
Algorithmica (2020) 82:1601–1615
https://doi.org/10.1007/s00453-019-00658-6

Speeding Up the Gomory-Hu Parallel Cut Tree Algorithm
with Efficient Graph Contractions

Charles Maske1 · Jaime Cohen2 · Elias P. Duarte Jr.1

Received: 13 March 2019 / Accepted: 1 December 2019 / Published online: 14 December 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
A cut tree is a combinatorial structure that represents the edge-connectivity between
all pairs of nodes of an undirected graph. Cut trees have multiple applications in
dependability, as they represent howmuch it takes to disconnect every pair of network
nodes. They have been used for solving connectivity problems, routing, and in the
analysis of complex networks, among several other applications. This work presents
a parallel version of the classical Gomory-Hu cut tree algorithm. The algorithm is
heavily based on tasks that compute the minimum cut on contracted graphs. The
main contribution is an efficient strategy to compute the contracted graphs, that allows
processes to take advantage of previously contracted graph instances, instead of always
computing all contractions from the original input graph. The proposed algorithm was
implemented using MPI and experimental results are presented for several families of
graphs and show significant performance gains.

Keywords Cut trees · Parallel algorithms · Gomory-Hu algorithm · Graph
contractions

1 Introduction

Cut trees are combinatorial strutures that represent, in a compact form, the edge-
connectivity between all pairs of vertices of a graph [1]. The edge-connectivity between
a pair of vertices s and t corresponds to the capacity of the s-t minimum cut. Cut trees
can be very useful in network dependability: for instance, if the capacity of every edge
of the graph representing a network is equal to 1, cut trees reveal in an efficient way
the number of edges that disconnect each and every pair of network nodes. Cut trees
have been used to solve multiple relevant combinatorial problems including: routing

B Elias P. Duarte Jr.
elias@inf.ufpr.br

1 Department Informatics, Federal University of Parana, Curitiba, Brazil

2 Department Informatics, State University of Ponta Grossa, Ponta Grossa, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-019-00658-6&domain=pdf
http://orcid.org/0000-0002-8916-3302

1602 Algorithmica (2020) 82:1601–1615

[2], graph partitioning and graph clustering [3,4], among others. Cut trees also can
be used in complex network analysis, biological data analysis [5,6], social network
analysis [7,8] among others [9–11].

There are two classical algorithms that are used to build a cut tree from a weighted
graph: the Gomory and Hu algorithm [12] and the Gusfield algorithm [13]. Both
algorithms are similar in the sense that both are heavily dependent on the computation
of minimum cuts between pairs of vertices; for a graph with n vertices, n−1minimum
cuts are computed. The main difference between these two algorithms is that the
Gusfield algorithm computes the n − 1 minimum cuts on the input graph and the
Gomory-Hu algorithm contracts the graph and computes the minumum cuts over the
contracted graph instances. The Gomory-Hu algorithm also requires non-trivial data
structures to manage the cut tree construction and the contracted graphs.

Parallel versions of both Gusfield and Gomory-Hu algorithms are presented in
[14] along with a new hybrid algorithm that combines both strategies. These parallel
algorithms employ a master-slave strategy to parallelize the s-t minimum cuts compu-
tations. Themaster process distributes the s and t vertex pairs for the slaves to compute
the corresponding cuts. The slaves solve the s-t minimum cuts subproblems and then
send the solutions back to the master, which updates the cut tree in construction and
sends new tasks to the slaves. The algorithm finishes when the cut tree is complete
and there are no more vertices to be separated by any s-t minimum cut. Experiments
executed with the parallel version of the Gomory-Hu algorithm showed that the graph
contractions are the single most expensive procedure employed by this algorithm,
consuming nearly half of the execution time. It has been noted that it is not trivial to
improve the efficiency of the graph contraction procedure as the slaves do not share
any global data structure.

In this work we propose a new parallel Gomory-Hu algorithm based on an efficient
strategy to implement graph contractions. The main goal is to allow slave processes to
employ previously contracted graph instances so that they do not have to do all com-
putations on the original input graph for every new task received. The implementation
of this strategy requires the master process to maintain information about the tasks
sent to each slave; results are stored and possibly used as new tasks are generated. The
slave processes in their turn need to take decisions about using or not the contracted
graphs from previous steps.

The proposed strategy was implemented with MPI and experiments are reported
which were executed on a high performance cluster. Experiments were executed for
both synthetic graphs and graphs representing real systems and networks. Results
show that the speedups are roughly linear for most of the graphs. The comparison
results show that the proposed strategy is indeed efficient, in particular for graphs with
balanced minimum cuts.

The rest of the paper is organized as follows. In Section 2 we describe both the
sequential and the parallel versions of the Gomory-Hu algorithm. In Section 3 the
proposed strategy is described and specified. The implementation and experimental
results are presented in Section 4. The conclusions follow in Section 5.

123

Algorithmica (2020) 82:1601–1615 1603

2 The Gomory-Hu Algorithm

This section starts with a description of the sequential version of the Gomory-Hu
algorithm, which is followed by a description of an existing parallel version of that
algorithm.

2.1 The Sequential Gomory-Hu Algorithm

Consider the problem of computing the edge-connectivity between all pairs of vertices
of a weighted graph G = (V , E, c), where V is the set of vertices, E is the set of
edges and c is the edge capacity function c : E → R

+. The edge-connectivity between
vertices s and t can be computed using a maximum flow algorithm which finds out
the s-t minimum cut. A s−t minimum cut is a partition {S, S} of the set of vertices
V which necessarily separates vertices s and t , in other words s ∈ S and t ∈ S. The
naive solution to this problem is compute all s-t minimum cuts between all the

(|V |
2

)

combinations of vertex pairs. Gomory and Hu [12] have shown that there are exactly
|V | − 1 cuts which include at least one minimum cut for each pair of vertices of the
graph. A cut tree is a structure that represents these |V | − 1 cuts in a compact way.

Figure 1 shows an example graph and the corresponding cut tree. As mentioned
above, the cut tree describes the edge-connectivity between all pairs of vertices of the
graph. So, for example, between vertices 3 and 7 the s-t minimum cut is {S, S} =
{{0, 1, 2, 3, 4}, {5, 6, 7}} with capacity c(S, S) = 5. Edge {3, 5} of the T tree shows
the minimum capacity between vertices 3 and 7 in G, and its removal induces a s-t
minimum cut in G.

Next we describe the sequential Gomory-Hu algorithmwhich receives a graphG as
input and builds the corresponding cut tree. In the description of Algorithm 1 the term
node refers to a cut tree vertex. Line 4 corresponds to the proposed graph contraction
strategy that is also described next.

Algorithm 1: Sequential Gomory-Hu Algorithm
input : G = (V , EG , cG) an undirected weighted graph
output: T = (V , ET , cT) the cut tree of G

1 T ← (VT = {V }, ET = ∅);
2 while ∃X ∈ VT such that |X | > 1 do
3 select node X ∈ T ;
4 contract G to form G′;
5 select a pair of vertices s, t ∈ X ;
6 compute the s-t minimum cut in G′;
7 update T ;

8 return T

Let G = (VG , EG , cG) be the input graph. The algorithm starts the construction
of the tree T = (VT , ET , cT) with a single node representing all the vertices of the
input graph, i.e. VT = VG and ET = ∅. The contracted graph G ′ = (V ′

G, E
′
G , c

′
G) is

initialized as G ′ = G. At each iteration, a node X ∈ VT such that |X | ≥ 1 is selected
which is called the pivot. The two vertices s, t ∈ X are selected. The s-t minimum cut

123

1604 Algorithmica (2020) 82:1601–1615

(a) (b)

Fig. 1 An example of weighted graph and the corresponding cut tree

between s and t is computed on the contracted graph G ′ resulting in partition {S, S}
and the cut with value c(S, S).

Two new nodes Xs, Xt are created in the T tree such that Xs = {X ∩ S} and
Xt = {X ∩ S} as well as a new edge e = {Xs, Xt } with c(e) = c({S, S}). For
each edge e′ = {X ,Y } ∈ ET incident on X and Y , we check on which side of the
s-t minimum cut {S, S} the vertices in node Y are. In case they are in S then edge
{Xs,Y } is created, connecting nodes Xs to Y . Otherwise the {Xt ,Y } edge is created
connecting nodes Xt to Y . The algorithm updates the tree in such a way that the set
of nodes VT = (VT \ {X}) ∪ {Xs, Xt } and the set of edges ET = ET ∪ {e}.

Then a new pivot X ∈ VT is selected such that |X | > 1 and the algorithm computes
the connected components of T \ X . The vertices of these connected components are
denoted V1, V2, . . . , Vk . The new contracted graph G ′ = G \ X1, X2, . . . , Xk , where
Xi = ⋃

V ′∈Vi V
′ with 1 ≤ i ≤ k. A new pair of vertices s, t ∈ X is then randomly

selected and the s-t minimum cut is computed on G ′. After the new {S, S} partition is
identified, two new nodes Xs, Xt are created in the tree, in the same way as described
above.

The algorithm iteratively computes cuts for |V | − 1 pairs of vertices. Each pair is
selected from a set of tree nodes which have not been separated by the cuts computed
so far. Cuts are computed on contracted graph instances which are built based on the
tree in construction and the input graph.

2.2 The Parallel Gomory-Hu Algorithm

The parallel version of the Gomory-Hu algorithm [14] employs the master-slave pro-
cess communication model. In this strategy the master process is responsible for
building the tree and generates s-t minimum cut problem instances which are sent
to the slave processes to solve. Contracted graph instances are built by the slaves
and minimum cuts computed in these graphs are returned to the master. This strategy
requires little synchronization as the slaves compute the s-t minimum cuts without
exchanging information with each other, but has the drawback that the computation
of some cuts is wasted, as they are invalidated by other cuts computed by other slaves.

Let p be the total number of processes proc0, proc1, ... , procp−1 which execute
the parallel version of theGomory-Hu algorithm. Initially, each process receives a copy
of the input graph G = (VG , EG , cG). The master process (proc0) initializes the tree
T = (VT , ET , cT), chooses a pivot X ∈ VT such that |X | ≥ 2. The master then
sends a task to the slave which consists of vertex pair s, t ∈ X , and a partition which

123

Algorithmica (2020) 82:1601–1615 1605

associates vertices of the original graph G with vertices of the contracted graph. After
the pair of vertices (s, t) is chosen, the partition is created as follows: each vertex in the
pivot is labeled with a unique identifier; these are the only vertices which will not be
contracted. Every other vertex will be labeled according to its connected component.
After the master has sent the task to each slave procs such that s > 0 it waits for the
results.

A slave procs in its turn, after it receives the task from themaster, builds a contracted
graph G ′. The contracted graph construction consists of traversing the list of edges
from the input graph and determining for each edge if there is a corresponding edge
in the contracted graph. Given the s and t vertices received from the master, procs
solves a s-t minimum cut problem and returns the result to the master, including s, t
and the corresponding s-t minimum cut. The master receives the result from the slave
and verifies whether the pair of vertices s and t are in the same node of the tree. In
case they are in the same node, the tree is updated. Then in the next step the master
chooses a new pivot and sends a new task to the slave.

The master of course keeps receiving and processing other results from all slaves.
However, the tree must be updated in a sequential way, as concurrent modifications
are not allowed. Thus the master processes one slave result at a time. Some results are
discarded because vertices s and t have already been separated by some other result
received from another slave.

Algorithm 2 below shows a high level description of the parallel version of the
Gomory-Hu algorithm. The send and receive operations correspond to MPI library
communication functions. In the next section the efficient graph contraction strategy
is described.

Algorithm 2: Parallel Gomory-Hu Algorithm
input : G = (V , EG , cG) , proc j , 0 ≤ j < p processes
output: T = (V , ET , cT) the cut tree computed from G

1 if proc j = 0 then
// master process

2 T ← {{VG },∅} ;
3 distribute tasks for all slaves processes;
4 while |VT | < |VG | do
5 receive result (s,t,S) from proc j , such that {S, S} is a G s-t minimum cut ;
6 if s, t are not separated then
7 update T ;
8 if T has nodes with more than two vertices then
9 send new task to proc j ;

10

11 return T ;
12 else

// slave process
13 while receiving tasks do
14 receive task (s,t,partition);
15 if task = end then
16 finish;
17 build contracted graph ;
18 compute the s-t minimum cut between s and t ;
19 send result (s,t,S) for the proc0;

123

1606 Algorithmica (2020) 82:1601–1615

3 Efficient Graph Contractions

In [14] a detailed profile of the execution time of the parallel Gomory-Hu algorithm
is presented that shows that graph contractions represent the component that requires
most of the processing time. Therefore by improving the efficiency of graph contrac-
tions it is possible to improve the performance of the algorithm as a whole. However
it is no trivial task to design an efficient strategy to implement graph contractions in
the context of the parallel Gomory-Hu algorithm.

As mentioned above, graph contractions of the original parallel Gomory-Hu algo-
rithm are executed by slave processes always using the input graph. In this section we
specify an efficient graph contraction strategy that makes it possible for the slaves to
employ contracted instances from previous steps whenever it is possible, instead of
always using the input graph. As mentioned in the previous section, the contractions
depend on the partition that is computed after the pivot is chosen. In order to specify
the proposed strategy, some definitions follow.

Definition 1 Given graph G = (V , E), we say that G ′ = (V ′, E ′) is a contracted
graph from G if:

– The set of vertices V ′ from G ′ is a partition from V
– For each {u1, u2} ∈ E there is an edge {U1,U2} ∈ E ′ if u1 ∈ U1 e u2 ∈ U2

Definition 2 Given partitions P and Q of set X , we say that P is a refinement of Q
if every element in P is a subset of some element of Q .

For example, the partition {{1, 3}, {2, 4, 7}, {5}, {6, 8}} from {1, 2, 3, 4, 5, 6, 7, 8},
is a refinement of this other partition {{1, 3, 2, 4, 7}, {5, 6, 8}} .
Definition 3 We say that the contracted graph G ′′ = (V ′′, E ′′) is a refinement of
G ′ = (V ′, E ′) if V ′′ is a refinement of V ′.

In the parallel Gomory-Hu algorithm, the contractions can be optimized since a
contracted graph is a refinement of the graph contracted in the previous step. Further-
more, it is necessary to define a consistent condition to decide which tasks produce
contracted graphs that are refinements of others. The lemma below describes this
condition. The following notation is employed: G ′(X , T ,G) is the contracted graph
induced by pivot X on the cut tree in construction T from graph G.

Lemma 1 The contracted graph G ′(X , T1,G) is a refinement of G ′(Y , T2,G) if and
only if pivot X is contained in Y .

Thus the algorithm chooses a pivot which is contained in the previous , i.e. the pivot
of the previous task sent to the slave. This strategy is sufficient to ensure that the new
contracted graph is a refinement of that used in the previous step by the same process.
Thus, the contracted graph can be built from the contracted graph of the previous step
instead of starting from the scratch with the original input graph.

In order to allow the master process to choose the pivot according to lemma 1, it is
required to store the previous pivots chosen on previously computed tasks. The node
that is chosen to be the pivot is the one with the largest number of vertices among

123

Algorithmica (2020) 82:1601–1615 1607

those contained in the previous pivot of the last iteration. This criterion increases the
chances that in the future further refinements will be found.

Another optimization strategy which was implemented consists in not executing
contractions which will not produce much smaller graphs. In other words, if the con-
traction does not reduce the number of vertices by some constant k, the contraction is
not executed and the contracted graph from the previous step is used to compute the
s-t minimum cut. For the experiments we employed k = 10.

The Algorithm 3 below corresponds to a specification of the proposed parallel
algorithm.

Algorithm 3: Optimized Parallel Gomory-Hu’s Algorithm
input : G = (V , EG , cG) , proc j , 0 ≤ j < p processes
output: T = (V , ET , cT) the cut tree

1 if j = 0 // proc j is the master process
2 then
3 processes_states[j] ← V for all j , 1 ≤ j < p ;
4 T ← {{VG },∅} ;
5 distributes tasks for all processes;
6 while |VT | < |VG | do
7 receive from proc j the (s,t,S) result, such that {S, S} is a G s-t minimum cut ;
8 if s and t are in same node X in VT // tree update
9 then

10 Xs ← X ∩ S;
11 Xt ← X ∩ S;
12 e ← {Xs , Xt };
13 c(e) ← c(S, S);
14 foreach e′ = {X , Y } ∈ ET edge incident on X in T do
15 if Y ⊆ S then
16 ET ← ET ∪ {{Xs , Y }} \ {{X ,Y }};
17 else
18 ET ← ET ∪ {{Xt , Y }} \ {{X ,Y }};
19 VT ← (VT \ {X}) ∪ {Xs , Xt };
20 ET ← ET ∪ {e};
21 if |VT | = |VG | then
22 send final message to proc j ;
23 else
24 (X , has_to_re f ine) ← chose_pivot(T , processes_states[proc j]);
25 partition ← build_partition(X, T) ;
26 (s, t) ← chose_st_pair(X);
27 processes_states[proc j] ← X ;
28 send task (s,t,partition,has_to_refine) to proc j process;

29 return T ;
30 else

// slave process
31 while receive tasks do
32 receive tasks (s,t,partition,has_to_refine);
33 if task = end then
34 finish;
35 if contraction can reduce the number of vertices of G’ then
36 if has_to_re f ine then
37 G′ ← refine_contracted_graph(G′ , partition) ;
38 else
39 G′ ← build_contracted_graph(G, partition) ;

40 S ← minumum_cut(G′, s, t) ;
41 send result (s,t,S) for proc0 process;

123

1608 Algorithmica (2020) 82:1601–1615

Algorithm 3 receives graph G = (V , EG , cG) as input and returns the correspond-
ing cut tree T = (V , ET , cT). Let p be a number of processes, proc0 is the master
process and proc j , 1 ≤ j ≤ p are the slaves. The algorithm initializes the pro-
cesses_states vector with the set of vertices of G in line 3. Then the master process
sends tasks with (s, t) vertex pairs for all slaves. The master process stores the results
received from the slaves in the loop of line 6. When a result with a (s, t) pair and a
S, S s-t minimum cut is received, the master checks if the s and t vertices are in same
tree node, in case they are the tree is updated. Updates are done in following way: take
a node X ∈ T such that s, t ∈ X then create the new Xs and Xt nodes on the tree such
that Xs has vertices X ∩ S and Xt has vertices X ∩ S. A new edge e = {Xs, Xt } in
ET with c(e) = c(S, S) is added to T .

Next, from line 14 to 18, the master process iterates over all edges e′ = {X ,Y }
updating them according with the side of {S, S} on which each vertex in Y is. If
VT = VG then the cut tree is built and master waits for the remaining results to send
the final messages to all slaves. Otherwise the master chooses a new node X node
as pivot for slave proc j using the chose_pivot procedure in line 24. The pivot is the
vertex in processes_states[j] that is contained in the node with largest cardinality.
If it is possible to find a pivot in this way, then the master sends the refine command
to the slave which contracts the graph from the previous step, otherwise the slave
will do the contraction using the input graph. After the new pivot is chosen, vector
processes_state[j] is updated and a new task is sent to the process proc j .

In line 32 slave proc j receives a task from the master. In case when the task
has label end then the tree is constructed. Otherwise, if the slave receives the refine
command then it builds the contracted graph G ′ from the contracted graph of the
previous step using the refine_contracted_graph procedure. Otherwise the contraction
process is one using the input graph with the build_contracted_graph procedure. After
the contraction is completed, proc j slave process computes a {S, S} s-t minimum cut
on G ′ and sends the (s, t, S) result to the master.

4 Experimental Results

Experiments were executed with multiple graph families, which are listed on Table
1. The BLOG, PGRI, ROME and GEO are graphs corresponding to real networks: a
blog network [15], a power distribution network [16], a network which represents the
streets of Rome [17] and a collaborative scientific network [18]. Two graph instances
were generated using Erdős–Rényi [19] and Barabási–Albert [20] models. The other
instances are synthetic graphs which have been used as benchmarks for minimum cut
algorithms and cut trees [21–23]. The noi graphs are random graphs with the set of
vertices divided in k clusters of which the inner edges tend to have higher capacities
than the edges connecting vertices of different clusters. The path graphs are random
graphs which have a path that consists of k edges with high capacity. Every vertex
not in the path is randomly connected to the path by a high capacity edge, and all
the other edges have lower capacities. Graphs of the tree type are similar to the path
graphs, however a random tree is built so that the first k vertices are connected with
high capacity edges.

123

Algorithmica (2020) 82:1601–1615 1609

Table 1 Graph families used in
the experiments Instance |V | |E |

BA 2000 9995

DCYC 1024 2048

ER 2000 10079

GEO 3621 9461

NOI 1000 99900

PATH 2000 21990

BLOG 1222 16714

PGRI 4941 6594

ROME 3353 8870

TREE 2000 21990

Experiments were executed on a high performance cluster which consists of 18
servers based on Intel� Xeon� E5-2670 processors each with with 8 cores, inter-
connected on a Gigabit Ethernet network.1

The algorithm was implemented with MPI using C/C++ and compiled with gcc
using the max level optimization parameter (-O3). Speedups were computed as S =
TS/TP such that TS is the time to execute the sequential version of algorithm and
TP is the time to execute the parallel version with P processes. Each experiment was
executed 10 times and averages are presented. Next we show the results usingGH-Opt
to refer to the algorithm proposed in this work and GH corresponds to the parallel
algorithm without efficient graph contractions.

Figures 2, 3 and 4 show the total execution times for both versions of the algorithm
using graphs of types path, noi and tree respectively. These graphs were built with
1000 vertices, a density of 20% and a varying k parameter. We note that the proposed
algorithm GH-Opt reached the best results for all instances.

The fact that the running times – in particular those shown in figures 3 and 4 – are
non monotone can be explained by the impact of parameter k on the different graph
instances. As mentioned above, the edges within a cluster have high capacities, while
the edges between clusters have low capacities. So, for small values of k there are no
balanced cuts; then as k increases the cuts become more balanced, thus the contracted
graphs become smaller. However, as k becomes too large, there are few balanced cuts
and eventually there will be no more balanced cuts.

Figure 5 shows the total execution times for both algorithms using the instances in
Table 2. For the majority of instances the proposed GH-Opt got better results. Only
with the PGRI and ROME graphs GH-Opt took longer than GH. These graphs do not
have balanced cuts and so the GH-Opt algorithm does not have many opportunities

1 The Cluster is hosted at the Central Laboratory for High Performance Computing (LCPAD) of UFPR,
and is sponsored by FINEP through the CT-INFRA/UFPR projects.

123

1610 Algorithmica (2020) 82:1601–1615

Fig. 2 Total execution times for the GH and GH-Opt algorithms for path graphs

Fig. 3 Total execution times for the GH and GH-Opt algorithms for noi graphs

123

Algorithmica (2020) 82:1601–1615 1611

Fig. 4 Total execution times for the GH and GH-Opt algorithms for the tree graph

Fig. 5 Total execution times for GH and GH-Opt algorithms for the graphs on Table 1

123

1612 Algorithmica (2020) 82:1601–1615

Fig. 6 Speedup of GH-Opt for noi graphs with 2000 vertices

to optimize contractions. For the GEO and DCYC graphs the time to execute both
algorithms are exactly the same.

Figure 6 shows the speedup of the proposed algorithm using noi graphs with 2000
vertices and density of 20% and a varying k. For up to 18 hosts, which is the maximum
number of hosts we had available to run our experiment, the speedups were roughly
linear.

Figure 7 shows the average time taken by both algorithms contracting graphs. It is
possible to confirm that the proposed strategy does have a positive impact on the total
time to build cut trees.

In order to measure the proportion of the total time that is spent with graph con-
tractions in the new algorithm we executed a batch of experiments for the noi graphs
and report the results in Table 2. It is possible to see that in the original algorithm,
graph contractions correspond to about half of the execution time. On the other hand
the proposed optimized graph contractions saved up to 26% of that proportion.

5 Conclusions

In this work we introduced new version of the parallel Gomory-Hu algorithm that
employs an efficient strategy to compute graph contractions. As graph contractions
have been shown to dominate the execution time for computing cut trees, investigating
strategies to improve its performance is relevant work. The proposed strategy allows

123

Algorithmica (2020) 82:1601–1615 1613

Fig. 7 Average time spent contracting graphs for both GH and GH-Opt

Table 2 Proportion of the total
running time used to contract for
the noi graphs

Instance (k) Original Optimized Improvement

1 53% 54% −2%

2 52% 49% 6%

3 54% 46% 15%

5 50% 37% 26%

10 42% 32% 24%

15 46% 35% 24%

20 45% 35% 22%

30 47% 38% 19%

40 46% 39% 15%

50 50% 42% 16%

100 51% 47% 8%

200 52% 52% 0%

300 52% 51% 2%

400 52% 52% 0%

500 52% 53% −2%

123

1614 Algorithmica (2020) 82:1601–1615

previously computed contracted graph instances to be employed whenever possible,
thus avoiding always computing contractions on the original input graph. In terms
of resources required to be implemented, the master process maintains information
on tasks sent to the slaves, storing results for possibly being used in the future. The
slaves, in their turn, need to take decisions about whether to use or not a previously
contracted graph instance. The strategy was implemented with MPI and executed
on a high performance cluster at UFPR. The speedup was evaluated, including a
comparison between the algorithm with and without the efficient graph contraction
strategy. Experiments were executed for multiple types of synthetic and real graphs.
The results show that speedups are roughly linear for the most instances, and that the
proposed strategy does improve the performance of the algorithm.

Future work includes designing a parallel version of the master process, since it
can become a bottleneck as the number of processes running the algorithm grows.
Furthermore, we believe that it is relevant to implement the graph contraction strat-
egy with the OpenMP library, which allows sharing the efforts among multiple local
threads running on multiple cores. Finally, we can investigate whether our parallel
strategies can be applied to or can be improved by new results such as those presented
in [24,25].

Acknowledgements This work was partially supported by the Brazilian Research Council CNPq, Grants
311451/2016-0 and 428941/2016-8.

References

1. Nagamochi, H., Ibaraki, T.: AlgorithmicAspects of Graph Connectivity. AlgorithmicAspects of Graph
Connectivity. Cambridge University Press, Cambridge (2008)

2. Duarte Jr, E., Santini, R., Cohen, J.: Delivering packets during the routing convergence latency interval
through highly connected detours. In: 2004 International Conference on Dependable Systems and
Networks, pp. 495–504 (2004)

3. Engelberg, R., Könemann, J., Leonardi, S., Naor, J.: Cut problems in graphs with a budget constraint.
In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006: theoretical informatics. Lecture notes in
computer science, vol. 3887, pp. 435–446. Berlin Heidelberg, Springer (2006)

4. Saran, H., Vazirani, V.V.: Finding k cuts within twice the optimal. SIAM J. Comput. 24(1), 101–108
(1995)

5. Mitrofanova, A., Farach-Colton, M., Mishra, B.: Efficient and robust prediction algorithms for protein
complexes using Gomory–Hu trees. In: Pacific Symposium on Biocomputing, pp. 215–226 (2009)

6. Tuncbag, N., Salman, F.S., Keskin, O., Gursoy, A.: Analysis and network representation of hotspots
in protein interfaces using minimum cut trees. Proteins Struct. Funct. Bioinform. 78(10), 2283–2294
(2010)

7. Kamath, K.Y., Caverlee, J.: Transient crowd discovery on the real-time social web. In: Proceedings of
the 4th ACM International Conference on Web Search and Data Mining, WSDM ’11, pp. 585–594.
ACM (2011)

8. Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou r3579x?: anonymized social networks,
hidden patterns, and structural steganography. In: Proceedings of the 16th International Conference on
World Wide Web, WWW ’07, pp. 181–190. ACM (2007)

9. Kim, C.-B., Foote, B.L., Pulat, P.: Cut-tree construction for facility layout. Comput. Ind. Eng. 28(4),
721–730 (1995)

10. Jermaine, C.: Computing program modularizations using the k-cut method. In: Sixth Working Con-
ference on Reverse Engineering, 1999. Proceedings. pp. 224–234 (1999)

11. Saha, B., Mitra, P.: Dynamic algorithm for graph clustering using minimum cut tree. In: ICDMWork-
shops 2006. 6th IEEE International Conference on DataMiningWorkshops, 2006, pp. 667–671 (2006)

123

Algorithmica (2020) 82:1601–1615 1615

12. Gomory, R.E., Hu, T.C.: Multi-terminal network flows. J. Soc. Ind. Appl. Math. 9(4), 551–570 (1961)
13. Gusfield, D.: Very simplemethods for all pairs network flow analysis. SIAMJ. Comput. 19(1), 143–155

(1990)
14. Cohen, J., Rodrigues, L.A., Duarte Jr., E.P.: Parallel cut tree algorithms. J. Parallel Distrib. Comput.

109, 1–14 (2017)
15. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 u.s. election: Divided they blog. In:

Proceedings of the 3rd International Workshop on Link Discovery, pp. 36–43. ACM (2005)
16. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–

442 (1998)
17. Storchi, G., Dell’Olmo, P., Gentili, M.: Road network of the city of rome. In: 9th DIMACS Imple-

mentation Challenge—Shortest Paths. Available at http://www.dis.uniroma1.it/challenge9/download.
shtml (1999). Accessed 11 Dec 2019 (1999)

18. Batagelj, V., Mrvar, A.: Pajek datasets. http://vlado.fmf.uni-lj.si/pub/networks/data. Accessed 11 Dec
2019

19. Bollobás, B.: RandomGraphs, 2nd edn. Cambridge University Press, Cambridge (2001). (Cambridge
Books Online)

20. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)
21. Nagamochi, H., Ono, T., Ibaraki, T.: Implementing an efficient minimum capacity cut algorithm.Math.

Program. 67(1–3), 325–341 (1994)
22. Chekuri, C.S., Goldberg, A.V., Karger, D.R., Levine, M.S., Stein, C.: Experimental study of minimum

cut algorithms. In: Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’97, pp. 324–333. Society for Industrial and Applied Mathematics, Philadelphia (1997)

23. Goldberg, A.V., Tsioutsiouliklis, K.: Cut tree algorithms. In: Proceedings of the 10th Annual ACM-
SIAMSymposiumonDiscreteAlgorithms, SODA ’99, pp. 376–385. Society for Industrial andApplied
Mathematics, Philadelphia (1999)

24. Anari, N., Vazirani, V. V.: Planar graph perfect matching is in NC. In: Proceedings of the 59th IEEE
Annual Symposium on Foundations of Computer Science, FOCS’2018, pp. 650–661 (2018)

25. Abboud, A., Krauthgamer, R., Trabelsi O.: New algorithms and lower bounds for all-pairs max-flow
in undirected graphs In: Proceedings of the XXth ACM-Siam Symposium on Discrete Algorithms,
SODA’2020 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://www.dis.uniroma1.it/challenge9/download.shtml
http://www.dis.uniroma1.it/challenge9/download.shtml
http://vlado.fmf.uni-lj.si/pub/networks/data

	Speeding Up the Gomory-Hu Parallel Cut Tree Algorithm with Efficient Graph Contractions
	Abstract
	1 Introduction
	2 The Gomory-Hu Algorithm
	2.1 The Sequential Gomory-Hu Algorithm
	2.2 The Parallel Gomory-Hu Algorithm

	3 Efficient Graph Contractions
	4 Experimental Results
	5 Conclusions
	Acknowledgements
	References

