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1007/s13174-010-0007-6
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0004
https://doi.org/10.1007/978-3-642-25535-9_12
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0006
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0006
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0006
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0007
https://doi.org/10.5539/cis.v7n4p39
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0011
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0011
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0011
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0012
http://doi.org/10.1016/j.comnet.2014.02.018
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0015
https://doi.org/10.1145/1355734.1355746
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0018
http://refhub.elsevier.com/S1389-1286(18)31346-X/sbref0018
https://doi.org/10.1109/IEEESTD.2015.7034995

	FT-Aurora: A highly available IaaS cloud manager based on replication
	1 Introduction
	2 The aurora cloud manager
	3 FT-Aurora: A robust cloud manager
	4 Experimental results
	5 Related work
	6 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgement
	References

