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Abstract—High Performance Computing (HPC) systems are
employed to solve hard problems and rely on parallel algorithms
which present very long execution times – up to several days.
These systems are expensive in terms of the computational
resources required, including energy consumption. Thus, after
failures occur it is highly desirable to loose as little of the
work that has already been done as possible. In this work we
present an Algorithm-Based Fault Tolerance (ABFT) strategy
that can be applied to make a robust version of any hypercube-
based parallel algorithm. Note that we do not assume a physical
hypercube: after nodes crash, fault-free nodes autonomously
adapt themselves according to a logical topology called VCube,
preserving several logarithmic properties. The proposed strategy
guarantees that the algorithm does not halt even after up to
(N − 1) nodes crash, in a system of N nodes. We use parallel
sorting as a case study, describing how to make a fault-tolerant
version of the Bitonic Sort parallel algorithm. The algorithm was
implemented in MPI using ULMF to handle faults. Experimental
results are presented showing the performance and robustness of
the proposed solution.

I. INTRODUCTION

Parallel algorithms are at the core of High Performance
Computing (HPC) systems which solve hard problems in sev-
eral domains. They run on a multiple processors and cores, be-
ing capable of executing 1015 (peta-scale) and 1018 (exascale)
floating point operations per second (FLOPS). Those very
large-scale systems usually present a small MTBF (Mean Time
Between Failures) [1]. For instance, the Blue Waters petascale
system has an average MTBF of only 4.2 hours [2], which
reduces even further for exascale systems [3], [4]. Frequent
faults can become a very serious problem if we consider
that (i) these systems usually take a long time to execute,
and (ii) have very high demands in terms of computational
resources and energy. It is thus essential to make these systems
fault-tolerant, so that they can continue running correctly after
faults, and no work is lost.

There are numerous techniques to make an HPC system
fault-tolerant [5], [6]. These techniques include, among others,
rollback recovery [7], replication [8], computation migration
[9], and Algorithm-Based Fault Tolerance (ABFT). ABFT
makes use of properties of the parallel algorithm itself to
survive faults during its execution [10], [11], [12], [13]. The
algorithm is designed to be resilient, and must be able to
detect or receive fault notifications and adapt itself after faults
occur. In this work we propose a general ABFT technique to
make any parallel algorithm designed for hypercubes fault-

tolerant. Developers can employ the proposed technique to
leverage any parallel hypercube-based algorithms to survive
faults efficiently. With the proposed ABFT technique, the
algorithm is able to reconfigure itself autonomously in runtime,
guaranteeing that it does not halt after faults are detected: fault-
free nodes continue the execution and no work is lost.

Hypercubes are intrinsically scalable topologies that have
been extensively used in parallel computing both as inter-
connection networks [14] and to organize the communication
and execution of parallel and distributed algorithms [15], [16].
The ABFT strategy proposed in this work assumes a logical
topology – no physical hypercube required. The fault-tolerance
technique relies on the virtual topology known as the VCube
[17], [18]. A VCube is a hypercube when all nodes are fault-
free, but is capable of reconfiguring itself as nodes fail (and
recover) keeping several logarithmic properties. In a VCube of
d dimensions nodes are organized in hierarchical clusters of
increasingly larger sizes which are the basis for the proposed
ABFT strategy. While in the hypercube each node is connected
to d predefined nodes, in the VCube a node is connected to
whichever is the first fault-free node of d clusters, if there is
any. We assume the fail-stop model, in which processes crash
and can be detected as so. In a system of N nodes, even
if up N − 1 nodes become faulty the system autonomously
reconfigures itself at runtime and continues the execution.
Nodes can also be repaired and rejoin the system.

The heart of the ABFT strategy proposed for hypercube-
based parallel algorithms in this work involves the VCube
in two main ways. First, after a node crashes another fault-
free node will cover the faulty node and execute its tasks.
Second, nodes communicate among themselves according to
the VCube topology. As mentioned before, when all nodes
are fault-free the VCube is a hypercube, furthermore as
nodes crash the topology reconfigures itself keeping multiple
logarithmic properties. In order to describe how to make a
parallel algorithm fault-tolerant with the proposed technique,
we describe parallel sorting as a case study. Although parallel
sorting algorithms have been proposed for more than five
decades, they have become even more relevant in the context
of big data, as sequential algorithms are not feasible to sort
vast amounts of data. A fault-tolerant version of the Bitonic
Sort parallel algorithm is specified, and its correctness and
performance are also presented.

The algorithm was implemented with the Message Pass-



ing Interface MPI [19] and User Level Failure Mitigation
(ULFM) [20], [21] to handle faults. MPI is one the most
popular programming models for distributed-memory HPC
systems. As the name implies, MPI is based on the message
passing paradigm: nodes are connected to a network over
which they communicate by sending and receiving messages.
Each node has access to local memory. ULFM was proposed
by the MPI forum to avoid having to abort and restart MPI-
based systems after failures. ULFM allows not only the
implementation of resilient MPI applications, but features
programming language constructs that enable the system to
detect and react to failures without aborting its execution.
In the context of the proposed algorithms, ULFM is used
basically in the context of failure detection. Experimental
results are presented showing the performance and robustness
of the proposed solution.

The rest of this work is organized as follows. Section
II describes related work. Section III presents the proposed
technique, the system model and an overview of the VCube
topology. The application of the proposed ABFT technique to
parallel sorting is presented in Section IV. The implementation
of the proposed fault-tolerant version of the Bitonic Sort
parallel algorithm and the results obtained are presented in
Section V. Conclusions and future work follow in Section VI.

II. RELATED WORK

In this section related work is grouped according to the
four following topics: fault-tolerance for HPC systems, ABFT,
parallel sorting, and fault-tolerant MPI systems.

The development of techniques to improve the resiliency
of HPC systems is often preceded by field work that reveal
the vulnerabilities of current systems. In an extensive field
work published in 2017 [22] the authors describe 23 different
types of hardware and software faults that can affect HPC
systems. They stress that as the number of components of these
systems increase, the likelihood of failures also increases, and
worse, the complexity of managing the reliability of the system
also grows; the consequences of this fact are non-trivial. For
instance, performing accurate root-cause analysis of failures
is sometimes not possible, given the complexity and sheer
number of components along some fault paths. The authors
also pose disturbing questions, among them whether newer
components are less reliable, due not only to ever shrinking
technologies and also design goals such as energy saving. The
MTBF of the systems investigated varied from 7.45 to 22.67
hours (these results are normalized on number of processors
in the system). The conclusion is that in such systems every
single day at least one failure is expected to occur, probably
more will. In another work [2], field data is presented for the
reliability of the Blue Waters petascale system and the MTBF
reported is of 4.2 hours.

Rollback recovery is perhaps the most widely adopted
technique to improve the reliability of HPC systems [5]. This
technique consists of establishing checkpoints to which the
system can roll back in case of failures, instead of restarting
from the scratch [7]. Note that the application of rollback

recovery to HPC systems that take a very long time to execute
and have very low MTBF presents several challenges. For
instance, Tiwari et al. [23] reports results for an astrophysics
application that generates 160TB of data and can take 360
hours to complete its execution. For that particular application,
taking checkpoints at every hour can have a major impact on
the system performance, especially because checkpoint incurs
on high I/O overhead. Increasing the checkpointing interval
can reduce the impact on the system, but it also increases the
amount of work lost after crashes, which corresponds to the
interval since the last checkpoint was taken and the instant
of the failure. An alternative is to employ replication instead
of rollback recovery. In [24], the authors justify the use of
replication given the short MTTI (Mean Time To Interrupt),
which corresponds to the time spent taking checkpoints. The
authors also mention that replication can be extended to deal
with Byzantine faults. In [25] the authors evaluate the impact
of replication on the speedup of parallel algorithms. Their
purpose is to determine the optimal number of replicas to use,
given the failure rate.

Algorithm-Based Fault Tolerance (ABFT) is a technique
that relies on the properties of the parallel algorithm itself
to recover from faults during its execution [26], [27], [28],
[29]. A difference of this technique to the previous ones is
that those are transparent to the application, while ABFT is
not, it is actually interwoven across the application’s algorithm.
ABFT can only be used if the underlying systems provides –
usually through primitives – mechanisms for fault detection
and notification.

ABFT was originally proposed by Huang and Abraham to
detect and correct errors in the context of matrix operations,
caused by transient or permanent hardware faults [30]. The
technique relies on the fact that for some matrix operations
there is a relationship between the input checksum and the
checksum computed for the output. Based on this relation-
ship, they proposed an ABFT technique to detect, locate and
correct certain types of errors of matrix operations. Chen
and Dongarra also employ an ABFT technique that relies
on matrix operations to make an HPC system fault-tolerant
[31], [11]. The proposed technique assumes the fail-stop model
and allows their HPC systems to tolerate faults that occur at
runtime. Like Huang and Abraham, Chen and Dongarra also
make use of the relationship that exists between checksums
computed for the inputs/outputs of matrix operations, the
same mentioned above. Their goal is to keep a consistent
global state, so that after a fault occurs, the corresponding
computations can be re-executed. However, correct processes
must wait before they continue running the application. The
system was implemented with the FT-MPI library, which
is an MPI implementation that supports fault detection and
notification.

Wang et al. [29] propose a strategy, called ABFT-hot-
replacement, to prevent correct nodes from having to stop and
wait for nodes with faulty data to recover. This is done using
spares, redundant nodes that can replace the faulty ones. Their
work is also based on the checksum relationship of matrix
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Fig. 1. The construction of d-dimensional hypercube from two d− 1-dimensional hypercubes, d = 2, 3, 4.

operations, and was implemented with an MPICH system
adapted to deal with application-level faults. Scholl et al. [32]
refine techniques based on ABFT for operations on sparse
matrices, the main purpose is to reduce fault localization time.

Checkpoint-on-Failure (CoF) [33] is a strategy that com-
bines AFBT and rollback recovery. CoF does not save periodic
checkpoints, instead they are triggered by node faults. Correct
nodes save a checkpoint and stop the current execution. A new
instance starts and the system (i) recovers the checkpoints of
the correct nodes, and (ii) use an ABFT technique to recover
data from faulty nodes.

An ABFT scheme that can be applied to a class of ap-
plications – instead of a specific application – has also been
proposed [34]. The authors mention that their purpose is to
overcome one of the disadvantages of ABFT, which they call
its “non-universality”, i.e. the fact that the technique is tied
to a single specific application or algorithm. They propose an
ABFT strategy that they call generic in the sense that it can
be applied to a multiple parallel applications which present
similar algorithmic and/or communication patterns.

In [35] the authors propose ABFT techniques to reduce
the overhead of making heterogeneous systems based on
GPU accelerators fault-tolerant. Their ABFT scheme takes
into consideration both computing and memory storage faults.
Recently, ABFT has also been applied to tolerate data errors in
the context of machine learning and also computer vision [36].

Finally, closest to our work is the ABFT strategy applied to a
hypercube-based parallel computer [37]. The strategy relies on
the detection and location of faulty nodes at runtime, based on
error detection mechanisms that are tailored for three parallel
applications: matrix multiplication, Gaussian elimination, and
fast Fourier transform. The main difference to our work is
that they assume a physical hypercube (they employ a 16-
processor Intel iPSC hypercube computer) while in our case
the hypercube is a logical topology, which determines how
nodes communicate assuming a fully connected underlying
network which corresponds to the topologies of most networks
used to run HPC systems.

Related work includes very few parallel sorting algorithms
implemented with MPI [38], [39], although there are imple-
mentations on hybrid systems, such as Bitonic Sort on CUDA
and MPI [40] and others that employ both distributed and
shared memory [41], [42]. MPI is the de facto standard for
developing parallel distributed memory applications [43], [19].
The MPI standards originally assumed a reliable infrastructure,
and there were no features to be used to program fault-
tolerant applications. Recently, the MPI-Forum has speci-

fied the ULFM [20], [21] which includes several constructs
to handle faults. As an example, in our implementations
we have used the MPI_COMM_REVOKE followed by the
MPI_COMM_SHRINK constructs to restore the MPI applica-
tion by dropping faulty processors [20]. More details are given
in Section 5.

III. THE PROPOSED STRATEGY

In this section we present the proposed ABFT strategy,
which can be used to turn any parallel algorithm based on
the hypercube fault-tolerant. Before that, we first give the
definition of a hypercube and an overview of the VCube virtual
topologogy.

A hypercube [44], [15], [14] can be represented as a graph
G = (V,E), where V is a set of vertices called nodes in this
work. Each node has an identifier of length d bits, where d is
the number of dimensions of the hypercube. A hypercube with
dimension d has N = 2d nodes. Nodes have unique identifiers
in the interval [0, N −1]. There is an edge (i, j) ∈ E between
two nodes i and j if and only if the identifiers of i and j differ
in a single bit. A d-dimensional hypercube, d > 1, consists
of two (d − 1)-dimensional hypercubes. Figure 1 shows the
construction of 2-, 3-, and 4-dimensional hypercubes each
from two hypercubes of 1-, 2-, and 3-dimensions, respectively.
The construction of a d-dimensional hypercube from a d− 1-
dimensional hypercubes can be done as follows. First duplicate
the d−1-dimensional hypercube. Extend node identifiers by 1
bit, which is set to 0 in the ids the original nodes, and set to 1 in
the ids of the newly created nodes. There is an edge connecting
each node of the original (d− 1)-dimensional hypercube with
the corresponding node in newly created (d− 1)-dimensional
hypercube, as their identifiers differ in exactly one bit.

A hypercube is a regular graph with degree logN (all
logarithms are base 2 in this work), where N is the number
of nodes. Besides the degree, the hypercube presents several
other logarithmic properties, such as the diameter, which is
the maximum shortest path between any two nodes in V and
is also logN .

The strategy proposed in this work is based on the VCube
virtual topology [17], [18]. The system is assumed to be fully
connected, in the sense that each node can communicate with
any other node directly, without the need of intermediaries.
The communication between two nodes is assumed to be
reliable. A VCube with N nodes is a hypercube when all nodes
are fault-free. However, the topology is able to autonomously
reconfigure itself upon node failures, keeping several logarith-
mic properties. In a VCube, nodes are organized in clusters,
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TABLE I
Ci,s FOR A SYSTEM WITH 8 PROCESSES.

s c0,s c1,s c2,s c3,s c4,s c5,s c6,s c7,s

1 1 0 3 2 5 4 7 6
2 2 3 3 2 0 1 1 0 6 7 7 6 4 5 5 4
3 4 5 6 7 5 4 7 6 6 7 4 5 7 6 5 4 0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0

which are defined per node. It is possible to say that VCube
nodes communicate with clusters of nodes, usually the first
fault-free node of each cluster. The c(i, s) function returns
the sequence of nodes of the s-th cluster of node i, s varies
from 1 to d = logN , which is the VCube dimension. Thus
the ci,s function is used to determine the nodes with which
node i communicates. The expression below shows how this
function is computed:

ci,s = (i⊕ 2s−1, ci⊕2s−1,1, ..., ci⊕2s−1,s−1)

Table I shows an example of ci,s, applied to a 3-dimensional
VCube, thus N = 8 nodes. For example, for node i = 0, s
varies from 1 to 3, and c0,1 returns (1); c0,2 returns (2, 3);
c0,3 returns (4, 5, 6, 7).

In a VCube nodes monitor their neighbors in testing in-
tervals, which are periodic intervals of time determined with
the local clock of each node. Global synchronization is not
required. A node can be in one of two states: faulty or
fault-free. The fail-stop model is assumed, thus nodes fail by
crashing, and fault-free nodes keep information about which
nodes are faulty [45]. At each testing round a fault-free node
i tests its clusters c(i, s), s = 1..logN . Nodes of each c(i, s)
are tested sequentially until a fault-free node is found. If for
example the first node is tested fault-free, a single test is
executed. The tester then obtains information about new events
– detected by the tested node since it had been tested in the
previous interval. An event corresponds to a node crashing,
thus its state changes from fault-free to faulty. If there are
no fault-free nodes, the entire cluster is tested. Let a testing
round be interval of time in which all fault-free nodes have
completed their assigned tests. It has been shown [17] that
using this strategy all fault-free nodes learn about any new
event in at most log2N rounds, in average much faster than
that. Furthermore, using the test assignment proposed, at most
NlogN tests are executed per testing interval.

The ABFT strategy proposed in this work if node i is faulty,
then another fault-free node will be its cover node and execute
its tasks. Function cover(i) returns node i’s cover: this is the
first fault-free node in c(i, 1). If that node is faulty, then the
first fault-free node in cluster c(i, 2) is selected, if that node
is faulty but the second node of that cluster (c(i, 2)) is fault-
free, then it is the cover. If in that cluster there is no fault-free
node, the cluster size is incremented again until cluster c(i, d)
is considered.

A node that is covering a faulty node executes the fault-
tolerant algorithm as itself and also assuming the ids of the
nodes it is covering. If for instance node 0 is faulty, then its
cover is node 1, which executes node 0’s tasks. However, if

node 1 is also faulty, then 0 is covered by node 2 because 2 is
the first fault-free node in c(0, 2). If node 2 is also faulty, the
next to consider is node 3, and so on. In this way, a node i can
execute the tasks of up to N − 1 faulty nodes. If N − 1 nodes
are faulty, the single fault-free node in the system executes all
tasks of nodes. This ABFT strategy implies the assumption
that cover nodes have access to the data that would be used
by the faulty nodes they are covering.

IV. FAULT-TOLERANT PARALLEL SORTING

This section presents the transformation of a parallel sorting
algorithm based on the hypercube using the proposed ABFT
strategy. Sorting is one of the most fundamental and well
studied computing problems [46]. Given a list of N elements
L = (a1, a2, ..., ai, ..., aN ) sorting consists of arranging these
elements into a new list L′ = (a′1, a

′
2, ..., a

′
i, ..., a

′
N ) so that

∀i | 0 < i < N : a′i < a′i+1. We say that L′ is sorted in
increasing order. Although the elements can also be sorted in
decreasing order, i.e. ∀i | 0 ≤ i < N : ai > ai+1, in this work
we only use the increasing order.

Parallel sorting algorithms have been designed to take
advantage of multiple processors to speed up sorting. Although
they have been applied to diverse fields such as image process-
ing, computational geometry and graph theory [47], [38], the
recent advent of big data has renewed the interest in efficient
parallel sorting strategies. Doing it in parallel may be the only
choice to sort truly huge amounts of data for which sequential
sorting is not viable. A large number of parallel sorting
algorithms have been proposed along the past several decades
[48], [44]. These algorithms have been designed for all types
of parallel computing architectures and topologies, including
physical and logical topologies that organize processing nodes
in a meshes, rings, stars, hypercubes, among others.

Next we show how to make Bitonic Sort [49], [50] fault-
tolerant with the proposed ABFT strategy. The strategy relies
on the VCube logical topology to determine covers defined
in the previous section, and also on how nodes communicate
and share the sorting tasks. In this way the algorithms adapt
themselves autonomously after faults occur, and continue
running even if up to N−1 nodes crash. The algorithm runs in
sorting rounds in which nodes execute some local processing
(including locally sorting part of the data) and communicate
among themselves (including sharing data to be sorted by
partners).

A. Bitonic Sort Algorithm

The Bitonic Sort algorithm [49], [50] is another of the
classic parallel sorting algorithms. This algorithm is based on
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the comparison of elements of predefined sequences which are
called “bitonic sequences”. These comparisons are carried out
in a way that does not depend on the input data. A bitonic
sequence is a sequence of elements seq = (a0, a1, ..., am−1)
with the following properties: (i) there is an index i, 0 ≤
i ≤ m − 1, such that (a0, ..., ai) is monotonically increas-
ing and (ai+1, ..., am−1) is monotonically decreasing, or (ii)
there is a cyclic rotation that satisfies (i). For example,
(2, 3, 6, 8, 7, 5, 4, 1) is a bitonic sequence for i = 3, consisting
of a monotonically increasing sequence (2, 3, 6, 8) followed
by the monotonically decreasing sequence (7, 5, 4, 1). As
an example of cyclic rotation of seq consider for instance
(6, 8, 7, 5, 4, 1, 2, 3), in this case the element in the frontier
of the increasing/decreasing (8) subsequences is in position
i = 1. Any subsequence of a bitonic sequence is also bitonic.

Next, we describe how a bitonic sequence seq is sorted
so that the resulting sequence is monotonically increasing.
Initially, seq is divided in half, generating the sequences
seq1 and seq2 both of size m/2. Thereafter, the first element
of the seq1 sequence is compared with the first element of
sequence seq2. The smallest element is assigned to sequence
seq1 and the largest element to sequence seq2, that is: seq1 =
(min{a0, am/2},min{a1, am/2+1}, ...,min{am/2−1, am−1})
and seq2 = (max{a0, am/2},max{a1, am/2+1}, ...,
max{am/2−1, am−1}). Considering the example sequence
seq = (2, 3, 6, 8, 7, 5, 4, 1) presented above the result after
the first step is the following: seq1 = (2, 3, 4, 1) and
seq2 = (7, 5, 6, 8). Both seq1 and seq2 are also bitonic
sequences. Note that all elements of seq1 are less than those
contained in seq2. The next step is to apply the same method
to each of the new sequences, and repeat it recursively
until the sequences of 2 elements are ordered. In the end,
all subsequences are joined to form the ordered original
sequence.

The procedure of dividing a sequence of size m into two
bitonic subsequences is called a bitonic split. The generation
of an ordered sequence from bitonic subsequences is called
a bitonic merge. Any bitonic sequence can be ordered by
applying a bitonic split, followed by element comparisons, and
bitonic merge of the ordered sequences in the end. Bitonic Sort
can be adapted to different parallel topologies, including the
hypercube as described next.

The N nodes that run the algorithm are organized as a d-
dimensional VCube, where d = logN . As in the previous
algorithms, each node has a unique identifier i, 0 ≤ i ≤ N .
Sorting is performed in s rounds, where 1 ≤ s ≤ d. In each
round, node i forms a pair with the first fault-free node of
cluster c(i, s). Nodes i and j exchange elements with each
other and make comparisons based on the elements exchanged
in a given round. If i < j, node i keeps the smallest elements,
node j keeps the largest elements. At the end of a round, the
largest element of node i is less than or equal to the smallest
element of node j.

Mapping a bitonic sequence to a hypercube can be done as
follows. If the size of the sequence (m) is equal to the number
of nodes (m = N ), then each single element is mapped to a

Algorithm 1 Fault-Tolerant Bitonic Sort with m=n (executed
by node i)

1: Begin
2: d← logN {VCube dimension}
3: while d > 0 do
4: I ← i {Set I of identifiers to run the algorithm is initialized with

i}
5: F ← set of faulty nodes in the beginning of this round
6: for all j | j ∈ F ∧ cover(j) == i do
7: I ← I ∪ j {Add j to set I , covered node}
8: for each k ∈ I in parallel do
9: list← ak {The element assigned to node k}

10: partner ← first fault-free node in c(k, d)
11: if k < partner then
12: compare exchange min(k, partner)
13: else
14: compare exchange max(k, partner)
15: F ′ ← set of faulty nodes in the end of this round
16: if F == F ′ then
17: d← d− 1

End

single hypercube node, i.e. element ai is mapped to node i. If
the size of the sequence is greater than the number of nodes
(m > N ), then m/N elements are mapped to each node. Note
that if a node is faulty, then its sequence it assigned to its
covering node. For the sake of simplicity, we first present the
Fault-Tolerant Parallel Bitonic Sort Algorithm considering the
simple case in which m = N and each element is mapped to
a single node. This simpler version is presented as Algorithm
1.

The compare exchange procedure (line 12 and 14) causes
two nodes to exchange and compare elements. For example,
consider the sequence seq = (2, 3, 6, 8, 7, 5, 4, 1) assigned to
a VCube with 8 fault-free nodes. Figure 2 shows how sorting
is executed. Element ai is mapped to node i. In the first
round, a single 3-dimensional hypercube is considered and
the following pairs of nodes are formed (line 10): (0, 4), (1,
5), (2, 6) and (3, 7). The node with smallest identifier keeps
the smallest element and the node with the largest identifier
keeps the largest element (lines 12 and 14, respectively). For
example, nodes 0 and 4 keep elements 2 and 7, respectively.
After the exchange and comparison procedure, both nodes
keep the same elements. Nodes of other pairs, such as (2,
6) and (3, 7) do not keep their original elements after the
execution of compare exchange. In the next round two 2-
dimensional hypercubes are considered, and new pair of nodes
are formed according to line 4. Nodes exchange and compare
their elements again. Note that from the start all elements
of the 2-dimensional hypercube of which nodes have lower
ids are all smaller than those of the other 2-dimensional
hypercube. In the last round, pairs of nodes are formed in
four 1-dimensional hypercubes, each of two nodes. As in the
previous rounds, in case i < j, then node i will keep an
element that is less than or equal to the element maintained
by node j.

Now consider the general case in which m > N . In this case
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Fig. 2. Bitonic Sort on a 3-dimensional VCube: first, second and third sorting rounds. Node ids are shown in the circles, the element a node keeps is shown
on its side.

Algorithm 2 Fault-Tolerant Bitonic Sort for any sequence
(executed by node i)

1: Begin
2: d← logN {VCube dimension}
3: for s← 0 to d− 1 do
4: t← s
5: while t >= 0 do
6: I ← i {Set I of identifiers to run the algorithm is initialized

with i}
7: F ← set of faulty nodes in the beginning of this round
8: for all j | j ∈ F ∧ cover(j) == i do
9: I ← I ∪ j {Add j to set I , covered node}

10: for each k ∈ I in parallel do
11: list← ak {The element assigned to node k}
12: partner ← first fault-free node in c(k, t+ 1)
13: if (s+ 1)th bit of k 6= tth bit of k then
14: compare exchange min(k, partner)
15: else
16: compare exchange max(k, partner)
17: F ′ ← set of faulty nodes in the end of this round
18: if F == F ′ then
19: t← t− 1

End

each node receives m/N elements. In case there are faulty
nodes, then the corresponding covers receive their elements.
This version of the algorithm employs a compare exchange
procedure that is more general: instead of exchanging and
comparing a single element, it exchanges and compares entire
sequences of elements between the nodes of a pair (i, j). Then,
each node makes comparisons according to the sequence in-
dexes. Thus node i executes seqi[k]← min(seqi[k], seqj [k])
and node j executes seqj [k] ← max(seqi[k], seqj [k]). As a
result, if i < j then all elements of seqi are smaller than or
equal to the elements of seqj .

The version of Bitonic Sort presented as Algorithm 2 can
receive as input any sequence, it is not restricted to bitonic
ones. The first step is to transform the input sequence into a
bitonic sequence. This is accomplished by repeatedly creating
bitonic sequences of increasing size. To start with, note that
any sequence of two elements is a bitonic sequence. Now in
order to merge two bitonic sequences into a double sized
bitonic sequence, a simple and cheap condition must be
met: the first sequence must be increasing and the second
sequence must be decreasing. Figure 3 illustrates the ordering
process for the input sequence seq = (7, 3, 6, 8, 1, 2, 5, 4)

in a 3-dimensional hypercube. In Figure 3 symbols ⊕ and
	 represent the comparisons between the elements of the
sequence. ⊕ defines that the comparisons should generate an
increasing sequence and 	 a decreasing sequence.

Each node sends its local sequence to its partner. The pairs
of nodes defined in line 12 in the first round for the example
in the figure are: (0, 1), (2, 3), (4, 5), (6, 7). Line 13 is a
clever implementation proposed in [44] to determine whether
the node keeps the smallest elements or the largest elements. If
the (s+i)th bit and the tth bit are equal/different, then the node
keeps the smallest/largest element, respectively. Otherwise, the
node keeps the largest element. Thus considering the first pair
of nodes, node 0 keeps element 3 and node 1 keeps element
7 since these nodes must generate an increasing sequence
(see Figure 3). The elements contained in node 4 and 5 are
maintained since they already formed an increasing sequence.
In turn, the pairs nodes (2, 3), (6, 7) generate decreasing
sequences. So node 2 keeps element 8 and node 3 keeps
element 6. Nodes 6 and 7 keep their original elements.

In the second round, when s ← 1, the exchange and
comparison process is repeated considering two 2-dimensional
hypercubes and then four 1-dimensional hypercubes. Finally,
the last round of Algorithm 2 is equivalent to Algorithm 1
(see Figures 2 and 3). Note that in the last round, the
ordering process starts with the bitonic sequence seq =
(3, 6, 7, 8, 5, 4, 2, 1). At the end, the algorithm generates the
sequence seq = (1, 2, 3, 4, 5, 6, 7, 8).

Now we prove that the Fault-Tolerant Bitonic Sort algorithm
completes in logN rounds even if up to N−1 nodes fail during
the execution.

Theorem 1. The Fault-Tolerant Bitonic Sort algorithm com-
pletes sorting in logN rounds even if N − 1 nodes become
faulty during those rounds.

Proof. The proof is done by induction on the VCube dimen-
sion.

Basis: consider a hypercube with dimension d = 1, consist-
ing of two nodes. In a single round sorting completes even if
one of the nodes is faulty, as the fault-free node will cover the
faulty node and sort the complete list.

Hypothesis: now assume that for a VCube of dimension
d = r sorting is completed in r rounds, even if up to 2r − 1
nodes become faulty.

Induction step:
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Fig. 3. An example execution of Bitonic Sort for an input sequence that is not bitonic on a 3-dimensional hypercube.

A VCube with dimension d = r+1 consists of two VCubes
of dimension r. According to the induction step, in each of
those two VCubes sorting completes in v rounds. Now in the
first sorting round of Bitonic Sort, a fault-free node in one
of those r-dimensional VCubes will find a fault-free partner
in the other r-dimensional VCube, if there is one. They will
act as covers for the faulty nodes within their r-dimensional
VCubes and communicate with the partner of the other v-
dimensional VCube in that round. If all nodes are faulty in
one of those r-dimensional VCubes, the cover(s) will be on
the other r-dimensional VCube and run all tasks of that round.

If a node is fault-free as it starts a round and then becomes
faulty during that the round, then its tasks may not have been
completed and the algorithm cannot leave the round, which is
re-started. Nodes will only proceed to the next round after all
fault-free nodes have executed their assigned tasks – including
the tasks of the faulty nodes they are covering.

Regarding performance, if there are no faulty nodes, then the
sorting tasks are shared evenly among the N nodes. However,
depending on the fault-situation, i.e. which nodes are faulty in
the system, different nodes may have different shares of the
sorting tasks.

V. EVALUATION

In this section we describe the implementation using
MPI/ULFM of the proposed fault-tolerant version of the
Bitonic Sort parallel algorithm and the results obtained.

A. Implementation

The algorithm was implemented using ULFM constructors
to handle faults. It is worth mentioning that by default ULFM
fault detection is local, in the sense that a fault is detected
as a node tries to communicate with another node that has
become faulty. From this point on in this section we use the
term “node” corresponding to an MPI process. Thus, it is
only possible to determine that a node has become faulty by
trying to communicate with that node. After a node detects
some fault, the ULFM also provides means for that node
to communicate the information to the remaining nodes, as
described below.

Function FaultDetection() is executed in the begin-
ning of each round so that all faulty nodes can be detected.
Initially, this function invokes primitive MPI_Barrier to
synchronize all correct nodes, which communicate to check
if there are new faults. If there is at least one faulty
node MPI_Barrier returns an error which can be either
MPI_ERR_PROC_FAILED or MPI_ERR_REVOKED. Next,
all fault-free nodes execute a function to agree on the set of
faulty nodes: MPI_Comm_agree(). In case some node is
faulty, this function notifies all nodes that the MPI communi-
cator is invalid. Next, the communicator is revoked by running
primitive MPI_Comm_revoke().

Next, primitives MPI_Comm_failure_ack() and
MPI_Comm_failure_get_ acked() are invoked to
identify which nodes within the communicator are faulty.
After that, function MPI_Comm_shrink() creates a new
MPI communicator, removing all faulty nodes. Another
step is then executed, which allows the nodes in the new
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Fig. 4. Results measured for the fault-tolerant version of Bitonic Sort.

communicator to keep the same identifier (rank) they had
before the failure.

Each node keeps locally an array with the state of all
nodes (faulty or fault-free), which is update by function
FaultDetection(). This array is employed by the fault-
tolerant parallel sorting algorithms presented in Section IV to
determine which nodes are fault-free.

The algorithm was evaluated in four different scenarios. In
the first scenario all nodes are correct and remain so. In the
second scenario a single node fails. In the third scenario half
the nodes fail. In the last scenario n − 1 nodes fail. In order
to evaluate scenarios with faults, function FaultInject()
was employed. This function makes a random selection of
nodes that will become faulty in each round. The function
receives as input the number of nodes to fail, and determines
the round as well as which nodes will fail randomly. Thus in
principle any node can fail at any round. A node is caused to
crash through the execution of the SIGKILL signal.

The algorithm was implemented in the C language using
Open MPI and the ULFM 2.0 library [51]. The source code
is available at: https://bitbucket.org/etcamargo/parallelsorting/.
The experiments were executed on a machine with 32 Intel
Core i7 processors running the Linux operating system (Kernel
4.4.0).

Results obtained for the fault-tolerant version of the Bitonic
sort parallel sorting algorithm are described next. It is impor-
tant to mention that the purpose here is not to increase the
speedup of the algorithm in comparison with existing versions,
but to confirm that they are robust and keep on executing even
after a massive (up to N − 1 out of N ) number of nodes fail
at runtime.

B. Results

Each experiment consisted of sorting 1 billion of randomly
generated integers. The total number of nodes N varied from
4, 8, 16 up to 32 nodes. Each experiment was repeated 10
times, results presented are averages.

Figure 4 shows the results obtained for Bitonic Sort. It can
be seen that the execution time of Bitonic Sort increases as the

number of processes grows in all scenarios, both in the fault-
free and with faulty nodes. To illustrate this fact, consider the
four scenarios with N = 8 nodes and with 0, 1, N/2 and
N − 1 faulty nodes; Bitonic Sort takes 437s, 465s, 550s and
821s, respectively, to sort 230 integers. Furthermore, it is also
possible to observe that as the number of nodes increases,
the execution times do not dimish. This situation is probably
due to the fact that Bitonic Sort relies heavily on having
nodes exchange sequences of elements. Thus, as the number
of processes grow, more sorting rounds are required with a
corresponding increase of the number of messages exchanged.
As mentioned in [52], the predictability of Bitonic Sort can
be one of its disadvantages: the join and swap operations take
more and more time as the hypercube size increases.

VI. CONCLUSIONS

In this work we introduced a novel Algorithm-Based Fault
Tolerance technique applied to the Bitonic Sort hypercube-
based parallel algorithm. The technique relies on features of
the underlying topology, which is assumed to be a VCube –
if all nodes are fault-free they communicate according to a
logical hypercube, if there are faults, the topology reconfig-
ures autonomically at runtime, preserving several logarithmic
properties. The technique is based on defining covers which
are nodes that execute the tasks of those that are faulty, as well
as defining the communication pattern under faults according
to the VCube.

The fault-tolerant version of the Bitonic Sort parallel al-
gorithm was specified and implemented in MPI/ULFM and
executed on 4, 8, 16 and 32 nodes. Results were obtained
for the algorithm under four different scenarios: fault-free, 1
single fault, half the nodes are faulty, and all but a single node
is fault-free. The algorithm executed correctly on all experi-
ments, i.e. being able to detect and survive the occurrence of
faults not loosing any of the work that was done before faults
occurred.

Future work includes the application of the proposed ABFT
strategy to other parallel hypercube-based algorithms. We
also do believe several other types of algorithms besides
those for parallel sorting can benefit from the ability to
detect/reconfigure/continue their executions despite the occur-
rence of faults at runtime. Another related future work is
to develop similar ABFT techniques for parallel algorithms
based on other topologies – exploring features of the topology
to allow fast and reliable algorithm reconfiguration is cer-
tainly a promising field of work. The development of similar
techniques for the shared memory paradigm is also relevant
future work, as there are several mission-critical systems and
applications that take a long time to execute based on that
important and popular paradigm.

ACKNOWLEDGEMENTS

This work was partially supported by the Brazilian Min-
istry of Education (CAPES) Finance Code 001 and Brazilian
Research Council (CNPq) grant 308959/2020-5.

8



REFERENCES

[1] A. Netti, Z. Kiziltan, O. Babaoglu, A. Sı̂rbu, A. Bartolini,
and A. Borghesi, “A machine learning approach to online
fault classification in hpc systems,” Future Generation Computer
Systems, vol. 110, pp. 1009 – 1022, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X1932045X

[2] C. D. Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop,
and W. Kramer, “Lessons learned from the analysis of system failures
at petascale: The case of blue waters,” in 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, June
2014, pp. 610–621.

[3] D. A. Reed and J. Dongarra, “Exascale computing and big data,”
Commun. ACM, vol. 58, no. 7, p. 56–68, Jun. 2015. [Online]. Available:
https://doi.org/10.1145/2699414

[4] M. A. Al-Hashimi, O. A. Abulnaja, M. E. Saleh, and M. J. Ikram,
“Evaluating power and energy efficiency of bitonic mergesort on graph-
ics processing unit,” IEEE Access, vol. 5, pp. 16 429–16 440, 2017.

[5] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of
fault tolerance mechanisms and checkpoint/restart implementations for
high performance computing systems,” The Journal of Supercomputing,
vol. 65, no. 3, pp. 1302–1326, 2013.

[6] T. Herault and Y. Robert, Fault-Tolerance Techniques for High-
Performance Computing, 1st ed. Springer Publishing Company, In-
corporated, 2015.

[7] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A
survey of rollback-recovery protocols in message-passing systems,”
ACM Comput. Surv., vol. 34, no. 3, p. 375–408, Sep. 2002. [Online].
Available: https://doi.org/10.1145/568522.568525

[8] M. Bougeret, H. Casanova, Y. Robert, F. Vivien, and D. Zaidouni,
“Using group replication for resilience on exascale systems,”
The International Journal of High Performance Computing
Applications, vol. 28, no. 2, pp. 210–224, 2014. [Online]. Available:
https://doi.org/10.1177/1094342013505348

[9] S. Filiposka, A. Mishev, and K. Gilly, “Multidimensional hierarchical
VM migration management for HPC cloud environments,” J.
Supercomput., vol. 75, no. 8, pp. 5324–5346, 2019. [Online]. Available:
https://doi.org/10.1007/s11227-019-02799-5

[10] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Transactions on Computers, vol. C-33, no. 6,
pp. 518–528, June 1984.

[11] Z. Chen and D. Jack, “Algorithm-based fault tolerance for fail-stop
failures,” IEEE Trans. Parallel Distrib. Syst., pp. 1628–1641, 2008.

[12] J. Hursey and R. L. Graham, “Building a fault tolerant MPI application:
A ring communication example,” in IPDPS Workshops, 2011, pp. 1549–
1556.

[13] N. Bagherpour, S. Hammarling, N. Higham, J. Dongarra, and
M. Zounon, “D6.6 - algorithm-based fault tolerance techniques,”
Oct. 31 2017. [Online]. Available: https://www.nlafet.eu/wp-
content/uploads/2016/01/NLAFET-D6.6-171031.pdf

[14] B. Parhami, Introduction to Parallel Processing: Algorithms and Archi-
tectures. Norwell, MA, USA: Kluwer Academic Publishers, 1999.

[15] F. Leighton, Introduction to Parallel Algorithms and Architectures:
Arrays · Trees · Hypercubes. Elsevier Science, 2014. [Online].
Available: https://books.google.com.br/books?id=IuY CQAAQBAJ

[16] I. Foster, I. Foster, and J. Foster, Designing and Building Parallel
Programs: Concepts and Tools for Parallel Software Engineering, ser.
Literature and Philosophy. Addison-Wesley, 1995. [Online]. Available:
https://books.google.com.br/books?id=r5JsQgAACAAJ

[17] E. P. Duarte, L. C. E. Bona, and V. K. Ruoso, “Vcube: A provably
scalable distributed diagnosis algorithm,” in 2014 5th Workshop on
Latest Advances in Scalable Algorithms for Large-Scale Systems, Nov
2014, pp. 17–22.

[18] E. P. Duarte, Jr. and T. Nanya, “A hierarchical adaptive distributed
system-level diagnosis algorithm,” IEEE Transactions on Computers,
vol. 47, no. 1, pp. 34–45, Jan. 1998.

[19] G. E. Fagg and J. Dongarra, “Ft-mpi: Fault tolerant mpi, supporting
dynamic applications in a dynamic world,” in Proceedings of the 7th
European PVM/MPI Users’ Group Meeting on Recent Advances in
Parallel Virtual Machine and Message Passing Interface. London,
UK, UK: Springer-Verlag, 2000, pp. 346–353. [Online]. Available:
http://dl.acm.org/citation.cfm?id=648137.746632

[20] W. Bland, A. Bouteiller, T. Hérault, G. Bosilca, and J. Dongarra,
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