
Contents lists available at ScienceDirect

Entertainment Computing

journal homepage: www.elsevier.com/locate/entcom

Smart Reckoning: Reducing the traffic of online multiplayer games using
machine learning for movement prediction
Elias P. Duarte Jr.a,⁎, Aurora T.R. Pozob, Pamela Beltranic
a Federal University of Parana, Curitiba, Brazil
b Computer Science Department at Federal University of Parana, Brazil
c Computer Games at Positivo University, Parana, Brazil

A R T I C L E I N F O

Keywords:
Massive multiplayer online games
Machine learning
Movement prediction

A B S T R A C T

Massively Multiplayer Online Game (MMOG) players maintain consistent views of the positions of each other by
periodically exchanging messages. Besides the fact that these messages can suffer delays that cause rendering
inconsistencies, they also represent an overhead on the network. This overhead can be significant, as the number
of MMOG players is very large, but reducing the number of messages is not trivial. The classic strategy to predict
movement avoiding message exchange is based on the Dead Reckoning algorithm, which has several limitations.
Other strategies have been proposed more recently that improve the results, but rely on expert knowledge. In
this work we propose Smart Reckoning, a movement prediction strategy based on machine learning. The strategy
consists of two phases. In the first phase, a learning model classifies whether the classical Dead Reckoning
algorithm is able to predict the new avatar position correctly or not. In case the conclusion is negative, another
learning model is used to predict the new direction. The proposed strategy was applied to the World of Warcraft
game. The learning models were implemented with the Weka tool using real game trace data, and results are
presented for the accuracy of multiple algorithms.

1. Introduction

Players of Massively Multiplayer Online Games (MMOGs) have to
maintain a consistent view of the game world, so they can decide on
actions that make sense globally. In particular, each player has to keep
track of the locations of the avatars of all other players, as they move
around the game world. To maintain a consistent view, players ex-
change messages carrying game state information across the network.
The messages are transmitted on a periodic basis; the frequency de-
pends on each game requirements. However, if messages carrying up-
dates on avatar positions are lost and/or delayed, players may experi-
ence jumps between consecutive frames or may even execute
inconsistent actions [1–3]. As current online games can have up to
millions of concurrent players [4–6], messages can represent a sig-
nificant overhead on the network.

Movement prediction strategies can be employed in order to avoid
exchanging a message to inform the new position of an avatar. To un-
derstand how a message can be avoided by employing a prediction
algorithm, consider a player (called predictor) that needs the new po-
sition of the avatar of another player (called predicted). Both players
start with the previous position of the predicted avatar, and both run

the prediction algorithm. After the predicted player makes a movement
and executes the prediction algorithm, it can check if the result of the
algorithm is correct or not: has the current position been correctly
predicted? Only in case the prediction is not correct a message is gen-
erated and sent to inform the predictor about the actual new position.
Otherwise if the algorithm predicts the new position correctly within
some predefined bounds, no message is needed.

The most common strategy to predict movement is the classical
Dead Reckoning algorithm [7], which is based on Newton’s laws [8].
Dead Reckoning assumes that movement only occurs on a straight line,
thus it implicitly assumes that the player does not change direction.
This assumption is clearly unrealistc, especially in current games in
which avatars may change directions at will. Other more complex
strategies have been proposed [9–11], some of which build models that
are based on the points of interest of the players. Although, these new
strategies present better results they are not easy to use and depend on
expert knowledge.

In this work, we present Smart Reckoning, a new strategy based on
machine learning to predict movement in online multiplayer games.
The proposed strategy consists of two phases. In the first phase a
learning model classifies whether the player continues on a straight line

https://doi.org/10.1016/j.entcom.2019.100336
Received 25 April 2019; Received in revised form 22 September 2019; Accepted 3 December 2019

⁎ Corresponding author.
E-mail address: elias@inf.ufpr.br (E.P. Duarte).

Entertainment Computing 33 (2020) 100336

Available online 12 December 2019
1875-9521/ © 2019 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/18759521
https://www.elsevier.com/locate/entcom
https://doi.org/10.1016/j.entcom.2019.100336
https://doi.org/10.1016/j.entcom.2019.100336
mailto:elias@inf.ufpr.br
https://doi.org/10.1016/j.entcom.2019.100336
http://crossmark.crossref.org/dialog/?doi=10.1016/j.entcom.2019.100336&domain=pdf


and does not change direction, or if it is being affected by surrounding
points of interest. If the conclusion is that the direction is not going to
change, Dead Reckoning can be applied to obtain a correct new posi-
tion. Otherwise, the algorithm enters the second phase, in which an-
other learning model is used to make a prediction of the new direction
the player will take, and compute the new position. The proposed
strategy is generic, in the sense that knowledge is learned from the data.

Smart Reckoning was implemented and we executed experiments
for predicting movement in the World of Warcraft (WoW) [12] game.
The learning models were built on a new dataset based on two well-
know WoW public traces [13,14]. This new dataset has information
about the field of vision of each player, including which other players
and NPCs (Non-Playable Characters) are visible at each instant on time.

We use the Weka toolkit to built multiple versions of the learning
models, and after preliminary empirical results, the following classical
machine learning algorithms were chosen: Local Weighted Learning
[15], Bootstrap Aggregating [16], Multilayer Perceptron [17] and Re-
duced Error Pruning Tree [18]. Experiments were executed, and the
best results were obtained with the Bagging algorithm which presented
an accuracy of 81.10% in the first phase and 73.37% in the second
phase; overall the accuracy of the Bagging algorithm is 78.76% com-
bining the two phases. Considering all four machine learning algo-
rithms the average accuracy is 76.60% for the first phase and 51.02%
for the second phase; overall the accuracy is 66.41% combining the two
phases. In comparison, the accuracy of the Dead Reckoning algorithm
was 44.54%. Perhaps, AntReckoning [11] is the related work that is
closest to our approach, although it not based on machine learning, but
on Ant Colony Optimization (ACO). Like our approach, the predictions
of AntReckoning are much better than those of Dead Reckoning.
However AntReckoning presents a challenge: a specialist much con-
figure the multiple parameters, and this can be a formidable task, de-
pending on the complexity and richness of the game. Using machine
learning those parameters are simply “learned”. We believe our results
show that it is very promising to use machine learning to predict
movement thus avoid exchanging messages and reducing MMOG
bandwidth consumption.

The rest of this paper is organized as follows. Section 2 gives defi-
nitions and describes related work in the field of MMOG movement
prediction. Section 3 gives a brief overview of machine learning and the
algorithms we employed. In Section 4 Smart Reckoning is described,
including the implementation, an overview of the World of Warcraft
game for which the experiments were executed, and the real traces
employed. Results obtained are described in Section 6. Finally the
conclusions follow in Section 7.

2. Movement prediction techniques: definitions & related work

One of the biggest challenges of MMOGs is the need to guarantee a
consistent game view for the multiple players. For example, consider
two players A and B. Consider that player A’s avatar is stationary while
player B’s avatar moves on a straight line or changes the direction. At
this moment, player A needs to update B’s position in the game world.
The simplest way to accomplish that is to have Player B send a message
to player A to inform about the change which must be “seen” by player
A. If movements are very frequent, then the number of messages ex-
changed is also very frequent; depending on the number of players, they
need to exchange a potentially huge number of messages. Techniques
for predicting movement can be used in order to avoid at least some of
those messages.

In this section we initially present the classical Dead Reckoning
algorithm and several variants that have been proposed. Next, we
present other relevant work for keeping the consistency across multiple
players of MMOGs. The problem is then considered in terms of saving
bandwidth, i.e. reducing the number of messages exchanged among
players. Then we describe work that have a focus on dynamically re-
dimensioning the area of interest of the players to reduce the required

bandwidth without violating the consistency. Finally we make a re-
ference to a survey on MMOGs published in 2012, before most of the
other work described in this section.

2.1. Dead reckoning

Dead Reckoning is one of the earliest and most popular techniques
for movement prediction. The Dead Reckoning algorithm estimates the
new position of a given player using traditional physics movement
equations and receiving as input the last known position of the moving
object [7]. Consider two players: one has just moved and the other must
update the new position. If Dead Reckoning is employed, both players
execute the algorithm and a message is sent only if the difference be-
tween the estimated new position and the actual new position is larger
than a pre-defined threshold. Besides the last known position (xt) at
time instant t, Dead Reckoning also uses the velocity =vt xt and the
acceleration =a ẍt t at time t. Other data can be used to help estimate
the forces that are applied to the moving entity. For instance, for objects
moving in a three dimensional space the orientation, angular velocity
and the angular acceleration are also needed. With these variables the
trajectory of a moving object can be computed using traditional physics
movement laws.

Basically all movement predictors employ the same pattern. As a
player moves, it also computes the estimation that other players will
make. If the real position differs from the estimation by a larger margin
than that defined by a threshold, then the player sends a message to the
other players informing the new position. Thus all players keep the
positions and compute estimates for all other players in the so called
Area of Interest (AoI), which surrounds the player and is defined and
dimensioned by each game. As mentioned above, Dead Reckoning uses
physical laws. As several games relax physical laws, so that for instance
drastic changes of movement are allowed, it is frequently not possible
to use Dead Reckoning. Even when it can be used, some authors argue
that it presents notoriously imprecise results in practice [1]. Thus sev-
eral other approaches including variants of Dead Reckoning have been
proposed.

Pantel and Wolf were some of the first to evaluate the feasibility of
using Dead Reckoning in network-based multiplayer games [19]. The
motivation for using predictions based on Dead Reckoning is to avoid
network transmission delays may lead to inconsistency and other pro-
blems. They evaluate the accuracy of predictions in different types of
games, including racing, sports, and action games.

McCoy and others [9] proposed the Neuro Reckoning algorithm to
improve the prediction quality of Dead Reckoning. They note that Dead
Reckoning trades accuracy for low computational complexity. Neuro
Reckoning is actually based on a bank of neural network predictors
trained to estimate changes of the speed within a relatively short time
interval. After an error is detected, instead of sending the current speed,
predictive information is sent that helps improve the prediction of the
remote entity state. Simulation results show that Neuro Reckoning
presents low computational cost and improves predictions.

AntReckoning [11] is a technique proposed to improve Dead
Reckoning. AntReckoning was inspired on Ant Colony Optmization
(ACO) and uses player interests to predict movement. In a way it is
possible to say that AntReckoning adds player interest to the Dead
Reckoning movement equations. The strategy defines a framework
based on pheromones to model the players’ temporal and spatial in-
terests. To incorporate the interests a model was created with both
attraction and repulsion forces. The intensity of the applied forces is
proportional to the attractiveness of the Points of Interest (PoI). PoI
attractiveness must be pre-configured, as they vary from one game to
another and can be any game object, including other players. Some
objects attract the players, and the attraction is stronger if the object is
in some way valuable or the player needs it urgently. In the same way
dangerous objects are repulsive to the player.

AntReckoning models these PoIs as ants that release pheromones to

E.P. Duarte, et al. Entertainment Computing 33 (2020) 100336

2



model player interests. Over time the pheromones propagate across the
game world and the concentration decays with time. AntReckoning
organizes the game world in cells. Let C be the size of a cell. Pheromone
management and the corresponding force of attraction depend from the
granularity of the cell. For each avatar P, client Q executes the Dead
Reckoning algorithm. Q calculates the concentration of the pheromone
on each cell and the respective forces that result. For the sake of scal-
ability, only the cells for a given region around P are considered, which
is called the attraction zone and is denoted by R. Note that pheromones
propagate in R even when the corresponding PoI is not in R.
AntReckoning is used in very much the same way as Dead Reckoning:
each player computes the estimation for every movement and only send
a message if the real position differs from the estimation by a margin
larger than a threshold .

Dong [20] focuses on Real-time Online Interactive Applications
(ROIA) as a whole and not only on games, but also presents a version of
Dead Reckoning. The problem tackled is the fact that the classical Dead
Reckoning algorithm does not take into consideration the user’s goal
under the current system state, and thus this Dead Reckoning version
incorporates target prediction.

In [21] the authors evaluate different movement prediction
methods for a two-dimensional racing game. The main purpose is to
evaluate how far inconsistencies due to network delays can be avoided.
A testing framework was implemented. Experiments were executed in
which data from real players was first collected and then evaluated
offline as another step. One of the conclusions is the poor performance
of Dead Reckoning, but the method the authors call “input prediction”
gave the best precision. This method is a variation of Dead Reckoning
proposed in [19] that takes into account user commands (not only the
position) to predict the next movement.

Jaya, Liu and Chen [10] also propose a variation of Dead Reckoning
integrating interest management. The result is a multi-threshold Dead
Reckoning algorithm that employs Zone Based Interest Management
(ZBIM) and is more flexible than the single threshold traditional Dead
Reckoning approach. Experiments were executed using The Open Ra-
cing Car Simulator (TORCS) and the conclusion is that the solution
improves Dead Reckoning without adding significant computational
overhead.

We note that recently there has been an increased interest in Dead
Reckoning for predicting car movement, both in the context of vehi-
cular networks [22] and car simulators [23].

2.2. Game consistency

In [24] the authors also evaluate the consistency of network-based
multiplayer games. They define a metric to quantify what they call the
“time–space inconsistency”, which is computed assuming that Dead
Reckoning is used and also taking into consideration parameters such as
clock asynchrony, transmission delays, human factors, among others.
They conclude that the diverse parameters are interrelated in terms of
their impact on time–space inconsistency. A ping pong game was em-
ployed to check how to fine-tune the game to improve the consistency.

Bondarenko [25] classifies players interactions as either short or
long-range, and evaluate the latency sensitivity of each category. Ex-
perimental results show that short-range players can tolerate con-
siderably lower latency levels than long-range interactions.

2.3. Bandwidth usage

In [26] the authors executed WoW traces to check the game re-
quirements in terms of network bandwidth. They evaluated how a pure
P2P publish-subscribe strategy would compare with an equivalent cli-
ent–server solution. The conclusion is that client–server solutions result
in lower game latencies. They then propose the usage of message ag-
gregation can have a significant impact by reducing the required
bandwidth of both the client–server and P2P solutions.

DynFilter [27] is a message processing middleware that limits the
number of messages exchanged by remote game entities to inform state
updates, so that the bandwidth effectively used stays within a pre-
defined quota. The motivation for the development of the middleware
is the fact that server-side bandwidth provisioning is critical for
MMOGs. Requirements are difficult to estimate due to factors such as
the highly variable number of players and the collective behaviors of
large numbers of players. If bandwidth provisioning fails, players can
experience problems even disconnections. Experiments show that by
DynFilter succeeds in keeping the bandwidth requirements within
certain limits while being able to deliver relevant state update mes-
sages.

A related problem is the delivery of state update messages in large-
scale P2P virtual environments, which is done in a distributed fashion
and involving a varying number of participants. In [28] this problem is
investigated under a new approach based on a model that takes into the
account what the authors call “continuous events”. A continuous event
results in a series of updates that can be pre-computed. The purpose is
to avoid sending some update messages given a series of events. The
model is defined, algorithms for continuous event management are
presented, and simulation results confirm the reduction of update
messages.

2.4. Dynamic area of interest

In [29] Shen and others show empirically that although a single
Area of Interest (AoI) is enough for single-avatar virtual environments,
it is not enough for games with multiple avatars (MAVEs Multi-Avatar
Virtual Environments). To solve the problem they propose a new con-
cept, the Area of Simulation (AoS) which combines and extends both
AoI and the popular strategy for synchronizing the game world called
EBLS (Event-Based Lockstep Simulation). AoS uses both event-based
and update-based models to manage multiple areas of interest, which is
more than traditional AoI, but less than EBLS which considers the
whole game world. Results confirm the scalability and effectiveness of
employing AoS.

In [30] the focus is on combat games, in particular on interest
management during combats, which are highly interactive and fast-
paced. The focus is on adjusting the AoI of the players depending on the
actions they execute. The purpose is to maximize the utility of the
trade-off between consistency and performance.

The focus of Yahavi and others in [31] is on NPCs: they argue ac-
tually that NPCs can be a problem as they are easily recognized by
players reducing the sense of immersion and limiting character inter-
actions. They propose a categorization of NPCs and metrics for quan-
tifying NPC performance in terms of movement, interactions, their in-
fluence on decision-making schemes. Then they propose an influence
map based on pheromones that can improve the game experience, by
giving a summary of the events in the game world which can be ef-
fectively used in the decision processes related to NPCs. Experimental
results are presented for the Quake III game.

2.5. A survey on MMOGs

Finally, also available is a survey of MMOGs with a focus on P2P
techniques and architectures [32]. The authors give an overview of
strategies used by MMOGs to maintain state information and guarantee
consistency. The techniques they identify includes super peer storage,
overlay storage, hybrid storage, and distance-based storage. The tech-
niques are compared in terms of scalability, fairness, reliability, re-
sponsiveness, and security. The survey was published in 2012, before
several of the other related work described above.

As can be seen in Table 1, related work can be classified into five
groups: Dead Reckoning and Variations; Game Consistency; Bandwidth
Usage; Dynamic Area of Interest; plus other early approaches that have
been described in the 2012 survey [32]. Furthermore, only one of those

E.P. Duarte, et al. Entertainment Computing 33 (2020) 100336

3



groups presents contributions that are comparable to ours, that is the
first group: Dead Reckoning and Variations. Within this group we chose
two works to be compared with Smart Reckoning: the original Dead
Reckoning and AntReckoning [31], which is the closest to ours, as it
also predicts avatar movement taking into account the AoI, NPCs, and
avatar behavior. Actually, the precision of Smart Reckoning in com-
parison with Dead Reckoning is similar to the improvement provided by
AntReckoning: 30%. The advantage of our approach is that AntReck-
oning requires a specialist to fine tune multiple parameters that are
employed in their model; in our case Smart Reckoning learns those
parameters by itself.

3. Machine learning techniques

Machine learning is the field concerned with the study of mechan-
isms to automatically induce knowledge from data and thus learning to
solve problems [33,34]. Machine learning is a branch of Artificial In-
telligence which is right in the intersection between Computer Science
and Statistics.

Machine learning tasks are typically classified into two broad ca-
tegories according to the available information or data: unsupervised
and supervised learning. To understand these concepts, we first define
that the data is composed by samples, which are by themselves de-
scribed by a set of attributes. Unsupervised learning detects relation-
ships among the examples, e.g., the detection of similar groups of ex-
amples. Clustering can be considered the most important unsupervised
learning task. Clustering techniques explore similarities between pat-
terns, grouping the similar units into categories or groups.

The distance (in terms of a given metric) is often used as a measure
of the similarity. In this way, the shorter the distance, the more similar
the samples are. Furthermore, the association task is an example of
unsupervised learning that searches to identify relationships among the
attributes that characterize the samples.

Classification and prediction are called supervised learning techni-
ques, as they are based on a training phase. Our contribution is based
on these techniques. The training data consist of pairs of inputs (vec-
tors) and an specification of the desired outputs. The classification task
produces a model based on the data, which is used to classify unseen
examples according to its input (attributes). A prediction task, as the
name implies, is used to predict the value of a variable in the future. It is
possible to use classification algorithms to predict the future value of

discrete variables.
There is a great variety of classification algorithms, including: linear

regression, logistic regression, decision trees, support vector matrices,
the naive Bayes algorithm, random forests, among many others. It is a
common practice to evaluate multiple different algorithms to choose
the best for a specific problem.

The evaluation of a classification algorithm is usually done using a
confusion matrix [34]. A confusion matrix can be used to check whe-
ther the results obtained with a machine learning algorithm are trust-
worthy. The matrix has information about how inputs were classified
and shows if predictions were correct. To build a confusion matrix, the
real classification must be available. It is then possible to compare the
obtained classification with the real classification. Each row of the
matrix represents the predictions while each column represents the real
classifications (or vice versa). The evaluation of the confusion matrix is
done after the end of the training phase, and with new data – called the
test data set – which consists of data that was not used before. Table 2
illustrates a simple example in which a sample can be classified as ei-
ther positive or negative. The confusion matrix clearly shows whether
predictions are a – True Negatives (TN); b – False Positives (FP); c –
False Negatives (FN); or d – True Positives (TP).

In this work we employed the Weka toolkit, version 3.8.2 [35]. After
an initial step in which virtually all algorithms available were tried,
four algorithms were selected because of their potential: Reduced Error
Pruning Tree (REPTree) [17], Local Weighted Learning (LWL), Boot-
strap Agregating (Bagging) and the Multilayer Perceptron neural net-
work [16]. Each of these algorithms is briefly described next.

The REPtree algorithm builds a decision (or a regression) tree.
Decision Tree learning (DT) is a method for approximating valued
target functions, in which the learned function is represented by a
Decision Tree. Learned trees can also be represented as sets of if-then
rules to improve human readability. These learning methods are among
the most popular of inductive inference algorithms and have been
successfully applied to a broad range of learning tasks [36]. Sample
classification is done by DT by searching down the tree from the root to
some leaf node that corresponds to the classification of the sample.
Each node of the tree specifies a test of some attribute of the sample,
and each branch descending from that node corresponds to one of the
possible values for this attribute. An instance is classified by starting at
the root node of the tree, testing the attribute specified by this node,
then moving down the tree branch corresponding to the value of the
attribute for the sample. This process is then repeated for other subtrees
[36]. Most learning algorithms based on Decision Trees employ varia-
tions of this top-down, greedy search through the space of possible
Decision Trees. The REPtree algorithm builds a DT using information
gain (or variance) and employs reduced-error pruning with backfitting
[35].

The LWL algorithm employs a form of lazy memory-based learning
and focuses on locally weighted linear regression [37]. Lazy learning
methods defer processing of training data until a query needs to be
answered. This usually involves storing the training data in memory,
and finding the relevant data to answer a particular query. LWL finds a
set of nearest neighbors and uses them to locally build a linear re-
gression model.

Bagging (Bootstrap Agregating) is a machine learning ensemble
meta-algorithm [38] designed to improve the stability and accuracy of
machine learning algorithms. Boosting is a way of combining many
weak classifiers to produce a powerful “committee”, it works by

Table 1
Related work: a summary.

Dead Reckoning and Variations
Dead Reckoning [7]: Specification of the original algorithm
Pantel and Wolf [19]: Evaluates Dead Reckoning in games

McCoy et al. [9]: Improves Dead Reckoning with Neuro Reckoning
Yahyavi et al. [11]: Proposes AntReckoning

Dong [20]: Proposes a version of Dead Reckoning with target prediction
Larsson [21]: Evaluates Dead Reckoning in terms of network delay
Jaya et al. [10]: Proposes a version of Dead Reckoning with ZBIM
Balico et al. [22]: Applies Dead Reckoning for Vehicular Networks

Chen and Liu [23]: Applies Dead Reckoning for Car Simulators

Game Consistency
Zhou et al. [24]: Defines the time–space inconsistency metric
Bondarenko [25]: Evaluates short- and long-range interactions

Bandwidth Usage
Miller and Crowcroft [26]: Message agreggation

Gascon et al. [27]: Dynamic limits for sending messages
Heger et al. [28]: Model to avoid messages for continuous events

Dynamic AoI
Shen et al. [29]: Defines AoS to manage multiple AoI

Wang et al. [30]: Adjusts AoI according to players’ actions
Yahyavi et al. [31]: Predictions that consider NPCs

A 2012 Survey
Gilmore and Engelbrecht [32]: A survey that describes other early approaches

Table 2
Example of a confusion matrix.

Classified : Negative Classified : Positive

Reality : Negative TN = a FP = b
Reality : Positive FN = c TP = d

E.P. Duarte, et al. Entertainment Computing 33 (2020) 100336

4



sequentially applying each classification algorithm for multiple ver-
sions of training data and takes a weighted majority vote from the
classifiers employed. At each iteration the weights are computed ac-
cording to the error (or loss) for each example of the learning algo-
rithm. Initially, all the weights are the same, but at each round, the
weights of the samples that are misclassified are increased so that weak
learners are forced to put an extra effort on these samples during the
training phase. Although this strategy is usually applied with algo-
rithms based on decision trees, it can be used with any type of learning
algorithms.

Finally, Multilayer Perceptron 39 are mathematic models inspired
by the neural structure of intelligent organisms that acquire knowledge
by experience. The network is composed by processing units, neurons
that are linked by communication paths. This connection is associated
with a weight value called the synaptic strength. In a neural network, the
knowledge is distributed across the network, and stored at the synapses
of each neuron. During the learning phase, synaptic weights, and
threshold values are adjusted until they yield the desired outputs. In the
end the network can be used to solve the problem.

The user has to choose several parameters, including the network
topology, the number of layers, the number of neurons of each layer,
and the functions associated with the neurons. Other parameters are
related to the learning algorithm: a termination criterion, the learning
rate, and the initial weight values. To start the process, a set of training
patterns (input, and desired outputs) is necessary.

A typical topology for structuring the neurons is a multi-layer neural
network 39. The output layer is the layer from which the final response
is obtained. Intermediate layers are called hidden layers because their
outputs are not readily observable. In this kind of neural network, the
information flows from the input layer to the output layer without re-
turn cycles (feed forward topology).

There are different learning algorithms; the most well known is the
back-propagation learning algorithm 39. This algorithm works in two
major steps: 1) the input is presented to the input layer, and propagated
until it reaches the output layer; and 2) the output is compared to the
desired one, and the error is computed. The error is then used to update
the weights, first of the output layer. Then the algorithm continues
computing the error, and computing new weight values, moving layer
by layer backwards toward the input. These steps are repeated for each
available input, and are called an “epoch”. Several epochs may be ne-
cessary to eventually reach a steady state and obtain the solution.

4. The Proposed Strategy: Smart Reckoning

In this section we first present the Smart Reckoning strategy to
predict avatar movement using machine learning. Next, we describe its
application to a very popular game: World of Warcraft (WoW)1 that has
sold over 100 millions copies and is played in 224 countries and ter-
ritories [12].

4.1. Description

Smart Reckoning is based on machine learning and only requires
game data to learn and take decisions. Game data is usually available as
traces which are simply collected as regular players play the game. In a
way, a game trace tells the story of how the game was played. Before a
trace is used it is of course cleaned and put in a format that can be
understood. Fig. 1 shows that the learning models use the game traces
as input to learn gameplay patterns.

Avatar movement depends on its current position and what is in it
area of interest. In the proposed strategy each machine learning algo-
rithm is trained with input data obtained from the real traces that must
include (i) the avatar position and direction and (ii) the set of Non-

Playable-Characters (NPCs) and other avatars in the current area of
interest, to produce as output (iii) the next position and direction of the
avatar. As we were running the first trials we observed that when the
avatar moved on a straight line, Dead Reckoning alone resulted in good
predictions. Instead when the avatar changed the direction, Dead
Reckoning fails completely, actually in this case it does not make sense
to run Dead Reckoning. These factors were decisive in the design of the
proposed strategy, as described next.

Smart Reckoning consists of two phases and is invoked every time a
player needs to render the avatar of another player. In the first phase, a
machine learning algorithm determines whether the Dead Reckoning
algorithm will correctly predict the new position of the avatar. Dead
Reckoning assumes that a player moves on a straight line and uses
physical laws to predict the next position. If the machine learning al-
gorithm decides that Dead Reckoning will fail in its prediction, the
second phase is executed. In this case the assumption is that the avatar
will change its direction. The new direction is decided by the player
given her individual game strategy. Thus it may depend on the NPCs in
the area of interest, other avatars, among other factors. In this way in
the second phase a machine learning algorithm is used to determine the
new angle corresponding to the change of direction of the avatar.

Fig. 2 shows that the information about the current game environ-
ment is used as input to the proposed strategy. A particular player
position and information about its environment in the game is taken as
input to Phase 1 which decides if Dead Reckoning is enough to compute
the new position of this player. In other words, in this phase the main
question is whether the player is likely to continue moving on a straight
line or will change the direction. If the conclusion is that the player will
continue on a straight line then Dead Reckoning is used to compute the
new position. Otherwise the second phase is triggered, in which another
learning model is used to compute the new direction, i.e. the angle of
the player’s next move. Whatever the decision (the player will move on
a straight line or will change direction) the final output is the new
position predicted for the player.

It is important to highlight that the proposed strategy uses game
traces to learn the models but, after the models are incorporated into
the game no more training is needed. In other words, we are using and
off-line approach.

4.2. Application to WoW

World of Warcraft (WoW) is a Massively Multiplayer Online Role
Playing Game (RPG). The RPG game genre has some unique char-
acteristics: it is necessary to measure quantitatively each player’s pro-
gress, there is a strong social interaction among players, it is possible to
personalize the avatars and the system’s architecture is focused on al-
lowing a huge number of players. In the World of Warcraft game, the
players can observe their progress along the time as they change levels,
acquire equipment, become richer, and conquer achievements by ex-
ecuting certain tasks. In order for a player to progress, the corre-
sponding avatar engages in battles with monsters or are sent on quests
by NPCs. Both actions can be executed either by a single player or in
groups, and rewards (also called experience points) are received as a
result.

Within the World of Warcraft game, we chose the city of Ironforge
as we could find reliable public game traces collected in this city.
Players can choose one of two factions in the game: the Alliance and the
Horde. Ironforge is one of the capitals of the Alliance. Depending on the
server to which the player is connected, it is possible to engage in
Player-versus-Player (PvP) battles, which are between players of dif-
ferent factions. As Ironforge is a capital of the Alliance, it is highly
unlikely to be visited by avatars of the Horde, so aggressive actions are
uncommon there. This is enforced by the fact that NPCs of this city
actually attack avatars of the Horde. Ironforge is particularly important
for being the initial city for every dwarf avatar, and because of this fact
it is common to see both high and low level players there. An avatar of a1 https://worldofwarcraft.com

E.P. Duarte, et al. Entertainment Computing 33 (2020) 100336

5



high level player (above level 20) can ride mounts that are much faster
than a simple walking avatar, and above level 60 the mounts can even
fly. A NPC of this city can perform the following roles: Auctioneer,
Banker, Battle Master, Collector, Innkeeper, Merchant, among others.
Each individual player may or may not be interested in any of this NPCs
depending of its own role, for example a Battle Master is not likely to be
interested in a Merchant selling sewing material, or an avatar of a high
level player will not be interested in quests for beginners.

Although WoW is a three-dimensional game, we employed the
Thottbot Position System [14] that maps the position of every element
to a two-dimensional space ignoring the height. Thottbot is one of
multiple plugins/extensions that have been created by the WoW com-
munity to improve/personalize the game experience. Thottbot was
developed to collect statistical data about the game, including for ex-
ample data on how long elements stayed intact, the positions of NPC’s,
the positions of enemies, among many others. Samples of data collected
across the world were sent to a central server. In 2010 Thottbot was
discontinued and incorporated into the WowHead database [40], which
is one of the traces we employed in this work. The position of a player is
defined on a two-dimensional space by tuple (x,y), where

x y0 , 100, the superior left corner represents (0,0). The Area of
Interest is defined as a circle with radius =d 100 game units and the
center on the corresponding avatar [13]. The field of vision of a player is
defined taking into account the player position, the direction the player
is looking to, the maximum angle within which an avatar or NPC is
visible is defined as = °80 , which is similar to human vision.

In order to train and test the learning models we employed data
collected from real players available in two plublic traces: WowPosition
[13] and WowHead.2 Actually the dataset we employed consists of a
combination of what is available in these two traces. An entry of the
dataset consists of the following fields, which are described next:
x y AngleOfView DeadReckoning OldMovementAngle MovementAngle, , , , , ,
and data about avatars and NPCs that are within the field of vision of
the player. The tuple x y( , ) corresponds to the position of avatar. The
AngleOfView indicates the direction to which avatar is looking. The
DeadReckoning field indicates whether the classical algorithm predicted
the last movement correctly or not; this was an important field for
training the new learning algorithms in the first phase of the proposed
strategy. The OldMovementAngle and MovementAngle fields describe the
last angles the player has taken and the respective timestamps. These
fields were important to train the algorithms in the second phase of the
new strategy. Basically, the algorithms of the first phase we trained
ignoring the OldMovementAngle and MovementAngle fields and in the
second phase ignored the DeadReckoning field.

The data about other avatars and NPCs within the field of vision are:
their position, the distance to those entities and the angle between the
player’s avatar and each entity. The maximum number of entities N in
the field of vision is limited; in this way if there are more than N en-
tities, the closer ones are taken into consideration and the others are
ignored. In order to determine whether an avatar or NPC is within the

Fig. 1. Game traces are obtained from monitoring and employed by the learning models.

Fig. 2. Smart Reckoning consists of two phases.

2 http://www.wowhead.com.

E.P. Duarte, et al. Entertainment Computing 33 (2020) 100336

6



field of vision it is enough to compute the an angle between the two
taking into account the position and the angle corresponding to the
direction of the avatar (AngleOfView). The WoWPosition trace employs
the original WoW coordinates, while WoWHead which is important as it
features NPCs as well as more game information, uses the Thottbot
Position System. The main reason that we built our dataset with the
Thottbot Position System is that all the information about NPCs is
available in this system.

5. Experimental results

In this section we present experiments that were executed to eval-
uate Smart Reckoning and in particular to answer the question of how
much machine learning improves the prediction in comparison with
Dead Reckoning. The implementation was based on the Weka toolkit3.
After a round of preliminary investigations, in which virtually all the
algorithms available in Weka were checked, the four algorithms de-
scribed in the previous section stood out for the good results they
presented. These were the algorithms we thus employed to predict
gamer movement: Reduced Error Pruning Tree (REPTree), Local
Weighted Learning (LWL), Bootstrap Aggregating (Bagging) and Mul-
tilayer Perceptron (MLP). As mentioned before, the REP-Tree algorithm
is based on decision trees; the LWL algorithm is based on a weighted
voting strategy. The Bagging algorithm generates multiple versions of a
classifier using multiple versions of the original training set. Finally, the
Multilayer Perceptron is a neural network.

As mentioned before, the experiments were executed for the World
of Warcraft (WoW) game, using the two public traces described in the
previous section that were available for the Ironforge city of is game:
WoWPosition and WoWHead. These traces track real gamers for several
hours. The WoWPosition trace only shows avatar positions, while
WoWHead includes more game information such as NPC location,
enemies, maps, among others. Our dataset shows for each player and at
each time instant which NPCs and avatars are within the AoI. The
WoWPosition trace adopts an area of interest that is a circle with radius
of 100 game units (referred to as d). The angle that restricts the vision
of each player was set to 80 degrees, which is similar to that of hu-
mans. Actually two datasets were created, the first using data from the
first hour and the second using data from the eighth hour. Table 3
shows a description of the two datasets (Dsets). The table shows
number of entries in each dataset, each entry corresponds to the posi-
tion of one avatar in the game. The table also shows the accuracy of
Dead Reckoning (DR Accuracy) and the number of distinct avatars in
the dataset (#Avtrs). The last two fields indicate the initial and final
timestamps (Init Tstamp & Final Tstamp) for each dataset. Furthermore,
the value of visible players and NPCs, N, was set to 7.

The average accuracy of Dead Reckoning considering the two da-
tasets was 57.89%, this corresponds to the number of messages that
were not transmitted among the players to inform a new position. The
accuracy for the first dataset was 61.17% while the accuracy for the
second dataset dropped to 44.54%. Note that the number of distinct
avatars also drops from 164 to 43, thus there are less players that ex-
change messages in the second dataset.

Next we present results of three experiments. All experiments were
executed after training the algorithms with the first dataset shown in
Table 3, all the results we present next were obtained by running the
test dataset.

The first experiment was executed to evaluate the use of the
learning models to determine whether Dead Reckoning will succeed in
predicting the next movement or not. The second experiment was
executed to evaluate the prediction of the angle when the avatar
changes the direction after Dead Reckoning is predicted to fail. The
third experiment was executed to investigate the precision of the

strategy whenever the algorithm computes the angle in which the di-
rection changes (independent of the prediction about Dead Reckoning).
Last, we present the final results for all algorithms.

5.1. The first experiment: predicting dead reckoning success

The purpose of the first experiment was to evaluate the accuracy of
using machine learning to decide whether Dead Reckoning will succeed
or fail in its prediction. Thus, given an avatar at a certain position and
time instant, the output of the machine learning algorithm was “yes” if
it considered that Dead Reckoning would correctly determine the next
position, and “no” otherwise. This is actually the first step of the pro-
posed strategy as described in Section 3. If the machine learning algo-
rithm predicts that Dead Reckoning is not going to succeed, then the
second phase of our strategy is triggered, which predicts the angle at
which the avatar will make the next movement. The accuracy reflects
the percentage of times that the learning model was correct, and four
cases are possible. A true positive (TP) corresponds to a case in which
the machine learning algorithm predicted that Dead Reckoning would
succeed and it did succeed, while in a true negative (TN) the machine
learning prediction was that Dead Reckoning would not succeed, and
exactly that happened. The false negative refers to the case in which the
machine learning prediction is that Dead Reckoning is going to fail, but
it actually succeeds in computing the next movement correctly. Finally
the false positive refers to the case in which machine learning predicts
that Dead Reckoning will succeed, but it fails.

The results are presented in Table 4. For this table we show the
percentages obtained for TP, FP, TN, FN, as well as the overall accuracy.
Thus for example, consider all situations for which Dead Reckoning did
succeed. Each algorithm predicted some of those situations correctly
(TP) but for others it was incorrect (FN). Let TP′, TN′, FP′ and FN′ be the
numbers of cases. Thus in the table TP = TP′/ (TP′ + FN′); FN = FN′/
(TP′+FN′); FP = FP′(FP′ + TN′); TN = TN’/(TN′ + FP′). It is possible
to notice that the overall average accuracy (TP + TN) of all algorithms
is 76.60%. Actually the Bagging algorithm reached an average accuracy
of 81.10%, the predictions of the success of Dead Reckoning were even
higher for Bagging, 83.17%. The average percentage of false positives is
26.59%, i.e. the machine learning algorithms predict that Dead Reck-
oning will fail, but it succeeds. The effect of a false positive is that the
second phase of the algorithm is triggered, it was not necessary to do so.
The average percentage of false negatives was 20.70%, comparing with
true negatives (73.4%) it is possible to conclude that the algorithms
have a quite high rate of success in the predictions both of the success
and failure of Dead Reckoning.

5.2. The second experiment: predicting the change of direction

The second experiment was also executed to investigate the preci-
sion of the learning models to predict the angle of a change of direction.
As in this case Dead Reckoning fails, the training and testing datasets
are those indicated in Table 3, except that all entries for which Dead
Reckoning succeeded were removed. We assume that the prediction is
correct when the error corresponding to the difference of the real angle
and the computed angle is less than °15 .

The results are shown in Table 5. Considering the overall average
for all algorithms, the percentage of correct predictions (Correct Preds)
is 56.5%. Again the Bagging algorithm achieved the best results, with a
percentage of 83.78% of correct predictions for the new movement

Table 3
The new generated database.

Dset #Entries DR Accuracy #Avtrs Init Tstamp Final Tstamp

1 19870 61.17% 164 63445137060 63445140659
2 4885 44.54% 43 63445165860 63445169459

3 https://www.cs.waikato.ac.nz/ml/weka/

E.P. Duarte, et al. Entertainment Computing 33 (2020) 100336

7

https://www.cs.waikato.ac.nz/ml/weka/


angle, and the error is in average 15.35% while the average error for all
algorithms is 29.62%.

5.3. Third experiment: precision of the second phase independent of the first
phase

The second experiment was also executed to investigate the preci-
sion of the learning models to predict the angle of a change of direction,
but in all those cases in which the angle is computed. Thus false ne-
gatives of the first phase are included: the prediction had been that
Dead Reckoning would fail but it succeeded. Thus the datasets for
traning and testing each algorithm were built from the original datasets
indicated in Table 3 with TP and FN entries alone.

Table 6 shows that the overall average accuracy for all algorithms
was equal to 48,97%. In comparison with the previous experiment, it is
possible to observe that the average accuracy for the same algorithms
was 43.38%, thus an improvement of 5.49%. The conclusion is that
even when the algorithms predict that Dead Reckoning will fail but it
does not, the final outcome is often correct. As expected the average
error of this experiment is of course larger than that of the previous
(34.88% and 29.62%, respectively). This is expected as we are also
computing the error of the false negatives.

5.4. Final results for the two phases

The final results indicating how much bandwidth each algorithm
saves is presented in Table 7. The complete datasets in Table 3 were
used. The best algorithm in this case is Bagging which saves 78.76% of
the bandwidth that is required without any movement predictor. RE-
Ptree saves 76.78% of the bandwidth. MLP has lower accuracy
(66.16%) and the worst is LWL which has an accuracy of 43.78% that is
even lower than the original Dead Reckoning algorithm (44.54%).

In comparison with AntReckoning which improves the accuracy of
Dead Reckoning by 30% [31]. Our results for two algorithms are better
than that (Bagging and REPtree). However, as mentioned before the
great advantage of using our approach is that no specialist is required to

configure multiple parameters as is the case of Ant Reckoning.
As a final comment, we measured the time required both to train

our models and run a test. The time taken to train the neural network
which was the slowest was 1160.5 s. Then the time taken to run the
tests on 4885 instances was 0.48 s, thus the time to run model to make a
decision with Smart Reckoning embedded in the game is 0.48/
4885 = 0.000098 s, i.e. 98 microseconds. Note that we are assuming
that both neural networks are executed in parallel.

6. Conclusions

This work presented Smart Reckoning, a new strategy based on
machine learning for avatar movement prediction to reduce the net-
work bandwidth consumption of MMOGs. The problem is very relevant,
as millions of concurrent players can be playing the game and ex-
changing messages informing new position updates. Smart Reckoning
consists of two phases: in the first phase a learning model is employed
to predict whether Dead Reckoning will succeed or fail in determining
the next movement. The second phase is based on the assumption that if
Dead Reckoning fails, the avatar will change direction, and a learning
model is employed to compute the angle of this change of direction. To
validate the proposed strategy we employed the World of Warcrat
game, and public traces of real players were employed for training and
testing the learning models. Four machine learning algorithms were
employed: Reduced Error Pruning Tree (REPTree), Local Weighted
Learning (LWL), Bootstrap Aggregating (Bagging) and Multilayer
Perceptron. Results obtained with the Weka toolkit show an overall
average accuracy of 76.60% for the first phase and 51.502% for the
second phase. The Bagging algorithm was the best and its accuracy in
first phase was of 81.10% and 73.37% for the second phase. The ac-
curacy effectively represents the number of messages that are saved by
the algorithms. In comparison with related work, we note that as
AntReckoning improves the accuracy of Dead Reckoning by 30% our
results are similar, but the best algorithms performed better than
AntReckoning. However, the great advantage of using Smart Reckoning
is that no specialist is required to configure multiple parameters as is
the case of Ant Reckoning: using Machine Learning, the parameters are
automatically learned.

Future work includes adding more player information to the dataset
to check whether the results can be improved even further. In addition,
we are looking forward to seeing results of the proposed strategy ap-
plied to other MMOGs including other genres of online games. Finally
there are many different open research questions on the application of
machine learning for predicting avatar movement. For instance, a re-
levant point for future investigation is why the accuracy of the different
algorithms vary so widely in this context. Last, more work is also
needed to apply the proposed strategies make predictions on line.

Declaration of Competing Interest

None.

Acknowledgments

This work was partially supported by Brazilian Education Ministry –
CAPES and Brazilian Research Council – CNPq Grant 311451/2016–0.

Table 4
Predicting whether Dead Reckoning will succeed or not.

Algorithm TP FP TN FN Accuracy

Multilayer Perceptron 81.35% 22.98% 77.02% 18.65% 79.42%
Bagging 83.17% 21.43% 78.57% 16.83% 81.10%

LWL 69.92% 39.82% 61.18% 30.08% 65.85%
REPTree 82.74% 23.16% 76.84% 17.26% 80.04%

Overall Average 79.49% 26.59% 73.40% 20.70% 76.60%

Table 5
Results for the precision of angle prediction.

Algorithm Error Correlat Coeff Correct Preds Wrong Preds

MLP 33.44% 0.81 1067(49.04%) 1109(50.96%)
Bagging 15.35% 0.92 1823(83.78%) 353(16.22%)

LWL 52.50% 0.79 230 (10.56%) 1946(89.44%)
REPTree 17.20% 0.91 1799(82.67%) 377(17.33)%
Average 29.62% 0.85 56.50% 43.48%

Table 6
Results of the third experiment.

Algorithm #Entries Error CC Correct Preds Wrong Preds

MLP 2167 36.75% 0.76 1021 (47.12%) 1146 (52.88%)
Bagging 2193 21.86% 0.87 1609 (73.37%) 584 (26.63%)

LWL 2272 55.79% 0.67 312 (13.73%) 1960 (86.26%)
REPTree 2237 25.12% 0.85 1563 (69.87%) 674 (30.13%)
Average 2717.25 34.88% 0.78 51.02% 48.97%

Table 7
Final results for the two phases.

Algorithm Accuracy

MLP 66.16%
Bagging 78.76%

LWL 43.78%
REPTree 76.78%

Original Dead Reckoning 44.54%

E.P. Duarte, et al. Entertainment Computing 33 (2020) 100336

8



References

[1] M. Claypool, K. Claypool, Latency can kill: precision and deadline in online games,
Proceedings of the First Annual ACM SIGMM Conference on Multimedia Systems,
2010, pp. 215–222.

[2] C.-Y. Huang, C.-H. Hsu, D.-Y. Chen, K.-T. Chen, Quantifying user satisfaction in
mobile cloud games, in: Proceedings of Workshop on Mobile Video Delivery,
MoViD’14, ACM, New York, NY, USA, 2013, pp. 4:1–4:6. https://doi.org/10.1145/
2579465.2579468. http://doi.acm.org/10.1145/2579465.2579468.

[3] S. Schmidt, S. Zadtootaghaj, S. Möller, Towards the delay sensitivity of games: there
is more than genres, Quality of Multimedia Experience (QoMEX), 2017 Ninth
International Conference on, IEEE, 2017, pp. 1–6.

[4] A. Yahyavi, B. Kemme, Peer-to-peer architectures for massively multiplayer online
games: a survey, ACM Comput. Surv. (CSUR) 46 (1) (2013) 9.

[5] A. El Rhalibi, D. Al-Jumeily, Dynamic area of interest management for massively
multiplayer online games using opnet, in: Developments in eSystems Engineering
(DeSE), 2017 10th International Conference on, IEEE, 2017, pp. 50–55.

[6] D. De Felice, M. Granato, L.A. Ripamonti, M. Trubian, D. Gadia, D. Maggiorini,
Effect of different looting systems on the behavior of players in a mmog: simulation
with real data, eHealth 360, Springer, 2017, pp. 110–118.

[7] IEEE-SA, Ieee standard for distributed interactive simulation - application protocols,
IEEE Std 1278.1-1995 (1996) i–doi:10.1109/IEEESTD.1996.80831.

[8] I. Newton, Philosophiae naturalis principia mathematica, Vol. 1, G. Brookman,
1833.

[9] A. Mccoy, T. Ward, S. Mcloone, D. Delaney, Multistep-ahead neural-network pre-
dictors for network traffic reduction in distributed interactive applications, ACM
Trans. Model. Comput. Simul. (TOMACS) 17 (4) (2007) 16.

[10] I. Jaya, E.S. Liu, Y. Chen, Combining interest management and dead reckoning: a
hybrid approach for efficient data distribution in multiplayer online games,
Distributed Simulation and Real Time Applications (DS-RT), 2016 IEEE/ACM 20th
International Symposium on, IEEE, 2016, pp. 92–99.

[11] A. Yahyavi, K. Huguenin, B. Kemme, Interest modeling in games: the case of dead
reckoning, Multimedia Syst. 19 (3) (2013) 255–270.

[12] Blizzard, Azeroth by numbers, 2013. <http://media.wow-europe.com/
infographic/en/world-of-warcraft-infographic.html>.

[13] S. Shen, N. Brouwers, A. Iosup, D. Epema, Characterization of human mobility in
networked virtual environments, in: Proceedings of Network and Operating System
Support on Digital Audio and Video Workshop, ACM, 2014, p. 13.

[14] WoWHead, It’s flat! using wowhead maps, 2010. URL http://www.wowhead.com/
news=63952/its-flat-using-wow head-maps.

[15] A. Skoglund, M.L. Course, Locally weighted learning for control, Artif. Intell. Rev.
11 (1997) 11–73.

[16] B.D. Ripley, Pattern recognition via neural networks, a volume of Oxford Graduate
Lectures on Neural Networks, title to be decided. Oxford University Press [See
<http://www.stats.ox.ac.uk/ripley/papers.html>].

[17] J.R. Quinlan, Simplifying decision trees, Int. J. Man-Mach. Stud. 27 (3) (1987)
221–234.

[18] D. Opitz, R. Maclin, Popular ensemble methods: an empirical study, J. Artif. Intell.
Res. 11 (1999) 169–198.

[19] L. Pantel, L.C. Wolf, On the suitability of dead reckoning schemes for games, in:
Proceedings of the 1st Workshop on Network and System Support for Games,
NetGames ’02, 2002.

[20] L. Dong, A target-predicting dr algorithm in roia cloud platform, in: P2P, Parallel,
Grid, Cloud and Internet Computing (3PGCIC), 2013 Eighth International
Conference on, IEEE, 2013, pp. 25–28.

[21] E. Larsson, Movement prediction algorithms for high latency games: A testing fra-
mework for 2d racing games, Ph.D. thesis, Blekinge Institute of Technology,
Sweden, Undergraduate Dissertation, 2016.

[22] L.N. Balico, A.A.F. Loureiro, E.F. Nakamura, R.S. Barreto, R.W. Pazzi,
H.A.B.F. Oliveira, Localization prediction in vehicular ad hoc networks, IEEE
Commun. Surv. Tutor. 20 (4) (2018) 2784–2803.

[23] Y. Chen, E.S. Liu, Comparing dead reckoning algorithms for distributed car simu-
lations, Proceedings of the 2018 ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation, SIGSIM-PADS ’18, 2018, pp. 105–111.

[24] S. Zhou, W. Cai, B.-S. Lee, S.J. Turner, Time-space consistency in large-scale dis-
tributed virtual environments, ACM Trans. Model. Comput. Simul. 14 (1) (2004)
31–47.

[25] O. Bondarenko, The influence of latency on short-and long-range player interac-
tions in a virtual environment, Master’s thesis University of Oslo, 2012.

[26] J.L. Miller, J. Crowcroft, The near-term feasibility of p2p mmog’s, in: Network and

Systems Support for Games (NetGames), 2010 9th Annual Workshop on, IEEE,
2010, pp. 1–6.

[27] J. Gascon-Samson, J. Kienzle, B. Kemme, Dynfilter: Limiting bandwidth of online
games using adaptive pub/sub message filtering, in: International Workshop on
Network and Systems Support for Games (NetGames 2015), 2015, pp. 1–6.

[28] F. Heger, G. Schiele, R. Süselbeck, L. Itzel, C. Becker, Scalability in peer-to-peer-
based mmves: The continuous events approach, in: Consumer Communications and
Networking Conference (CCNC), 2012 IEEE, IEEE, 2012, pp. 629–633.

[29] S. Shen, S.-Y. Hu, A. Iosup, D. Epema, Area of simulation: mechanism and archi-
tecture for multi-avatar virtual environments, ACM Trans. Multimedia Comput.,
Commun., Appl. (TOMM) 12 (1) (2015) 8.

[30] J.Y. Wang, K. Zhang, H.-A. Jacobsen, Combat state-aware interest management for
online games, Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference:
Posters and Demos, ACM, 2017, pp. 17–18.

[31] A. Yahyavi, J. Tremblay, C. Verbrugge, B. Kemme, Towards the design of a human-
like fps npc using pheromone maps, in: Games Innovation Conference (IGIC), 2013
IEEE International, IEEE, 2013, pp. 275–282.

[32] J.S. Gilmore, H.A. Engelbrecht, A survey of state persistency in peer-to-peer mas-
sively multiplayer online games, IEEE Trans. Parallel Distrib. Syst.

[33] T.M. Mitchell, Machine Learning, first ed., McGraw-Hill Inc, New York, NY, USA,
1997.

[34] M.I. Jordan, T.M. Mitchell, Machine learning: trends, perspectives, and prospects,
Science 349 (6245) (2015) 255–260.

[35] I.H. Witten, E. Frank, M.A. Hall, C.J. Pal, Data Mining, Fourth Edition: Practical
Machine Learning Tools and Techniques, fourth ed., Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2016.

[36] T.M. Mitchell, Machine Learning, McGraw-Hill, 1997.
[37] C.G. Atkeson, A.W. Moore, S. Schaal, Locally Weighted Learning for Control,

Springer, Netherlands, Dordrecht, 1997, pp. 75–113.
[38] R.E. Schapire, The Boosting Approach to Machine Learning: An Overview, Springer,

New York, New York, NY, 2003, pp. 149–171.
[39] S. Kartalopoulos, Understanding Neural Networks and Fuzzy Logic: Basic Concepts

and Applications, IEEE Press, 1996.
[40] WowHead, Thottbot merged with wowhead framework, 2010. <http://www.

wowhead.com/news=175371/thottbot-merged-with-wowhead-framework>.

Elias P. Duarte Jr. is a Full Professor at Federal University of Parana, Curitiba, Brazil,
where he is the leader of the Computer Networks and Distributed Systems Lab (LaRSis).
His research interests include Computer Networks and Distributed Systems, their
Dependability, Management, and Algorithms. He has published nearly 200 peer-reviewer
papers and has supervised more than 120 students both on the graduate and under-
graduate levels. Prof. Duarte is currently Associate Editor of the IEEE Transactions on
Dependable and Secure Computing, and has served as chair of more than 20 conferences
and workshops in his fields of interest. He received a Ph.D. degree in Computer Science
from Tokyo Institute of Technology, Japan, 1997, M.Sc. degree in Telecommunications
from the Polytechnical University of Madrid, Spain, 1991, and both BSc and MSc degrees
in Computer Science from Federal University of Minas Gerais, Brazil, 1987 and 1991,
respectively. He chaired the Special Interest Group on Fault Tolerant Computing of the
Brazilian Computing Society (2005-2007); the Graduate Program in Computer Science of
UFPR (2006-2008); and the Brazilian National Laboratory on Computer Networks (2012-
2016). He is a member of the Brazilian Computing Society and a Senior Member of the
IEEE.

Aurora T. R. Pozo is Full Professor of Computer Science Department at Federal
University of Parana, Brazil, and chair of the Bio-inspired Computation Laboratory (C-
Bio). She received a Ph.D. in electrical engineering from the Federal University of Santa
Catarina, Brazil. She received a M.S. in electrical engineering from Federal University of
Santa Catarina, Brazil, in 1991. Prof. Aurora’s research interests are in evolutionary
computation, data mining and complex problems. She has served on several Editorial
Boards, and chaired and served on the TPC of several conferences and workshops in her
fields of interest. Prof. Aurora has published more than 100 peer-reviewed papers, and
has supervised more than 50 students, including graduate and undergraduate levels. She
is a member of the Brazilian Computer, the IEEE and ACM Society.

Pamela Beltrani is an Assistant Professor of Computer Games at Positivo University,
Parana, Brazil. She received an M. Sc. in Computer Science from Federal University of
Parana (2015) and a B. Sc. in Computer Science from the Catholic University of Parana-
PUCPR (2012). Her research interests are on Computer Game Technology, in particular
Massively Online Multiplayer Games (MMOGs).

E.P. Duarte, et al. Entertainment Computing 33 (2020) 100336

9

http://refhub.elsevier.com/S1875-9521(19)30055-2/h0005
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0005
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0005
https://doi.org/10.1145/2579465.2579468
https://doi.org/10.1145/2579465.2579468
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0015
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0015
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0015
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0020
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0020
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0030
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0030
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0030
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0045
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0045
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0045
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0050
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0050
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0050
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0050
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0055
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0055
http://media.wow-europe.com/infographic/en/world-of-warcraft-infographic.html
http://media.wow-europe.com/infographic/en/world-of-warcraft-infographic.html
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0075
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0075
http://www.stats.ox.ac.uk/ripley/papers.html
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0085
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0085
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0090
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0090
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0110
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0110
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0110
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0115
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0115
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0115
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0120
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0120
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0120
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0125
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0125
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0145
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0145
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0145
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0150
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0150
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0150
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0165
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0165
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0170
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0170
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0175
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0175
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0175
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0180
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0185
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0185
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0190
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0190
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0195
http://refhub.elsevier.com/S1875-9521(19)30055-2/h0195
http://www.wowhead.com/news=175371/thottbot-merged-with-wowhead-framework
http://www.wowhead.com/news=175371/thottbot-merged-with-wowhead-framework

	Smart Reckoning: Reducing the traffic of online multiplayer games using machine learning for movement prediction
	Introduction
	Movement prediction techniques: definitions &#x200B;&&#x200B; related work
	Dead reckoning
	Game consistency
	Bandwidth usage
	Dynamic area of interest
	A survey on MMOGs

	Machine learning techniques
	The Proposed Strategy: Smart Reckoning
	Description
	Application to WoW

	Experimental results
	The first experiment: predicting dead reckoning success
	The second experiment: predicting the change of direction
	Third experiment: precision of the second phase independent of the first phase
	Final results for the two phases

	Conclusions
	mk:H1_18
	Acknowledgments
	References




