
230 Int. J. Grid and Utility Computing, Vol. 11, No. 2, 2020  

Copyright © 2020 Inderscience Enterprises Ltd. 

On the design and development of emulation 
platforms for NFV-based infrastructures 

Vinícius Fülber Garcia*,  
Giovanni Venâncio de Souza  
and Elias Procópio Duarte Jr. 
Department of Informatics, 
Federal University of Paraná, 
Curitiba, Paraná, Brazil 
Email: vfgarcia@inf.ufpr.br 
Email: gvsouza@inf.ufpr.br 
Email: elias@inf.ufpr.br 
*Corresponding author 

Thales Nicolai Tavares,  
Leonardo da Cruz Marcuzzo  
and Carlos R.P. dos Santos 
Department of Applied Computing, 
Federal University of Santa Maria, 
Santa Maria, Rio Grande do Sul, Brazil 
Email: tntavares@inf.ufsm.br 
Email: lmarcuzzo@inf.ufsm.br 
Email: csantos@inf.ufsm.br 

Muriel Figueredo Franco,  
Lucas Bondan,  
Lisandro Zambenedetti Granville  
and Alberto Egon Schaeffer-Filho 
Federal University of Rio Grande do Sul, 
Porto Alegre, Rio Grande do Sul, Brazil 
Email: mffranco@inf.ufrgs.br 
Email: lbondan@inf.ufrgs.br 
Email: granville@inf.ufrgs.br 
Email: alberto@inf.ufrgs.br 

Filip De Turck 
INTEC, 
Ghent University, 
Ghent, Belgium 
Email: filip.deturck@ugent.be 

Abstract: Network Functions Virtualisation (NFV) presents several advantages over traditional 
network architectures, such as flexibility, security, and reduced CAPEX/OPEX. In traditional 
middleboxes, network functions are usually executed on specialised hardware (e.g., firewall, DPI). 
Virtual Network Functions (VNFs) on the other hand, are executed on commodity hardware, 
employing Software Defined Networking (SDN) technologies (e.g., OpenFlow, P4). Although 
platforms for prototyping NFV environments have emerged in recent years, they still present 
limitations that hinder the evaluation of NFV scenarios such as fog computing and heterogeneous 
networks. In this work, we present NIEP: a platform for designing and testing NFV-based 
infrastructures and VNFs. NIEP consists of a network emulator and a platform for Click-based VNFs 
development. NIEP provides a complete NFV emulation environment, allowing network operators to 
test their solutions in a controlled scenario prior to deployment in production networks. 

Keywords: NFV; VNF; emulation; platform; infrastructure; Click; Mininet; network. 



 On the design and development of emulation platforms 231 

Reference to this paper should be made as follows: Garcia, V.F., de Souza, G.V., Duarte Jr., 
E.P., Tavares, T.N., da Cruz Marcuzzo, L., dos Santos, C.R.P., Franco, M.F., Bondan, L., 
Granville, L.Z., Schaeffer-Filho, A.E. and De Turck, F. (2020) ‘On the design and development 
of emulation platforms for NFV-based infrastructures’, Int. J. Grid and Utility Computing,  
Vol. 11, No. 2, pp.230–242. 

Biographical notes: Vinícius Fülber Garcia is a PhD student in Computer Science at the 
Department of Informatics of the Federal University of Paraná (UFPR, Brazil) under the 
supervision of Prof. Dr. Elias Procópio Duarte Jr. He holds a Computer Science degree from 
Federal University of Santa Maria (UFSM, Brazil) and a Master degree in Computer Science 
from UFSM Post-Graduate Program in Computer Science. His research interests include, but not 
limited to, network functions virtualisation and information theory. 

Giovanni Venâncio de Souza is a PhD student in Computer Science at the Department of 
Informatics of the Federal University of Paraná (UFPR, Brazil) under the supervision of  
Prof. Dr. Elias Procópio Duarte Jr. He holds an MSc (2017) in Computer Science and a 
Computer Science degree (2016) at the same institution. His research interests include network 
function virtualisation and fault-tolerant distributed systems. 

Elias Procópio Duarte Jr. is a Full Professor at Federal University of Parana, Curitiba, Brazil, 
where he is the leader of the Computer Networks and Distributed Systems Lab (LaRSis). His 
research interests include computer networks and distributed systems, their dependability, 
management, and algorithms. He has published more than 200 peer-reviewed papers and 
supervised more than 130 students. He is currently Associate Editor of the IEEE Transactions on 
Dependable and Secure Computing, and has served as chair of more than 20 conferences and 
workshops in his fields. He received a PhD. degree in Computer Science from Tokyo Institute of 
Technology, Japan, 1997, MSc degree in Telecommunications from the Polytechnical University 
of Madrid, Spain, 1991, and both BSc and MSc degrees in Computer Science from Federal 
University of Minas Gerais, Brazil, 1987 and 1991, respectively. He is a member of the Brazilian 
Computing Society and a Senior Member of the IEEE. 

Thales Nicolai Tavares is a graduate of the course on Computer Network Technology at the 
Federal University of Santa Maria (2016) in Brazil. He is currently a substitute lecturer at the 
polytechnic school of the same university. He has knowledge in the area of computing, with 
emphasis on computer networks. His research interests are in network management, software 
networks and virtualisation of network functions. 

Leonardo da Cruz Marcuzzo holds a degree in Computer Science from Federal University of 
Santa Maria (UFSM) and currently is a MSc candidate in Computer Science at the same 
institution. His research interests include network functions virtualisation and operating systems. 

Carlos R.P. dos Santos is Adjunct Professor of Computer Science at the Department of Applied 
Computing of the Federal University of Santa Maria (UFSM), Brazil. He holds PhD (2013) and 
MSc (2008) degrees in Computer Science, both received from the Federal University of Rio 
Grande do Sul (UFRGS), where he was also Postdoctoral Research Fellow from October 2013 to 
September 2014. From May 2010 to April 2011 he was a visiting researcher at the IBM T.J. 
Watson Research Center, Hawthorne, where he developed projects on IT Service Management 
and Security Management. His current research interests focus on design and management of 
future networks and technologies, including aspects such as network virtualisation, quality of 
service management, network programmability, and security management. 

Muriel Figueredo Franco is pursuing his PhD under the supervision of Prof. Dr. Burkhard Stiller at the 
University of Zurich (UZH). He is also a Research Assistant at the Communication Systems Group 
(CSG). He holds an MSc (2017) in Computer Science from the Federal University of the Rio Grande 
do Sul (UFRGS) under the supervision of Prof. Dr. Lisandro Granville and obtained a BSc (2014) in 
Computer Science from the Federal University of Pelotas (UFPEL). His research topics include 
network functions virtualisation, information visualisation, and blockchain. 

Lucas Bondan is a PhD student in Computer Science at the Institute of Informatics of the Federal 
University of Rio Grande do Sul (UFRGS) in Brazil and an R&D Project Manager at the 
Brazilian National Research and Educational Network (RNP). From 2016 to 2018 he was a PhD 
student fellow at the Department of Information Technology of Ghent University in Belgium, 
working with security-related areas of Network Functions Virtualisation (NFV). He has a 
Computer Engineering degree from Pontifícia Universidade Católica do Rio Grande do Sul and a 
Master degree in Computer Science from UFRGS. His research interests include network 
functions virtualisation, network management and orchestration, service function chaining, 
cognitive networks, and wireless communication systems. 



232 V.F. Garcia et al.  

Lisandro Zambenedetti Granville is Full Professor of Computer Science at the Institute of 
Informatics of the Federal University of Rio Grande do Sul (UFRGS), Brazil. He holds PhD 
(2001) and MSc (1998) degrees in Computer Science, both received from UFRGS. From 
September 2007 to August 2008 he was a visiting researcher at the University of Twente, The 
Netherlands, with the Design and Analysis of Communication Systems group. He is a member of 
the Computer Networks Group, where he develops research projects on network and service 
management. As a Full Professor, he is also involved with supervision and education activities on 
undergraduate and graduate courses in both Computer Science and Computer Engineering. 

Alberto Egon Schaeffer-Filho holds a PhD in Computer Science (Imperial College London, 
2009) and is Associate Professor at Federal University of Rio Grande do Sul (UFRGS), Brazil. 
From 2009 to 2012 he worked as a research associate at Lancaster University, UK. He is a 
CNPq-Brazil Research Fellow and his areas of expertise are network/service management, 
network virtualisation and software-defined networks, policy-based management, and security 
and resilience of networks. He has authored over 60 papers in leading peer-reviewed journals and 
conferences related to these topics, and also serves as TPC member for important conferences in 
these areas, including: IFIP/IEEE IM (2019), NetSoft (2019), CNSM (2018), and IEEE/IFIP 
NOMS (2018). He is the general chair for SBRC 2019, co-chair for IEEE ICC 2018 CQRM 
Symposium, and demo co-chair for IFIP/IEEE IM 2017. 

Filip De Turck is Professor in the Department of Information Technology (Intec) of Ghent 
University with expertise in network software and research interests in adaptive large-scale data 
processing and software systems for healthcare, anomaly detection, and resilience of ICT 
infrastructures and services. In this research area, he is involved in several research projects with 
industry and academia, serves as Chair of the IEEE Technical Committee on Network Operations 
and Management (CNOM), chair of the Future Internet Cluster of the European Commission, and 
is on the TPC of many network and service management conferences and workshops and serves 
in the editorial board of several network and service management journals. Together with a team 
of PhD students and postdoctoral researchers, novel techniques and algorithms are designed, and 
validated by means of large scale evaluation studies, together with partners from industry and 
academia. 

This paper is a revised and expanded version of a paper entitled ‘NIEP: NFV Infrastructure 
Emulation Platform’ presented at the ‘IEEE 32nd International Conference on Advanced 
Information Networking and Applications (AINA)’, 2018, Cracow, Poland. 

 

 

1 Introduction 

Network Functions Virtualisation (NFV) is a novel 
networking paradigm that fosters innovation and supports the 
creation of disruptive network services (Mijumbi et al., 2016). 
In NFV, the network functions are decoupled from the 
associated hardware and executed in commodity servers  
(i.e., commercial off-the-shelf servers) by using virtualisation 
technologies. This shift provides significant advancements in 
how the networks are designed, maintained, and managed 
while improving the flexibility, scalability, and cost-benefit of 
networked environments (Lu et al. ,2015). 

All those advantages have brought NFV to the attention of 
the industry, academia, and standardisation bodies. Several 
efforts have been conducted for the development of new 
architectures, systems, and applications for NFV (Garay et al., 
2016). Despite a large number of results that have already 
appeared in this field, several challenges are still open. One of 
those challenges is to develop a de facto approach for 
predicting the impact of deploying novel Virtualised Network 
Functions (VNFs) in production environments. In this context, 
VNF emulation is a promising method that can support the 
design and evaluation of NFV-based scenarios. 

Emulation has proved to be an effective method to evaluate 
network-based environments, systems and applications (Imran 

et al., 2010; Salopek et al., 2014). In the same way, providing 
comprehensive emulation tools that support the specific NFV 
elements (e.g., Virtualised Infrastructure Manager (VIM) and 
VNF Manager (VNFM)) is of paramount importance for 
network operators, researchers, and developers. However, 
despite its inherent benefits, solutions for NFV emulation are 
still scarce, limited (e.g., due to low portability or lack of 
support for heterogeneous environments), usually they are not 
intuitive, and involve a steep learning curve before they can be 
fully adopted. 

In this paper, we present the NFV Infrastructure Emulation 
Platform (NIEP)1, a novel platform based on Click-on-OSv 
(Marcuzzo et al., 2017) and Mininet (Lantz et al., 2010) that 
allows VNF evaluation by the emulation of diverse NFV 
scenarios. NIEP allows operators to rapidly create 
heterogeneous NFV emulated scenarios. These scenarios are 
portable because of the full virtualisation strategy adopted by 
NIEP. We also show the feasibility of NIEP in a case study 
considering a Fog computing and Virtual Customer Premises 
Equipment (vCPE) scenario. We expect that NIEP will 
effectively assist network operators in the offline analysis  
of the functionality and performance of VNF deployments. 
Pre-tested configurations can be evaluated and optimal 
configurations may be established before actual VNFs are 
deployed in the network infrastructure. 



 On the design and development of emulation platforms 233 

The rest of this paper is organised as follows. In Section 2, 
the background and related work are reviewed. We then 
present the simulation/emulation requirements and the 
proposed NIEP architecture in Section 3. In Section 4, we 
discuss the data model employed to specify the network 
topologies. In Section 5, we describe a case study to  
demonstrate the feasibility of the platform. Finally, the 
conclusions follow in Section 6, along with a discussion of 
future work directions.  

2 Background and related work 

In this section, we present an overview of NFV and network 
virtualisation technologies. After reading this section, it should 
be clear that NFV brings multiple advantages in comparison 
with traditional network architectures that are based on 
middleboxes often deployed on specialised hardware. 
However, it should be also clear that there are challenges  
for the successful deployment of NFV-based solutions in 
production networks. This section also presents issues related 
to NFV prototyping and evaluation are discussed, highlighting 
the pros and cons of existing frameworks. 

2.1 Network functions virtualisation (NFV) 

NFV technology was first proposed and standardised by the 
European Telecommunications Standards Institute (ETSI) as a 
paradigm that decouples network functions from dedicated 
hardware allowing their implementation using virtualisation 
technology that can be executed on Commercial Off-The-Shelf  
 

(COTS) hardware. The fact that NFV does not require 
specialised hardware and is deployed as a virtual infrastructure 
enables the development and management of network function 
in an easy, cost-effective, and flexible way (Chiosi and Wright, 
2012). Furthermore, NFV allows the fast creation of new 
network functions that can be combined to provide complex 
network services. NFV together with other technologies based 
on virtualisation has solved the Network Ossification 
phenomenon (Handley, 2006). 

The multiple advantages of NFV technology include:  
(i) NFV is cheap, in particular in terms of capital/operational 
expenditures (CAPEX/OPEX) as general purpose hardware 
can be used; (ii) NFV is fast to deploy, configure and update; 
(iii) NFV is flexible, as virtual functions can dynamically 
migrate and by using elasticity technology they can be scaled 
up and down according to the demand; and (iv) NFV opens up 
the market, allowing new players to develop for the computer 
networks market. NFV is often employed with other 
technologies, such as Software-Defined Networking (SDN) 
(Han et al., 2015), which allows the substrate network to be 
more easily customised to fulfill the specific needs of customers. 

Individual VNFs may be combined to execute complex 
network services. Service Function Chains (SFC) (Halpern and 
Pignataro, 2015) are composed of multiple and independent 
VNFs that can be executed on different virtualisation 
environments. The IETF envisions even multi-domain SFCs, 
which should employ a hierarchy of orchestrators (Bernardos  
et al., 2018). Figure 1 shows an SFC example with three 
servers running each a hypervisor and set of VNFs which are 
interconnected forming multiple SFCs. 

Figure 1 A SFC example 

 
 

 
 

 



234 V.F. Garcia et al.  

Despite the multiple advantages, NFV increases the complexity 
and it is undeniable that before it is deployed major changes are 
required to the existing network infrastructures. Therefore,  
new technologies and tools for VNF evaluation are needed. 
Although tools such as tcpdump, ping, and traceroute can still 
be used to identify problems in virtualised networks, in NFV, 
while those tools can still be useful, new network components 
must be monitored and evaluated to identify problems such as 
bottlenecks, failures, misconfiguration, or implementation 
bugs. 

Mininet (Mininet Team, 2012) is a simple yet powerful 
tool that allows the evaluation of Software Defined Network 
technology. Mininet can be used with an external SDN 
controller for running experiments. However, Mininet does 
not offer support for experimentation with VNFs. As a 
consequence, new tools have been proposed that integrate 
Mininet with other software components that can be used to 
deploy and manage VNFs. In the next subsection, we 
present and discuss some of those efforts that have been 
proposed for NFV experimentation. 

2.2 NFV experimentation frameworks 

A number of tools and frameworks have been recently 
proposed for the experimental evaluation of NFV technology. 
EsCAPE, MeDICINE, SONATA, and Maxinet are among 
some of the most important of those tools and frameworks. 
These four platforms are described next. 

 EsCAPE (Sonkoly et al., 2015): Extensible Service Chain 
Prototyping Environment (EsCAPE) is a prototyping 
framework developed in the context of the UNIFY 
architecture, consisting of three abstraction layers: Service 
Layer, Orchestrator Layer, and Infrastructure Layer. 
EsCAPE provides a common platform that enables users 
to prototype and orchestrate SFCs whose VNFs are 
deployed as containers running Click (Morris et al., 1999). 
EsCAPE also features a built-in VNF catalog with basic 
virtual functions. EsCAPE’s network infrastructure is 
based on Mininet with OpenVSwitches (Pfaff et al., 2015) 
connected to an external SDN controller (POX) 
responsible for steering traffic between VNFs. ExCAPE 
also supports the development and test of orchestration 
components, extending Mininet to work with NETCONF. 
The focus of EsCAPE is thus on the creation and 
management of SFCs, although it can be used to prototype 
and evaluate other technologies as well. 

 MeDICINE (Peuster et al., 2016): The Multi-Datacentre 
service Chain Emulator (MeDICINE) is an NFV 
prototyping platform that was designed to emulate multi-
PoP environments in which virtual functions are executed 
on containers. MeDICINE is based on ContainerNET2, 
which extends the Mininet framework to support 
container-based VNFs. Links between complex multi-PoP 
environments are established using the Mininet API, 
allowing the specification of multiple requirements such as 
delay, bandwidth, and the packet loss rate. Docker3 is used  
 
 

in MeDICINE to deploy VNFs on these PoPs. MeDICINE 
also provides end-points for each PoP, enabling the 
interconnection of the elements also to other elements of 
the ETSI architecture. 

 SONATA (Karl et al., 2016): SONATA is a tool for NFV 
composition, testing, and orchestration. It contains an 
emulation platform based on ContainerNet (Peuster et al., 
2016) which allows developers to prototype network 
services in end-to-end multi-PoP scenarios. The platform 
also provides APIs for integration with other components 
and systems based on the ETSI specifications. 

 Maxinet (Wette et al., 2014): Maxinet is an extension of 
Mininet that can be executed in a distributed fashion, 
and in this way supports the emulation of networks. 
Maxinet works as an abstraction layer connecting 
multiple Mininet instances running on distinct hosts 
connected on a network. 

EsCAPE, MeDICINE and SONATA use containers for 
deploying and executing VNFs. Although container technology 
should be enough for most NFV use cases (GS NFV, 2013), 
container-based virtualisation presents some issues for specific 
NFV scenarios. For example, in comparison to hypervisor-
based virtualisation, containers do not provide multi-platform 
compatibility and their life-cycle management is certainly more 
expensive (Morabito et al., 2015). Moreover, as opposed to 
Virtual Machines (VMs), containers increase the vulnerability 
in terms of security threats (Mohallel et al., 2016), since each 
operating system image has its own set of vulnerabilities and 
share the same kernel. In scenarios with heterogeneous 
networks, multiple hosts with different operating systems form 
the infrastructure substrate, such as vCPE, virtual Evolved 
Packet Core (vEPC) and Fog Computing. Any given VNF can 
be deployed and migrated anywhere in the infrastructure. 

As for Maxinet, although it also supports virtual nodes 
in the same way that Mininet does, not all virtualisation 
technology is available. The main purpose is to run Mininet 
instances in a distributed way. 

In the next section, we introduce NIEP, a framework that 
integrates a minimal VNF platform (Click-on-OSv) with 
Mininet, allowing diverse NFV scenarios to be prototyped and 
evaluated. NIEP fills a gap in terms of the lack of experimental 
frameworks for evaluating heterogeneous NFV scenarios, as 
the focus of existing platforms is on SFCs and multi-pop 
environments. We believe our solution is the first to provide a 
prototyping framework for the emulation of NFV technology 
in a variety of scenarios.  

3 NIEP: NFV infrastructure emulation platform 

In this section, we describe NIEP by first, in Sub-section 3.1 
discussing a set of requirements identified that must be 
satisfied by the proposed platform. Next, in Sub-section 3.2 
the NIEP architecture is presented, with a description of all 
modules of which it is composed. Next, in Sub-section 3.3, 
the interactions between the modules are described. 



 On the design and development of emulation platforms 235 

3.1 Emulation requirements 

Emulation plays an important role in the design, development, 
and analysis of VNFs, especially for innovative functions  
and services. The emulation of a system should represent  
the system as accurately as possible, allowing the execution  
of real live tests on the emulation environment (Carson  
and Santay, 2003). The use of these environments  
has increased significantly in recent years, as they are so 
convenient for the evaluation of large-scale systems, allowing 
deep analysis of the system under realistic conditions before it 
is actually deployed. 

An emulation platform for NFV technology should 
satisfy a set of fundamental requirements. We identified the 
following requirements raised by Varga and Horing (2008), 
(Baumgart et al., 2007), and (Schaeffer-Filho et al., 2013) as 
the basis on which a novel platform for the emulation of 
NFV-based infrastructures should be designed. 

 Scalability: the platform must be able to involve a  
large number of nodes when emulating the NFV-based 
system; 

 Flexibility: it should be straightforward to define and 
update the emulation process, and the user should have 
a choice of network topologies to specify and use.  
The building blocks (e.g., hosts, switches, VNFs) with 
which the system is specified must be generic enough 
to be reused in a range of scenario definitions; 

 Remodelling: the definition of evaluation scenarios 
must be simple, dynamic, allowing fast prototyping; the 
network topology must be easily modified as needed; 

 Software execution: the building blocks provided must 
reflect those of the corresponding actual system in 
production, thus providing reliable experimental results. 

3.2 NIEP architecture 

NIEP is based on the integration of existing tools for VNF 
design (Click-on-OSv), VM management (KVM hypervisor), 
and network emulation (Mininet), plus a core element, which  
is the orchestration module. The architecture is shown in  
Figure 2. 

We start the description of the NIEP modules with Click-
on-OSv (Marcuzzo et al., 2017), an NFV system based on the 
single-process operating system OSv. Click-on-OSv leverages 
the Click Modular Router (Kohler et al., 2000) to create and 
execute virtual functions and provides a Representational State 
Transfer (REST) interface for controlling the underlying 
operations (e.g., monitoring and lifecycle management). Click-
on-OSv itself is a complete virtual machine, it simplifies the 
control and provisioning processes due to its independence 
from the host operating system. Moreover, it is possible to 
remotely create VMs on a set of heterogeneous hosts that run 
VNF functions in a distributed way. 

NIEP is based on a KVM hypervisor, which is a virtual 
VM manager that implements full virtualisation, to support the 
execution of multiple VMs running images of different 
operating systems. The Virsh tool4 is used by the NIEP 
orchestrator to manage the KVM virtual machines. It is a 
Command Line Interface (CLI) that enables VM control with 
system calls. We highlight that KVM provides better performance 

for Click-on-OSv due to VirtIO5. These virtualisation 
optimisations make packet processing by Click running on 
OSv faster than other hypervisors (e.g., VirtualBox, Xen). 

Figure 2 NIEP: the architecture 

 
 

 
 

 



236 V.F. Garcia et al.  

Mininet (Mininet Team, 2012), as mentioned above, is a 
widely used network emulator that relies on process-level 
virtualisation. This lightweight virtualisation strategy is used to 
emulate guest machines as isolated processes, with the proper 
share of memory, CPU and network resources, enabling the 
simulation of large-scale network environments. In NIEP, 
Mininet hosts are used to representing servers and clients, 
OpenFlow switches and controllers. 

Network topologies in NIEP are specified with JSON 
(JavaScript Object Notation), which also simplifies the 
infrastructure deployment process when compared to Mininet. 
Thus, users can configure a Mininet topology with hosts, 
switches, and controllers also defining other useful information 
such as resource allocation for VNFs and their interconnections 
forming SFCs. 

The NIEP-Orchestrator provides the user interface. The 
topology is entered as input, and all required actions are 
executed to instantiate system. The NIEP-Orchestrator 
consists of four elements, described next. 

 VNF repository: this module is responsible for storing 
VNFs, which are implemented as Click scripts. As 
VNFs can be deployed in a distributed fashion across  
 

multiple hosts, the repository must be universally 
accessible. Therefore it works as a marketplace where 
users can share, publish and obtain VNFs;  

 Virtualised elements manager (VEM): this module  
both controls the execution of VNFs and provides 
communication interfaces (e.g., network bridges). The 
VEM is composed of two functional blocks, the Network 
Functions blocks, which directly controls Click-on-OSv 
instances using a REST interface, and the Infrastructure, 
that controls the KVM hypervisor execution using the 
Virsh CLI;  

 Topology manager: this module allows the creation and 
initialisation of the Mininet topology. It creates all the 
specified elements (e.g., hosts, switches, controllers) 
through the Mininet API which later run user operations;  

 Interpreter: this component is responsible for validating 
the topology specifications and handling user requests 
(e.g., specifying a new network topology or obtaining 
monitoring data). The input consists of NIEP topology 
specification, and the output consists of request results.  

Figure 3 NIEP topology instantiation 

 



 On the design and development of emulation platforms 237 
 

3.3 Module interactions 

The modules of the NIEP architecture presented in the 
previous subsection are integrated by the Orchestrator, 
which as the name implies orchestrates the VNF emulation 
on the specified Mininet network topology. Initially, the 
Orchestrator receives the topology specification, forwards 
the topology to the Interpreter module which does the 
required validation, checking for mandatory elements and 
evaluating the configuration correctness. The Interpreter 
then organises the information in two sets: one with 
information on the Mininet network topology (e.g., hosts, 
switches, controllers) and the other set with information 
related to the VNFs to be executed (e.g., memory, CPU, 
interfaces, plus the Click network function itself). 

The first information set of computed by the Interpreter is 
sent to the Topology Manager – labelled with (1) in Figure 2, 
that processes the data of the Mininet environment. The 
Topology Manager, after processing the information to create 
the requested topology, triggers the Mininet emulator (1a). The 
VEM element receives the second set of information from by 
the Interpreter (2). It checks actions to be executed, which are 
forwarded to the Network Functions and Infrastructure blocks.  
The Infrastructure block (2a) executes first, creating virtual 
machines using the Hypervisor and the communication links to 
the network topology in Mininet using a bridge interface. 

At the end of this process, the user can make requests to 
the Functions Virtualisation block (2b) to start Click-on-Osv 
by fetching the user-defined Click function from the VNF 
Repository (2c). This process can also be used to deploy a 
new Click function on the same system instance, by re-
uploading and restarting the Click-on-OSv service without 
having to restart the VM or the entire topology. Figure 3 
shows the high-level communication steps to run a NIEP 
topology. 

In synthesis, NIEP is a platform that allows rapid 
prototyping and evaluation of large-scale NFV scenarios. In 
this way, it can be a valuable tool for network operators, by 
allowing the assessment of the functionality and performance 
of individual VNFs as well as SFCs before their actual 
deployment in production networks.  

4 NIEP data model 

In this section, we present the NIEP data model for defining 
network topologies. The data model includes definitions of 
VNFs and SFCs and the network topology, including hosts, 
switches, and controllers. The elements are described in 
separate JSON files and are described next. 

A VNF is described as a JSON object with five properties, 
as shown in Figure 4. The unique ID is the key to identify a 
VNF instance and is used along the execution of the emulation 
execution by the orchestrator to access the required VNFs  
as it executes tasks including monitoring, deployment,  
and VNF lifecycle operations. The other properties are  
used for VM configuration: memory requirements  
 
 

(MEMORY), number of Virtual CPUs (VCPU), and network  
interfaces (MANAGEMENT_MAC and INTERFACES). The 
MANAGEMENT_MAC corresponds to a dedicated interface 
that is employed for the sole purpose of sending and receiving 
data from the NIEP-Orchestration. The INTERFACES 
property is used to connect the emulated VNFs and hosts and 
contains the MAC address and the virtual connection  
(i.e., network bridge) ID from which data is received. 

Figure 4 VNF simplified JSON schema 

 

SFCs are also specified with a JSON file, Figure 5, composed 
of five attributes that represent the Service Function Chain. The 
attributes are as follows. The ID is unique and is used to 
identify the SFC as a whole, thus making possible to monitor 
and configure the lifecycle of all the VNFs composing the 
service. The VNFS attribute represents the set of VNFs that 
compose the SFC. The VNFS contains the identifier of the 
VNF in the context of the SFC, as well as a path for the VNF 
JSON file (created using the schema presented in Figure 4). 
The VNFs are connected each with a single Incoming Point 
(IP) and one or more Outgoing Points (OP). The boundary 
nodes (IP/OP) represent the first (IP) and last (OP) point of a 
service chain. Both IP and OP are represented by an identifier 
and a virtual connection is used for the connection of the 
elements of the SFC. 

In the specification of a VNF in a SFC Descriptor, the 
INTERFACE attribute is omitted and the CONNECTIONS 
attribute is employed instead. The CONNECTIONS attribute 
consists of four elements: Input Logical Link (ILL), Output 
Logical Link (OLL), and the associated MAC addresses  
(when necessary). The network traffic is delivered to a VNF 
from an ILL and, after being processed, the traffic is forwarded 
to the next VNF or to an OP (through an OLL connection). The 
OLL and ILL elements are specified either by an existing VNF 
ID or boundary node ID. In the case of an existing VNF,  
one of its interfaces is employed (which indicated in the 
corresponding MAC field). In the case of boundary nodes, no 
MAC is defined because the sender and receiver hosts are 
outside NIEP. 

 
 



238 V.F. Garcia et al.  

Figure 5 SFC simplified JSON schema 

 

The complete topology is represented with a third schema, 
shown in Figure 6. The five attributes of this description 
carry information about VNFs and SFCs, plus the Mininet 
emulated network infrastructure. The NIEP topology is 
identified with a unique ID. A NIEP instance is responsible 
for the execution of a topology, thus after the topology is 
deployed the ID also represents the NIEP process itself. 

The virtual functions and function chains of a given NIEP 
topology are defined by the VNFS and SFCS properties. These 
attributes specify the location of the corresponding description 
files, created according to the schemas presented above. Note 
that the VNFs used in an SFC specified with the SFCS attribute 
should no be explicit in the VNFS attribute. Whenever  
a duplicated request is required, no ID should be replicated, 
(i.e., the internal SFC ID must be different from the VNF ID). 

The Mininet network is described within a JSON object 
within the MININET attribute. This “sub-object” contains four 
attributes, each specifying an operational element of the 
emulation. The HOST attribute is an array that keeps virtual 
host IDs; the SWITCHES attribute is an array with the IDs of 
switches; The other two attributes, CONTROLLERS and 
OVSWITCHES, refer to the OpenFlow SDN network. The 

CONTROLLERS attribute contains a list of controllers; each 
object of this list consists of the ID, controller IP address  
and the PORT the controller uses to communicate. The 
configuration and initialisation of the OpenFlow controller are 
out of the scope of NIEP, which is controller-agnostic, even 
though POX (Kaur et al., 2014) is used as default. The last 
attribute OVSWITCHES is another object array, which 
specifies the IDs and connections of OpenFlow switches. Any 
ID employed in the system must be unique. 

Figure 6 Topology simplified JSON schema 

 



 On the design and development of emulation platforms 239 

Finally, the CONNECTIONS attribute is used to specify the 
interconnections of Mininet components among themselves 
and with VNFs and SFCs. The CONNECTION JSON 
object has two mandatory components: IN/OUT and 
OUT/IN. The IN/OUTIFACE and OUT/INIFACE indicate 
the virtual interface where the VNF will set up a connection. 
In the context of SFCs, the connection is specified in terms 
of its VNFs, typically one connection is defined for input 
and one for output. The connections between the VNFs of 
an SFC are specified in the SFC description file.  

5 Case study and experimental evaluation 

In this section, we describe a case study executed to obtain 
empirical results to evaluate the effectiveness of NIEP. First, in 
Sub-section 5.1, the case study described. Next, in Sub-section 
5.2, results are presented and discussed. Finally, a qualitative 
evaluation is discussed in Sub-section 5.3. The main objective 
of these experiments is to investigate whether our platform can 
efficiently and effectively emulate heterogeneous NFV 
scenarios deployed on different network topologies. We also 
assess whether/how NIEP meets the requirements defined in 
Section 3. 

5.1 Case study: description 

The experimental setup defined is composed of two 
locations: the Customer Premises (CP) and an Internet 
Service Provider (ISP), as shown in Figure 7. In the CP, a 
Mininet host acting as a client is connected to a VNF with 
limited resources (1 core, 192 MB RAM) running a static 
router to emulate Customer Premises Equipment (CPE)  
 

connected to an ISP. At the ISP side, a VNF with more 
resources (2 cores, 2 GB RAM) running a firewall is 
connected to a Mininet topology with a virtual OpenFlow 
switch (OpenVSwitch), which in turn is connected to an 
SDN Controller and a host acting as an application server. 

Four different configurations were used to evaluate how the 
number of customers connected to the ISP impacts the 
performance of NIEP. We varied the number of CPEs from 2, 
4, 8 and 16. In addition, a second configuration was tested, in 
which two VNFs implementing a firewall were deployed on 
the ISP side with the purpose of balancing the load imposed by 
the CPEs. 

The experiments were executed on the following system. 
The CP instances were executed on an Intel Core i7-
6700k@4.00 GHz server, with 8GB RAM DDR4, 4 cores, and 
running CentOS 7. The ISP, in turn, was executed on an Intel 
Xeon E3-1220v6@3.00 GHz, 8GB RAM DDR4, 4 cores, 
running Ubuntu 14.04. The hosts were connected on a 1Gbps 
Ethernet network. We employed the KVM hypervisor to 
deploy both the Mininet VM and VNFs in both hosts. 

5.2 Results 

Each experiment was repeated 30 times, results are 
presented with a confidence interval of 99%. NIEP can be 
used to emulate multiple NFV scenarios, providing fine-
grained control over several configuration parameters. The 
network topology can be easily changed, for example, to 
test different network paths, or to add, remove, and 
reconfigure hosts, or also to change link properties. The 
boot time is an important metric to be evaluated since it can 
impact the time it takes to evaluate a configuration. 

Figure 7 Experimental evaluation: environment 

 
 

 
 
 
 
 

 
 
 
 



240 V.F. Garcia et al.  

The NIEP components were instrumented to send the  
boot time to a centralised server. The longest boot time 
corresponds to the VNFs on the CP side, as their number 
grows this increases the load on the processor. At the same 
time, the number of VNFs running on the processor used to 
emulate the ISP does not change as a single experiment is 
executed, it only changes from one experiment to another. 
The VNFs are instantiated at the same time, and Mininet is 
started before that. Thus, the boot time is the time Mininet 
takes to initialise plus the average boot time of the VNFs of 
the CP side. To make it clear, this is the time it takes for the 
entire emulation setup to be ready to execute. Results are 
shown in Figure 8. 

Figure 8 NIEP evaluation: average boot time 

 

In the second experiment, two VNFs implementing firewalls 
were deployed instead of a single one. Because of this, the 
boot time is slightly higher on the CPs VNFs, as they need 
to do some additional configuration to send traffic to the 
two different firewalls. The exception is when two CP 
instances are deployed (as shown in the first two bars of 
Figure 3) – the first setup takes 529 ms plus/minus 3 ms, 
and the second setup 2 takes 532 ms plus/minus of 2.8 ms. 
This happens because with only two CP instances there are 
still free processor cores left that are used exclusively by the 
hypervisor and operating system to execute tasks related to 
the configuration and deployment of virtual machines. 

The evaluation of the performance of NIEP under heavy 
load allows the identification of bottlenecks caused by 
different factors on the emulation, due for instance to CPU 
and memory limitations. Thus if for example, physical 
resources are not sufficient, this would be reflected in the 
low throughput between the CPs and the ISP, due to the 
limited packet processing capacity. In this case, the 
throughput gets much lower than link speed (1 Gbps). iperf 
(Tirumala et al., 2005) was employed in the experiments; all 
CPs send traffic at the same time to the server running at the 
ISP side. The values obtained from each CP in each 
experiment were aggregated since CPs share the same 1 
Gbps link with which they are connected to the ISP. 

As shown in Figure 6, in all experiments executed for 
both setups the bottleneck was always the link between the 

CPs and the ISP. In this way, increasing the number of 
instances does not affect link throughput. We can conclude 
that NIEP scales well as required. 

5.3 Discussion 

Regarding the scalability, NIEP proved to be able to 
emulate complex scenarios, with increasing numbers of 
hosts, switches, and VNFs, as well as the overall topology. 
The good scalability can be explained because in NIEP the 
VNFs do not run within Mininet. Instead, the VNFs are 
connected through external bridges, which allow their 
execution remotely. On the other hand, although EsCAPE 
can also simulate complex scenarios, VNFs are deployed on 
the same host, since containers are defined within Mininet 
and connections must be established locally. 

Figure 9 NIEP evaluation: throughput 

 

Different from Mininet, the topologies NIEP employs are 
defined at a high level with JSON, which simplifies the 
process for deploying the infrastructure. Users can define, in 
addition to hosts, switches, and controllers, different types 
of VNFs, different amounts of resources that are allocated 
for the VNFs, and the connections among them, including 
the capacity of creating SFCs. 

The use of hypervisor-based virtualisation for deploying 
VNFs enables the emulation of heterogeneous network 
infrastructures since a VNF can be directly deployed on any 
server and operating system running a compatible hypervisor 
(e.g., KVM, Xen, and VirtualBox) without requiring any 
change to the VNF source code. This can be a serious 
limitation for the use of the other platforms discussed in Sub-
section 2.2, which rely on container-based virtualisation. 

Finally, NIEP is more secure that the other platforms as 
NIEP is based on VMs while the others are based on 
containers which have more vulnerabilities.  

6 Conclusions and future work 

The Network Function Virtualisation (NFV) paradigm replaces 
traditional middleboxes with virtual functions that are executed 
on general purpose hardware. NFV brings multiple advantages 



 On the design and development of emulation platforms 241 

in terms of cost and flexibility, but it also brings new 
challenges. In this work, we presented NIEP, an NFV 
Infrastructure Emulation Platform to emulate VNFs. Emulation 
platforms provide a realistic alternative to execute VNFs. This 
NIEP allows VNFs to be tested and evaluated before they are 
deployed in production networks. Most existing NFV 
emulation platforms are based on containers or process 
virtualisation. Furthermore, they do not provide native support 
for the distribution of the emulation, which should be based on 
processes running and communicating on different machines. 
Thus the emulation is limited to a single machine, which has 
obvious scalability limitations. 

NIEP is based on Click-on-OSv and Mininet. NIEP is 
based on VMs, which provides higher security guarantees 
that containers. NIEP allows the emulation of different NFV 
scenarios and VNF design and evaluation, supporting the 
emulation of heterogeneous infrastructures and scenarios. 
The evaluation of the performance of NIEP included the 
boot time and the throughput of VMs running CP and ISP 
sites. The results show that the boot time of VNFs increases 
almost linearly, indicating almost no impact of NIEP on 
VNF instantiation. Moreover, increasing the number of 
VNFs does not reduce throughput. 

Future work includes the design of a user-friendly web 
interface for network operators, allowing information about 
VNFs and their operation to be obtained with a REST API. 
Furthermore, it is important to extend the tool to support 
different VNF technologies, such as nginx and BRO. 

Acknowledgements 

This research was performed partially within the project 
“Federated Ecosystem for Offering, Distribution, and 
Execution of Virtual Network Functions” (GT-FENDE). 
The authors would like to thank Rede Nacional de Ensino e 
Pesquisa (RNP), for their support to the GT-FENDE project. 

References 

Baumgart, I., Heep, B. and Krause, S. (2007) ‘Oversim: a flexible 
overlay network simulation framework’, Proceedings of the 
IEEE Global Internet Symposium, IEEE, pp.79–84. 

Bernardos, C.J., Contreras, L.M., Vaishnavi, I., Szabo, R., Li, X., 
Paolucci, F.,  Sgambelluri, A., Martini, B., Valcarenghi, L., 
Landi, G., Andrushko, D. and Mourad, A. (2018) ‘Multi-
domain network virtualization’, Internet-Draft draft-
bernardos-nfvrg-multidomain-04, pp.1–15. 

Carson, M. and Santay, D. (2003) ‘Nist net: a linux-based network 
emulation tool’, ACM SIGCOMM Computer Communication 
Review, Vol. 33, No. 3, pp.111–126. 

Chiosi, M. and Wright, S. et al. (2012) Network functions 
virtualisation (nfv)’, ETSI NFV ISG, White Paper, Vol. 1. 

Garay, J. Matias, J. Unzilla, J. and Jacob, E. (2016) ‘Service 
description in the nfv revolution: trends, challenges and a way 
forward’, IEEE Communications Magazine, Vol. 54, No. 3, 
pp.68–74. 

GS NFV (2013) GS NFV 001: Network Functions Virtualisation 
(nfv); Group Report, France. 

Halpern, J. and Pignataro, C. (2015) ‘Service function chaining 
(sfc) architecture’, Internet Engineering task Force.  
Doi: 10.17487/RFC7665. 

Han, B., Gopalakrishnan, V., Ji, L. and Lee, S. (2015) ‘Network 
function virtualization: challenges and opportunities for 
innovations’, IEEE Communications Magazine, Vol. 53,  
No. 2, pp.90–97. 

Handley, M. (2006) ‘Why the internet only just works’, BT 
Technology Journal, Vol. 24, No. 3, pp.119–129. 

Imran, M., Said, A.M. and Hasbullah, H. (2010) ‘A survey of 
simulators, emulators and testbeds for wireless sensor 
networks’, Proceedings of the 2010 International Symposium 
on Information Technology, Vol. 2, pp.897–902. 

Karl, H., Dräxler, S., Peuster, M., Galis, A., Bredel, M., Ramos, 
A., Martrat, J., Siddiqui, M.S., Rossem, S.V. and  
Tavernier, W. et al. (2016) ‘Devops for network function 
virtualisation: an architectural approach’, Transactions on 
Emerging Telecommunications Technologies, Vol. 27, No. 9, 
pp.1206–1215. 

Kaur, S., Singh, J. and Ghumman, N.S. (2014) ‘Network 
programmability using pox controller’, Proceedings of the 
ICCCS International Conference on Communication, 
Computing and Systems, IEEE, Vol. 138, pp.1–5. 

Kohler, E., Morris, R., Chen, B., Jannotti, J. and Kaashoek, M.F. 
(2000) ‘The click modular router’, ACM Transactions on 
Computer Systems (TOCS), Vol. 18, No. 3, pp.263–297. 

Lantz, B., Heller, B. and McKeown, N. (2010) ‘A network in a 
laptop: rapid prototyping for software-defined networks’, 
Proceedings of the 9th ACM SIGCOMM Workshop on Hot 
Topics in Networks, pp.1–6. 

Lu, K., Liu, S., Feisullin, F., Ersue, M. and Cheng, Y. (2015) ‘Network 
function virtualization: opportunities and challenges’, IEEE 
Network, Vol. 29, No. 3, pp.4–5. 

Marcuzzo, L da C., Garcia, V.F., Cunha, V., Corujo, D., Barraca, J.P., 
Aguiar, R.L., Schaeffer-Filho, A.E., Granville, L.Z. and dos 
Santos, CRP. (2017) ‘Click-on-osv: a platform for running click-
based middleboxes’, Proceedings of the IFIP/IEEE Symposium 
onIntegrated Network and Service Management (IM), IEEE, 
pp.885–886. 

Mijumbi, R., Serrat, J., Gorricho, J-L., Bouten, N., Turck, F.D. and 
Boutaba, R. (2016) ‘Network function virtualization: state-of-
the-art and research challenges’, IEEE Communications 
Surveys and Tutorials, Vol. 18, No. 1, pp.236–262. 

Mininet Team (2012) Mininet: An instant virtual network on your 
laptop (or other pc), Information and Networking Technologies 
Research and Innovation Group. 

Mohallel, A.A., Bass, J.M. and Dehghantaha, A. (2016) 
‘Experimenting with docker: Linux container and base os 
attack surfaces’, Proceedings of the International Conference 
on Information Society (i-Society), pp.17–21. 

Morabito, R., Kjällman, J. and Komu, M. (2015) ‘Hypervisors vs. 
lightweight virtualization: a performance comparison’, 
Proceedings of the IEEE International Conference on Cloud 
Engineering, pp.386–393. 

Morris, R., Kohler, E., Jannotti, J. and Kaashoek, M.F. (1999) ‘The 
click modular router’, ACM SIGOPS Operating Systems 
Review, Vol. 33, No. 5, pp.217–231. 

Peuster, M., Karl, H. and van Rossem, S. (2016) ‘Medicine: rapid 
prototyping of production-ready network services in multi-
pop environments’, Proceedings of the IEEE Conference on 
Network Function Virtualization and Software Defined 
Networks (NFV-SDN), pp.148–153. 



242 V.F. Garcia et al.  

Pfaff, B., Pettit, J., Koponen, T., Jackson, E.J., Zhou, A., 
Rajahalme, J., Gross, J., Wang, A., Stringer, J. and Shelar, P. 
et al. (2015) ‘The design and implementation of  
open vswitch’, Proceedings of the 12th USENIX Symposium 
on Networked Systems Design and Implementation,  
pp.117–130. 

Salopek, D., Vasić, V., Zec, M., Mikuc, M. Vašarević, M. and  
Končar, V. (2014) ‘A network testbed for commercial 
telecommunications product testing’, Proceedings of the 22nd 
International Conference on Software, Telecommunications 
and Computer Networks (SoftCOM), pp.372–377. 

Schaeffer-Filho, A., Mauthe, A., Hutchison, D., Smith, P., Yu, Y. 
and Fry. M. (2013) ‘Preset: a toolset for the evaluation of 
network resilience strategies’, Proceedings of the IFIP/IEEE 
International Symposium on Integrated Network Management 
(IM’13), IEEE, pp.202–209.  

Sonkoly, B., Czentye, J., Szabo, R., Jocha, D., Elek, J., Sahhaf, S., 
Tavernier, W. and Risso, F. (2015) ‘Multi-domain service 
orchestration over networks and clouds: a unified approach’, 
Proceedings of the ACM Conference on Special Interest 
Group on Data Communication (SIGCOMM’15), ACM, New 
York, NY, USA, pp.377–378. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tirumala, A., Qin, F., Dugan, J., Ferguson, J. and Gibbs, K. (2005) 
Iperf: The tcp/udp bandwidth measurement tool. Available online 
at: http://iperf.fr 

Varga, A. and Hornig, R. (2008) ‘An overview of the omnet++ 
simulation environment’, Proceedings of the 1st International 
Conference on Simulation Tools and Techniques for 
Communications, Networks and Systems and Workshops, 
Institute for Computer Sciences, Social-Informatics and 
Telecommunications Engineering, Marseille, France. 

Wette, P., Draxler, M., Schwabe, A., Wallaschek, F., Zahraee, M.H. 
and Karl, H. (2014) ‘Maxinet: distributed emulation of software-
defined networks’, Proceedings of the Networking Conference, 
IEEE, Norway, pp.1–9. 

Notes 

1 Available online at: https://github.com/ViniGarcia/NIEP 
2 Available online at: https://github.com/containernet/containernet 
3 Available online at: http://www.docker.org/ 
4 Available online at: https://libvirt.org/ 
5 Available online at: https://www.linux-kvm.org/page/Virtio 


