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A B S T R A C T

The worldwide debate over Network Neutrality (NN) has been raging on for nearly two decades. According
to NN principles, all traffic in the Internet must be treated with impartiality. In particular, unfair Traffic
Differentiation (TD) is not allowed. Several strategies have been proposed for detecting TD, but locating the
source of TD is still an under-explored topic. In this work, we present a holistic approach for unifying TD
detection solutions into a single framework with the purpose of locating the source of TD. We propose an
algorithm for combining measurements from multiple vantage points, and a strategy for selecting good vantage
points. Our proposals leverage Internet peering properties to infer the behavior of individual Autonomous
Systems (ASes), without requiring knowledge of the exact routes traversed by measurement probes. To evaluate
our proposals, we first ran several experiments to confirm that indeed Internet routes do present the required
properties. Then, several simulations were performed to assess the efficiency of our proposals. Results show
that our approach is capable of locating TD under several different conditions. Another finding is that issuing
measurements from a few end-hosts of core Internet ASes achieves similar results than from a much larger
number of end-hosts at the edge.
1. Introduction

Network Neutrality (NN) has been the focus of hot debates around
the world since Tim Wu coined the term in 2002 [1]. NN states that all
traffic in the Internet must be treated with impartiality, regardless of its
origin, destination and/or content. This effectively means that unfair
Traffic Differentiation (TD), such as prioritizing or degrading specific
traffic flows, are prohibited [2]. Arguments in favor of the implemen-
tation of this principle claim that TD may threaten the open nature of
the Internet as an environment that fosters innovation, fair competition,
and consumer’s freedom of choice [3,4]. Arguments against NN claim
that giving Internet Service Providers (ISPs) more freedom to manage
their own networks fosters competition and innovation [5,6].

Several countries around the world have established NN regula-
tions for preventing unfair TD [7]. However, ISP compliance cannot
be ensured by the regulations alone. Furthermore, even on a non-
regulated environment, it is important to ensure the transparency of
traffic management practices adopted by ISPs. In this context, there are
several proposals in the literature for monitoring NN violations on the
Internet [8]. These proposals focus mostly on detecting the presence of
TD between end-hosts, employing a myriad of different measurement
techniques and statistical methods. However, those solutions only de-
tect TD, they are not capable of locating where exactly in the network
discrimination was introduced. Locating TD is important to enforce
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regulations and to empower consumers by revealing potentially dis-
criminatory behaviors from certain ISPs. To the best of our knowledge,
there has been very little work on locating TD [9–12], all of which rely
on unrealistic assumptions, such as prior knowledge of the complete
network topology (at the host level), and knowledge about the precise
paths traversed by measurement traffic.

In this work, we address the problem of locating TD with more
realistic assumptions than those of previous works. In our proposal
we recognize the fact that it may not be possible to know the exact
host-level path between end-hosts, there may even be multiple paths,
and the path actually traversed can change over time [13]. We take a
holistic approach that aims at unifying the several existing TD detection
solutions. We propose an algorithm that locates TD by combining TD
detection measurements issued from multiple vantage points. By taking
advantage of Internet peering properties instead of assuming complete
knowledge about the paths between end-hosts, the proposed algorithm
is able to infer which Autonomous System (AS) was responsible for
discriminating traffic. We also propose a strategy for selecting vantage
points that will effectively contribute to locate TD. Using both the
proposed algorithm and the proposed strategy as building blocks, we
finally describe a complete solution for locating TD in the Internet. An
earlier version of the proposals and some of the results presented in this
work were published as a conference paper in [14].
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The proposed algorithm combines measurements taken by any ex-
isting TD detection solution – thus it can be seen as a ‘‘meta’’ strategy
for aggregating measurements from multiple sources. By taking advan-
tage of inter-AS routing properties, we list the possible AS-level paths
between the measurement points [15]. Inference is made by checking
which ASes are present in all possible paths between each pair of
measurement hosts. For instance, if a given AS is in all paths between
two hosts, and no TD was detected between them (i.e. as indicated
by some TD detection tool), then it is possible to reach the conclusion
that AS is not employing TD, since the measurement traffic surely went
through it and yet no TD was detected.

The strategy for selecting measurement points searches for pairs
of measurement points in such a way that all possible paths between
the selected points traverse certain given ASes. The idea is that mea-
surements issued from the selected points, when combined using the
proposed algorithm, will effectively contribute to infer the behavior of
the given ASes.

Finally, we present the complete solution for locating TD. The
solution identifies which AS is discriminating traffic between a given
pair of end-hosts. The main idea is to filter out the ASes that are not
employing TD until only one AS remains — the one responsible for
discriminating traffic. This is done by selecting measurement points
using the strategy proposed, and combining the measurements issued
from them using the proposed algorithm.

We performed two different sets of experiments to evaluate our
proposals. We first executed experiments on the PlanetLab global
testbed [16] to check whether our assumptions regarding the properties
of AS-level paths are valid in the wild. Next, several simulations for
assessing the efficiency of the solution for locating TD under different
scenarios were executed. Results from the first set show that the peering
properties we assume are valid for the majority of paths observed. Fur-
thermore, results also reveal that path discovery techniques, employed
by related work, may not return reliable results. Then the second set
of experiments show that the proposed solution is capable of locating
TD under different scenarios. Moreover, similar results were observed
when combining measurements obtained with a large amount of ASes
in the edge of the Internet and those from a small number of ASes in
the core. The simulations also show which metrics should be employed
to find more effective measurement points.

The main contributions of this paper are thus:

• This work advances the state of the art regarding the under-
explored problem of locating TD in the Internet

• We propose an algorithm for inferring the behavior of ASes
by combining measurements from multiple vantage points with-
out requiring complete knowledge of the exact path between
end-hosts

• A strategy for selecting measurement points that can effectively
help locate TD is proposed

• A complete solution for locating TD that uses the proposed al-
gorithm for combining measurements and the strategy for se-
lecting measurements points is described and evaluated through
simulation

• Metrics for selecting good measurement points are proposed and
evaluated through simulation

• We show through simulation results the relation between the
assumed Internet peering properties and the efficiency of our
solution under different scenarios

• We make an innovative use of Internet peering properties
• We report experiments that show the limitations of path discovery

techniques in the Internet, which are employed by related work
• We report experiments that show to which extent Internet peering

properties are valid in the wild

The rest of this work is organized as follows. Section 2 presents
related work. Then, an overview of key background concepts follows
2

in Section 3. Next, we present the system model in Section 4. Then, t
the proposed algorithm for combining measurements is described in
Section 5. Section 6 describes the proposed strategy for selecting mea-
surements points. The complete solution for locating TD in the Internet
is finally presented in Section 7. In Section 8, we describe the PlanetLab
experiments for validating the assumed routing properties. Simulations
for evaluating the complete solution for locating TD are presented in
Section 9. Finally, we draw conclusions in Section 10.

2. Related work

Detecting TD in the Internet is a research topic widely explored in
the literature [17–24]. A comprehensive survey [8] describes multiple
TD detection solutions that rely on different types of network measure-
ments and statistical methods. Measurement probes may be issued from
one or several end-hosts. Other strategies rely on passive monitoring.
The type of traffic employed by the probes may also differ. In general,
TD detection is performed by comparing the measurements obtained
to identify whether any set of measurements was statistically different
from other sets, which may characterize a discriminatory treatment of
network traffic. The solutions proposed in the present work make use
of any of the existing TD detection solutions, rather than presenting yet
a new alternative.

Few strategies have been proposed to locate where in the network
discrimination was introduced. Most solutions [9–11] rely on path
discovery techniques, in particular the traceroute tool [25]. Traceroute
s supposed to discover the exact path traversed by measurement
raffic between end-hosts. The idea is to try to detect the presence of
D on different subsets of the paths between end-hosts, in order to

dentify which portion of the path (or specific point) was responsible for
ntroducing the discrimination. The major shortcomings of using these
echniques is that traceroute is not reliable, since it is not always able to
btain the complete path traversed. Even when the path is discovered
ith precision, there is no guarantee that the measurement traffic

raversed the same path as the application traffic under investigation.
he experiments presented in Section 8 confirm some of the limitations
f traceroute-like techniques. Our proposals for locating TD presented
n this work take into account all the possible paths traffic may traverse
etween end-hosts, avoiding the shortcomings described above.

In [12] the authors propose an algorithm based on network to-
ography to detect TD and also locate in which host or link the
iscrimination occurred. The idea is to combine end-to-end measure-
ents between several pairs of end-hosts. A system of equations is built
ith measurements as sums of intermediate values, each corresponding

o a link traversed. Inconsistencies on the resolution of this system
ay indicate the presence of TD. The strategy relies on two strong

ssumptions: the exact host-level topology of the network is known,
nd as are the exact paths traffic traverses between all pairs of end-
osts. These assumptions may represent a problem in practice, as the
ost-level topology of the Internet is dynamic and inferences can be
isleading. Furthermore, the path between a pair of end-hosts may

hange at any moment due to different reasons, e.g. load balancing,
raffic exchange policies, router faults. In comparison, the present work
nly assumes knowledge of the AS-level topology, which can be easily
btained [26] – using Border Gateway Protocol (BGP) routing tables,
or example. Moreover, our proposals do not assume that traffic always
raverse the same path.

In another related work [27], we proposed an architecture for
ollecting and combining TD-related measurements from a plethora
f sources. These include for instance, receiving inferences from a
D detection service running on the Cloud, or collecting NN-related
easurements from an Internet of Things gateway. The architecture

ollows a hybrid active/passive approach, in which measurements are
assively collected and combined, but active measurements can be re-
uested on demand in order to investigate suspicious cases detected by
ggregating the passive measurements. We argue that the proposals we
ntroduce in the present work are possible directions for implementing

hat architecture.
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3. Background

This section presents an overview of AS-level Internet routing prop-
erties, and describes a specific solution as an example of an effective
TD detection solution that can be employed in our proposals.

3.1. AS-level routing properties

ASes are independent networks, owned by different organizations,
each with a different set of assigned IP prefixes. The Internet consists
of the interconnection of these independent networks. Several ASes
may be traversed by any given traffic flow in the Internet. An AS-level
path is defined as the sequence of ASes traversed by a data packet
from the source end-host to the destination end-host. The path that is
traversed by each packet depends both on its final destination and on
the traffic exchange agreements each AS has with its neighbors. As a
packet arrives, the AS decides to which neighboring AS the packet will
be forwarded to. This decision is done by consulting a BGP table, which
contains the neighboring ASes that can reach the final destination. One
of these ASes is chosen according to a set of policies adopted.

ASes connect to other ASes in order to gain access to parts of
the Internet which are not reachable directly from the local AS it-
self or through customer ASes. Traffic exchange agreements between
ASes are not publicly available. However, it is possible to abstract
the relationship between ASes into four categories [26]: peer-to-peer
(𝑝2𝑝), sibling-to-sibling (𝑠2𝑠), customer-to-provider (𝑐2𝑝), and provider-
to-customer (𝑝2𝑐). A 𝑝2𝑝 relationship means that the two ASes exchange
traffic between them and their customers without payments. When the
two ASes are owned by the same company, they may exchange traffic
freely in a 𝑠2𝑠 relationship. In the case of 𝑐2𝑝, a customer AS purchases
transit services from a provider AS. Similarly, in a 𝑝2𝑐 relationship an
AS provides transit services to a customer AS, i.e. access to other parts
of the network.

A widely accepted model for characterizing Internet paths is the
Gao–Rexford model [15]. According to this model, AS-level paths in
the Internet follow the valley-free property. In an AS-level path, ASes
are customers of other ASes that provide transit services, and a transit
provider AS is paid by the customer AS. An AS providing transit services
without being paid by anyone configures a valley in the path, hence
the name of the property. In a valley-free path, for each AS providing
transit services there is a customer AS neighboring it, i.e. paying for
the service. Thus the valley-free property states that valid paths in the
Internet comply with the following pattern: any number of 𝑐2𝑝 links,
followed by up to one 𝑝2𝑝 link, followed by any number of 𝑝2𝑐 links.
There may be any number of 𝑠2𝑠 links anywhere along a path.

Fig. 1 shows an example of a real AS-level topology with the corre-
sponding relationships, inferred by CAIDA [28]. In the figure, the path
Copel → RNP → UFPR is valley-free, since the transit provider (RNP) is
being paid by its customer (UFPR). However, Copel→ Sercomtel→ Level
3 is a valley path, since no one is paying the transit provider Sercomtel.

Between any pair of end-hosts in the Internet, there may be several
valley-free paths. Furthermore, each packet may traverse a different
path, even packets of the same flow. This depends on the traffic
exchange agreements in place and the routing policies of each AS [29].
The actual path traversed may also change over time [13]. For instance,
in the topology shown in Fig. 1, paths Sercomtel → Copel → Level 3 and
Sercomtel → ALGAR → Level 3 are both valley-free. In this particular
case, the Sercomtel AS may prefer to exchange traffic with ALGAR
through the 𝑝2𝑝 link, since it would be cheaper than using the 𝑐2𝑝 link
with Copel.

We present experiments for evaluating to what extent the valley-free
property is valid in the Internet in Section 8.
3

Fig. 1. Example of a real AS-level topology with the corresponding relationships,
including valley and valley-free paths.

3.2. A representative solution for detecting TD

As described in Section 2, a large number of solutions for detecting
TD have been proposed. In this work, TD is located by combining mea-
surements issued by one or more of these solutions. As a confirmation
that there are effective TD detection strategies, we give a brief overview
of a representative solution next.

Wehe [23,24] is effectively able to detect TD by comparing mea-
surements from two traffic flows transmitted between the same pair of
end-hosts: a real traffic flow from an application under investigation,
and that same traffic flow encrypted through a VPN tunnel. The authors
report results based on a measurement campaign that lasted a whole
year conducted by end-users with the solution running on their mobile
devices. 1,045,413 measurements were obtained, from 126,249 users
connected to 2735 different ISPs in 183 countries/regions. From the
obtained data, the authors were able to perform a large-scale investi-
gation of TD practices in the Internet. TD was detected in 7 different
countries, and the majority of the TD cases detected affected video
streaming services.

In the remainder of this work, we call TD detectors these solutions
for detecting the presence of TD between end-hosts in the Internet.
We argue that the inferences made by different TD detectors, and/or
by multiple instances of the same TD detector, may complement each
other to solve the problem of locating TD. Note that identifying whether
the located discrimination is legal, beneficial, or not, is out of the scope
of this work. We refer the reader to [30] for a detailed discussion
about applications that require Quality of Service guarantees and NN
regulations.

4. System model

In this section, we define the system model for locating TD. We
first describe our assumptions in Section 4.1, followed by the model
in Section 4.2. Finally, Section 4.3 describes how valley-free paths
between ASes are obtained — which are a fundamental part of our
proposals. Table 1 summarizes the main notations presented in this
section and in the remainder of this work.

4.1. Assumptions

The proposed strategies for locating TD have requirements in terms
of the AS-level Internet Topology assumed, routing properties of the
network in which measurements are taken, the type of discrimination
that can be located, and the availability of both TD detectors and
measurement ASes. These assumptions are described next.

AS-level Internet Topology : The AS-level Internet topology is assumed
to be known. Datasets that infer the Internet AS-level topology are
publicly available, including the AS Rank project [28] by CAIDA, which
is employed in this work. In particular, the relationships between ASes
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Table 1
Table of notations.
Notation Definition

𝐼𝑢 Inferred behavior of AS 𝑢

𝐼𝑢,𝑣 Inferred behavior of the pair of ASes (𝑢, 𝑣), as determined by a TD detector

𝑀 Set of measurements (𝑢, 𝑣, 𝐼𝑢,𝑣) to be combined by the algorithm

𝐷 Set of measurement ASes for a single execution of the solution

𝐸 Initial AS pair for a single execution of the solution — ASes between which TD is
to be located

𝜎 Maximum additional links relative to the shortest valley-free path considered
when searching for paths

𝛿 Maximum valley-free distance from a suspect AS 𝑖 up to the limit at which
measurement ASes are to be checked

𝑉 𝜎
𝑢,𝑣 Set of valley-free paths between ASes 𝑢 and 𝑣 with length bounded by 𝜎

𝐴𝑢,𝑣 Set of all ASes present in the valley-free paths between 𝑢 and 𝑣

𝑍 Set of initial pairs in a simulation scenario
was inferred from AS Rank data and employed to build an AS-level
topology graph, as described in Section 8.

Valley-free Property : Another assumption is that the valley-free prop-
erty is valid. This property is accepted as essential to guarantee the
convergence of the BGP routing protocol [31]. In Section 8 we present
experiments that assess to which extent this property is actually valid
in the Internet.

Discrimination Types: In this work we assume TD based on packet
content, such as application protocol, destination port, or even payload
(through DPI — Deep Packet Inspection). TD based on the origin or
destination of packets, for example, is out of the scope of this work.
Recent work [24,32,33] reports results that indicate that TD based on
content is common in the wild.

In this context, we assume that ASes always discriminate the same
types of traffic, regardless of its origin or destination, or which
ingress/egress points the traffic has traversed. As a consequence of this
assumption, if traffic between a pair of end-hosts corresponding to a
certain application is discriminated by an AS, traffic from the same
application between any other pair of end-hosts will be discriminated
by that AS as well.

TD Detectors: We assume the availability of at least one TD detector
that is able to recognize the presence of TD between two given ASes.
For instance, such TD detector can consist of an application running
on end-hosts connected to the ASes, or a Virtualized Network Function
(VNF) deployed within their networks. Note however that TD detectors
are not able to locate TD (only detect). Detection alone leaves questions
unanswered, as the paths between a given AS pair often consists of
multiple ASes, any of which can be the responsible for TD. Locating
TD is about pinpointing the exact one discriminating traffic.

Measurement ASes: We assume that a set of ASes are accessible for
running TD detectors. We call them measurement ASes. In a real deploy-
ment, the set of available measurement ASes may change over time, for
example if the set of connected end-hosts varies dynamically. However,
in this work, we only focus on locating TD using the measurement ASes
available during a specified period of time. Furthermore, we do not
take into account specific characteristics of the end-hosts connected to
measurement ASes (e.g. mobility, energy consumption).

4.2. System model

The AS-level topology of the Internet is represented as a directed
graph 𝐺 = (𝐴,𝐿, 𝑓 ), where 𝐴 is the set of ASes in the network and 𝐿 is
the set of connections between ASes. Let 𝑅 = {𝑐2𝑝, 𝑝2𝑐, 𝑝2𝑝, 𝑠2𝑠} be the
set of possible relationships between ASes: 𝑓 ∶ 𝐿 → 𝑅 is the function
that maps a link 𝑙 ∈ 𝐿 to the corresponding relationship 𝑟 ∈ 𝑅.

The set of measurement ASes 𝐷 is a subset of 𝐴, i.e. 𝐷 ⊆ 𝐴. A path
𝑝 = {𝑢,… , 𝑣} is a sequence of ASes connecting ASes 𝑢 and 𝑣. Let 𝑃𝑢,𝑣
4

be the set of all paths between ASes 𝑢 and 𝑣. Furthermore, 𝐿𝑝 is the
sequence of links of a path 𝑝 ∈ 𝑃𝑢,𝑣, and 𝑅𝑝 = {𝑓 (𝑙) ∣ 𝑙 ∈ 𝐿𝑝} is
the sequence of relationships between the corresponding ASes. A path
𝑝 ∈ 𝑃𝑢,𝑣 is valley-free if 𝑅𝑝 follows the valley-free property as described
in Section 3. The set of all valley-free paths between two ASes 𝑢 and 𝑣
is denoted by 𝑉𝑢,𝑣 ⊆ 𝑃𝑢,𝑣.

We classify a given AS with respect to TD as either discriminatory,
neutral, or unknown. An AS is classified as discriminatory if has been
found to employ TD. Otherwise, it is classified as neutral. Finally, an
AS is classified as unknown if after running all available solutions for
detecting and locating TD it was not possible to infer whether it was
employing TD or not. Let 𝐼𝑢 be the inferred behavior of AS 𝑢 ∈ 𝐴.
Similarly, a pair of ASes (𝑢, 𝑣), 𝑢, 𝑣 ∈ 𝐴 is can be classified as either
neutral or discriminatory. For a neutral pair of ASes, no end-to-end TD
was detected between them, but if TD has been detected, then the pair
is classified as discriminatory. Let 𝐼𝑢,𝑣 be the inferred behavior of the
pair of ASes (𝑢, 𝑣), i.e. the output of a TD detector.

4.3. Searching for valley-free paths

A modified Depth-First Search (DFS) is employed in order to find the
valley-free paths between ASes on the graph representing the topology.
This search works as a traditional DFS, but discards all paths that
do not follow the valley-free property. For this DFS, we employ a
parameter (𝜎) that sets a maximum limit to the length of the paths.
When searching for valley-free paths between two ASes, parameter
𝜎 corresponds to the number of additional links that can be added
to the size of the shortest valley-free path between those ASes. The
authors in [34] show that the complexity for listing all paths with
bounded length between two vertices in a weighted directed graph is
𝑂(𝑚𝑛+ 𝑛2 log 𝑛), in which 𝑛 is the number of vertices (|𝐴|) and 𝑚 is the
number of edges (|𝐿|).

For instance, with 𝜎 = 1, the DFS will find all shortest valley-free
paths, as well as all valley-free paths one link larger than the shortest
path. It is common for AS-level paths in the Internet to be larger than
the shortest possible path. The experiments presented in Section 8 show
to what extent this happens. This upper bound is important to keep the
search computationally feasible. Let 𝑝 ∈ 𝑉𝑢,𝑣 be the shortest valley-free
path between ASes 𝑢 and 𝑣. We define 𝑉 𝜎

𝑢,𝑣 = {𝑝′ ∣ 𝑝′ ∈ 𝑉𝑢,𝑣, |𝑝′| ≤ |𝑝|+𝜎}
as the set of valley-free paths between ASes 𝑢 and 𝑣 with length not
larger than the length of the shortest path plus 𝜎. Let 𝐴𝑒1 ,𝑒2 =

⋃

{𝑝 ∣ 𝑝 ∈
𝑉 𝜎
𝑒1 ,𝑒2

} be the set of all ASes in all possible valley-free paths between 𝑒1
and 𝑒2.

Fig. 2 shows all the possible valley-free paths between the ASes 𝑒1
and 𝑒2, i.e. 𝑉 𝜎

𝑒1 ,𝑒2
, for 𝜎 = 0. There are two possible paths between the

pair: {𝑒1, 𝑐1, 𝑐3, 𝑒2}, and {𝑒1, 𝑐2, 𝑐3, 𝑒2}. Since we do not know which path
would be effectively traversed by traffic between 𝑒1 and 𝑒2, we consider

all possible paths. Moreover, in this example 𝐴𝑒1 ,𝑒2 = {𝑒1, 𝑒2, 𝑐1, 𝑐2, 𝑐3}.
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Fig. 2. Example of valley-free paths between ASes 𝑒1 and 𝑒2 (𝑉 𝜎
𝑒1 ,𝑒2

, 𝜎 = 0).

5. Algorithm for combining measurements

In this section, we present the algorithm proposed for combining
inferences made by TD detectors. The goal of this algorithm is to iden-
tify which ASes are neutral, discriminatory, or unknown. The algorithm
aggregates measurements from TD detectors running on multiple end-
hosts – it is thus a holistic approach that relies on the outcome from any
TD detector, including those not yet proposed. The main idea is to first
identify neutral ASes, and then identify discriminatory ASes through a
process of elimination.

The algorithm receives as input a set of measurements 𝑀 =
{(𝑢1, 𝑣1, 𝐼𝑢1 ,𝑣1 ),… , (𝑢𝑛, 𝑣𝑛, 𝐼𝑢𝑛 ,𝑣𝑛 )}, in which each measurement
(𝑢𝑖, 𝑣𝑖, 𝐼𝑢𝑖 ,𝑣𝑖 ) is a tuple containing two ASes (𝑢𝑖 and 𝑣𝑖) and the cor-
responding inferred behavior 𝐼𝑢𝑖 ,𝑣𝑖 . The algorithm outputs a tuple
(𝑁,𝐶,𝑈 ), in which 𝑁 is the set of neutral ASes, 𝐶 the set of discrimi-
natory ASes, and 𝑈 the set of unknown ASes. The algorithm consists of
two steps. First, all the neutral AS pairs in 𝑀 are evaluated to identify
neutral ASes. The second step consists of a search for discriminatory
ASes in 𝑀 . A pseudo-code of the proposed algorithm is presented in
Algorithm 1. We further describe the algorithm next.

Algorithm 1 Combining measurements.
1: 𝑁 ← ∅; 𝐶 ← ∅; 𝑈 ← ∅ ⊳ output sets
2: 𝑀 ′ ← {(𝑢, 𝑣, 𝐼𝑢,𝑣) ∣ (𝑢, 𝑣, 𝐼𝑢,𝑣) ∈ 𝑀, 𝐼𝑢,𝑣 = 𝑛𝑒𝑢𝑡𝑟𝑎𝑙} ⊳ neutral pairs
3: for each (𝑢, 𝑣, 𝐼𝑢,𝑣) ∈ 𝑀 ′ do ⊳ first step
4: 𝐴′ ← ∅
5: for each 𝑝 ∈ 𝑉 𝜎

𝑢,𝑣 do
6: 𝐴′ ← 𝐴′ ∪ 𝑝 ⊳ All ASes in paths between 𝑢 and 𝑣
7: end for
8: 𝑇 ← {𝑎 ∣ 𝑎 ∈ 𝐴′,∀𝑝 ∈ 𝑉 𝜎

𝑢,𝑣, 𝑎 ∈ 𝑝} ⊳ ASes present in all paths
9: 𝑁 ← 𝑁 ∪ 𝑇 ⊳ neutral ASes

10: 𝑈 ← 𝑈 ∪ 𝐴′ ⧵ 𝑇 ⊳ all other ASes are unknown
11: end for
12: 𝑀 ′′ ← {(𝑢, 𝑣, 𝐼𝑢,𝑣) ∣ (𝑢, 𝑣, 𝐼𝑢,𝑣) ∈ 𝑀, 𝐼𝑢,𝑣 = 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟𝑦}
13: for each (𝑢, 𝑣, 𝐼𝑢,𝑣) ∈ 𝑀 ′′ do ⊳ second step
14: 𝑉 ′ = {𝑝 ⧵𝑁 ∣ 𝑝 ∈ 𝑉 𝜎

𝑢,𝑣} ⊳ paths after removing neutral ASes
15: 𝐴′′ ← ∅
16: for each 𝑝 ∈ 𝑉 ′ do
17: 𝐴′′ ← 𝐴′′ ∪ 𝑝 ⊳ all ASes in the remaining paths
18: end for
19: if |𝐴′′

| = 1 then
20: 𝐶 ← 𝐶 ∪ 𝐴′′ ⊳ only the discriminatory AS remains
21: else
22: 𝑈 ← 𝑈 ∪ 𝐴′′ ⊳ more than one AS, so all are unknown
23: end if
24: end for
25: return (𝑁,𝐶,𝑈 )

The first step (lines 2–11) considers all measurements in 𝑀 that
indicated no TD. Let 𝑀 ′ = {(𝑢, 𝑣, 𝐼𝑢,𝑣) ∣ (𝑢, 𝑣, 𝐼𝑢,𝑣) ∈ 𝑀, 𝐼𝑢,𝑣 = 𝑛𝑒𝑢𝑡𝑟𝑎𝑙} be
the set of measurements which classified pairs of ASes as neutral. For
each measurement (𝑢, 𝑣, 𝐼𝑢,𝑣) ∈ 𝑀 ′, a set 𝑇 is created (line 8) containing
all ASes that are present in all valley-free paths 𝑝 ∈ 𝑉 𝜎 . These ASes are
5

𝑢,𝑣
Fig. 3. Example of measurements being combined to infer the behavior of ASes.

classified as neutral, and added to the output set 𝑁 (line 9). Note that
𝑇 contains at least ASes 𝑢 and 𝑣 themselves. If any of these ASes had
employed TD, 𝐼𝑢,𝑣 would be discriminatory since the traffic from the TD
detector would have surely traversed them. The rationale is that it is
not possible to know which path the TD detector traffic actually took,
thus the algorithm looks for the ASes that are present in all paths. For
instance, in the example shown in Fig. 2, if TD was not detected for
the pair (𝑒1, 𝑒2) (𝐼𝑒1 ,𝑒2 = 𝑛𝑒𝑢𝑡𝑟𝑎𝑙), then the ASes 𝑐3, 𝑒1, and 𝑒2 would
be inferred as neutral, since they are in all possible paths. However,
nothing can be inferred for ASes 𝑐1 and 𝑐2, thus their classification
remains unknown.

In the second step (lines 12–24), AS pairs for which TD was de-
tected are evaluated. Let 𝑀 ′′ = {(𝑢, 𝑣, 𝐼𝑢,𝑣) ∣ (𝑢, 𝑣, 𝐼𝑢,𝑣) ∈ 𝑀, 𝐼𝑢,𝑣 =
𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟𝑦} be the set of measurements that classified AS pairs as
discriminatory. For each measurement (𝑢, 𝑣, 𝐼𝑢,𝑣) ∈ 𝑀 ′′, the algorithm
removes from each possible path 𝑝 ∈ 𝑉 𝜎

𝑢,𝑣 the ASes in 𝑁 (line 14). Let
𝑉 ′ = {𝑝 ⧵𝑁 ∣ 𝑝 ∈ 𝑉 𝜎

𝑢,𝑣} be the set of valley-free paths that remain after
removing the neutral ASes. If all non-empty paths 𝑝′ ∈ 𝑉 ′ contain only
a single AS 𝑐, then 𝑐 is classified as discriminatory and added to 𝐶 (lines
19–20). However, if there is more than one AS in the non-empty paths,
they remain classified as unknown — it is not possible to know which
of these ASes were traversed by traffic from the TD detector.

Fig. 3 shows two examples using the same pair of ASes as in Fig. 2.
Suppose that TD was detected between 𝑒1 and 𝑒2. In Fig. 3(a), suppose
that ASes 𝑒1, 𝑒2 and 𝑐1 are already known to be neutral. Since there are
two other ASes, 𝑐2 and 𝑐3, through which measurement traffic may have
traversed, it is not possible to know which one of them is responsible
for TD. Therefore, both 𝑐2 and 𝑐3 remain unknown. However, let us
suppose then that 𝑐3 is also known to be neutral. As shown in Fig. 3(b),
the only remaining unknown AS would be 𝑐2, thus it becomes possible
to infer 𝐼𝑐2 = 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟𝑦.

The complexity of Algorithm 1 is derived as follows. The search
for all valley-free paths is performed once for every measurement in
𝑀 . Considering the complexity of listing all valley-free paths between
two ASes with bounded length 𝜎, as described in Section 4, the re-
sulting complexity is 𝑂(𝑚𝑛𝑜 + 𝑛2𝑜 log 𝑛), in which 𝑛 is the number of
vertices (|𝐴|), 𝑚 is the number of edges (|𝐿|), and 𝑜 is the number of
measurements being combined by the algorithm (|𝑀|).
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Fig. 4. Example of AS pair selection for investigating suspect AS 𝑖: pair (𝑚1 , 𝑚2) can
be selected, while pair (𝑚3 , 𝑚4) cannot.

6. Strategy for selecting measurement points

In this section, we propose a strategy for selecting pairs of measure-
ment ASes that can effectively help infer the behavior of a single given
AS when TD measurements are combined. We call this single given AS a
suspect AS. In order to be able to classify the behavior of the suspect AS,
a measurement campaign is carried out from the selected measurement
ASes. This strategy is a building block for the complete TD location
solution proposed next in Section 7.

Let 𝑖 be the suspect AS. The proposed strategy searches for a pair
of measurement ASes 𝑊 = (𝑢, 𝑣), 𝑢, 𝑣 ∈ 𝐷 that has not been previously
selected, and for which all valley-free paths 𝑝 ∈ 𝑉 𝜎

𝑢,𝑣 traverse 𝑖, i.e., ∀𝑝 ∈
𝑉 𝜎
𝑢,𝑣, 𝑖 ∈ 𝑝. The rationale is that if the suspect AS is in all possible

paths between the selected measurement ASes, then it is guaranteed
that the traffic from TD detectors will traverse the suspect AS, which
may contribute to eliminating or confirming the suspicions about that
AS when measurements are combined by Algorithm 1.

The search for AS pair 𝑊 is limited by a parameter 𝛿, which sets
the maximum valley-free distance from 𝑖 up to the limit at which
measurement ASes are to be checked. Therefore, the proposed strategy
tries to form an AS pair 𝑊 starting from the measurement ASes closer
to 𝑖, up to the measurement ASes that are at distance 𝛿 to 𝑖. The valley-
free property improves the efficiency of this search, since it reduces
the number of paths to check. For instance, if 𝑖 itself is available for
measurement (𝑖 ∈ 𝐷), then measurement pairs (𝑖, 𝑗) are employed,
such that the distance from 𝑖 to 𝑗 varies from 1 to 𝛿. But if 𝑖 ∉ 𝐷,
then measurement pairs are formed with ASes that are at distance 1
from 𝑖. In case those are also not available, pairs of ASes that are at a
distance 2 from 𝑖 are tried, and so on, up to distance 𝛿.

Fig. 4 shows an example using the same portion of the graph as in
Fig. 2. In this example, 𝛿 = 2. There are four measurement ASes within
distance 2 of 𝑖 (the suspect AS to be investigated): 𝑚1, 𝑚2, 𝑚3, 𝑚4 ∈ 𝐷.
The pair (𝑚1, 𝑚2) follows the criteria described above and could be
selected for investigating 𝑖, since all possible paths between 𝑚1 and 𝑚2
traverses 𝑖. However, pair (𝑚3, 𝑚4) would not be selected, since there
is a possible path between them that does not traverse 𝑖, which is
{𝑚3, 𝑐4, 𝑒2, 𝑚4}.

7. Complete solution for locating TD

In this section, we describe the complete solution proposed for locat-
ing TD in the Internet. This solution uses both the algorithm proposed
in Section 5 and the strategy proposed in Section 6 to identify which
AS is discriminating traffic between a given pair of end-hosts. The
main idea is to filter out the neutral ASes from a list of suspects until
only the discriminatory AS remains. The proposed solution receives as
input a pair of ASes 𝐸 = (𝑒1, 𝑒2), 𝑒1, 𝑒2 ∈ 𝐴, which we call the initial
pair. The goal is to locate which AS in the paths between 𝑒 and 𝑒 is
6

1 2
discriminatory. The output of the solution is a tuple (𝑁,𝐶,𝑈 ), in which
𝑁 is the set of neutral ASes, 𝐶 the set of discriminatory ASes, and 𝑈
the set of unknown ASes.

The proposed solution investigates each AS in the possible paths
between the initial pair, filtering out the neutral ASes until only the
discriminatory AS remains, by a process of elimination. The solution
is divided in 5 steps, shown in Fig. 5. The Initialization step builds
a set of suspect ASes (the ASes to be investigated). Then, in the AS
Pair Selection step, two ASes are selected from the set of measurements
ASes. Measurements are executed between the selected pair in the TD
Detection step. The outcomes of these measurements, together with all
previous measurements, are combined in the Inference step. The AS
Pair Selection, TD Detection, and Inference steps are repeated until a
halting condition is met. The solution finishes in the Completion step,
returning the output. We describe each step in more detail next.

Initialization

In this step, a set of suspect ASes 𝑆 = 𝐴𝑒1 ,𝑒2 is selected, which
consists initially of all the ASes in the valley-free paths between the
initial pair 𝐸. The behavior of all ASes in 𝑆 is initialized as unknown.
Fig. 2 shows an example of an initial pair 𝐸 = (𝑒1, 𝑒2) and all the
possible valley-free paths 𝑉 𝜎

𝑒1 ,𝑒2
, 𝜎 = 0.

AS pair selection

This step consists of choosing a suspect AS and using the strategy
proposed in Section 6 to select a pair of measurement ASes 𝑊 to
investigate the chosen suspect. We take all discriminatory pairs 𝑊 ′ =
(𝑢, 𝑣), 𝑢, 𝑣 ∈ 𝐷, 𝐼𝑢,𝑣 = 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟𝑦 for which measurements have
already been taken in the TD detection step. The first time this step
is executed, if the initial pair 𝐸 = (𝑒1, 𝑒2) is available for measurement
(i.e. 𝐸 ⊆ 𝐷) then 𝐸 is selected. Then, we count how many times each
suspect 𝑖 ∈ 𝑆 is present in all possible paths 𝑉 𝜎

𝑢,𝑣. The suspect 𝑖 that
appears less times is selected to be investigated. This heuristic relies on
the fact that AS 𝑖 is less likely to be discriminatory, and thus might be
filtered earlier. If no discriminatory pair has been found yet, the first
suspect in 𝑆 is selected.

TD detection

In this step, the presence of TD between the pair of measurement
ASes 𝑊 = (𝑢, 𝑣), 𝑢, 𝑣 ∈ 𝐷, selected in the previous step, is assessed. A
TD detector is executed on 𝑢 and 𝑣, and returns 𝐼𝑢,𝑣.

Inference

This step consists of combining all measurements made by TD de-
tectors using Algorithm 1. The input set 𝑀 consists of all measurements
obtained so far. The set of suspects 𝑆 is updated using the output of the
algorithm: neutral ASes are removed, and unknown ASes are added.

Completion

The halting conditions of the proposed solution for locating TD are
the following: (i) an AS in the paths between the initial pair (𝐴𝑒1 ,𝑒2 )
is classified as discriminatory, thus TD has been located; (ii) all ASes
in 𝐴𝑒1 ,𝑒2 are classified as neutral, thus no TD was found; and (iii)
all measurement AS pairs have already been used to investigate the
suspects — in this case TD could not be located, and one or more
suspect ASes remain classified as unknown. If any of these conditions
is met, the TD location solution finishes. The final output is tuple
(𝑁,𝐶,𝑈 ), i.e. the output of Algorithm 1 executed as part of the last
Inference step.
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Fig. 5. Overview of the proposed solution for locating TD.
8. Evaluation: AS-level graph and paths

In this section we describe experiments for checking our assump-
tions related to Internet routing. The results shown in this section
are based on an AS-level topology graph built using a dataset from
the CAIDA research group, within their AS Rank project [28]. The
same topology graph is also employed by the simulations presented in
Section 9. Therefore, in this section we first describe the graph and the
dataset from which it was built in Section 8.1. Next, the experiments
for validating our assumptions are described in Section 8.2.

8.1. AS-level topology graph

The CAIDA dataset used to built the AS-level topology graph we
employ in this work contains relationships between ASes in the Inter-
net, inferred based on BGP data [26]. The dataset we used includes
86,622 unique ASes. 24,815 of these ASes have no relationship with
other ASes, and were thus ignored in our evaluations. Therefore, we
built a topology graph containing 61,807 different ASes. The graph
𝐺 = (𝐴,𝐿, 𝑓 ) was built by creating a vertex for each AS (set 𝐴), and
an edge between each pair of ASes with a relationship in the dataset
(set 𝐿). The type of relationship (𝑝2𝑝, 𝑐2𝑝, 𝑝2𝑐, or 𝑠2𝑠) is indicated by
a label on each edge (function 𝑓 ).

In this work, we employ two centrality metrics extracted from the
topology graph: the betweenness and the valley-free betweenness. The
betweenness centrality measures to which extent a vertex is present in
the shortest paths between all other pairs of vertices. To be precise, the
betweenness of a vertex is the sum of the fractions of shortest paths
between all other pairs of vertices in which the vertex is present [35].
We call valley-free betweenness centrality a variation of this metrics
that takes into account only the shortest valley-free paths. The strategy
we propose for selecting measurement ASes rely on finding paths that
traverse specific ASes, the suspects. Therefore, these metrics may be
a good indication of the ability of ASes to be employed as measure-
ment points. For instance, ASes with higher betweenness are present
in more paths, which may turn them more likely to be selected for
measurement.

8.2. AS-level paths in the internet

We conducted an experiment on the PlanetLab global testbed with
three goals: (i) to assess to which extent the valley-free property is valid
in the Internet; (ii) to determine the length of AS-level paths in the
Internet; and (iii) to assess to which extent traceroute is a reliable tool
for obtaining paths in the Internet.

In this experiment, we obtained the paths between numerous In-
ternet IP prefixes and 29 PlanetLab hosts. The list of Internet pre-
fixes employed, along with the corresponding ASes, was produced
by CAIDA [36]. we chose a single prefix for the ASes with multiple
prefixes. There were also a few ASes in the list of prefixes that do
not appear in the AS-level topology graph we built. Such ASes were
then discarded. In the end we employed 60,578 prefix/AS pairs in the
experiment.

The paths to all prefixes/ASes were continuously measured from
each PlanetLab host using the traceroute tool, from January 10, 2019
7

to February 1, 2019, for a total of 22 days of measurements. Each
measurement resulted in a list of IP addresses, from a PlanetLab host
to an Internet prefix, i.e. a host-level path. We converted all host-
level paths to AS-level paths by mapping the IP addresses to the
corresponding ASes. This mapping was performed using the same list
of prefixes from CAIDA found in [36]. However, a common issue with
traceroute measurements is that some hosts along the path do not send
a reply after the probes, or reply with an invalid address. In these cases,
we may not know that the corresponding AS is in the path, unless
another host in the same AS replies to the probe. We describe how we
addressed this issue below.

The AS-level paths obtained were then classified as valley, valley-
free, or unknown. Valley-free paths present the valley-free property in
the topology graph, as described in Section 3, while valley paths do not
present the property. For the paths that presented measurement errors,
such as described above, we first checked if they presented the valley-
free property when ignoring the errors. In these cases we classified
the paths as valley-free, assuming that another host in the same AS
replied to the traceroute probes. Otherwise, we classified the paths
as unknown, since we cannot know if the measured path is complete
(there might be ASes missing in the obtained AS-level path) and thus
cannot know the actual classification. There were also a few paths
containing links not present in the graph, which were excluded from
our results.

A total of 75,597,104 traceroute measurements were collected, out
of which 1,801,089 (2.38%) had links not present in the graph and
were thus excluded, resulting in 73,796,015 AS-level paths. A total of
40,837,151 unknown paths were observed (55.34%). The remaining
paths consisted of 32,703,036 (44.31%) valley-free paths, and 55,828
(0.35%) valley paths. A total of 48,283 unique ASes were reached
through the valley-free paths (79.7% of all prefixes measured).

We also investigated parameter 𝜎, to discover how frequently and
by how much AS-level paths are larger than the shortest paths. For each
of the 32,703,036 valley-free paths measured, we compared its length
with the length of the shortest valley-free path between the same pair
of ASes in the graph. Results show that 55.78% of the paths measured
had the same length as the shortest path in the graph, 31.87% were
one link larger, and 10.34% were two links larger.

Results show that the vast majority of paths that were successfully
measured (i.e. they are not unknown) followed the valley-free property,
which is a key assumption of the present work. On the other hand, more
than half of the measurements resulted in unknown paths, which shows
the limitations of the traceroute-like techniques, which are employed
by other existing proposals for locating TD as described in Section 2.
Finally, the majority of the observed valley-free AS-level paths in the
Internet (87.65%) has length at most a single link larger than the
corresponding shortest path.

9. Evaluation: Locating TD

In this section, we present simulation results executed to evaluate
the complete solution for locating TD proposed in Section 7. The main
goals of the experiments are: (i) to evaluate whether the proposed
solution is capable of locating TD under different scenarios; (ii) to
evaluate how measurement points with different characteristics impact
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the efficiency of the proposed solution; and (iii) to identify between
which pairs of ASes it is more efficient to locate TD with the proposed
solution.

The rest of this section is organized as follows. We first describe
the methodology in Section 9.1. Then we give details about the imple-
mentations in Section 9.2. Next, the simulation scenarios are presented
in Section 9.3. We then describe the parameters employed in the
simulations, and how we chose their values in Section 9.4. Section 9.5
presents results comparing several different sets of measurement ASes,
while Section 9.6 compares different sets of initial pairs. We then
present results based on different assumptions: in Section 9.7 do not
assume that the initial pairs are available for measurement, and in
Section 9.8 we consider paths larger than the shortest paths. Finally,
we discuss the results and limitations of our evaluation in Section 9.9.

9.1. Simulation roadmap

We evaluated the complete solution for locating TD described in
Section 7 under several different scenarios, varying the initial pair of
end-hosts 𝐸 between which TD is to be located, the set of measurement
ASes 𝐷, as well as parameter 𝜎. Results are evaluated according to
hree criteria: (i) the success rate, i.e. the percentage of simulations
hat located TD successfully in each scenario; (ii) the average number
f measurement AS pairs selected by the solution across all simulations
or each scenario, i.e. the average number of measurements; and (iii)
he number of measurement ASes available that can be selected in each
cenario, i.e. the size of set 𝐷.

The optimal set of measurement ASes 𝐷 is the one that achieves
he highest success rate, issuing the smallest number of measurements,
nd containing the smallest number of ASes available for measurement.
he rationale is that the number of ASes available for measurement
ay be limited. Furthermore, issuing a large number of measurement

ampaigns imposes an overhead on the network.
We do not compare our solution with related work, since as de-

cribed in Section 2 our solution relies on different assumptions and
hus addresses a different problem. We do not claim that our solution
chieves better success rates or requires less measurements than other
xisting solutions. We do claim that our proposals rely on more realistic
ssumptions with respect to path knowledge.

.2. Implementation

We implemented the proposed solution in C++, using the Boost
raph Library.1 The implementation followed a modular design, al-

owing any TD detector to be used as a module of the software. For
he purpose of evaluation, in addition to 𝛿 and 𝜎, we added another
wo parameters to the implementation, 𝑚𝑡 and 𝑚𝑝. Parameter 𝑚𝑡 is an
pper bound for the number of AS pairs that are checked to investigate
suspect. For instance, when searching for an AS pair to investigate a

uspect AS 𝑠, if for 𝑚𝑡 different AS pairs the paths between them do not
ll traverse 𝑠, the strategy no longer tries to investigate 𝑠. Parameter 𝑚𝑝
s an upper bound on the number of AS pairs that may be selected to
nvestigate a given suspect. Thus, after 𝑚𝑝 AS pairs have been selected
o investigate a suspect, no more pairs will be selected for that suspect.
he goal of these parameters is to limit the search space with respect
o measurement AS pairs, in order to make it feasible to run a large
umber of simulations. We describe how the values of these parameters
ere set in Section 9.4.

The simulator itself was also implemented in C++, and executes the
olution for locating TD under different scenarios, and uses an ‘‘oracle’’
s the TD detector. The oracle receives as input two ASes 𝑢, 𝑣 ∈ 𝐴, and
eturns the inferred behavior 𝐼𝑢,𝑣. The oracle has perfect knowledge
bout which AS 𝑘 is discriminatory. The oracle checks if AS 𝑘 is in any

1 https://www.boost.org/doc/libs/1_76_0/libs/graph/doc/index.html
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Table 2
Selected sets of ASes.

Name Description Size

pdb-access Access providers from PeeringDB 5263
pdb-content Content providers from PeeringDB 1462
pdb-transit Transit providers from PeeringDB 2293
degree-eq-1 ASes with degree 1 in the graph 21220
degree-le-2 ASes with degree ≤ 2 in the graph 41247
degree-top-𝑛 ASes with the highest degree 𝑛
vfbet-top-𝑛 ASes with the highest valley-free betweenness centrality 𝑛
bet-top-𝑛 ASes with the highest betweenness centrality 𝑛

valley-free path between 𝑢 and 𝑣, i.e. if 𝑘 ∈ 𝐴𝑢,𝑣. If no, then the oracle
returns 𝐼𝑢,𝑣 = 𝑛𝑒𝑢𝑡𝑟𝑎𝑙. Otherwise, 𝐼𝑢,𝑣 = 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟𝑦. The oracle
considers that if 𝑘 is in at least one path between 𝑢 and 𝑣, then that
would be the path traversed by traffic, i.e. it always assumes the worst
case. The rationale for not using a real TD detector is that our goal is
to evaluate the proposals for locating TD, which rely on any type of TD
detector.

All simulations presented in this section were executed on a server
machine based on an Intel Xeon E5-2690 v2 processor with 200GB of
RAM memory, running Linux Mint 19.1.

9.3. Simulation scenarios

The simulator executes the solution for locating TD under mul-
tiple scenarios. Each simulation scenario receives as input set 𝑍 =
{(𝑢1, 𝑣1), (𝑢2, 𝑣2),… , (𝑢𝑛, 𝑣𝑛)}, 𝑢𝑖, 𝑣𝑗 ∈ 𝐴 of initial pairs, and a set 𝐷 ⊆
𝐴 of measurement ASes. In each experiment and for each scenario
several simulations are executed. For each initial pair 𝐸 = (𝑒1, 𝑒2),
we take each AS 𝑘 ∈ 𝐴𝑒1 ,𝑒2 (the ASes in the paths between 𝑒1 and
𝑒2) and execute a simulation in which 𝑘 is the AS responsible for TD.
The simulation is considered to be successful if AS 𝑘 is classified as
discriminatory. Furthermore, we also execute a simulation with no AS
employing TD, in which case the simulation is successful if all ASes
𝑢 ∈ 𝐴𝑒1 ,𝑒2 are classified as neutral. Therefore, each scenario results in
∑

𝐸∈𝑍 (|𝐴𝑒1 ,𝑒2 | + 1) simulation runs.
All simulations were executed on the same AS-level topology graph

𝐺, built from the CAIDA dataset, as described in Section 8. We assume
at first that on each simulation the ASes in 𝐸 are also available for
measurement, in addition to those ASes in set 𝐷. We also present results
without this assumption in Section 9.7.

Sets 𝑍 and 𝐷 were built based on metrics extracted from the graph,
as well as on the classification of ASes available on the PeeringDB
website [37]. PeeringDB is an online database in which operators
share information regarding their networks. According to [38], the
number of ASes registered on the website as transit, access and content
providers is representative of the corresponding sets in the Internet. We
obtained the list of ASes of these types from PeeringDB in June 20th,
2019. Furthermore, we ordered the ASes based on degree, betweenness
centrality, and betweenness centrality taking into account only valley-
free paths. Table 2 shows the sets of ASes employed. The columns of the
table indicate for each set: name, description, and number of ASes. The
first three sets were taken from the PeeringDB website. The last three
sets consist of the 𝑛 ASes with the highest values for the corresponding
metrics. The values of 𝑛 we employed were: 10, 50, 100, 500, and 1000.

We created six sets of initial pairs, shown in Table 3, using the sets
of ASes described above. Each of these sets contains 1000 different
pairs of ASes. The table also shows the total number of simulations
executed on scenarios employing each set. Set pdb-a2a contains 1000
pairs randomly selected from the ASes in the pdb-access set, i.e., from all
possible pairs between access providers (from PeeringDB), we randomly
picked 1000 pairs. This set represents a common situation in the
Internet: two end-hosts, connected to access providers, communicating
with each other, such as in a P2P application. Analogously, sets pdb-c2c

and pdb-t2t are composed of ASes from sets pdb-content and pdb-transit,

https://www.boost.org/doc/libs/1_76_0/libs/graph/doc/index.html
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Table 3
Sets of initial pairs.
Name Pair Composition Simulations

pdb-a2a Access providers 7818
pdb-c2c Content providers 7229
pdb-t2t Transit providers 7168
pdb-a2c Access and content providers 7807
pdb-a2t Access and transit providers 7609
pdb-c2t Content and transit providers 7295

Fig. 6. CDF of the valley-free distances.

respectively. Moreover, the pdb-a2c set contains 1000 pairs randomly
selected in such a way that one of the ASes in each pair is from the
pdb-access set and the other from the pdb-content set. This represents
another common situation: an end-user accessing a content provider,
such as a video streaming service. Similarly, sets pdb-a2t and pdb-c2t
are composed of access/transit providers and content/transit providers,
respectively.

9.4. Parameters

Our proposals employ two parameters, 𝛿 and 𝜎. We employed 𝜎 = 0
in most experiments presented in this section, thus we examine only
the shortest valley-free paths between ASes. We do, however, present
results for 𝜎 = 1 in Section 9.8, since paths one link larger than the
shortest path are common in the Internet, according to the experiments
described in Section 8. As for parameter 𝛿, we set 𝛿 = 2 on all
simulations, thus only measurement ASes up to 2 hops away from the
suspects are considered. Higher values would significantly increase the
search space, since a large portion of the graph would be at a distance
of 3 or more hops from the suspects. Furthermore, as we observed in
the results presented later in this section, measurement ASes farther
from the suspects are rarely selected. Fig. 6 shows the Cumulative
Distribution Function (CDF) of the valley-free distances for all pairs of
ASes in the graph. The figure shows for each distance value the rate of
pairs of ASes distant to each other up to that value. For instance, about
5% of all pairs of ASes are up to 2 hops away from each other. On the
other hand, for a distance of up to 3 hops, the rate raises to about 35%
of the AS pairs.

In order to choose values for parameters 𝑚𝑝 and 𝑚𝑡, we ran several
simulations employing different values. In these simulations, we em-
ployed a set of initial pairs 𝑍 containing 1000 pairs selected randomly
from all ASes in the graph. We employed two different sets of ASes as
the measurement ASes 𝐷: degree-le-2 and vfbet-top-1000. These two sets
presented the best results overall, as described later in this section.

First, we ran several sets of simulations employing a fixed large
value for 𝑚𝑝, and several different values for 𝑚𝑡. We employed 𝑚𝑝 =
100, while 𝑚𝑡 ranged from 10 to 100, in increments of 10. For each
9

value of 𝑚𝑡, 8479 simulations were executed. Fig. 7 shows the results
obtained from these simulations. The success rate achieved by each set
of measurement ASes for each value of 𝑚𝑡 is shown in Fig. 7(a), while
Fig. 7(b) shows the average number of probes issued when using each
set and for each value of 𝑚𝑡. It is possible to see that both the success
rate and the average number of probes did not vary much as the value
of 𝑚𝑡 increased. We chose 𝑚𝑡 = 20 for our simulations, which is the
value for which the success rate had the largest increment for both sets
of measurement ASes. Therefore, we discard a measurement AS after
20 attempts for each suspect.

Next, we ran simulations with 𝑚𝑡 = 100, and 𝑚𝑝 ranging from
10 to 100. Fig. 8 shows the results obtained from these simulations.
The success rate achieved by each set of measurement ASes for each
value of 𝑚𝑝 is shown in Fig. 8(a), while Fig. 8(b) shows the average
number of probes issued when using each set and for each value of 𝑚𝑝.
The success rate and average number of probes for the vfbet-top-1000
did not increase much as the value of 𝑚𝑝 increased. However, for the
degree-le-2 set, both the success rate and the number of average probes
increased significantly. We chose 𝑚𝑝 = 40, since larger values would
significantly increase the search space, and thus also the execution
times, but without achieving significantly better results. Therefore, in
our simulations, up to 40 AS pairs are selected for each suspect.

9.5. Results: Comparing measurement ASes

We first present results comparing the following metrics: degree, be-
tweenness and valley-free betweenness. The sets of measurements ASes
degree-top-𝑛, bet-top-𝑛 and vfbet-top-𝑛, for 𝑛 ∈ {10, 50, 100, 500, 1000},
were built based on these metrics, respectively. The success rate
achieved by each of these sets is shown in Fig. 9, on scenarios em-
ploying 𝑍 = pdb-a2a. For all values of 𝑛, the highest success rates were
achieved by sets vfbet-top-𝑛 (from 29% for vfbet-top-10 to 93% for vfbet-
top-1000), and the lowest by sets degree-top-𝑛. Given the best success
rates were achieved by vfbet-top-1000, we will not show results for the
other sets in the remainder of this work.

The distance between ASes in vfbet-top-𝑛 and suspects is generally
smaller, in comparison with ASes in degree-top-𝑛 and bet-top-𝑛. For
instance, the average valley-free distance from ASes in vfbet-top-1000
to suspects was 0.79, while it was 0.87 for degree-top-1000 and 0.85 for
bet-top-1000. Being closer, there are less paths and less ASes between
pairs of ASes from vfbet-top-1000, and thus it is less likely that the
discriminatory AS 𝑘 is present on the measurements between them,
which results in suspects being filtered earlier (inferred as neutral).

We evaluate next the sets of measurement ASes (𝐷) degree-eq-1,
degree-le-2, pdb-access, pdb-transit, and vfbet-top-1000. Results for these
sets are shown in Fig. 10, with 𝑍 = pdb-a2a. The success rates of
each set 𝐷 across (i) all simulations, (ii) simulations in which 𝑘 was
in the initial pair 𝐸, and (iii) simulations in which 𝑘 was not in 𝐸 are
shown in Fig. 10(a). The average number of probes (i.e. requests to
the oracle) across (i) all simulations, (ii) successful simulations, and
(iii) unsuccessful simulations are shown in Fig. 10(b). Beside each bar
there are two values, one indicating the total number of unique ASes
that were selected for measurements across all simulations for each
set 𝐷, and another indicating the total number of ASes available for
measurement (|𝐷|).

Sets degree-le-2 and vfbet-top-1000 achieved the highest success
rates, 94% and 93%, respectively. However, simulations employing
degree-le-2 issued significantly more probes on average. The distance
between ASes in degree-le-2 is usually larger, which makes 𝑘 more likely
to be within the paths between those ASes, causing more pairs to be
selected in order to find neutral ASes. The average valley-free distance
between ASes from degree-le-2 was 2.01, and 1.48 between ASes from
vfbet-top-1000. Similarly, the average distances to the suspects were
1.8 and 0.79, respectively. Regarding the simulations in which no
TD was present, the success rates achieved by degree-le-2 and vfbet-
top-1000 were 94% and 91%, while the average numbers of probes
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Fig. 7. Success rates and average probes achieved by the sets of measurement ASes degree-le-2 and vfbet-top-1000, for 𝑚𝑝 = 100 and 𝑚𝑡 ranging from 10 to 100.
Fig. 8. Success rates and average probes achieved by the sets of measurement ASes degree-le-2 and vfbet-top-1000, for 𝑚𝑡 = 100 and 𝑚𝑝 ranging from 10 to 100.
were 5.27 and 5.15, respectively. On these simulations, there was no
discriminatory AS, thus the AS pairs selected always resulted in a
suspect being filtered out.

From the 41,247 available ASes in degree-le-2, 8269 were selected
for measurement on all simulations, while 615 (from a total of 1000)
were selected from vfbet-top-1000. This shows that the vfbet-top-1000
set achieved a similar result in terms of success rate using significantly
less different ASes (615 vs 8269). As discussed later in this section,
ASes in the core of the Internet are better positioned than those in
the edge. Therefore, having access to a much smaller number of core
ASes is enough (1000 vs 41,247). Note that the graph employed in our
simulations has 61,807 ASes in total.

A slightly lower success rate, 88%, was observed for set pdb-transit,
relative to vfbet-top-1000. The average number of probes was also simi-
lar, but a larger number of unique ASes were selected for measurement
(811 from a total of 2293) for pdb-transit. The lowest success rates
observed correspond to sets degree-eq-1 (77%) and pdb-access (71%).
6271 ASes, out of 21,220 available, were selected from degree-eq-
1, while 2177, out of 5263 available, were selected from pdb-access.
Furthermore, set degree-eq-1 issued significantly more probes than pdb-
access on average, due to the same reasons described above for set
degree-le-2. It is also possible to observe that the average number of
probes on successful simulations is significantly lower than on unsuc-
cessful simulations, for all sets of measurement ASes employed. This
happens due to the halting conditions adopted by our strategy. On
unsuccessful simulations, all possible pairs of measurement ASes are
selected before the strategy finishes its execution.
10
Fig. 9. Success rates for 𝑍 = pdb-a2a, and varying sizes of degree-top-𝑛, vfbet-top-𝑛 and
bet-top-𝑛 as 𝐷.

9.6. Results: Comparing initial pairs

We now present results comparing different sets of initial pairs (𝑍).
We present results for sets of measurement ASes degree-le-2 and vfbet-
top-1000, which presented the highest success rates and contain ASes at
different parts of the Internet — edge (degree-le-2) and core (vfbet-top-
1000). Fig. 11 shows the success rates (for all simulations, 𝑘 ∈ 𝐸, and
𝑘 ∉ 𝐸) for the sets of initial pairs pdb-a2a, pdb-c2c, pdb-t2t, pdb-a2c,
pdb-a2t, and pdb-c2t. Fig. 11(a) shows the results for 𝐷 = vfbet-top-
1000, while Fig. 11(b) for 𝐷 = degree-le-2. Furthermore, Fig. 12 shows
the average number of probes for (i) all simulations, (ii) simulations
that were successful, and (iii) unsuccessful simulations, for each set of
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Fig. 10. Success rates and average probes for different sets 𝐷, and 𝑍 = pdb-a2a.

initial pairs. Fig. 12(a) shows the results for 𝐷 = vfbet-top-1000, while
Fig. 12(b) for 𝐷 = degree-le-2.

It is possible to conclude that both measurement sets had similar
success rates for all sets of initial pairs. The success rates for vfbet-top-
1000 ranged from 89% to 93%, while the success rates for scenarios
with degree-le-2 ranged from 94% to 96%. The main difference between
the two sets was that scenarios with degree-le-2 employed significantly
more probes on average, ranging from 73.12 to 102.48. The number of
different ASes selected for measurement from degree-le-2 ranged from
6756 to 9084 (from a total of 41,247). For scenarios with vfbet-top-
1000, the average number of probes ranged from 9.16 to 10.28, and
the number of ASes selected for measurement ranged from 544 to 666
(from a total of 1000).

9.7. Results: 𝐸 ⊄ 𝐷

We also simulated scenarios considering that the initial pair 𝐸 is
not available for sending probes. The goal of this set of simulations is
to check if it is possible to detect TD between two ASes that we do not
have access to (in order to run TD detectors on). In these scenarios, only
the ASes in 𝐷 are available to be selected for measurement — and in
case the ASes in the initial pair are present in 𝐷, we remove them from
the set for that simulation scenario to ensure they are not available.
Fig. 13 shows the success rates for the sets of measurement ASes vfbet-
top-1000 13(a) and degree-le-2 13(b), on scenarios with different sets 𝑍.
Similarly, Fig. 14 shows the average number of probes for the sets of
measurement ASes vfbet-top-1000 14(a) and degree-le-2 14(b).

Results show that the success rates for both sets of measurement
ASes were similar. The success rates for all simulations on scenarios
with vfbet-top-1000 ranged from 49% to 56%, while the success rate for
11
Fig. 11. Success rates for different initial pair sets 𝑍, with 𝐷 = vfbet-top-1000 and
𝐷 = degree-le-2.

degree-le-2 ranged from 50% to 57%. As expected, the success rates for
both sets were significantly lower than those of the scenarios previously
presented (for 𝐸 ⊂ 𝐷). However, for both sets, the success rates for
the simulations in which 𝑘 ∉ 𝐸 were significantly higher than for
simulations with 𝑘 ∈ 𝐸. For vfbet-top-1000, the success rates when
𝑘 ∉ 𝐸 ranged from 83% to 90%, and for degree-le-2 ranged from 72%
to 81%. When 𝑘 ∈ 𝐸, the success rates ranged from 0% to 1% for vfbet-
top-1000, and from 8% to 37% for degree-le-2. We explain these results
below.

Due to the valley-free property, there may be no paths between ASes
of the Internet core that traverse ASes in the edge of the Internet (or
closer to the edge). ASes in the core, such as the ASes in vfbet-top-1000,
are mostly connected to other ASes through 𝑝2𝑝 or 𝑝2𝑐 relationships
— they are on the top of the Internet hierarchy (Tiers 1 and 2). For
instance, only 1.8% of the relationships from ASes in vfbet-top-1000 to
other ASes are 𝑐2𝑝. Therefore, the paths between these ASes usually
consist of other ASes with the same characteristics. If a path between
two such core ASes traverses an AS in the edge it would violate the
valley-free property, since at some point there would be a 𝑝2𝑐 link to
the AS in the edge, followed by a 𝑐2𝑝 link going back to an AS in the
core – i.e., a ‘‘valley’’. In this set of simulations, since the initial pair
of ASes is not available for measurement, our strategy needs at least
one measurement pair for which the paths traverse the discriminatory
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Fig. 12. Average number of probes for different initial pair sets 𝑍, with 𝐷 =
vfbet-top-1000 and 𝐷 = degree-le-2.

AS 𝑘: new suspects are then found, potentially better positioned so it
is possible to measure and find them. However, it is often not possible
to find such measurement pair when 𝑘 ∈ 𝐸. The ASes in degree-le-2 are
in the edge of the Internet, so it was possible to find paths traversing
some of the ASes in the initial pairs, hence the higher success rates.

Furthermore, the average number of probes in unsuccessful simula-
tions was significantly lower for 𝐸 ⊄ 𝐷, when compared to the results
presented previously in this section. However, the average number of
probes in successful simulations is similar. For instance, let us take
𝐷 = vfbet-top-1000 and 𝑍 = pdb-a2a. The average number of probes
in successful simulations for this configuration and 𝐸 ⊂ 𝐷 was 7.39,
as can be observed in Fig. 12, while in unsuccessful simulations the
average was 49.22. For 𝐸 ⊄ 𝐷 (Fig. 14), the average in successful
simulations was 5.36, while the average in unsuccessful simulations
was 13.72. The reason for this behavior is the same as described above:
in the unsuccessful simulations, our strategy was able to find a much
lower number of suitable AS pairs for issuing probes from when 𝐸 ⊄ 𝐷.
In the successful cases, a similar number of AS pairs was necessary.

9.8. Results: 𝜎 = 1

In the experiments previously described in Section 8, 55.78% of
the measured valley-free paths had the same size of the corresponding
12
Fig. 13. Success rates for different sets 𝑍, with 𝐷 = vfbet-top-1000 and 𝐷 =
degree-le-2, and 𝐸 ⊄ 𝐷.

shortest valley-free path in the graph, while 31.87% of the measured
valley-free paths were one link larger than the shortest path. These
represent 87.65% of all valley-free paths observed in the experiments.
Therefore, we executed several simulations with 𝜎 = 1 to check if our
proposal is capable of locating TD with a larger number of possible
paths between end-hosts.

Fig. 15 shows the success rates for the sets of measurement ASes
vfbet-top-1000 15(a) and degree-le-2 15(b), on scenarios with different
sets 𝑍. Similarly, Fig. 16 shows the average number of probes for the
sets of measurement ASes vfbet-top-1000 16(a) and degree-le-2 16(b).

For the vfbet-top-1000 set, the success rates ranged from 88% to 90%
for all simulations. These values were similar to the success rates for
𝜎 = 0 (Fig. 11), which ranged from 89% to 93%. For the degree-le-2 set,
the success rates for 𝜎 = 1 ranged from 84% to 87%. For 𝜎 = 0, the
success rates ranged from 94% to 96% (Fig. 11). It is also possible to
observe that the average number of probes increased significantly for
both sets in comparison with the results presented previously in Fig. 12.

In all results presented in previous subsections, the success rates
were always slightly higher for degree-le-2. However, for 𝜎 = 1, the
success rates are slightly higher for the vfbet-top-1000 set. Since ASes in
vfbet-top-1000 are generally closer to each other, the number of possible
paths between measurement ASes increases much more for degree-le-2
then for the vfbet-top-1000 set when 𝜎 = 1.



Computer Networks 200 (2021) 108489T. Garrett et al.
Fig. 14. Average number of probes for different sets 𝑍, with 𝐷 = vfbet-top-1000 and
𝐷 = degree-le-2, and 𝐸 ⊄ 𝐷.

We also present results for 𝜎 = 1 and 𝐸 ⊄ 𝐷, i.e., not considering
that the initial pair is available for measurement. Fig. 17 shows the
success rates for the sets of measurement ASes vfbet-top-1000 17(a) and
degree-le-2 17(b), on scenarios with different sets 𝑍 and 𝐸 ⊄ 𝐷.

Surprisingly, the success rates for both sets of measurement ASes
were higher than those of the results presented previously in Fig. 13
(for 𝜎 = 0). The success rates of all simulations for vfbet-top-1000 ranged
from 73% to 75% (49% to 56% in previous results). For the degree-le-2
set, the success rates ranged from 62% to 68% (50% to 57% in previous
results). The reason for this behavior is that there are more possible
paths between measurement ASes with 𝜎 = 1, thus it is easier to find a
measurement pair for which the paths contain the discriminatory AS 𝑘.
When such pair is found, new suspects start to be investigated, which
are better positioned (relative to the valley-free property) than the
initial suspects, as we explained previously in Section 9.7: when 𝜎 = 0,
it is less likely that 𝑘 will be in the paths between the measurement
ASes.

9.9. Discussion

The results presented in this section show that the proposed solution
is capable of inferring the behavior of ASes by combining inferences
from multiple TD detectors running on different ASes. Table 4 shows a
13
Fig. 15. Success rates for different initial pair sets 𝑍 and 𝜎 = 1, with 𝐷 =
vfbet-top-1000 and 𝐷 = degree-le-2.

summary of the different simulation scenarios and the main conclusions
that can be drawn from the results. Selecting measurement points based
on the valley-free betweenness centrality presented good results in our
simulations. Another finding was that having a large number of ASes
available for measurement in the edge of the Internet (41,247 from the
degree-le-2 set) achieved similar success rates than having access to only
a few ASes in the core (1000 from the vfbet-top-1000 set). Furthermore,
much less probes were issued when employing core ASes, since they
are usually closer to a larger portion of the network, compared to ASes
in the edge. Thus, in order to achieve higher success rates, a much
larger number of edge ASes may be necessary at multiple portions of
the network, covering several vantage points. Finally, results show that
it is possible to locate TD between any two ASes, even if we do not
have access to them for issuing probes. However, locating TD that is
happening in the core of the Internet is easier then locating TD in the
edge.

We highlight that our simulations never produced false-negatives
(a discriminatory AS 𝑘 was never inferred as neutral) nor false positive
results (neutral ASes were never inferred as discriminatory). However,
some of our assumptions may not always be true in the wild. Traffic
may traverse valley paths, ASes may differentiate traffic based on their
origin or destination, and the real AS-level topology may be slightly
different. In such cases, the proposed solution for locating TD may
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Table 4
Evaluation summary.
Scenario Section Figures Results

Graph metrics 9.5 9 Valley-free betweenness centrality presented the best results
among the metrics extracted from the graph

Comparing sets of measurement ASes 9.5 10 Sets degree-le-2 and vfbet-top-1000 achieved the highest
success rates, but degree-le-2 issued significantly more probes
on average

Comparing sets of initial pairs 9.6 11, 12 Similar success rates were observed for all sets of initial pairs

Initial pairs not available as measurement
ASes (𝐸 ⊄ 𝐷)

9.7 13, 14 Success rates were significantly higher when the
discriminatory AS is not in the initial pair

Considering longer paths (𝜎 = 1) 9.8 15,16 Success rates were similar to previous results, but the
number of probes were significantly higher

Considering longer paths and that initial
pairs are not available as measurement ASes

9.8 17 Surprisingly, success rates were higher than in Fig. 13
Fig. 16. Average number of probes for different initial pair sets 𝑍 and 𝜎 = 1, with
𝐷 = vfbet-top-1000 and 𝐷 = degree-le-2.

result in false-positives or false-negatives. It is also worth noticing
that in our simulations, the oracle always assumed the worst case,
i.e., it considered traffic would always follow the path containing the
discriminatory AS 𝑘. However, in a real situation the actual path may
not traverse 𝑘, in which case fewer probes might be necessary to locate
TD, since suspects might be filtered earlier.
14
Fig. 17. Success rates for different initial pair sets 𝑍 and 𝜎 = 1, with 𝐷 =
vfbet-top-1000 and 𝐷 = degree-le-2, and 𝐸 ⊄ 𝐷.

In the case of unsuccessful simulations, we did not evaluate how
close the solution was to locating TD. Even when the solution is not
able to find exactly which AS was discriminatory, the set of suspects
may have been filtered to just a few, which can be helpful. Another
limitation of our evaluations is that in each simulation we considered
that only a single AS was discriminatory. Although in real conditions
this may not be true, a more controlled environment was employed in
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order to (i) evaluate if the proposed solution was actually capable of
locating TD in the first place, (ii) to identify the trade-offs between
success rate and number of measurements, and (iii) to identify the
relations between our proposals, the valley-free property, and different
types of measurement ASes and initial pairs. Finally, parameters 𝑚𝑡 and
𝑝 limited the number of measurements that could have been issued
uring the simulations. Without these parameters, higher success rates
ould be achieved, but at the expense of more measurements.

0. Conclusion

In this work we addressed the problem of locating TD in the Internet
nder more realistic assumptions than existing strategies. A solution
or locating the exact AS that is discriminating traffic is proposed. The
olution considers all possible AS-level valley-free paths, instead of
elying on the exact knowledge of host-level paths (as other existing
trategies do). The solution consists of an algorithm for combining
easurements from TD detectors running on different ASes plus a

trategy for selecting the best ASes to run measurements.
To evaluate our proposals, we first conducted a series of experi-

ents on PlanetLab, in which we executed traceroute a large number
f times for determining the paths from a set of end-hosts to several
nternet prefixes. Results show that traceroute-like techniques employed
y other solutions for locating TD may not be reliable, and that the
ast majority of the paths that were successfully measured do follow
he valley-free property. We then executed simulations for evaluating
he proposed solution for locating TD. We defined several scenarios,
arying the location of TD and the measurement points employed.
e draw four main conclusions from the results obtained on these

imulations: (i) few measurement ASes in the core of the network
chieve similar results as a much larger number of measurement ASes
n the edge; (ii) it is possible to locate TD between any two ASes in
he Internet, even if they are not accessible for issuing probes from;
iii) due to the valley-free property, it is easier to locate TD in the core
han in the edge; and (iv) the valley-free betweenness centrality is a
ood metric for selecting measurement ASes.

Future work includes using our proposals to implement a system
apable of continuously monitoring TD in the Internet. That could
e for instance a crowdsourcing system, in which participating users
eport measurements and rely on the system to monitor whether they
re being victims of TD; those users should also allow their devices to
e used as measurement points for other users. Another direction is the
evelopment of a hybrid version of our solution using traceroute-like
echniques: if the exact path between ASes can be obtained, it may not
e necessary to consider all possible paths. Furthermore, our proposals
onsider only TD based on application. Detecting and locating TD based
n the origin/destination is still an under-explored topic. Evaluating
ur proposals on scenarios where multiple ASes may be discriminatory
s also left for future work. Finally, another research direction is to
esign a system that, after locating which AS is discriminating traffic,
eviates traffic through a path known to be fully neutral, circumventing
he discriminatory AS.

RediT authorship contribution statement

Thiago Garrett: Conceptualization, Methodology, Software, Formal
nalysis, Investigation, Writing – original draft, Writing – review & edit-
ng. Luis C. E. Bona: Conceptualization, Resources, Writing – review &
diting, Supervision. Elias P. Duarte Jr.: Conceptualization, Resources,
riting – review & editing, Supervision, Project administration.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
15

nfluence the work reported in this paper.
cknowledgments

This work was partially supported by grants 308959/2020-5 and
07886/2019-0 from the Brazilian Research Council (CNPq), as well
s the Brazilian Ministry of Education (CAPES), finance code 001.

eferences

[1] T. Wu, A proposal for network neutrality, 2002, URL http://www.timwu.org/
OriginalNNProposal.pdf, Accessed on July 12th, 2021.

[2] S. Dustdar, E.P. Duarte, Network neutrality and its impact on innovation,
IEEE Internet Comput. 22 (6) (2018) 5–7, http://dx.doi.org/10.1109/MIC.2018.
2877838.

[3] T. Berners-Lee, Long live the web, Sci. Am. 303 (6) (2010) 80–85.
[4] B. van Schewick, D. Farber, Point/counterpoint: Network neutrality nuances,

Commun. ACM 52 (2) (2009) 31–37.
[5] H. Schulzrinne, Network neutrality is about money, not packets, IEEE Internet

Comput. 22 (6) (2018) http://dx.doi.org/10.1109/MIC.2018.2877837.
[6] J.M. Bauer, G. Knieps, Complementary innovation and network neutrality,

Telecommun. Policy 42 (2) (2018) 172–183, http://dx.doi.org/10.1016/j.telpol.
2017.11.006.

[7] H. Habibi Gharakheili, A. Vishwanath, V. Sivaraman, Perspectives on net
neutrality and internet fast-lanes, SIGCOMM Comput. Commun. Rev. 46 (1)
(2016) 64–69.

[8] T. Garrett, L.E. Setenareski, L.M. Peres, L.C.E. Bona, E.P. Duarte, Monitoring
network neutrality: A survey on traffic differentiation detection, IEEE Commun.
Surv. Tuts. 20 (3) (2018) http://dx.doi.org/10.1109/COMST.2018.2812641.

[9] Y. Zhang, Z.M. Mao, M. Zhang, Detecting traffic differentiation in backbone ISPs
with NetPolice, in: ACM SIGCOMM IMC, 2009.

[10] R. Ravaioli, G. Urvoy-Keller, C. Barakat, Towards a general solution for detecting
traffic differentiation at the internet access, in: International Teletraffic Congress
(ITC), 2015, http://dx.doi.org/10.1109/ITC.2015.8.

[11] E. Gregori, V. Luconi, A. Vecchio, Studying forwarding differences in european
mobile broadband with a net neutrality perspective, in: European Wireless
Conference, 2018.

[12] Z. Zhang, O. Mara, K. Argyraki, Network neutrality inference, ACM SIGCOMM
Comput. Commun. Rev. 44 (4) (2014).

[13] S. Cho, R. Nithyanand, A. Razaghpanah, P. Gill, A churn for the better: Localizing
censorship using network-level path churn and network tomography, in: ACM
CoNEXT, 2017, http://dx.doi.org/10.1145/3143361.3143386.

[14] T. Garrett, L.C.E. Bona, E.P. Duarte Jr., Exploiting AS-level routing properties to
locate traffic differentiation in the internet, in: IEEE Symposium on Computers
and Communications (ISCC), 2020.

[15] P. Gill, M. Schapira, S. Goldberg, A survey of interdomain routing policies, ACM
SIGCOMM Comput. Commun. Rev. 44 (1) (2013) http://dx.doi.org/10.1145/
2567561.2567566.

[16] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, M.
Bowman, PlanetLab: An overlay testbed for broad-coverage services, ACM
SIGCOMM Comput. Commun. Rev. 33 (3) (2003).

[17] R. Beverly, S. Bauer, A. Berger, The internet is not a big truck: Toward
quantifying network neutrality, in: Internatinoal Conference on Passive and
Active Network Measurement (PAM), Springer, 2007, pp. 135–144.

[18] M.B. Tariq, M. Motiwala, N. Feamster, NANO: Network access neutrality ob-
servatory, in: 7th ACM Workshop on Hot Topics in Networks (Hotnets-VII),
2008.

[19] G. Lu, Y. Chen, S. Birrer, F.E. Bustamante, X. Li, POPI: A user-level tool for
inferring router packet forwarding priority, IEEE/ACM Trans. Netw. 18 (1)
(2010) 1–14.

[20] P. Kanuparthy, C. Dovrolis, DiffProbe: Detecting ISP service discrimination, in:
IEEE INFOCOM, 2010, pp. 1–9.

[21] M. Dischinger, M. Marcon, S. Guha, K.P. Gummadi, R. Mahajan, S. Saroiu, Glas-
nost: Enabling end users to detect traffic differentiation, in: USENIX Conference
on Networked Systems Design and Implementation, USENIX Association, 2010,
p. 27.

[22] U. Weinsberg, A. Soule, L. Massoulie, Inferring traffic shaping and policy
parameters using end host measurements, in: IEEE INFOCOM, 2011, pp.
151–155.

[23] A. Molavi Kakhki, A. Razaghpanah, A. Li, H. Koo, R. Golani, D. Choffnes, P.
Gill, A. Mislove, Identifying traffic differentiation in mobile networks, in: Internet
Measurement Conference, ACM, 2015, pp. 239–251.

[24] F. Li, A.A. Niaki, D. Choffnes, P. Gill, A. Mislove, A large-scale analysis of
deployed traffic differentiation practices, in: ACM Special Interest Group on Data
Communication, in: SIGCOMM ’19, ACM, 2019, pp. 130–144, http://dx.doi.org/
10.1145/3341302.3342092.

[25] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Latapy, C.
Magnien, R. Teixeira, Avoiding traceroute anomalies with Paris traceroute, in:
ACM SIGCOMM IMC, 2006, http://dx.doi.org/10.1145/1177080.1177100.

http://www.timwu.org/OriginalNNProposal.pdf
http://www.timwu.org/OriginalNNProposal.pdf
http://www.timwu.org/OriginalNNProposal.pdf
http://dx.doi.org/10.1109/MIC.2018.2877838
http://dx.doi.org/10.1109/MIC.2018.2877838
http://dx.doi.org/10.1109/MIC.2018.2877838
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb3
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb4
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb4
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb4
http://dx.doi.org/10.1109/MIC.2018.2877837
http://dx.doi.org/10.1016/j.telpol.2017.11.006
http://dx.doi.org/10.1016/j.telpol.2017.11.006
http://dx.doi.org/10.1016/j.telpol.2017.11.006
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb7
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb7
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb7
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb7
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb7
http://dx.doi.org/10.1109/COMST.2018.2812641
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb9
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb9
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb9
http://dx.doi.org/10.1109/ITC.2015.8
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb12
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb12
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb12
http://dx.doi.org/10.1145/3143361.3143386
http://dx.doi.org/10.1145/2567561.2567566
http://dx.doi.org/10.1145/2567561.2567566
http://dx.doi.org/10.1145/2567561.2567566
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb16
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb16
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb16
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb16
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb16
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb17
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb17
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb17
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb17
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb17
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb19
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb19
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb19
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb19
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb19
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb20
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb20
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb20
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb21
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb21
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb21
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb21
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb21
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb21
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb21
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb22
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb22
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb22
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb22
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb22
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb23
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb23
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb23
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb23
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb23
http://dx.doi.org/10.1145/3341302.3342092
http://dx.doi.org/10.1145/3341302.3342092
http://dx.doi.org/10.1145/3341302.3342092
http://dx.doi.org/10.1145/1177080.1177100


Computer Networks 200 (2021) 108489T. Garrett et al.
[26] M. Luckie, B. Huffaker, A. Dhamdhere, V. Giotsas, k. claffy, AS relationships,
customer cones, and validation, in: ACM SIGCOMM IMC, 2013, http://dx.doi.
org/10.1145/2504730.2504735.

[27] T. Garrett, S. Dustdar, L.C.E. Bona, E.P. Duarte Jr., Ensuring network neutral-
ity for future distributed systems, in: International Conference on Distributed
Computing Systems (ICDCS), 2017, pp. 1780–1786.

[28] CAIDA, CAIDA AS rank, 2019, Accessed on July 12th, 2021, https://asrank.caida.
org/.

[29] M.E. Tozal, Enumerating single destination, policy-preferred paths in AS-level
internet topology maps, in: IEEE Sarnoff Symposium, 2016, http://dx.doi.org/
10.1109/SARNOF.2016.7846759.

[30] Z. Frias, J.P. Martínez, 5G networks: Will technology and policy col-
lide? Telecommun. Policy 42 (8) (2018) 612–621, http://dx.doi.org/10.1016/
j.telpol.2017.06.003.

[31] V. Giotsas, S. Zhou, Valley-free violation in internet routing – analysis based
on bgp community data, in: IEEE International Conference on Communications
(ICC), 2012, http://dx.doi.org/10.1109/ICC.2012.6363987.

[32] E. Gregori, V. Luconi, A. Vecchio, NeutMon: Studying neutrality in European
mobile networks, in: IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), 2018, pp. 523–528, http://dx.doi.org/10.1109/INFCOMW.
2018.8407022.

[33] V. Pejović, Towards a holistic net neutrality violation detection system: A case
study of Slovenia, J. Netw. Syst. Manage. 28 (2020) 1453–1481.

[34] R. Rizzi, G. Sacomoto, M.-F. Sagot, Efficiently listing bounded length st-paths,
in: K. Jan, M. Miller, D. Froncek (Eds.), Combinatorial Algorithms, Springer
International Publishing, Cham, 2015, pp. 318–329.

[35] U. Brandes, A faster algorithm for betweenness centrality, J. Math. Sociol. 25
(2) (2001) http://dx.doi.org/10.1080/0022250X.2001.9990249.

[36] CAIDA, Routeviews prefix to AS mappings dataset for IPv4 and IPv6, 2018,
Accessed on July 12th, 2021, http://www.caida.org/data/routing/routeviews-
prefix2as.xml.

[37] Peeringdb, 2021, Accessed on July 12th, 2021, http://www.peeringdb.com.
[38] A. Lodhi, N. Larson, A. Dhamdhere, C. Dovrolis, k. claffy, Using peeringdb to

understand the peering ecosystem, ACM SIGCOMM Comput. Commun. Rev. 44
(2) (2014) http://dx.doi.org/10.1145/2602204.2602208.

Thiago Garrett is a Postdoctoral Research Fellow at the
University of Oslo, Norway, where he is a member of
the Networks and Distributed Systems research group. He
received the degrees B.Sc., M.Sc., and Ph.D. in Computer
Science from the Federal University of Paraná, Curitiba,
Brazil, in 2008, 2011, and 2019, respectively. His research
interests include Computer Networks, Distributed Systems,
Internet of Things, and Blockchain technologies.
16
Luis C. E. Bona is an Associate Professor at Federal
University of Paraná, Curitiba, Brazil, where he is mem-
ber of the Computer Networks and Distributed Systems
Lab (LaRSis). He obtained a Ph.D. degree in Electrical
Engineering at Federal University of Technology - Paraná,
2006, and carried out his post-doctoral studies at the
Barcelona Supercomputing Center (BSC), 2013. His research
interests include Operating Systems, Computer Networks
and Distributed Systems. He acted as coordinator of sev-
eral research, technological and development projects, both
national and international. He also served as chair of the
Department of Computer Science of Federal University of
Paraná from 2008 to 2012.

Elias P. Duarte Jr is a Full Professor at Federal Univer-
sity of Parana, Curitiba, Brazil, where he is the leader
of the Computer Networks and Distributed Systems Lab
(LaRSis). His research interests include Computer Networks
and Distributed Systems, their Dependability, Management,
and Algorithms. He has published more than 250 peer-
reviewer papers and has supervised more than 130 students
both on the graduate and undergraduate levels. Prof. Duarte
is currently Associate Editor of the Computing (Springer)
journal and IEEE Transactions on Dependable and Secure
Computing, and has served as chair of more 25 conferences
and workshops in his fields of interest. He received a
Ph.D. in Computer Science from Tokyo Institute of Tech-
nology, Japan, 1997, M.Sc. in Telecommunications from
the Polytechnical University of Madrid, Spain, 1991, and
both B.Sc. and M.Sc. degrees in Computer Science from
Federal University of Minas Gerais, Brazil, 1987 and 1991,
respectively. He chaired the Special Interest Group on Fault
Tolerant Computing of the Brazilian Computing Society
(2005–2007); the Graduate Program in Computer Science of
UFPR (2006–2008); and the Brazilian National Laboratory
on Computer Networks (2012–2016). He is a member of
the Brazilian Computing Society and a Senior Member of
the IEEE.

http://dx.doi.org/10.1145/2504730.2504735
http://dx.doi.org/10.1145/2504730.2504735
http://dx.doi.org/10.1145/2504730.2504735
https://asrank.caida.org/
https://asrank.caida.org/
https://asrank.caida.org/
http://dx.doi.org/10.1109/SARNOF.2016.7846759
http://dx.doi.org/10.1109/SARNOF.2016.7846759
http://dx.doi.org/10.1109/SARNOF.2016.7846759
http://dx.doi.org/10.1016/j.telpol.2017.06.003
http://dx.doi.org/10.1016/j.telpol.2017.06.003
http://dx.doi.org/10.1016/j.telpol.2017.06.003
http://dx.doi.org/10.1109/ICC.2012.6363987
http://dx.doi.org/10.1109/INFCOMW.2018.8407022
http://dx.doi.org/10.1109/INFCOMW.2018.8407022
http://dx.doi.org/10.1109/INFCOMW.2018.8407022
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb33
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb33
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb33
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb34
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb34
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb34
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb34
http://refhub.elsevier.com/S1389-1286(21)00433-3/sb34
http://dx.doi.org/10.1080/0022250X.2001.9990249
http://www.caida.org/data/routing/routeviews-prefix2as.xml
http://www.caida.org/data/routing/routeviews-prefix2as.xml
http://www.caida.org/data/routing/routeviews-prefix2as.xml
http://www.peeringdb.com
http://dx.doi.org/10.1145/2602204.2602208

	A Holistic Approach for Locating Traffic Differentiation in the Internet
	Introduction
	Related work
	Background
	AS-level routing properties
	A representative solution for detecting TD

	System model
	Assumptions
	System model
	Searching for valley-free paths

	Algorithm for combining measurements
	Strategy for selecting measurement points
	Complete solution for locating TD
	Initialization
	AS Pair Selection
	TD Detection
	Inference
	Completion

	Evaluation: AS-level graph and paths
	AS-level topology graph
	AS-level paths in the internet

	Evaluation: Locating TD
	Simulation roadmap
	Implementation
	Simulation scenarios
	Parameters
	Results: Comparing measurement ASes
	Results: Comparing initial pairs
	Results: E D
	Results: = 1
	Discussion

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


