
Computer Networks 178 (2020) 107337

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Network service topology: Formalization, taxonomy and the CUSTOM

specification model

Vinicius Fulber-Garcia

a , ∗ , Elias P. Duarte Jr. a , Alexandre Huffb , Carlos R.P. dos Santos c

a Department of Informatics, Federal University of Paraná, Curitiba, Brazil
b Federal Technological University of Paraná, Toledo, Brazil
c Department of Applied Computing, Federal University of Santa Maria, Santa Maria, Brazil

a r t i c l e i n f o

Keywords:

NFV

Service

Topology

Definitions

Taxonomy

Specification

Model

a b s t r a c t

Network Function Virtualization (NFV) relies on virtualization technologies to allow the implementation of mid-

dleboxes in software that is executed on commercial off-the-shelf hardware. Multiple Virtual Network Functions

(VNFs) can be combined to form arbitrary network services. The term service topology has been freely employed

by both major NFV recommendation and standardization bodies (the Internet Engineering Task Force (IETF) and

European Telecommunications Standards Institute (ETSI)) and in the literature. The objective of this work is to

present a formal specification that unifies these different views of service topologies. A taxonomy is proposed

which allows the classification of topologies according to multiple criteria, including structure, size, heterogene-

ity, function sharing, among others. We also propose the CUstom Service TOpology Model (CUSTOM), a specifi-

cation model that allows the design of network service topologies that feature the different categories proposed in

the taxonomy. Finally, we demonstrate the specification capabilities of CUSTOM through a series of case studies.

1

p

(

t

m

p

a

a

v

O

p
[

t

(

r

p

b

p

s

n

d

a

fi

t

V

i

i

[

i

t

e

a

n

a

o

o

a

g

i

a

m

w

e

h

R

A

1

. Introduction

The Internet infrastructure relies on middleboxes for running network
rotocols (e.g., Internet Protocol (IP), Multi Protocol Label Switching
MPLS), Border Gateway Protocol (BGP)) and services (e.g., packet fil-
ering, naming). Although middleboxes have been traditionally imple-
ented in hardware, virtualization technologies have opened up the
ossibility for implementing those services in software. The advantages
re manyfold, not only in terms of the flexibility for operating and man-
ging the network, since it is so much easier to create, use and manage
irtual services, but also in terms of cost which is substantially lower.
ne might even argue that virtualization has solved – or at least has the
otential to solve – the problem known as “ossification of the Internet ”
1] .

Network Function Virtualization (NFV) [2] relies on virtualization
echnologies to implement middleboxes as Virtual Network Functions
VNF) which are executed on Virtual Machines (VM) or containers that
un on commercial off-the-shelf hardware platforms. The use of NFV im-
roves the flexibility of services traditionally implemented as hardware-
ased middleboxes [3] and promotes the reduction of both CAPital EX-
enditure (CAPEX) and OPerational EXpenditure (OPEX) [4] . Network
ervices and their enablers can also be provided by modern NFV busi-
ess environments (e.g., FENDE [5]) in the context of the Network-as-
∗ Corresponding author.

E-mail addresses: vfgarcia@inf.ufpr.br (V. Fulber-Garcia), elias@inf.ufpr.br (E.P. D

os Santos).

ttps://doi.org/10.1016/j.comnet.2020.107337

eceived 23 September 2019; Received in revised form 4 May 2020; Accepted 24 Ma

vailable online 29 May 2020

389-1286/© 2020 Elsevier B.V. All rights reserved.
-Service model, thus creating a value chain and financial flows that
t in the context of the Internet of Services (IoS) paradigm [6,7] . Note
hat, Multiple types of NFV enablers are already available, including
NF platforms [8–12] which have been widely adopted to support both

mplementation and management of virtualized services.
Most important, NFV allows the creation of services by compos-

ng multiple Network Functions (NF) on Service Function Chains (SFC)
13] or Network Services (NS) [14] . These services are created by spec-
fying service topologies and service descriptors. Services topologies, in
urn, specify through which network functions, end points (ingress and
gress nodes) and internal connections the network traffic is steered
nd processed. Service descriptors are also used to specify each compo-
ent of a service topology (e.g., Virtual Deployment Units of a VNF), in
ddition to other service features. The management and maintenance
f a service involve processes which can be considered complex, not
nly those related to the composition of the service topology itself, but
lso those related to lifecycle management tasks, including scaling, mi-
rating, and placement of individual functions and chains. Currently, it
s not trivial to ensure the successful execution of those service man-
gement tasks. There are actually multiple approaches for running the
yriad of tasks for managing the lifecycle of network services, some of
hich are widely adopted and several of which are not compatible with

ach other.
uarte Jr.), alexandrehuff@utfpr.edu.br (A. Huff), csantos@inf.ufsm.br (C.R.P.

y 2020

https://doi.org/10.1016/j.comnet.2020.107337
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2020.107337&domain=pdf
mailto:vfgarcia@inf.ufpr.br
mailto:elias@inf.ufpr.br
mailto:alexandrehuff@utfpr.edu.br
mailto:csantos@inf.ufsm.br
https://doi.org/10.1016/j.comnet.2020.107337

V. Fulber-Garcia, E.P. Duarte Jr. and A. Huff et al. Computer Networks 178 (2020) 107337

T

s

[

i

(

d

m

f

s

i

s

fi

t

t

o

o

s

l

i

M

c

w

r

t

n

o

S

S

t

2

e

C

2

f

t

m

O

t

c

fl

E

a

b

(

t

F

t

(

v

s

a

i

a

p

I

(

t

m

fi

f

m

t

a

i

P

t

s

2

w

b

i

c

a

v

r

d

c

i

f

m

F

v

e

(

h

a

c

(

i

p

n

E

t

p

a

t

a

c

(

F

w

t

F

f

i

p

i

f

S

t

t

p
The problem starts with the very specification of service topologies.
here are currently multiple and different ways to define a topology,
uch as using formal description languages [15] , context-free grammars
16] , by directly specifying a traffic forwarding graph [17] , or by us-
ng structured markup languages, such as Yet Another Next Generation
YANG) [18] . Each strategy has features that make it easier or more
ifficult to be used in particular scenarios (e.g., to run specific service
anagement tasks). But none provides a comprehensive collection of

eatures to solve the major problems related to the service topology
pecification.

It is undeniable that although plenty of service topology character-
stics have been recently addressed in the literature (e.g., dependencies,
haring, and heterogeneity), most if not all require complex service con-
gurations or very low-level descriptors. We claim in the present work
hat several of these characteristics can be natively coded in the service
opology specification itself.

In this work, we give a formal definition of a network service topol-
gy as a graph, and propose a taxonomy that allows the classification
f topologies according to multiple criteria, which are also formally
pecified. These categories include: structure (linear and branched);
ength and size; function sharing; function dependency; and heterogene-
ty (physical/virtual). We also introduce the CUstom Service TOpology
odel (CUSTOM), a service topology specification model based on a

ontext-free grammar that is fully compliant with the taxonomy. Finally,
e demonstrate the specification capabilities of CUSTOM through a se-

ies of case studies.
The rest of the paper is organized as follows. Section 2 presents

he background and preliminary definitions. Section 3 gives the defi-
ition of a service topology as a graph and presents the proposed taxon-
my. The CUSTOM service topology specification model is described in
ection 4 . In Section 5 several case studies are presented and discussed.
ection 6 presents relevant related work. Finally, Section 7 concludes
he paper.

. NFV: definitions & standards

This section presents definitions and an overview of standardization
fforts of both Network Function Virtualization and Service Function
haining.

.1. Network function virtualization

Network Function Virtualization (NFV) decouples network functions
rom hardware by using virtualization technologies [2] . Despite the fact
hat there are advantages of using dedicated hardware (e.g., perfor-
ance), it is undeniable that those solutions imply higher CAPEX and
PEX. Furthermore, the challenges keep increasing for the implemen-

ation of new sophisticated network services in hardware [4] . In this
ontext, NFV technologies represent an effective solution, in terms of
exibility and reduced costs.

In order to define standards to foster interoperable NFV adoption, the
uropean Telecommunication Standards Institute (ETSI) has specified
 comprehensive architecture, which is organized in three functional
locks. The NFV Infrastructure (NFVI) comprises the physical resources
i.e., computing, storage, and network), and how they are virtualized
o support the execution of network functions; the Virtualized Network
unctions (VNF) block represents the implementation of network func-
ions running on the NFVI; and the NFV Management and Orchestration
NFV-MANO) block is in charge of the overall activities regarding the
irtualized network functions.

NFV-MANO is composed of three elements: the Orchestrator, respon-
ible for the management of complex network services; the VNF Man-
ger, which provides VNF lifecycle operations (e.g., instantiation, scal-
ng, update, and termination); and the Virtualized Infrastructure Man-
ger - VIM, which controls the physical/software infrastructure that sup-
orts the virtualized resources (e.g., computing, storage, and network).
n addition, each VNF has an associated Element Management System
EMS), which enables the communication between the NFV-MANO and
he VNF itself providing FCAPS (Fault, Configuration, Accounting, Perfor-

ance, and Security) management functionalities.
Besides the definition of the architecture, the ETSI has also identi-

ed a set of key aspects that must be taken into account by NFV plat-
orms (i.e., portability, performance, integration, scalability, manage-
ent, and orchestration) [19] . These aspects are essential to support

he widespread adoption of the NFV paradigm, thus enabling the cre-
tion of network services that can be widely adopted. In this context, it
s important to simplify the management of virtualized infrastructures.
articularly important is the definition of high-level models and prac-
ices to create dynamic chains of VNFs, which are presented in the next
ections.

.2. Virtualized network services

Complex network services consist of multiple network functions
orking together according to a specification. Network functions can
e organized in arbitrary ways to offer different network services. The
nstantiation of such services involves deploying VNFs on demand and
haining them together. Both the Internet Engineering Task Force (IETF)
nd the ETSI have led efforts to provide standards for such network ser-
ices in the context of the NFV. However, there is still no consensus
egarding not only terms but also some of the core functionalities, as we
escribe below.

The ETSI defines the concept of Network Service (NS) [14,20] , which
onsists of chained network functions providing a service and service
nformation (e.g., performance requirements). An NS is defined by its
unctionalities and requirements specification (e.g., Service Level Agree-
ent (SLA) and network policies) in addition to the corresponding VNF

orwarding Graph (VNF-FG) [21] . The VNF-FG is a graph formed by
ertices representing the network functions (at least with one VNF), and
dges representing the connections between pairs of VNF-FG elements
i.e., VNFs, middleboxes, and endpoints). An NS can be defined by using
igh-level network service descriptors to represent the VNF-FG as well
s other related information.

The IETF has also made efforts for defining NFV standards in the
ontext of the Internet by its working groups (e.g., NFV Research Group
NFVRG) and SFC). The IETF has also specified a Service Function Chain-
ng (SFC) architecture in order to standardize the composition of com-
lex services. An SFC can be defined as a set of service functions con-
ected in an ordered way and through which the traffic is steered [22] .
ssentially, an SFC is created by first defining each single service func-
ion and the corresponding endpoints, the links connecting those end-
oints and service functions, and finally deploying the SFC on the virtu-
lized infrastructure (i.e., by allocating the required resources and set-
ing up the environment as necessary).

The architecture proposed by the IETF allows the specification, cre-
tion, and maintenance of SFCs [22] . This architecture has management
omponents (i.e., the Classifier and the Service Function Forwarder
SFF)) and operational components (i.e., the SFC Proxy and the Service
unction). The Service Function (SF) is the element that processes net-
ork traffic and is the basic building block of SFCs, (i.e., it corresponds

o the network function which can be virtualized or not). The Service
unction Chaining Proxy (SFC-P) is employed to support legacy network
unctions by adding/removing the SFC encapsulation to/from the orig-
nal network traffic on behalf of a given SF. The classifier element is
laced at the start of a service chaining path (i.e., the ingress node) and
s responsible for traffic classification as well as encapsulating selected
rames/packets to indicate the SFC Path (i.e., the SF sequence of the
FC) through which the traffic must be forwarded. The SFF is employed
o check the SFC encapsulation and forwarding the network traffic to
he specific SFs.

Although the ETSI and the IETF specifications overlap at several
oints, several of the terms each defines/employs are not the same. For

V. Fulber-Garcia, E.P. Duarte Jr. and A. Huff et al. Computer Networks 178 (2020) 107337

Table 1

Comparison Between ETSI NS and IETF SFC.

IETF

Boundary node Service function Service function path Service function chain

ETSI End Point

Virtualized / Physical Network Function

Path

End-to-End Service

VNF Forwarding Graph

Network Service

e

b

S

d

a

d

t

(

t

t

w

b

t

d

c

f

v

s

s

c

b

t

t

a

w

s

s

s

S

t

n

i

m

t

s

s

d

c

b

t

t

c

(

c

“

p

d

i

s

d

b

c

i

t

d

t

s

w

t

s

p

h

b

3

w

m

b

a

d

i

f

a

t

a

o

t

d

c

3

w

e

n

t
xample, ETSI defines endpoints [20] which correspond to the IETF
oundary nodes [22] , both terms refer to the bounds of End-to-End
ervices (ETSI) or for SFCs (IETF) and define the ingress and egress
ata nodes. The ETSI Virtualized and Physical Network Functions (VNF
nd PNF) [21] process network traffic as IETF Service Functions (SF)
o [22] . The ETSI Paths [21] are similar to the IETF Service Func-
ion Paths [22] indicating the service paths of a VNF-FG (ETSI) or SFC
IETF). An SFC can be considered similar to the ETSI’s VNF-FG [23] , as
hey specify network elements, such as VNFs or PNFs and the connec-
ions between them. However, an SFC also considers boundary nodes
hich are only considered by ETSI End-to-End Services (consisting of
oth a VNF-FG and endpoints [20]). Furthermore, the SFC specifica-
ion defines aspects related to dependencies, sharing, and policies as
escribed in Quinn and Nadeau [13] . These aspects are used in the
ontext of an ETSI NS [21] , but an NS also includes operational in-
ormation and even scripts (e.g., lifecycle scripts and deployment fla-
ors) that are never mentioned in the IETF SFC specification. Table 1
ummarizes this comparison between these related ETSI and IETF
pecifications.

Despite the differences and similarities of IETF SFC and ETSI NS con-
epts, a common element, called service topology, is defined and used
y both organizations. For the ETSI, a service topology is closely related
o the VNF-FG and expresses the relationships between network func-
ions using virtual connections [21] . The IETF describes service topology
s the element that defines the connections between service functions
hich are instantiated “on the top ” of a physical network [13] . Con-

equently, the IETF service topology represents one or more paths that
teer the network traffic through the functions of an SFC [24] . Thus, the
ervice topology is implemented by the routing decisions taken by the
FFs during the execution of a service function chain [22] . Fundamen-
ally, a service topology represents the network functions, virtual con-
ections, data ingress and egress nodes, and other information which
s typically used in the service deployment (e.g., partially ordered seg-
ents, connection topologies, and dependencies among network func-

ions or infrastructures).
Based on the specifications presented by ETSI and IETF, in the next

ection we define a service topology as a directed connected graph. A
ervice topology can consist of one or more “Service Function Paths ” (as
efined by the ETSI) or to “Paths ” (defined by IETF) originating from a
ommon ingress node. Note that a single virtualized network service can
e provided by different service topologies [25] , the decision of which
opology will be used is usually taken during the composition phase of
he deployment process.

A few definitions are given now. A service topology “A ” is said to be
ontained in topology “B ” if and only if “B ” contains every path of “A ”
i.e., the same network functions, ingress and egress nodes, and internal
onnections). Even if service topology “A ” is not contained in topology
B ”, it can share common components with “B ”.
t
A complete service can consist of more than one topology. This hap-
ens, for example, with symmetric services which process traffic in both
irections, called direct and inverse [13,22] . In each way the egress and
ngress nodes are switched – thus the inverse traffic is processed by the
ame network functions used for the direct traffic but in the opposite
irection. Note that the direct and inverse directions can or use not all
ut a subset of each other’s functions. Furthermore, topologies can have
ycles as described in Halpern and Pignataro [22] in which some NF
nstance appears more than once. This work as well as all NFV enablers
hat we are aware of do not allow cycles.

In summary, both the ETSI and the IETF are working on NFV stan-
ards. Both have defined concepts, architectures, and elements required
o promote the deployment of network services. However, there are
everal differences in the two approaches. While the ETSI is concerned
ith a broad discussion about services and their specifications (i.e., in

erms of service topology, functionalities, performance and policy de-
criptions), the IETF focuses on architectural aspects to support the de-
loyment and maintenance of those services. Finally, it is important to
ighlight that both views can be seen as complementary and both should
e taken into account for the adoption of NFV-based solutions.

. Service topology: a taxonomy

Multiple aspects must be taken into consideration when dealing
ith virtualized network service orchestration and lifecycle manage-
ent (e.g., placement, migration, and scaling). Wrong decisions taken

y network operators may ultimately lead to performance degradation
nd violation of policies, affecting not only the service itself but the un-
erlying infrastructure as a whole. To properly deal with this challenge,
t is fundamental to understand service topology concepts and features,
or which we define a taxonomy in this section. We argue that NFV en-
blers may rely on the proposed taxonomy to define how to deal with
he multiple scenarios that may arise in the NFV management processes.

Next, we first formally define a service topology as a directed graph
nd then present the proposed taxonomy, depicted in Fig. 1 . The taxon-
my is based on six categories: Structure, Length, Size, Sharing, Func-
ion Dependency, and Heterogeneity. For each category, we present a
iscussion based on recent efforts available in the literature, including
oncepts and application cases.

.1. Formal definition

A network service topology is represented by graph 𝐺 = (𝑉 , 𝐸) ,
here V is a set of network functions, the data ingress node, plus data

gress nodes. E corresponds to the set of virtual connections between
etwork functions. A service topology has a single data ingress node
hat is connected to a network function that processes all the incoming
raffic. The ingress node is depicted as a triangle plus an virtual connec-

V. Fulber-Garcia, E.P. Duarte Jr. and A. Huff et al. Computer Networks 178 (2020) 107337

Fig. 1. Service topology taxonomy.

Fig. 2. Service topology elements.

t

o

t

a

t

F

3

g

v

t

i

i

e

s

u

a

r

t

o

l

c

t

a

e

d

(

l

c

t

d

n

c

C

fi

a

d

r

b

w

t

t

d

t

L

t

t

f

s

a

o
𝐸

o

a

t

s

t

c

a

b

p

c

e

b

B

A

p

o

i

a

a

f
ion to the first function of the chain. A service topology may have one
r more egress nodes, which correspond to the entities that receive the
raffic from the last function of the chain. An egress node is depicted
s an inverted triangle receiving data from a virtual connection leaving
he last function of the chain. Service topology elements are depicted in
ig. 2 .

.2. Structure

Service topologies can vary from simple linear chains to arbitrary
raphs. The structure is directly related to the complexity of managing
irtualized network services. For example, monitoring and estimating
he performance of a linear chain of functions can be easily done us-
ng traditional methods (e.g., evaluating the incoming traffic at a single
ngress node and the outgoing traffic at a single egress node). How-
ver, network services provided by such chains are more likely to be
usceptible to system failures, either because of misconfigurations or
nexpected high network loads in terms of traffic. On the other hand,
lthough services topologies with more complex structures can be more
esilient and scalable, other problems may arise, such those related to
he optimal placement of network functions with restrictions in terms
f reducing resource consumption.

In [26] , the authors assume two types of service topology structures:
inear and bifurcated. The former refers to a set of network functions
onnected one by one forming a single chain, while the latter describes
opologies that split the network traffic into two different paths but share
 single ingress node. These structures can also have up to two differ-
nt destinations (egress nodes); this is convenient for specifying that
ifferent portions of the network traffic should be processed differently
e.g., in a load balancing scenario). The authors of [27] also adopt the
inear and bifurcated classification and include the possibility of bifur-
ated chains having a common destination (single egress node). Linear
opologies are also discussed in other works [28] , but sometimes with
ifferent names (e.g., cascading chains in Ding et al. [29]).
However, bifurcated topologies may not be enough to fulfill the
eeds of all possible scenarios. For example, when a single service re-
eives traffic from different application protocols (e.g., Dynamic Host
onfiguration Protocol (DHCP), File Transfer Protocol (FTP), Post Of-
ce Protocol (POP), Hypertext Transfer Protocol (HTTP)), it may use
 packet classifier to split the network traffic through more than two
istinct paths. In this context, Ye et al. [28] presents the concept of ir-
egular mesh chains (which can be seen as structurally the same as the
ranching chains defined in Ding et al. [29]). In this case, a single net-
ork function that composes the service topology can forward packets

hrough multiple paths depending on traffic characteristics. This kind of
opology structure provides flexibility for network operators to design
iverse network services.

In this work we propose to classify service topology structure in two
ypes: linear and branched. Linear topologies, as discussed above and in
uizelli et al. [26] , Ye et al. [28] , and Ding et al. [29] , are the simplest
ype of structure and present a linear sequence of network functions. In
his way ∀v ∈ V there is either exactly one arc (v, t) from function v to
unction t in E , plus the ingress and a single egress node. The analysis of
uch service topology is straightforward since all the network functions
re processing all the traffic in the same order.

Branched topologies, in turn, not only have functions with a single
utgoing arc as in linear topologies, but also ∃𝑣 ∈ 𝑉 |(𝑣, 𝑡 1) , … , (𝑣, 𝑡 𝑖) ∈
, 𝑖 ≥ 2 . Branched topologies correspond to the irregular mesh chains
f [28] and branching chains of [29] . Basically, branched topologies
re not only defined by allowing multiple paths between network func-
ions, but also by allowing multiple boundary nodes connected to the
ame function. In some cases, boundary nodes are chosen according to
he characteristics of the infrastructure (e.g., processing capacity, power
onsumption, and security concerns). This is the case when load bal-
ncers are employed to split the network traffic to distinct nodes that
asically provide the same service but present different performance
rofiles according to the metrics being considered. We note that bifur-
ated chains [26] can be considered as a subset of branched chains.

Some network services can be deployed with linear topologies, for
xample, in home networks the Customer Premise Equipment (CPE) can
e replaced by three linearly connected VNFs [3] : a router, a Set Top
ox (STB), and the Residential Gateway (RG) (e.g., firewall, Network
ddress Translation (NAT) service, DHCP server). However, more so-
histicated services (involving decisions based on the incoming traffic
r current state of the environment) may be required in several scenar-
os, and in this case, branched topologies must be employed. Security
pplications are good examples: the network traffic must be processed
t multiple levels and involving possibly elaborate decisions. In [30] ,
or example, the authors present an NFV-based multi-layer security ar-

V. Fulber-Garcia, E.P. Duarte Jr. and A. Huff et al. Computer Networks 178 (2020) 107337

c

m

p

3

s

n

a

T

o

i

b

n

t

t

b

s

T

a

v

a

(

b

o

c

l

v

g

d

a

o

t

a

T

I
w

l

a

s

o

l

i

s

t

b

3

e

t

d

t

s

a

a

n

o

𝐺

Fig. 3. Sharing NFs by multiple service topologies.

f

a

h

f

m

a

a

fi

b

n

e

u

t

s

t
𝑉

s

F

#

w

g

t

i

b

i

a

a

n

a

g

s

n

t

(

i

C

o

p

a

t

t

a

i
hitecture which can split the incoming traffic according to its type (i.e.,
alicious or not), to different layers according to the kind of threat it
oses (e.g., network layer, application layer).

.3. Length and size

A path of a service topology is a sequence of vertices 𝑣 1 , 𝑣 2 , … , 𝑣 𝑛
uch that each v i ∈ V and (𝑣 𝑖 , 𝑣 𝑖 +1) ∈ 𝐸, furthermore there is an ingress
ode connected to v 1 and v n is connected to a egress node. The length of
 path n corresponds to the number of network functions along the path.
he service topology length corresponds to the length of the largest path
f the topology [31] .

The service topology size, in turn, can be measured in two ways:
t can either correspond to the total number of network functions and
oundary nodes in the topology (i.e., | V |) or the total number of con-
ections between functions (i.e., | E |). The length and size of a service
opology are of course interrelated.

The number of network functions composing a service topology and
heir organization have an influence on the network performance and
ehavior as noted by Riera et al. [32] . In that work, topologies are clas-
ified into simple (which consist of three or less functions) and complex.
he authors evaluate topologies in different network environments and
pplications (i.e., edge computing, data centers, and heterogeneous en-
ironments). The authors conclude that not only the deployment but
lso the number of network functions that compose a network service
i.e., the service topology size) must be taken into account to guarantee
ounds on network service execution time.

In [33] the authors evaluated the impact of service topology length
n network performance, and show that latency does not always in-
rease linearly as the length increases. The authors also identified that
arge topologies require more sophisticated processes for managing, pro-
isioning, and placing the network functions - especially when hetero-
eneous environments are employed. Another work [34] discusses NF
ependency aiming at the parallel execution of the network functions of
 given service. The authors concluded that reducing the service topol-
gy length through parallelization also reduces the overall processing
ime.

There is no consensus about specific criteria to determine whether
 service topology is wide or short (length) and large or small (size).
hese often depend on the environment, service, and operator needs.
n order to formally define this concept there must be some constant Θ
hich is a threshold above which the size of the topology is considered

arge, otherwise it is small. Analogously, a constant Ψ must be employed
s a threshold to the length in order to classify a topology as wide or
hort. Note that it is not possible to predict network performance based
nly on length/size. For example, both short and small topologies may
ead to poor performance (e.g., high latency, low throughput) due for
nstance to limited computational resources or any other reason. At the
ame time, wide and large service topologies executing lightweight func-
ions deployed on the same physical machine may reach results close to
arebone middleboxes [35] .

.4. Sharing

Resource utilization is a major concern for the development of NFV
nablers. There are some techniques (e.g., scaling down and scaling in)
hat aim to avoid resource idleness, and adapt services to increase or
ecrease their load as required. Another approach that can be used is
o allow the same network function to be used by two distinct network
ervices which thus share one or more function instances [36] . Thus
 shared function receives traffic addressed to two or more services,
nd after processing the traffic accordingly forwards the results to the
ext function or endpoint according to the corresponding service topol-
gy. In this way two services represented by graphs 𝐺 1 = (𝑉 1 , 𝐸 1) and
 = (𝑉 , 𝐸) are such that V ∩V ≠ ∅; ∀v ∈ V ∩V we say v is a shared
2 2 2 1 2 i 1 2 i
unction. As a side effect, network function sharing may impact the man-
gement process, as there are no standardized techniques to determine
ow much computing resources are being used by the shared networks
unctions to support each virtualized network service.

The IETF SFC architecture allows network functions sharing among
ultiple services [22] . In this architecture, the functions are completely

gnostic to sharing, and all the tasks required to handle the traffic flow
re provided by the SFC Controller, the SFC Forwarder, and the Classi-
er. The use of Software Defined Networking (SDN) also makes it feasi-
le to support network function sharing [37,38] .

A service topology can be classified into two classes according to
etwork function sharing: standalone or shared. Standalone topologies
mploy network functions dedicated to handling data addressed to a
nique service ID, in other words, this corresponds to a service topology
hat has no intersections with any other service topology and does not
hare any particular resource with other services. Thus if the service
opology represented by graph 𝐺 1 = (𝑉 1 , 𝐸 1) is standalone, then ∀𝑣 ∈
 1 , ∄𝐺 2 = (𝑉 2 , 𝐸 2) |𝑣 ∈ 𝑉 2 . Fig. 3 presents a scenario with three different
ervice topologies. Each network function is depicted with a unique ID.
ig. 3 A exemplifies a standalone service topology with dedicated NFs
1, #2 and #3.

Shared service topologies, on the other hand, have at least one net-
ork function present in two or more topologies. Shared service topolo-
ies can be divided into two sub-classes: partially and the totally shared
opologies. Partially shared service topologies contain at least one ded-
cated network function, but not all. Consider two services represented
y topologies 𝐺 1 = (𝑉 1 , 𝐸 1) and 𝐺 2 = (𝑉 2 , 𝐸 2) ; we say that topology G 1

s partially shared if V 1 ∩V 2 ≠ ∅ but 𝑉 1 ⊄ 𝑉 2 . Fig. 3 B is an example of
 partially shared topology, where NF #7 is dedicated and NFs #4, #5
nd #6 are shared.

Totally shared service topologies, as depicted in Fig. 3 C, contain only
etwork functions that are shared by two or more services, so all changes
ffect multiple topologies. Consider two services represented by topolo-
ies 𝐺 1 = (𝑉 1 , 𝐸 1) and 𝐺 2 = (𝑉 2 , 𝐸 2) ; we say that topology G 1 is totally
hared if V 1 ⊆V 2 . A special case of a totally shared service is the so-called
ested service topology (Fig. 3 D) and occurs when all the network func-
ions and connections of an service topology are within another topology
called composite topology). Thus in this case we say that G 1 is nested
n G 2 if V 1 ⊆V 2 and also E 1 ⊆E 2 . Those service topologies are analog to
omposite Network Services and Nested Network Services [21] , where
ne service topology is nested within another topology (Fig. 3 B). It is
ossible to merge the composite and nested service topologies just by
dding boundary nodes in the composite service path, thus they can be
reated as a unique element.

The decision for sharing network functions can be taken according
o the service characteristics and goals. Standalone topologies may be
dequate, for example, for services where changes must be performed
ndividually for each client [39] . On the other hand, shared topologies

V. Fulber-Garcia, E.P. Duarte Jr. and A. Huff et al. Computer Networks 178 (2020) 107337

Fig. 4. Service topology dependency.

c

s

3

t

s

p

m

h

t

o

A

m

t

a

s

p

t

p

F

d

d

[

m

c

s

a
4

s

c

p

p

h

f

𝑣

s

d

m

a

i

d

b

t

w

d

a

d

c

c

c

t

m

t

3

b

a

w

t

i

i

m

h

p

a

i

h

f

w

a

d

f

w

T

o

t

o

c

M

v

o

t

c

b

h

t

i

3

t

an be used when the service is provided “as-a-Service ”, with multiple
ervice levels provided according to the client agreements [40] .

.5. Function dependency

Network services are highly dependent on the environment in which
he network functions are virtualized and executed [13] . Disparate re-
trictions may appear when chaining single network functions into so-
histicated services, thus impacting the performance, limiting place-
ent options, and reducing orchestration flexibility. Those aspects,
owever, need to be properly tackled by the operators, leading to addi-
ional overhead in fulfilling network policies and managing the network.

In this work, we consider that dependency leads to a classification
f service topologies in two main groups: independent and dependent.
n independent service topology does not have any coupling require-
ents/restrictions and is the most flexible as it allows automated op-

imization algorithms to be executed without any limitations, as well
s migrations to occur at any moment. On the other hand, dependent
ervice topologies present restrictions that can interfere on the optimal
lacement of its network functions. Dependency can be either of infras-
ructure or network functions, as discussed next.

The network functions of a service topology with infrastructure de-
endency are coupled to an administrative domain, such as NF #9 and
10 in Fig. 4 , or to physical machines, as exemplified by NF #1 in
ig. 4 . In such topologies, the network functions must execute in pre-
efined locations due to some policy adopted or specific restriction (e.g.,
ata-residency requirements that confine data within a domains borders
41]). Placing network functions at specific locations may however re-
ove the freedom of the network administrator from applying arbitrary

riteria in activities such as traffic engineering; function placement re-
trictions can lead to performance problems [13] .

Service topologies with NF dependency, on the other hand, can have
n impact on the organization and segmentation of structures [42–
5] and can be divided into two types: (i) service topologies that con-
ist of a group of strongly coupled network functions that must exe-
ute together. Thus for service topology 𝐺 = (𝑉 , 𝐸) if function v j is cou-
led to v i , then ∃(v i , v j) ∈ E . In Fig. 4 NFs #2, #3 and #4 are cou-
led; and (ii) service topologies consisting of network functions that
ave to obey a specific order because of their functionalities. Thus
unctions v i and v j present order dependency if in every directed path
 1 , … , 𝑣 𝑖 , … , 𝑣 𝑗 , … , 𝑣 𝑛 ∈ 𝐺 in which v i and v j appear there is always a
ubpath from v i to v j . In Fig. 4 , NFs #6 and #8 present order depen-
ency.

The dependency in a service topology can both be explicit, deter-
ined by the service creator, or be implicit, defined by the intrinsic char-

cteristics of network functions being used, the environment on which it
s executed, or the network service being provided. For example, order
ependency is usually implicit (e.g., a packet compressor must always
e placed before a packet decompressor), while domain dependency is
ypically explicitly defined.

Dependencies can also intersect as shown in Fig. 4 in which NF #3
hich is subject to two NF dependencies. If the intersection of depen-
encies does not create a conflict, the service can be executed respecting
ll dependencies. However, if it is not possible to satisfy all the depen-
encies in the intersection, extra care must be taken to avoid and solve
onflicts. A priority based scheme can be adopted to guarantee the exe-
ution of services topologies with multiple dependencies to avoid/solve
onflicts. The ability to specify service topology dependencies is impor-
ant. Note that this includes, for example, privacy restrictions, which
ay prevent data from being stored/processed/transferred outside cer-

ain regions.

.6. Heterogeneity

While the NFV paradigm is being exhaustively investigated, middle-
oxes are still essential elements in current networks. As late as 2015,
bout 50% of all network elements were implemented in dedicated hard-
are [46] , and it is not feasible to replace these middleboxes in the short

erm, especially due to financial and operational reasons. In this context,
t is adequate to deploy services composed by both physical and virtual-
zed network functions. The ETSI has already explored the existence of
ixed scenarios where NFs work together with middleboxes through a
ybrid vCPE [14] . In this scenario, it is important to be able to use both
aradigms concurrently.

In this work, we define two types of service topologies: homogeneous
nd heterogeneous. Homogeneous service topologies use only virtual-
zed network functions. Heterogeneous service topologies, on the other
and, allow the use of legacy and dedicated hardware-based network
unctions – called Physical Network Functions (PNF) [21] – together
ith VNFs to compose a complete service. In the formal model in which
 service topology is represented by graph 𝐺 = (𝑉 , 𝐸) it is possible to
efine a label which can be either physical or virtual to each v ∈ V . If
orallv ∈ V the label is virtual then the topology is homogeous, other-
ise if ∃v ∈ V with label physical , then the topology is heterogeneous.
he support for such integration is important to enable the practical use
f the NFV.

Many challenges are still open related to heterogeneous services
opologies, including function scaling and migration. Ongoing efforts
n heterogeneous services aim at maximizing the amount of traffic pro-
essed by reducing the cost of routing as well as VNF overhead [47] .
oreover, management systems and placement methods are being de-

eloped to make possible the creation of network services that are aware
f heterogeneity - in particular, so that they can deal with PNF limita-
ions [48,49] . Security Service Chains [50] is a technology that explicitly
onsiders the use of heterogeneous service topologies employing PNFs
ecause of the higher level of maturity of this technology leading to
igher stability and performance levels; they demonstrate the ability
o process higher volumes of traffic for applications such as for attack
dentification and mitigation [51] .

.7. Synthesis

In Table 2 we show for each service topology category the references
hat present related work.

V. Fulber-Garcia, E.P. Duarte Jr. and A. Huff et al. Computer Networks 178 (2020) 107337

Table 2

Taxonomy categories main references.

Category

Structure Length and size Sharing Function dependency Heterogeneity

Ref. [26–29] [31–34] [22,36–38] [13,42–44] [14,21,46–49,51]

4

m

a

i

o

t

f

t

i

i

a

t

c

t

[

fi

f

t

c

t

t

S

t

t

t

p

b

s

(

s

(

V

d

s

c

u

o

i

u

b

e

t

s

a

t

e

c

g

(

t

t

v

T

t

l

F

T

F

S

P

v

a

m

'

h

a

t

A

m

d

r

l

a

F

I

S

i

t

t

n

T

o

n

c

s

i

n

b

t

b

i

o

b

s

b

(

w

(

o

s

t

d

6
. CUstom service TOpology model

In this section, we present a new service topology specification
odel. This model, called CUstom Service TOpology Model (CUSTOM),

ims at covering all the categories defined in the taxonomy presented
n Section 3 , thus providing for service developers a comprehensive set
f specification capabilities to design, create and validate customized
opologies.

CUSTOM is a formal Context-Free Grammar (CFG) model. CUSTOM
oresees a variety of structures, from straightforward linear topologies to
opologies with terminal or non-terminal branches. For terminal branch-
ngs, every branch segment ends in an egress node. On the other hand,
n non-terminal branchings there is a common crossing point between
ll the branch segments, and they do not have egress nodes. The posi-
ion of specific network functions (i.e., VNFs and PNFs) along a topology
an be predefined. Furthermore, it is also possible to specify segments
hat consist of a sequence of functions that appear in a partial order
25] . In partial ordering segments, specific order restrictions can be de-
ned through network function dependencies (e.g., packet compressing

unction must appear before a packet decompressing function). Infras-
ructure dependencies can also be specified in network functions. VNFs
ould have a single infrastructure dependency of any type (administra-
ive domain or physical machine), while PNFs must have an adminis-
rative domain dependency. Finally, functions can be shareable or not.
hareable functions can be adopted by different service topologies at
he same time.

It is important to notice that CUSTOM is focused on a very particular
ype of specification, i.e. it is used to specify service topologies. Thus,
he CUSTOM model does not provide any information about, for exam-
le, computational resource requirements, minimal bandwidth required
etween network functions, or any other metric that is considered for
ervice deployment and management. Actually, this kind of information
i.e., service topology) is often present in high-level documents such as
ervice descriptors (e.g., TOSCA NFV YAML [52]) and service requests
 e.g , the ones used in Mehraghdam et al. [16] , Drxler and Karl [18] ,
izarreta et al. [53]). Note that in most cases these high-level documents
o include a service topology. For example, in TOSCA NFV YAML, the
ervice topology is specified through multiple objects (key:value) that
reate connections between previously defined network functions. This
ltimately leads to a very intricate model that, to be specified, requires
f network operators high expertise on the descriptor structure, includ-
ng a myriad of details. Thus we claim that the CUSTOM model can be
sed as an abstraction of these indirect models, being directly employed
y deployment request documents (e.g., we refer the reader to the refer-
nce in Mehraghdam et al. [16] for a related work that exemplifies how
his is done) or acting as an auxiliary model for descriptor documents,
uch as TOSCA NFV YAML.

The adoption of a CFG is motivated owing to the formalization level
chieved by using grammar production rules. These rules strongly define
he set of service topology features supported by the model. Also, many
xisting libraries developed for different programming languages, are
apable to execute the lexical and syntactic validation of context-free
rammars. (e.g., Lex [54] , Yacc [55] , and Natural Language Toolkit
NLTK) [56]). At last, the grammar production rules can be defined
o improve readability. So, service developers can easily understand
hese rules, thus reducing time necessary for the development of ser-
ice topologies.
The CUSTOM CFG is defined by the quadruple CUS-
OM = (𝜈, 𝜏, 𝜌, 𝜍). The identifier 𝜈 represents a set of non-
erminal symbols that correspond the production rules as fol-
ows: START , MAIN , NTMAIN , OPERATIONAL , PORDER ,
DEPENDENCY , FORDERING , FCOUPLING , TBRANCHING ,
BRANCH , NTBRANCHING , NTBRANCH , INTBRA- NCHING ,
UNCTION , NFUNCTION , ADDEPENDENCY , PMDEPENDENCY ,
HARABLEVNF , SHARABLEPNF , VNF , PNF , ADMDOMAIN ,
HYMACHINE , and EN .

The identifier 𝜏, in turn, indicates the terminal symbols of the ser-
ice topology model. These symbols are divided in two subsets: static
nd variable. The static subset is composed by 13 symbols and contains
andatory elements ('IN'), delimiters ('[', ']', '(', ')', '< ',
> ', '{', '}', '/', '|'), and modifiers ('∗ ', '!'). On the other
and, the variable subset includes customized service topology symbols
nd can vary in type and number according to each different specifica-
ion. In particular, variable symbols represent the available VNFs, PNFs,
dministrative Domains, Physical Machines, and Egress Nodes. The ter-
inal symbols and their main assignments are summarized in Table 3 .

The terminal (𝜈) and non-terminal (𝜏) symbols are employed in the
efinition of grammar production rules (𝜌). The CUSTOM production
ules 𝜌 consists of 24 rules as shown in Fig. 5 . It is important to high-
ight that motivated on providing compatibility with any available lexer
nd parser libraries, no empty symbol was used in the production rules.
inally, 𝜍 is the production rule that triggers the grammar evaluation.
n the CUSTOM CFG, 𝜍 is the rule indicated by the non-terminal symbol
TART .

Rule 1 (START) indicates the beginning of a service topology. It
ncludes a mandatory ingress node (IN) and specifies the transition to
he second rule. START is the only rule that sets up an ingress node, and
his rule is reached just one time per specification. Thus a single ingress
ode can be defined in each service topology in a CUSTOM specification.
his ensures that, at least, one network function (i.e., the very first VNF
r PNF allocated after the ingress node) will receive all the incoming
etwork traffic. Thus, every specification made with this grammar is
ompliant with the service topology requirements outlined in Section 2 .

Rule 2 (MAIN) defines the service topology main structures. These
tructures consist of terminal branchings (Rule 9), non-terminal branch-
ngs (Rule 11), and operational segments (Rule 4) followed by an egress
ode (Rule 24) or another operational segment. Other structures can
e defined as shown in Rule 3 (NTBMAIN) in the context of a non-
erminal branching. The NTBMAIN rule ensures that no egress node will
e set up until the end of the previously started non-terminal branch-
ng. In order to do so, this rule removes every transition which, directly
r indirectly, leads to Rule 24 (EN). Rule 13 switches the last main
lock to a non-terminal main block, allowing the specification of recur-
ive non-terminal branchings. Moreover, the specification of different
ranches within a branching structure is in Rules 10 (TBRANCH) and 12
 NTBRANCH), for terminal and non-terminal branching, respectively.

Operational segments presented in Rule 4 correspond to a function
ith fixed position (Rule 14) or a partially ordered function segment

Rule 5). In the first case, functions can be defined as virtual (Rule 20)
r physical (Rule 21) and both types can be marked as shareable or non
hareable (Rule 18 for VNFs and Rule 19 for PNFs). In the case of par-
ially ordered segments, they consist of a set of functions with flexible or-
ering. For these segments, NF dependencies can be specified using Rule
 (EDEPENDENCY) to guarantee an internal ordering (Rule 7) or cou-

V. Fulber-Garcia, E.P. Duarte Jr. and A. Huff et al. Computer Networks 178 (2020) 107337

Fig. 5. CUSTOM production rules.

p

o

i

s

d

p

a

i

P

t

v

s

s

p

f

A

t

l

b

(

t

r

t

b

s

s
ling (Rule 8). Furthermore, VNFs can have infrastructure dependency
f any type (machine or domain), while PNFs have a mandatory admin-
strative domain dependency. Administrative domain dependencies are
pecified according to Rule 16 (ADDEPENDENCY) using the available
omains as indicated in Rule 22 (ADMDOMAIN). Physical machine de-
endencies, in turn, are supported by Rule 17 (PMDEPENDENCY) and
ssign a VNF to specific hardware (Rule 23) placed in a previously spec-
fied administrative domain (Rule 22).

A validator for the CUSTOM grammar was implemented using the
ython 3 programming language and the NLTK library. 1 This valida-
or receives a service topology specification string and follows the pre-
iously presented production rules for the execution of its lexical and
yntactical analysis. The algorithm also performs the semantic analy-
is of the specifications, avoiding inconsistencies such as conflicting de-
1 Source code is available at https://github.com/ViniGarcia/NFV-FLERAS .

c

v

a

r

endencies (e.g., inverse dependencies applied over the same pair of
unctions) or auto-dependencies (i.e., a function depending on itself).
lthough the validator was implemented to evaluate string specifica-

ions, it is possible to represent the grammar production rules in markup
anguages and structured data models by using, for example, eXtensi-
le Stylesheet Language (XSL) [57] or Yet Another Markup Language
YAML) [58] .

A service topology specified with the CUSTOM grammar corresponds
o a directed graph as defined in previous sections. The vertices are rep-
esented by network functions, while edges are implicitly indicated by
he specified function order. The resulting graph has its scope delimited
y edge nodes (ingress and egress), and the network traffic traverses the
ervice topology from the ingress node to an egress node. Finally, the
ervice topology model can be used in any stage of the deployment pro-
ess (i.e., composition, embedding, and scheduling). To this end, a ser-
ice topology can be specified to be used by a deployment system with
 service descriptor (Service Function Chain Descriptor (SFCD) [59]) or
equest (Service Function Chain Request (SFCR) [25]).

https://github.com/ViniGarcia/NFV-FLERAS

V. Fulber-Garcia, E.P. Duarte Jr. and A. Huff et al. Computer Networks 178 (2020) 107337

Table 3

CUSTOM terminal symbols.

Terminal symbols Description

‘IN’ Ingress node - a data incoming point to the

service topology. Provides

frames/packets/flows to be processed by the

service.

‘[‘,’]’ Partial ordering segment delimiters. These

elements embrace a partially ordered set of

VNFs and PNFs.

‘(‘,’)’ NF dependency delimiters. Used to define an

order or coupling dependency between two

VNFs/PNFs.

‘ < ’, ‘ > ’ Infrastructure dependency delimiters.

Elements intended to describe an

administrative domain or physical machine

dependency.

‘{‘,’}’ Service topology branching delimiters. Mark

the beginning and the end of a

terminal/non-terminal topology branching.

‘/’ Service topology branch separator. Elements

that are used to separate branches.

‘|’ Physical machine dependency separator. This

symbol is used to separate the physical

machine ID and the administrative domain ID

in a dependency specification.

‘ ∗ ’ NF dependency modifier. This element

indicates that the dependency corresponds to

a coupling dependency between two

VNFs/PNFs. The absence of this symbol

implies on an ordering dependency.

‘!’ NF sharing modifier. This symbol may occur

before VNFs/PNFs. Indicates that the network

function is shareable by different service

topologies.

VNFs List of virtualized network function

identifiers. The non-terminal symbol VNF
corresponds to this list.

PNFs Physical network functions identifiers.

Supported by the non-terminal symbol PNF .
Administrative Domains Administrative domain identifiers used in the

specifications of infrastructure dependencies.

The non-terminal symbol ADMDOMAIN is used

to keep these identifiers.

Physical Machines List of physical machine identifiers. Employed

to specify physical machine dependency and

kept in the non-terminal symbol

PHYMACHINE .
Egress Nodes Egress node identifiers - service topology data

outgoing points. The non-terminal symbol EN
keeps the egress node list.

5

i

m

c

–

5

t

p

i

s

c

I

p

c

w

Fig. 6. Multimedia cache service topology.

Fig. 7. DDoS mitigation service.

t

t

n

“

c

s

s

a

n

5

n

b

t

a

p

v

w

fl

S

t

i

v

t

N

i

n

e

t

b

i

b

p

. Case studies

In this section, we demonstrate and discuss the specification capabil-
ties of CUSTOM through a series of case studies. For the sake of clarity
ost case studies are dedicated to a single category, however CUSTOM

an easily deal with more than one category – even with all categories
in a single topology, as we show in the last case study.

.1. Linear service topology

Network functions in a linear service topology have a single network
raffic incoming point (network function or ingress node) and outgoing
oint (network function or egress node). This simplest type of structure
s widely adopted to build a myriad of virtualized network services,
uch as multimedia caches [29] , video live transcoding [60] , mobile
ore networking [31] , and Virtual Private Network (VPN) services [61] .
n Fig. 6 A, the service topology that implements the multimedia cache
resented in Ding et al. [29] is depicted. The network functions that
ompose this service topology are Cache (C), Firewall (FW), and Net-
ork Address Translator (NAT).
Fig. 6 B, in turn, shows the CUSTOM specification that corresponds to
he graphical presentation of the service topology depicted in Fig. 6 A. In
his case, we consider that rule VNF of the CUSTOM grammar includes
etwork functions “C ”, “FW ”, and “NAT ”. Furthermore, the egress node
EN1 ” must be set up with rule EN . Finally, the spaces between each
omponent represent a virtual link. Note that linear service topologies,
uch as the one presented in our example, are identified in a CUSTOM
pecification by the absence of branching elements (i.e., { and }). Thus,
 single end-to-end path is formed from the ingress node to the egress
ode in a linear structure.

.2. Service topologies with terminal branches

Service topologies with terminal branching present multiple egress
odes in their structure – at least two, or more if nested terminal
ranches are defined. This type of structure is commonly used when
raffic classifiers operate on a service. Thus, the network traffic is split
ccording to some criteria and forwarded to the proper branch to be
rocessed. Terminal branches are usually employed in NFV security ser-
ices, such as the architectures presented in Alharbi et al. [30] , 62]
here a screener function analyzes the network traffic and classifies the
ows according to the threat they pose in terms of Distributed Denial of
ervice (DDoS). Also, the screener classifies malicious flows according to
he network layer they target and forwards each type to the correspond-
ng mitigation branch. We illustrate the described DDoS mitigation ser-
ice in Fig. 7 A. The service is composed by the following network func-
ions: Screener (S), Net-layer Security (NS), App-layer Security (AS), and
etwork Address Translator (NAT).

In Fig. 7 B the CUSTOM specification of the DDoS mitigation service
s presented. In this particular case, we set the VNF rule containing the
etwork functions “S ”, “NS ”, “AS ”, and “NAT ”, while the EN rule has the
gress nodes “EN1 ”, “EN2 ”, and “EN3 ”. The branching resulting from
he traffic screener classification is represented by the service segments
etween symbols { and } , and the specific branch segments are lim-
ted by the symbol / . We classify this branching as terminal since every
ranch segment ends in an egress node. Therefore, multiple end-to-end
aths with different purposes can be created in the service topology.

V. Fulber-Garcia, E.P. Duarte Jr. and A. Huff et al. Computer Networks 178 (2020) 107337

Fig. 8. Traffic analyzer service.

5

t

a

s

p

t

e

s

s

t

t

i

i

a

F

a

i

b

e

o

e

p

5

g

o

c

l

s

c

n

d

m

w

d

F

P

t

n

f

m

c

f

t

b

a

p

t

p

o

t

i

a

[

m

s

t

m

(

5

t

o

w

c

p

n

i

a

d

o

c

a

5

F

m

n

a

t

n

n

t

r

t

D

n

t

fi

f

m

m

r

p

“

A

d

t

a

t

a

o

.3. Service topologies with non-terminal branches

Non-terminal branching enables service topologies to define an in-
ersection point (i.e., a VNF or a PNF) for every branch segment. In
ddition to being required by many types of services, such as security
ervices and traffic classifiers [63] , this structure is also employed to im-
rove the performance of a network service through its parallel on mul-
iple network functions [64–66] . In the case study presented in Palkar
t al. [63] , an Intrusion Detection System (IDS) is used to analyze and
plit the network traffic into three different branch segments: the first
egment contains a Cache (C) function that processes safe HTTP traffic;
he second segment uses a simple Forwarder (F) to bypass any other
ype of safe traffic; finally, the third segment executes a Traffic Normal-
zer (TN) function for the unsafe traffic. The outputs of these branches
ntersect on a common VNF, the Network Monitor (NM), that processes
ll the traffic. Fig. 8 A depicts this service.

The CUSTOM specification of the traffic analyzer service is shown in
ig. 8 B. The VNF contains functions “IDS ”, “C ”, “F ”, “TN ”, and “NM ”,
nd rule EN consists of a single egress node “EN1 ”. Non-terminal branch-
ng, like terminal branching, is specified with symbols { and } with
ranch segments separated with an slash / . Observe that there is no
gress node at any point of the branch segments and the service topol-
gy does not end on the branch outputs. In this service, multiple end-to-
nd paths are necessary, however the they all start and end in the same
oints. This is a typical scenario that requires non-terminal branching.

.4. Network function dependencies

A single network service can be provided by different service topolo-
ies. In the CUSTOM model, this flexibility is achieved by using partially
rdered segments in the service specification. Although the functions
an have flexible ordering, some function permutations may not be al-
owed within a partially ordered segment. These particular cases are
pecified with constraints that are called network function dependen-
ies that define mandatory ordering and coupling relationships among
etwork functions. These dependencies are processed during the service
eployment, they are processed in the composition phase. Currently,
any service composing solutions, such as [44,67–69] , can process net-
ork function dependencies during their execution.

We present a case study for the specification of network function
ependencies in an HTTP security service. This case study, shown in
ig. 9 A, involves five different network functions: Firewall (FW), Deep
acket Inspector (DPI), Markup Filter (MF), Intrusion Prevention Sys-
em (IPS), and Load Balancer (LB). The FW is responsible to eliminate
on-HTTP traffic. The packets of HTTP flows are inspected by the DPI
unction and receive a mark in case they contain forbidden content;
arked packets are then discarded by the MF. The IPS discards flows

lassified as malicious and forwards the non-malicious flows to the next
unction. Finally, the LB receives the processed traffic and distributes
he HTTP requests among the available servers.

In this case study, two NF dependencies are defined: (i) the ordering
etween FW and DPI functions; and (ii) the coupling between the DPI
nd MF functions. The first dependency ensures that the DPI will only
rocess the network traffic for which it was designed for (i.e., HTTP),
hus the FW must process the traffic earlier than the DPI. The second de-
endency ensures that illegal HTTP traffic will not be processed by the
ther functions, as it is discarded by the coupling of DPI and MF func-
ions. The CUSTOM specification of the HTTP security service is shown
n Fig. 9 B. The VNF rule contains functions “FW ”, “DPI ”, “MF ”, “IPS ”,
nd “LB ”, and the EN rule contains the egress node “EN1 ”. The symbols
 and] establish the limits of the partially ordered segment. Further-
ore, the network function dependencies within the partially ordered

egment are specified with symbols (and) . It is important to notice
hat the specification of the ordering dependencies does not include any
odifier symbol, while the specification of coupling dependencies does

∗).

.5. Infrastructure dependencies

It is possible to specify network services in which some network func-
ions have constraints of where they should be executed, both in terms
f hardware and domain. These constraints can be specified by the net-
ork operator for many reasons, including for example security and ac-

ountability requirements, the use of hybrid environments with legacy
hysical appliances (PNF), and particular resource requirements that are
ot available on every machine. The CUSTOM model allows the spec-
fication of infrastructure constraints with two types of dependencies:
dministrative domains and physical machines. Administrative domain
ependencies are typically employed when a service mapping is done
n multiple domains. On the other hand, physical machine dependen-
ies are used as to map the service topology to the physical resources of
 data center.

.5.1. Administrative domain

A DeMilitarized Zone (DMZ) service (e.g., [70]), illustrated in
ig. 10 A, is used to demonstrate the specification of administrative do-
ain dependencies. This service contains five network functions: Exter-
al Firewall (EFW), Cache (C), Internal Firewall (IFW), Antivirus (AV),
nd Network Address Translator (NAT). The EFW function filters all the
raffic that does not represent a request to a known service provided
either by the C function, nor by other services provided in the inter-
al network. The first two functions (EFW and C) are in a DMZ, note
hat the C function only provides public services and information. If a
equest requires a private service/information, the C function forwards
he request to the IFW function that represents a gateway between the
MZ and the internal network. This second firewall protects the inter-
al network granting access to authorized sources only. Furthermore,
he AV function improves the security by checking if the incoming traf-
c is not malicious. Finally, the address translation is done by the NAT

unction.
For security reasons, the functions that access the internal network

ust be deployed in a private domain called PD. Therefore, they can be
onitored by network operators in an accountable and auditable envi-

onment. The CUSTOM specification of the DeMilitarized Zone service is
resented in Fig. 10 B. Rule VNF contains network functions “EFW ”, “C ”,
IFW ”, “AV ”, and “NAT ”, and the rule EN has the egress node “EN1 ”.
lso, the rule ADMDOMAIN specifies the previously mentioned private
omain “PD ”. In the service topology, the last three functions present
he same administrative domain dependency (PD). These dependencies
re specified with “PD ” between the symbols < and > . As the other func-
ions do not have infrastructure dependencies, they can be allocated to
ny available domain during the mapping process, which can include
utsourced Network-as-a-Service providers (e.g., FENDE [5]).

V. Fulber-Garcia, E.P. Duarte Jr. and A. Huff et al. Computer Networks 178 (2020) 107337

Fig. 9. HTTP security service.

Fig. 10. Demilitarized zone service.

Fig. 11. Video optimizer service.

5

v

n

N

W

c

w

o

s

j

a

a

c

e

a

g

(

(

D

C

c

s

b

a

n

D

s

“

“

c

O

p

5

b

e

s

t

w

s

t

s

d

o

n

s

c

s

[

t

(
.5.2. Physical machine

The case study to demonstrate physical machine dependencies is a
ideo optimizer service. This service, shown in Fig. 11 A, consists of four
etwork functions: Web Application Firewall (WAF), Content Delivery
etwork (CDN), Video Transcoding (VT), and Network Monitor (NM).
AF acts as a layer 7 firewall and reverse proxy that intermediates the

ommutation between customers and media servers, which is triggered
hen some particular content is not available from a specific CDN point
f presence. The CDN is responsible to cache content from the media
ervice and provide the content as a stream to the customers. VT ad-
usts content streaming (e.g., downgrades or upgrades video resolution)
ccording to the customer requirements and network metrics such as
vailable bandwidth, latency, among others. The NM function monitors
ontent streaming, QoS metrics, and QoE reports to help the VT to prop-
rly configure the streaming quality as well as the service itself (e.g., by
llocating new CDN points of presence if the demand for some content
rows in a certain region).

In order to guarantee fast packet processing for complex functions
WAF and VT), we should employ platforms tailored to NF execution
Click-on-OSv [10] and ClickOS [8]). However, Click-on-OSv uses the
PDK

2 packet accelerator that requires an Intel processor. Moreover,
lickOS depends on the Xen hypervisor. 3 Thus, these network functions
annot be deployed in an arbitrary physical machine, but in one that
upports the required technologies. We solve this problem by pinning
oth WAF and VT onto specific physical machines, respectively COO
nd CO. The first machine (COO) is located at the Cloud Domain (CD)
ear the media server. The second machine (CO), in turn, is in the Edge
omain (EG) close to end-users. The CUSTOM specification of this case
2 https://www.dpdk.org .
3 https://xenproject.org .

S

I

f

a
tudy service is shown in Fig. 11 B. In addition to rule VNF that includes
‘WAF ”, “CDN ”, “VT ”, and “NM ”, rule EN corresponds to the egress node
EN1 ”. The infrastructure rules ADMDOMAIN and PHYMACHINE are
onfigured with “CD ” and “ED ” domains and “COO ” and “CO ” machines.
ther functions do not have any dependencies and can be mapped to and
laced on any available infrastructure.

.6. Shared network functions

The Network-as-a-Service (NaaS) model [71] was developed inspired
y the widely adopted Software-as-a-Service (SaaS) model [72] . A rel-
vant feature of these “as-a-Service models ” is the ability to share re-
ources. Among other features, NaaS allows providers and the customers
o decide, usually with the help of Service Level Agreements (SLA),
hich computational resources (including software) can or cannot be

hared. NFV technology allows network functions to be shared during
he embedding phase of the deployment process. In order to do that, the
election technique is employed so that the network service is embed-
ed using shareable network functions that have been already deployed
n the underlying infrastructure [73] . Of course, in a typical scenario,
ot all network functions can be shared, due to several different rea-
ons. However, many types of NFs, such as antiviruses and virtualized
ustomer premises equipment, can be provided in a shareable manner.

We illustrate how CUSTOM deals with shareable VNFs through the
pecification of a virtualized Customer Premises Equipment (vCPE)
74] , as depicted in Fig. 12 A. This service consists of five network func-
ions: Set-Top Box (STB), Parental Control (PC), Residencial Gateway
RGW), Antivirus (AV), and Broadband Network Gateway (BNG). The
TB is used to authenticate users and provide media content, such as
PTV and movie streams. Requests for content are validated by the PC
unction and then forwarded to the BNG with the RGW. Before arriving
t the BNG function, all the network traffic must be verified by an AV.

https://www.dpdk.org
https://xenproject.org

V. Fulber-Garcia, E.P. Duarte Jr. and A. Huff et al. Computer Networks 178 (2020) 107337

Fig. 12. Virtualized customer premises equipment.

Fig. 13. Hierarchical content delivery networks.

F

p

t

m

t

c

d

h

w

T

T

c

n

t

a

h

5

t

d

C

a

m

c

p

c

i

c

t

n

“

c

t

C

n

a

F

b

t

F

i

m

a

m

n

(
v

m

n

6

d

s

o

o

t

v

e

b

s

f
inally, the BNG forwards the requests to the server that provides the
roper media service.

Note that the first three functions (i.e., STB, PC, and RGW) are cus-
omized to the end-user contract agreements and requirements. Further-
ore, once any contracted service change occurs, these network func-

ions have to be modified to reflect the new set of functionalities and
onfigurations. Therefore, these functions should not be shared among
ifferent customers. The last two functions (i.e., AV and BNG) in turn
ave the same operational behavior, regardless of the customer from
hich the traffic is coming, making them good options to be shared.
he CUSTOM specification of the vCPE service is shown in Fig. 12 B.
he network functions “STB ”, “PC ”, “RGW ”, “AV ”, and “BNG ” are in-
luded in rule VNF , and the egress node “EN1 ” is in rule EN . Shareable
etwork functions are preceded by the modifier symbol ! . We highlight
hat the presence of shareable functions does imply any other change to
ny logical connection in the service topology specification, but they do
ave an impact on how the service is deployed.

.7. Multiple category service topologies

CUSTOM can deal with the specification of multi-category service
opologies complex service topologies belong to multiple categories. To
emonstrate an example, consider the specification of a hierarchical
ontent Delivery Network (CDN) service composed of chained caches
nd routers. These functions are mapped in a multi-domain environ-
ent and provide multimedia content for customers. A specific cache

an both receive (push) and require (pull) multimedia content from the
revious cache in the chain and provide, if necessary, content to the next
ache (caches are identified by ascending numeric IDs); the first cache
s an exception that communicates directly with the main server to re-
eive/require new content. Caches provide content to their customers
hrough the respective attached routers. Fig. 13 A depicts the described
etwork service topology. Caches and routers are named, respectively,
C ” and “R ” plus a numeric ID.
In this service, the second cache function (i.e. C2) is a legacy physi-
al machine located at a Favored Domain (FD) with priority customers,
his machine can not be moved. Thus, the virtual router connected to
2 (i.e. R2) is pinned to the FD through a domain dependency. Other
etwork functions do not present any dependency and can be mapped to
rbitrary domains that improve QoS and QoE of service and customers.
inally, the third cache (i.e. C3) is a multi-provider function that can
e shared with partner content providers. The CUSTOM specification of
he presented hierarchical content delivery network service is shown in
ig. 13 B. The network functions “C1 ”, “C3 ”, “R1 ”, “R2 ”, and “R3 ” are
ncluded in rule VNF , and the cache function “C2 ” is in PNF . Further-
ore, rule ADMDOMAIN contains “FD ” and rule EN has “EN1 ”, “EN2 ”,

nd “EN3 ”. The shareable network function “C3 ” is preceded by the
odifier symbol ! . At last, we highlight that the specification of this
etwork service has features all service topology categories: branched
structure); four functions in the largest path (length); ten elements –
ertices – in the service topology (size); partially shared (sharing); ad-
inistrative domain dependent (function dependency); and heteroge-
eous (heterogeneity).

. Related work

The NFV paradigm is quite recent and is still going through a stan-
ardization process. Models that define VNFs and all that constitute and
urround VNFs, including network service topologies are being continu-
usly proposed and discussed. In terms of service topology, the creation
f network services with the NFV paradigm should take into account
he different features presented in Section 3 . We claim that a useful ser-
ice topology model should encompass all of those features and provide
nough power of expression so that they can be effectively employed
y service developers to design, validate, implement and maintain their
pecific services.

Different strategies have been proposed to model a service topology,
rom models based on graphs and formal languages to others based on

V. Fulber-Garcia, E.P. Duarte Jr. and A. Huff et al. Computer Networks 178 (2020) 107337

Table 4

Service topology models specification capabilities.

Service topology

Structure Length Size Sharing Dependency Heterogeneity

Models Grammar [16]

pACSR [15]

SG [17]

YANG [18]

CUSTOM

h

t

d

t

P

t

a

c

v

o

p

o

p

t

t

o

(

i

b

(

t

w

s

r

d

s

i

v

h

t

t

w

t

e

t

t

s

[

a

c

p

i

t

p

m

c

t

a

p

p

p

t

p

c

c

e

n

h

i

r

w

o

a

t

i

b

t

r

s

t

t

t

r

F

s

s

s

a

a

o

c

t

n

v

v

l

h
igh level markup languages. Project decisions related to the creation of
opology models determine how much effort must be spent by services
evelopers on the deployment process. While strategies lead to models
hat are executable (e.g., MiniNet emulator topology description - in
ython [75]) others aim at improving the usability. The gap between
he two can involve intermediate meta-models, that are easy to build
nd can be translated to verifiable formal models or even executable
ode.

In [16] authors define models for both the network substrate and ser-
ice topology - the models are used to allow function placement which
ptimizes resource usage and latency. A context-free language is pro-
osed to specify service topology features and restrictions. The elements
f the context-free language are: individual network functions, a start
oint, and end points; optional order segments (i.e., set of functions
hat can be applied to the flows in any order); split segments (i.e., func-
ions capable to split the incoming flows and send them through topol-
gy branches with different execution modules); and parallel modules
i.e., functions that split the incoming flows and send them on outgo-
ng branches which have the same execution modules - such as load
alancers).

In this context-free language a service topology as a quadruple G =
 𝜈, 𝜏, 𝜌, 𝜍) . Each language element represents a single part of the service
opology. The 𝜈 element represents the group of non-terminal symbols
ith ten possibilities, of which < modules > is the key non-terminal

ymbol after the start symbol. 𝜏 is the group of terminal symbols rep-
esenting the functional elements of the service topology. In 𝜌 the pro-
uction rules are described, they consist of eleven rules that guide the
pecification of service topologies. Finally, 𝜍 represents the mandatory
nitial symbol < start > of the grammar. The grammar can be easily be
alidated with traditional parsers, but it is also necessary to employ a
igh-level tool to ensure the semantic correctness of the resulting deriva-
ion tree.

With this model it is possible to identify categories such as struc-
ure, length, and size. On the other hand, the authors do not provide a
ay to declare explicit dependencies (neither of NFs nor of infrastruc-

ure), and only consider implicit dependencies related to the parallel
xecution branches. Furthermore, there is no means to describe func-
ion sharing or to declare that a specific function instance is physical,
hus heterogeneous chains are not even mentioned.

The adaptation of existing languages with strong formal syntax and
emantics is another option to define virtual services. Shin and others
15] expand the Algebra of Communicating Shared Resources (ACSR) -
 formal description language that encompasses concepts such as pro-
esses, resources, events and priorities [76] - to define the so called
ACSR (packet ACSR) language. The pACSR language allows the spec-
fication in a rich and detailed way of the packet forwarding process
hrough a set of network functions using an operations syntax based on
redefined predicates and functions.
ACSR allows process description by defining a set of operators, se-
antic rules and mappers (to construct and assign a meaning to a pro-

ess) and applies algebraic laws for process manipulation. pACSR ex-
ends the ACSR by allowing packets to be forwarded along ports - which
re used to describe VNFs. Two general operations are defined in pACSR:
acket forwarding, which basically consist of values passing through
orts, and packet processing, which correspond to values being used as
rocess parameters. Some operations that are used in a pACSR specifica-
ion include the “no action ” (NIL), parallel execution (//), conditional
rocess execution (→), process restriction (/) and non-deterministic
hoices between two processes (+).

The pACSR language is capable of defining how packets are pro-
essed by a network service with fine granularity. However, other cat-
gories defined in the taxonomy such as structure and length can-
ot explicitly defined, but can be implicitly understood. On the other
and, service sharing features cannot be specified using this model as
t does not employ VNF identifiers – IDs are used for the processes that
un within VNFs. Dependencies are addressed using parallel processes,
hich allow the specification of implicit order dependencies. On the
ther hand, there is no way to specify some service policies or man-
gement decisions (e.g., either related to the infrastructure or the NFs
hemselves) directly in the model. Heterogeneity could be addressed us-
ng this model, as a process can be defined not only to execute VNFs,
ut also could also correspond to traditional middleboxes, but tags need
o added to allow this differentiation.

Garay and others [17] propose a low-level straw-man model that
elies on a graph-based system called Service Graph (SG) to specify a
ervice topology. This model main concern is on embedding the SG in
he physical infrastructure. The physical infrastructure is also defined
hrough a graph, called Resource Graph (RG). The authors emphasize
hat the network service and the computational resources are closely
elated and both models should be compatible.

The SG straw-man model presents three main components: Network
unctions (NF) which include deployment information and, if neces-
ary, life cycle management scripts; Service Access Points (SAP) repre-
enting an element that attaches the service with other elements out-
ide the scope of the model. Besides forwarding data to NFs, SAPs are
lso processing nodes capable of doing traffic analysis and classification;
nd Service Links (SL) which represents logical connections between the
ther elements. The SG straw-man model can be easily used to describe
haracteristics such as structure, size and length. Although data attached
o the elements can specify infrastructure dependency, the model does
ot present any way to specify NF dependencies neither sharing.

Structured data modeling languages can also be employed for ser-
ice topology specification. The authors of [18] propose a complete ser-
ice specification model based on Yet Another Next Generation (YANG)
anguage. This model follows the IETF SFC YANG Descriptors [77] , it
as the power to describe SFCs in detail, from standalone VNFs to so-

V. Fulber-Garcia, E.P. Duarte Jr. and A. Huff et al. Computer Networks 178 (2020) 107337

p

c

p

f

V

v

s

p

l

t

f

h

t

fi

d

s

m

w

s

(

p

n

d

a

7

c

m

h

o

l

v

e

o

c

p

n

h

t

g

i

v

t

g

i

S

i

c

b

v

a

v

d

s

a

t

d

t

c

s

u

N

a

D

C

F

E

a

H

o

c

d

R

[

[

[

[

[

[

[

[

[

[

[

[

[
histicated SFCs. The model is composed of an ordered list of service
omponents. Each component, in turn, is a list of service function com-
ositions. The compositions can represent different structure classes as
ollows. Best-binding compositions define partially ordered segments of
NFs. The all-binds composition indicates that a set of VNFs can be tra-
ersed in any order at any time (i.e., full mesh paths). The split compo-
ition defines branches in the service topology. Also, the function com-
osition represents a single network function in the topology. Finally,
inks connect compositions to create a complete service topology. In
his model there is no way to specify important characteristics such as
unction sharing, partial ordering dependencies, and network service
eterogeneity.

Table 4 summarizes how the different service topology models allow
he specification of the categories of the proposed taxonomy. A black
lled circle indicates full support for the category; a half filled circle
enotes an implicit or partial support of the category (e.g., some classes,
ub-classes or special cases are not recognized). Last, an unfilled circle
eans that a category is not supported by the model.

Essentially, current service topology models are mostly concerned
ith network functions organization, thus easily supporting categories

uch as structure, length, and size. But, other information categories
e.g., sharing, dependencies, and heterogeneity) are not supported. The
roposed CUSTOM model supports all categories, thereby avoiding the
eed of meta-models, descriptors and large-scale requests for service
eployment processes (e.g., composition, split and mapping, placement,
nd scheduling).

. Conclusion

Network Function Virtualization is a new paradigm that has already
hanged the network infrastructure landscape. By allowing the replace-
ent of hardware middleboxes with Virtual Network Functions, NFV
as unleashed a virtually unlimited number of novel possibilities and
pportunities to parts of the network that were previously beyond the
imits that most could reach. With the growing demand of network ser-
ices to support the massive traffic generated by the network users and
ntities (from humans to machines and “things ” - driven by the Internet
f Things), the NFV paradigm encompasses methods and mechanisms to
reate, deploy and manage from individual network functions to com-
lex services built up by composing multiple functions into virtualized
etwork services.

We claim service topologies are an important aspect of services that
ave been neglected, even treated in conflicting ways by different enti-
ies. We hope our contribution represents a step on the way to fill this
ap. Considering the various characteristics necessary to create special-
zed services for different scenarios, there are several different ways to
iew, evaluate and classify a virtualized network service topology. In
his work, we proposed a unifying view of the concept of service topolo-
ies, which is formally defined relying on Graph Theory. A taxonomy
s presented based on six categories which are also formally defined:
tructure, Length, Size, Sharing, Function Dependency, and Heterogene-
ty. Some categories are decomposed in classes, sub-classes and special
ases which we hope will provide the means for a richer definition and
etter understanding of service topologies. We also proposed a new ser-
ice topology specification model, called CUSTOM. This model employs
 context-free grammar for the creation of specification rules and pro-
ides the necessary capabilities to express all service topology categories
efined in our taxonomy. Several case studies were presented to demon-
trate the capabilities of the proposed model. We highlight that CUSTOM
llows the specification of service topologies with features that collec-
ively are not supported by any other model.

Finally, future work includes the definition of strategies to specify
ynamic service topologies that take into account environment changes
o readapt themselves. Furthermore, we note that the CUSTOM specifi-
ation model can be easily extended to deal with the needs of specific
ystems and environments, such as Internet of Things (IoT) and Vehic-
lar Ad-hoc Networks (VANET). Finally, integrating CUSTOM to actual
FV managers such as OpenStack Tacker [78] and NFV emulators such
s NIEP [79] is also left as future work.

eclaration of Competing Interest

Authors declare that they have no conflict of interest.

RediT authorship contribution statement

Vinicius Fulber-Garcia: Conceptualization, Funding acquisition,
ormal analysis, Writing - original draft, Writing - review & editing.
lias P. Duarte Jr.: Conceptualization, Funding acquisition, Formal
nalysis, Writing - original draft, Writing - review & editing. Alexandre

uff: Conceptualization, Funding acquisition, Formal analysis, Writing -
riginal draft, Writing - review & editing. Carlos R.P. dos Santos: Con-
eptualization, Funding acquisition, Formal analysis, Writing - original
raft, Writing - review & editing.

eferences

[1] M. Handley , Why the internet only just works, BT Technol. J. 24 (3) (2006) 119–129 .
[2] E. NFVISG , Network Functions Virtualization: White Paper, Technical Report, Euro-

pean Telecommunications Standards Institute, 2012 .
[3] B. Han , V. Gopalakrishnan , L. Ji , S. Lee , Network function virtualization: challenges

and opportunities for innovations, Commun. Mag. 53 (2) (2015) 90–97 .
[4] J. Sherry , S. Hasan , C. Scott , A. Krishnamurthy , S. Ratnasamy , V. Sekar , Making mid-

dleboxes someone else’s problem: network processing as a cloud service, Comput.
Commun. Rev. 42 (4) (2012) 13–24 .

[5] L. Bondan , M.F. Franco , L. Marcuzzo , G. Venancio , R.L. Santos , R.J. Pfitscher ,
E.J. Scheid , B. Stiller , F. De Turck , E.P. Duarte , A.E. Schaeffer-Filho , C.R.P. dos San-
tos , L.Z. Granville , FENDE: marketplace-based distribution, execution, and life cycle
management of VNFs, Commun. Mag. 57 (1) (2019) 13–19 .

[6] C. Schroth , T. Janner , Web 2.0 and SOA: converging concepts enabling the internet
of services, IT Prof. 9 (3) (2007) 36–41 .

[7] J. Cardoso , K. Voigt , M. Winkler , Service engineering for the internet of services, in:
International Conference on Enterprise Information Systems, Springer International
Publishing, 2008, pp. 15–27 .

[8] J. Martins , M. Ahmed , C. Raiciu , V. Olteanu , M. Honda , R. Bifulco , F. Huici , ClickOS
and the art of network function virtualization, in: Conference on Networked Systems
Design and Implementation, USENIX Association, 2014, pp. 459–473 .

[9] J. Hwang , K.K. Ramakrishnan , T. Wood , NetVM: high performance and flexible net-
working using virtualization on commodity platforms, Trans. Netw. Serv. Manag. 12
(1) (2015) 34–47 .

10] L. d. C. Marcuzzo , V.F. Garcia , V. Cunha , D. Corujo , J.P. Barraca , R.L. Aguiar ,
A.E. Schaeffer-Filho , L.Z. Granville , C.R.P. dos Santos , Click-on-OSv: a platform for
running click-based middleboxes, in: Symposium on Integrated Network and Service
Management, Institute of Electrical and Electronics Engineers, 2017, pp. 885–886 .

11] V.F. Garcia , L.C. Marcuzzo , G.V. Souza , L. Bondan , J.C. Nobre , A.E. Schaeffer-Filho ,
C.R.P. dos Santos , L.Z. Granville , E.P. Duarte Jr. , An NSH-enabled architecture for
virtualized network function platforms, in: International Conference on Advanced
Information Networking and Applications, Springer International Publishing, 2019,
pp. 376–387 .

12] V.F. Garcia , L. Marcuzzo , C. da , A. Huff, L.Z. Granville , A. Schaeffer-Filho , C. dos
Santos , C.R.P. dos Santos , L.Z. Granville , E.P. Duarte , On the design of a flexible
architecture for virtualized network function platforms, in: Global Communications
Conference, Institute of Electrical and Electronics Engineers, 2019, pp. 1–6 .

13] P. Quinn , T. Nadeau , Problem Statement for Service Function Chaining - RFC 7498,
Technical Report, Internet Engineering Task Force, 2015 .

14] E. NFVISG , Network Functions Virtualisation (NFV): Use Cases, Technical Report,
European Telecommunications Standards Institute, 2013 .

15] M.K. Shin , Y. Choi , H.H. Kwak , S. Pack , M. Kang , J.Y. Choi , Verification for NFV-en-
abled network services, in: International Conference on Information and Commu-
nication Technology Convergence, Institute of Electrical and Electronics Engineers,
2015, pp. 810–815 .

16] S. Mehraghdam , M. Keller , H. Karl , Specifying and placing chains of virtual network
functions, in: International Conference on Cloud Networking, Institute of Electrical
and Electronics Engineers, 2014, pp. 7–13 .

17] J. Garay , J. Matias , J. Unzilla , E. Jacob , Service description in the NFV revolution:
trends, challenges and a way forward, Commun. Mag. 54 (3) (2016) 68–74 .

18] S. Drxler , H. Karl , Specification, composition, and placement of network services
with flexible structures, Int. J. Netw. Manag. 27 (2) (2017) e1963 .

19] E. ISG, Network Functions Virtualisation (NFV): Virtualisation Requirements, 2013.
20] G. ETSI , Network Functions Virtualization (NFV); Architectural Framework, Tech-

nical Report, European Telecommunications Standards Institute, 2013 .
21] N. ETSI , Network Function Virtualisation (NFV): Terminology for Main Concepts in

NFV, Technical Report, European Telecommunications Standards Institute, 2014 .
22] J. Halpern , C. Pignataro , Service Function Chaining (SFC) Architecture - RFC 7665,

Technical Report, Internet Engineering Task Force, 2015 .

http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0001
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0002
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0003
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0004
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0005
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0006
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0007
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0008
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0009
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0010
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0011
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0012
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0013
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0014
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0015
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0016
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0017
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0018
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0019
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0020
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0021
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0021
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0021

V. Fulber-Garcia, E.P. Duarte Jr. and A. Huff et al. Computer Networks 178 (2020) 107337

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

23] C.J. Bernardos , A. Rahman , J. Ziga , L.M. Contreras , P.A. Aranda , P. Lynch , Net-
work Virtualization Research Challenges, Technical Report, Internet Engineering
Task Force, 2018 .

24] R. Fernando , S. Mackie , D. Rao , B. Rijsman , M. Napierala , T. Morin , Service Func-
tion Chaining Using Virtual Networks with BGP VPNs, Technical Report, Internet
Engineering Task Force, 2018 .

25] J.G. Herrera , J.F. Botero , Resource allocation in NFV: a comprehensive survey,
Trans. Netw. Serv. Manag. 13 (3) (2016) 518–532 .

26] M.C. Luizelli , L.R. Bays , L.S. Buriol , M.P. Barcellos , L.P. Gaspary , Piecing together
the NFV provisioning puzzle: efficient placement and chaining of virtual network
functions, in: International Symposium on Integrated Network Management, Insti-
tute of Electrical and Electronics Engineers, 2015, pp. 98–106 .

27] M. Jalalitabar , Service Function Graph Design and Embedding in Next Generation
Internet, Georgia State University, 2018 Ph.D. thesis .

28] Z. Ye , X. Cao , J. Wang , H. Yu , C. Qiao , Joint topology design and mapping of service
function chains for efficient, scalable, and reliable network functions virtualization,
Network 30 (3) (2016) 81–87 .

29] W. Ding , W. Qi , J. Wang , B. Chen , OpenSCaaS: an open service chain as a service
platform toward the integration of SDN and NFV, Network 29 (3) (2015) 30–35 .

30] T. Alharbi , A. Aljuhani , H. Liu , Holistic DDoS mitigation using NFV, in: Computing
and Communication Workshop and Conference, Institute of Electrical and Electron-
ics Engineers, 2017, pp. 1–4 .

31] F. Carpio , S. Dhahri , A. Jukan , VNF placement with replication for load balancing in
NFV networks, in: International Conference on Communications, Institute of Elec-
trical and Electronics Engineers, 2017, pp. 1–6 .

32] J.F. Riera , X. Hesselbach , M. Zotkiewicz , M. Szostak , J.F. Botero , Modelling the NFV
forwarding graph for an optimal network service deployment, in: International Con-
ference on Transparent Optical Networks, Institute of Electrical and Electronics En-
gineers, 2015, pp. 1–4 .

33] A. Vu , N. Dinh , Y. Kim , Modeling of service function chaining in network function
virtualization environment, in: Korean Institute of Communication Sciences Confer-
ence, Institute of Electrical and Electronics Engineers, 2016, pp. 1100–1101 .

34] H. Baek , I. Jang , H. Ko , S. Pack , Order dependency-aware service function place-
ment in service function chaining, in: International Conference on Information and
Communication Technology Convergence, Institute of Electrical and Electronics En-
gineers, 2017, pp. 193–195 .

35] Z. Meng , J. Bi , H. Wang , C. Sun , H. Hu , CoCo: compact and optimized consolida-
tion of modularized service function chains in NFV, in: International Conference on
Communications, Institute of Electrical and Electronics Engineers, 2018, pp. 1–7 .

36] Q. Sun , P. Lu , W. Lu , Z. Zhu , Forecast-assisted NFV service chain deployment based
on affiliation-aware vNF placement, in: Global Communications Conference, Insti-
tute of Electrical and Electronics Engineers, 2016, pp. 1–6 .

37] J. Matias , J. Garay , N. Toledo , J. Unzilla , E. Jacob , Toward an SDN-enabled NFV
architecture, Commun. Mag. 53 (4) (2015) 187–193 .

38] V. Antonenko , R. Smeliansky , A. Plakunov , P. Mikheev , Cube: multi-user virtual
function life-cycle orchestration technique, in: International Scientific and Techni-
cal Conference Modern Computer Network Technologies, Institute of Electrical and
Electronics Engineers, 2018, pp. 1–8 .

39] R. Bruschi , F. Davoli , L. Galluccio , P. Lago , A. Lombardo , C. Lombardo , C. Ram-
etta , G. Schembra , Virtualization of set-top-box devices in next generation SDN-NFV
networks: the input project perspective, in: International Conference on Internet of
Things, Data and Cloud Computing, Association for Computing Machinery, 2017,
pp. 10:1–10:8 .

40] E.J. Scheid , C.C. Machado , R.L. dos Santos , A.E. Schaeffer-Filho , L.Z. Granville , Pol-
icy-based dynamic service chaining in network functions virtualization, in: Inter-
national Symposium on Computers and Communication, Institute of Electrical and
Electronics Engineers, 2016, pp. 340–345 .

41] B. Rashidi , C. Fung , CoFence: a collaborative DDoS defence using network function
virtualization, in: International Conference on Network and Service Management,
Institute of Electrical and Electronics Engineers, 2016, pp. 160–166 .

42] M. Jalalitabar , G. Luo , C. Kong , X. Cao , Service function graph design and mapping
for NFV with priority dependence, in: Global Communications Conference, Institute
of Electrical and Electronics Engineers, 2016, pp. 1–5 .

43] M. Jalalitabar , E. Guler , G. Luo , L. Tian , X. Cao , Dependence-aware service func-
tion chain design and mapping, in: Global Communications Conference, Institute of
Electrical and Electronics Engineers, 2017, pp. 1–6 .

44] A.F. Ocampo , J. Gil-Herrera , P.H. Isolani , M.C. Neves , J.F. Botero , S. Latré, L. Zam-
benedetti , M.P. Barcellos , L.P. Gaspary , Optimal service function chain composition
in network functions virtualization, in: International Conference on Autonomous
Infrastructure, Management and Security, Springer International Publishing, 2017,
pp. 62–76 .

45] X. Li , J. Rao , H. Zhang , A. Callard , Network slicing with elastic SFC, in: Vehicu-
lar Technology Conference, Institute of Electrical and Electronics Engineers, 2017,
pp. 1–5 .

46] M.F. Bari , S.R. Chowdhury , R. Ahmed , R. Boutaba , On orchestrating virtual network
functions, in: International Conference on Network and Service Management, Insti-
tute of Electrical and Electronics Engineers, 2015, pp. 50–56 .

47] H. Huang , S. Guo , J. Wu , J. Li , Service Chaining for Hybrid Network Function, Trans.
Cloud Comput. 7 (4) (2019) 1082–1094 .

48] H. Moens , F.D. Turck , Customizable function chains: managing service chain vari-
ability in hybrid NFV networks, Trans. Netw. Serv. Manag. 13 (4) (2016) 711–724 .

49] C. Sun , J. Bi , Z. Zheng , H. Hu , HYPER: a hybrid high-performance framework for
network function virtualization, J. Sel. Areas Commun. 35 (11) (2017) 2490–2500 .

50] W. Lee , Y. Choi , N. Kim , Study on virtual service chain for secure software-defined
networking, Adv. Sci. Technol. Lett. 29 (13) (2013) 177–180 .

51] Y. Liu , Z. Guo , G. Shou , Y. Hu , To achieve a security service chain by integration of
NFV and SDN, in: International Conference on Instrumentation Measurement, Com-
puter, Communication and Control, Institute of Electrical and Electronics Engineers,
2016, pp. 974–977 .

52] O. TOSCA , TOSCA Simple Profile for Network Functions Virtualization (NFV), Tech-
nical Report, OASIS Committee Specification, 2015 .

53] P. Vizarreta , M. Condoluci , C.M. Machuca , T. Mahmoodi , W. Kellerer , QoS-driven
function placement reducing expenditures in NFV deployments, in: International
Conference on Communications, Institute of Electrical and Electronics Engineers,
2017, pp. 1–7 .

54] M.E. Lesk, E. Schmidt, Lex: A Lexical Analyzer Generator, 2020, http://dinosaur.
compilertools.net/lex/index.html .

55] S.C. Johnson, M. Hill, Yacc: Yet Another Compiler-Compiler, 2020, http://
dinosaur.compilertools.net/yacc/index.html .

56] N.R. Group, Natural Language Toolkit, 2020, http://www.nltk.org .
57] T. Bray , J. Paoli , C.M. Sperberg-McQueen , E. Maler , F. Yergeau , Extensible markup

language (XML) 1.0, Technical Report, W3C Recommendation, 2000 .
58] O. Ben-Kiki , C. Evans , B. Ingerson , YAML Ain’t Markup Language (YAML) version

1.1, Technical Report, YAML Recommendation, 2005 .
59] N.I. ETSI , NFV Management and Orchestration: VNF Descriptor and Packaging Speci-

fication, Technical Report, European Telecommunications Standards Institute, 2019 .
60] H. Koumaras , C. Sakkas , M.A. Kourtis , C. Xilouris , V. Koumaras , G. Gardikis , En-

abling agile video transcoding over SDN/NFV-enabled networks, in: International
Conference on Telecommunications and Multimedia, Institute of Electrical and Elec-
tronics Engineers, 2016, pp. 1–5 .

61] L. Durante , L. Seno , F. Valenza , A. Valenzano , A model for the analysis of secu-
rity policies in service function chains, in: Conference on Network Softwarization,
Institute of Electrical and Electronics Engineers, 2017, pp. 1–6 .

62] T. Alharbi , A. Aljuhani , H. Liu , C. Hu , Smart and lightweight DDoS detection using
NFV, in: International Conference on Compute and Data Analysis, Association for
Computing Machinery, 2017, pp. 220–227 .

63] S. Palkar , C. Lan , S. Han , K. Jang , A. Panda , S. Ratnasamy , L. Rizzo , S. Shenker , E2:
a framework for NFV applications, in: Symposium on Operating Systems Principles,
Association for Computing Machinery, 2015, pp. 121–136 .

64] G. Liu , Y. Ren , M. Yurchenko , K.K. Ramakrishnan , T. Wood , Microboxes: high per-
formance NFV with customizable, asynchronous TCP stacks and dynamic subscrip-
tions, in: Conference of the ACM Special Interest Group on Data Communication,
Association for Computing Machinery, 2018, pp. 504–517 .

65] C. Sun , J. Bi , Z. Zheng , H. Yu , H. Hu , NFP: enabling network function parallelism
in NFV, in: Conference of the ACM Special Interest Group on Data Communication,
Association for Computing Machinery, 2017, pp. 43–56 .

66] Y. Zhang , B. Anwer , V. Gopalakrishnan , B. Han , J. Reich , A. Shaikh , Z. Zhang ,
Parabox: exploiting parallelism for virtual network functions in service chaining,
in: Symposium on SDN Research, Association for Computing Machinery, 2017,
pp. 143–149 .

67] J. Gil-Herrera , J.F. Botero , A scalable metaheuristic for service function chain com-
position, in: Latin-American Conference on Communications, Institute of Electrical
and Electronics Engineers, 2017, pp. 1–6 .

68] Y. Wang , Z. Li , G. Xie , K. Salamatian , Enabling automatic composition and verifi-
cation of service function chain, in: International Symposium on Quality of Service,
Institute of Electrical and Electronics Engineers, 2017, pp. 1–5 .

69] V. Fulber-Garcia , M.C. Luizelli , C.R.P. dos Santos , E.P. Duarte , CUSCO: a customiz-
able solution for NFV composition, in: International Conference on Advanced In-
formation Networking and Applications, Springer International Publishing, 2020,
pp. 204–216 .

70] L. Bondan , C.R.P. dos Santos , L.Z. Granville , Management requirements for Click-
OS-based network function virtualization, in: International Conference on Network
and Service Management, Institute of Electrical and Electronics Engineers, 2014,
pp. 447–450 .

71] R. Yu , G. Xue , V.T. Kilari , X. Zhang , Network function virtualization in the multi–
tenant cloud, Network 29 (3) (2015) 42–47 .

72] M.A. Cusumano , Cloud computing and saas as new computing platforms, Commu-
nications 53 (4) (2010) 27–29 .

73] A.M. Medhat , G. Carella , C. Luck , M. Corici , T. Magedanz , Near optimal service func-
tion path instantiation in a multi-datacenter environment, in: International Confer-
ence on Network and Service Management, Institute of Electrical and Electronics
Engineers, 2015, pp. 336–341 .

74] Z. Bronstein , E. Shraga , NFV virtualisation of the home environment, in: Consumer
Communications and Networking Conference, Institute of Electrical and Electronics
Engineers, 2014, pp. 899–904 .

75] B. Lantz , B. Heller , N. McKeown , A network in a laptop: rapid prototyping for soft-
ware-defined networks, in: SIGCOMM Workshop on Hot Topics in Networks, Asso-
ciation for Computing Machinery, 2010, pp. 19:1–19:6 .

76] P. Brmond-Grgoire , I. Lee , A process algebra of communicating shared re-
sources with dense time and priorities, Theor. Comput. Sci. 189 (1) (1997) 179–
219 .

77] R. Penno , P. Quinn , D. Zhou , J. Li , Yang Data Model for Service Function Chaining,
Technical Report, Internet Engineering Task Force, 2016 .

78] O. Foundation, Tacker: OpenStack NFV Orchestration, 2020, https://wiki.
openstack.org/wiki/Tacker .

79] T. Tavares , L. Marcuzzo , V.F. Garcia , G. Venncio , M. Franco , L. Bondan , F. De
Turk , L. Granville , E. Duarte , C. Santos , A. Schaeffer-filho , NIEP: NFV infrastruc-
ture emulation platform, in: International Conference on Advanced Information Net-
working and Applications, Institute of Electrical and Electronics Engineers, 2018,
pp. 173–180 .

http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0022
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0023
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0024
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0025
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0026
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0027
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0028
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0029
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0030
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0031
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0032
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0033
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0034
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0035
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0035
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0035
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0035
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0035
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0036
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0036
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0036
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0036
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0036
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0036
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0037
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0037
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0037
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0037
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0037
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0038
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0039
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0039
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0039
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0039
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0039
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0039
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0040
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0040
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0040
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0041
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0041
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0041
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0041
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0041
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0042
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0042
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0042
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0042
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0042
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0042
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0043
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0043
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0043
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0043
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0043
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0043
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0043
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0043
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0043
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0043
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0044
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0044
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0044
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0044
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0044
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0045
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0045
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0045
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0045
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0045
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0046
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0046
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0046
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0046
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0046
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0047
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0047
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0047
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0048
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0048
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0048
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0048
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0048
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0049
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0049
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0049
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0049
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0050
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0050
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0050
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0050
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0050
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0050
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0051
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0051
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0052
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0052
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0052
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0052
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0052
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0052
http://dinosaur.compilertools.net/lex/index.html
http://dinosaur.compilertools.net/yacc/index.html
http://www.nltk.org
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0053
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0053
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0053
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0053
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0053
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0053
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0054
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0054
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0054
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0054
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0055
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0055
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0056
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0056
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0056
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0056
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0056
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0056
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0056
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0057
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0057
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0057
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0057
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0057
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0058
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0058
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0058
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0058
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0058
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0059
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0059
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0059
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0059
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0059
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0059
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0059
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0059
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0059
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0060
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0060
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0060
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0060
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0060
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0060
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0061
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0061
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0061
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0061
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0061
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0061
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0062
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0062
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0062
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0062
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0062
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0062
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0062
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0062
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0063
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0063
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0063
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0064
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0064
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0064
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0064
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0064
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0065
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0065
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0065
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0065
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0065
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0066
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0066
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0066
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0066
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0067
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0067
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0067
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0067
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0067
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0068
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0068
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0069
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0069
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0069
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0069
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0069
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0069
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0070
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0070
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0070
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0071
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0071
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0071
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0071
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0072
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0072
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0072
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0073
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0073
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0073
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0073
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0073
https://wiki.openstack.org/wiki/Tacker
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0074
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0074
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0074
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0074
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0074
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0074
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0074
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0074
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0074
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0074
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0074
http://refhub.elsevier.com/S1389-1286(19)31246-0/sbref0074

V. Fulber-Garcia, E.P. Duarte Jr. and A. Huff et al. Computer Networks 178 (2020) 107337

Vinícius Fülber Garcia is a Ph.D. student in Computer Sci-
ence at the Departament of Informatics of the Federal Univer-
sity of Paraná (UFPR - Brazil) under the supervision of Prof.
Dr. Elias Procópio Duarte Júnior. He holds a Computer Sci-
ence degree from Federal University of Santa Maria (UFSM -
Brazil) and a Master degree in Computer Science from UFSM
Post-Graduate Program in Computer Science. His research in-
terests include network functions virtualization, service func-
tion chaining, compression algorithms, and information the-
ory.

Elias Procopio Duarte Jr. is a Full Professor at Federal Uni-
versity of Parana, Curitiba, Brazil, where he is the leader of the
Computer Networks and Distributed Systems Lab (LaRSis). His
research interests include Computer Networks and Distributed
Systems, their Dependability, Management, and Algorithms.
He has published more than 200 peer-reviewer papers and has
supervised more than 130 students both on the graduate and
undergraduate levels. Prof. Duarte is currently Associate Edi-
tor of the IEEE Transactions on Dependable and Secure Com-
puting, and has served as chair of more than 20 conferences
and workshops in his fields of interest. He received a Ph.D.
degree in Computer Science from Tokyo Institute of Technol-
ogy, Japan, 1997, M.Sc. degree in Telecommunications from
the Polytechnical University of Madrid, Spain, 1991, and both
B.Sc. and M.Sc. degrees in Computer Science from Federal Uni-
versity of Minas Gerais, Brazil, 1987 and 1991, respectively.
He chaired the Special Interest Group on Fault Tolerant Com-
puting of the Brazilian Computing Society (2005–2007); the
Graduate Program in Computer Science of UFPR (2006–2008);
and the Brazilian National Laboratory on Computer Networks
(2012–2016). He is a member of the Brazilian Computing So-
ciety and a Senior Member of the IEEE.
Alexandre Huff is a Ph.D. student in Informatics at the Fed-
eral University of Parana, holds a Master’s Degree in Com-
puter Science from the State University of Maringa (2010),
and a Degree in Computer Technology from the Universidade
Paranaense (2004). He is an Adjunct Professor of the Supe-
rior Magisterium at the Federal Technological University of
Parana, Toledo, Brazil. His research topics include Distributed
and Fault-Tolerant Systems, Network Function Virtualization,
and Computer Networks.

Carlos Raniery Paula dos Santos is Adjunct Professor of
Computer Science at the Department of Applied Computing
of the Federal University of Santa Maria (UFSM), Brazil. He
holds Ph.D. (2013) and M.Sc. (2008) degrees in Computer Sci-
ence, both received from the Federal University of Rio Grande
do Sul (UFRGS), where he was also Postdoctoral Research Fel-
low from October 2013 to September 2014. From May 2010 to
April 2011 he was a visiting researcher at the IBM T.J. Watson
Research Center - Hawthorne, where he developed projects
on IT Service Management and Security Management. His re-
search interests focus on design and management of Future
Networks and Technologies, including aspects such as network
virtualization, quality of service management, network pro-
grammability, and security management.

	Network service topology: Formalization, taxonomy and the CUSTOM specification model
	1 Introduction
	2 NFV: definitions & standards
	2.1 Network function virtualization
	2.2 Virtualized network services

	3 Service topology: a taxonomy
	3.1 Formal definition
	3.2 Structure
	3.3 Length and size
	3.4 Sharing
	3.5 Function dependency
	3.6 Heterogeneity
	3.7 Synthesis

	4 CUstom service TOpology model
	5 Case studies
	5.1 Linear service topology
	5.2 Service topologies with terminal branches
	5.3 Service topologies with non-terminal branches
	5.4 Network function dependencies
	5.5 Infrastructure dependencies
	5.5.1 Administrative domain
	5.5.2 Physical machine

	5.6 Shared network functions
	5.7 Multiple category service topologies

	6 Related work
	7 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	References

