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Abstract Network Functions Virtualization (NFV) promotes a paradigm shift
in the core network, by enabling the execution of network functions on a vir-
tualized software plane instead of on dedicated hardware. Despite its benefits,
NFV introduces new challenges, of which we highlight those related to the de-
ployment of virtualized network services. Current NFV deployment solutions
(i.e., those for composition, embedding, and scheduling) are usually limited to
optimize hard-coded criteria, and cannot be customized to address specific de-
mands defined by both network operators and NFV-as-a-Service customers. In
this paper, we present a customizable NFV deployment framework that allows
multiple criteria and multiple objectives to be applied to service composition,
embedding, and scheduling. We evaluate the proposed framework integrated
to deployment solutions specified in the literature. A case study is presented
for the customized deployment of a traffic control and security service, and
demonstrates the flexibility and effectiveness of the proposed framework.
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1 Introduction

Network Functions Virtualization (NFV) [1] is a networking paradigm that
allows the execution of network functions in a software plane enabled by cur-
rent virtualization technologies (e.g., containers and virtual machines) instead
of on physical and typically proprietary hardware. It is a consensus that the
NFYV paradigm reduces the capital and operational costs of the network infras-
tructure and improves the flexibility of the life cycle of network functions [2]
[3]. Standards have been published for NFV by the European Telecommunica-
tions Standards Institute (ETSI) which has defined a reference architecture for
network service orchestration and management [4]. The Internet Engineering
Task Force (IETF) has published, among others, documents defining service
function chains [5] and the network service header [6].

Nevertheless, effective techniques for creating, setting up, and managing
virtualized network functions and services must be developed so that NFV
can fulfill its potential. In particular, there are multiple challenges related to
virtualized network service deployment. The deployment of a network service
includes every operation that is executed between service acquisition (or devel-
opment) and service execution [7]. The NFV deployment process can be seen
as a Resource Allocation (RA) problem [8] that consists of three tasks: com-
position, embedding, and scheduling. These tasks present a precedence order:
first, the composition task is executed to create a network service topology
with the network functions that will be, afterwards, embedded in the underly-
ing network and, finally, they are scheduled for execution on virtual machines
or containers running on commercial off-the-shelf hardware. In this work we
claim it should be possible to tailor each of these tasks to specific needs and
policies of both network operators and NFV-as-a-Service customers.

As the optimization problem that corresponds to NFV deployment is NP-
hard [8], several solutions have been proposed for individual tasks of the de-
ployment process, to circumvent the complexity restrictions. These solutions
are often based on heuristics that reach approximate solutions with polynomial
complexity and rely on different metrics to drive the deployment of network
functions (e.g., network function features, network infrastructure characteris-
tics, and customer policies). However, to the best of our knowledge, all so-
lutions in the literature employ hard-coded metrics. This static strategy is
often not the best, given the variety of network service types, the variety of
virtualized environments (e.g., cloud, fog, edge), and specific customer de-
mands. Heterogeneous deployment scenarios require customizable deployment
solutions, given the multiple concurrent requirements that are relevant when
the deployment is done. Current strategies force network operators to adapt



Customizable Deployment of NFV Services 3

to what is available, which can certainly lead to under-optimized deployment
results.

NFV-as-a-Service (NFVaaS) providers — such as T-NOVA [9] and FENDE
[10] — provide solutions for virtualized network service deployment. These so-
lutions are often based on performance parameters, including server overhead,
energy consumption, and transmission delays. It is possible to say that NF-
VaaS providers are mostly concerned with network service embedding and
scheduling tasks, given that their priority is the operation and management
of their virtualization environments (i.e., not the network services). We argue
that the development and adoption of customizable deployment solutions can
promote a priority shift — from provider to customer. Of course, provider re-
quirements must still be taken into consideration, but together with customer
objectives.

NFV-as-a-Service Provider Infrastructure
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Fig. 1 An Example of Service Function Chain Embedding

Figure 1 depicts a scenario that exemplify the main differences between
static and customizable NFV deployment strategies. The scenario consists of
deploying a simple virtualized video service composed of three network func-
tions (cache, firewall, and Network Address Translator) as presented in [11].
This service must be embedded in a multi-domain environment with three
distinct domains supported by an NFVaaS provider. Also, the video service
provider aims to minimize the transmission delay between the network func-
tion that implements the cache and the customers. The NFVaaS provider offers
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two embedding solutions: (i) a static solution that minimizes the transmission
delay among the available domains; and (ii) a customizable solution configured
with multiple evaluation metrics chosen from a catalog or directly informed
by the video service provider through a standard document, such as a Service
Function Chaining Request (SFCR) [12]. Each domain is shown with the av-
erage transmission delays to the other domains (double lines), the amount of
resources available (a), and the average transmission delays between the do-
mains and customers of the video service (8). Finally, each network function
is shown along with the required computational resources for its instantiation

(areq)-

If the video service provider opts for the static solution to embed the ser-
vice, the transmission delay between the available domains is minimized by
allocating the cache function to DOMAIN #1 and the other functions to DOMAIN
#3 (scenario i - dashed arrows). This alternative results in an internal trans-
mission delay of 10 milliseconds. In contrast, consider that the video service
provider chooses the customizable solution configured to minimize two metrics:
the first of which the transmission delay among domains (from the NFVaaS
provider catalog) and the second the average transmission delay between cus-
tomers and domains (video service provider proprietary information). In this
case, a different service mapping is returned. The network function that im-
plements the cache is mapped to DOMAIN #1 and other functions are allocated
to DOMAIN #2 (scenario ii - dotted arrows). This second mapping results in an
internal transmission delay of 30 milliseconds, but an end-to-end transmission
delay equal to 90 milliseconds (we consider that the delay within a domain
is negligible). This simple example shows that the end-to-end delay of the
customizable approach (90ms) is much lower than that of the static solution
(150ms).

Of course, the deployment metrics must be carefully selected to maximize
the results. In the previous example, the static solution did return an optimized
result (according to the metrics it had available), but that was not enough to
fulfill the video service provider requirements. By allowing evaluation metrics
to be chosen, the video service provider dynamically indicates which features
should be evaluated and optimized, thus achieving a service mapping that
better fits the objectives (i.e., minimize the transmission delays between the
network function that implements the cache and the service users). Different
parts may have access to different metrics. However, as mentioned before, there
are currently no customizable NFV deployment solutions, and worse, several
challenges have to be addressed before such a solution is specified. The main
challenge can be expressed in the following question: how to evaluate differ-
ent sets of metrics for the particular optimization strategy (i.e., deployment
solution) that is being used? Note that an arbitrary number of metrics can be
used, and furthermore it is necessary to determine how to combine different
metrics, for instance, by defining different weights to be applied in each case
to the metrics. It is also important to define a way to evaluate the results
quantitatively.
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In this paper, we present a framework to allow the development of cus-
tomizable deployment solutions. We introduce a model to process a variable
set of metrics, as well as to define their weights and generate a single value as
an evaluation of the result. We apply the proposed model to extend deployment
solutions found in the literature. Thus, these solutions become customizable,
and can be evaluated by comparing with the original results. The proposed
framework has two objectives. First, the evaluation of arbitrary metrics is spec-
ified as a mono-objective maximization problem (Objective 1). In this way, we
simplify and standardize the evaluation of the diverse deployment solutions.
The second objective (Objective 2) is to decouple metric evaluation from other
operations of the deployment solutions.

The main contributions of this work are summarized as follows:

— Customizable NFV Deployment. We introduce an NFV deployment
framework that allows multiple different metrics to be applied on-demand
depending on specific objectives defined by customers and providers;

— A Metric Evaluation Method. We propose a strategy to evaluate sets
of metrics to use for a specific composition, embedding, or scheduling. A
single quantitative index is employed to allow the comparison of different
solutions;

— Extensions of Current Deployment Solutions. We evaluate the pro-
posed solution with a series of experiments using NFV deployment solu-
tions of the literature.

The rest of this paper is organized as follows. Section 2 presents prelimi-
nary definitions as well as relevant related work. Next, we describe and specify
the metric evaluation method in Section 3. In Section 4, we present the im-
plementation of the proposed method. In Section 5, we describe experiments
executed to evaluate the proposed method and demonstrate how it can be
used to extend deployment solutions of the literature. Conclusions follow in
Section 6.

2 Definitions & Related Work

This section presents an overview of paradigms and technologies, as well as
the concepts from statistics used in the work. Next, relevant related work is
presented.

2.1 An Overview of Network Functions Virtualization

Network Functions Virtualization (NFV) employs virtualization technologies,
such as full virtualization, paravirtualization, and container virtualization, to
execute network functions (NF), instead of executing them on dedicated hard-
ware. Despite the fact that there are benefits in using dedicated hardware
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(e.g., fast packet processing), the NFV paradigm enhances network flexibil-
ity and reduces both CApital and OPerational EXpenditures (CAPEX and
OPEX) [1]. NFV supports the creation of complex network services through
the composition of multiple Virtualized Network Functions (VNF) in service
topologies [13]. The creation and instantiation of network services involve a
series of tasks that collectively define the service deployment process. These
tasks include different types of actions, from service acquisition (or develop-
ment) to its execution and maintenance in the virtualized environment.

Overall, network service deployment consists of three main tasks of a typi-
cal Resource Allocation problem [8]: composition, embedding, and scheduling.
These tasks prepare the execution of a network service taking into account its
performance requirements, given a set of metrics and objectives (e.g., avoid
service overhead, maximize throughput, minimize latency, and reduce memory
consumption). In particular, the composition task is responsible for defining
the service topology; embedding allocates the service topology into the physi-
cal substrate; and scheduling determines on which processors network func-
tions are to be executed, as well as the corresponding deadlines, among other
features.

The same network service can be provided and executed on different topolo-
gies, using different embedding and scheduling strategies. In this work, we refer
these multiple possible solutions for a given deployment as candidates. Dif-
ferent deployment solutions evaluate the candidates using different metrics,
such as throughput, delay, priorities, financial cost, resource usage, and CPU
time consumption. The evaluation of a metric generates partial results
that represent a value that summarizes how good a single metric is for a par-
ticular candidate. The idea is to enable the identification of the best candidates
with an objective evaluation. The objective indicates whether an optimiza-
tion metric is to be maximized or minimized. Notice that different metrics can
be evaluated according to multiple different objectives. Deployment solutions
that employ multiple criteria must correlate partial results obtained from the
application of different metrics taking into account costs and benefits so that
the best candidate can be identified.

In order to decide the best alternative to deploy a network service according
to a set of evaluation metrics and objectives, it is possible not only to adopt
a naive strategy based on exhaustive search, but also heuristic alternatives.
Running exhaustive search involves generating all possible candidates, that are
subsequently evaluated to find the global optimal candidate. This process has
exponential cost. Heuristic alternatives, on the other hand, are more efficient,
often polynomial, but return candidates that are not guaranteed to be the
best, but should be close enough. Examples of exhaustive search deployment
solutions can be found in [14] and [12], while examples of heuristic search
solutions are described in [15] and [16].

Overall, three stages summarize the execution of deployment solutions: (i)
definition, (ii) evaluation, and (iii) classification of candidates. Typically, all
the tasks of the network service deployment require the execution of these
stages. The first stage (definition of candidates) explores and exploits
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the search space to define candidates that solve a deployment problem. At
this point, candidates can be complete (e.g., non-iterative candidate defini-
tion, such as in solutions based on exhaustive methods and genetic heuristics)
or partial (e.g., iterative candidate definition, such as in solutions based on
greedy search and A* heuristics) according to the definition strategy adopted.
The second stage (evaluation of candidates) consists of evaluating met-
rics and objectives for the previously defined set of candidates, thus indicating
suitability parameters that can be used for their classification. At last, in the
third stage (classification of candidates), the suitability parameters are
jointly inspected to determine the best candidates which are either used to
update the algorithm for the next iteration or just sent as output to the end-
user. Note that the framework proposed in this work tackles the second and the
third stages, thus enabling the adoption of any candidate definition strategy
in the first stage.

2.2 An Overview of Feature Scaling, Weighing, & Pearson Correlation

Recent work on virtualized network services employ statistical methods for
anomaly detection [17], monitoring [18], and service scaling [19]. Statistical
methods can be used to correlate metrics and can improve the accuracy of the
decision-making process during different phases of the NFV life cycle. Next,
we give a brief overview of feature scaling, weight normalization, and Pearson
correlation, all of them used in our proposed framework.

Feature scaling methods are used to transform the ranges of indepen-
dent variables. Among these methods, the Proportion 0f Maximum Scaling
(POMS) [20] allows the transformation of a set of samples S in a range [Spin,
Smaz] to the range [0;1]. This method is useful to translate samples obtained
for different metrics, each defined on a particular range, to a common neutral
range. POMS is executed to map samples to a range from zero to the max-
imum absolute distance between any pair of samples ([0;.Syaz — Smin). For
each sample, the proportional difference to the maximum absolute distance is
computed to define the mapped value. Equation 1 shows how the transforma-
tion occurs. Observe that POMS overlooks the data dispersion in the original
sample set, so data stabilization techniques must be previously applied when
outliers affect the solutions.

s — szn

VseS: S 5 - (1)

Weighing is a method used to adjust samples that differ in terms of the
relative importance that they have on a computation. A weighing factor is used
to increase or decrease the influence of a particular sample. If done carelessly,
factors can lead to a violation of the range of values required for the results.
To avoid that, a normalization process must be employed. This process has
two objectives: (i) map the weights w in set W from [Win; Winaz] to [0;1];
and (ii) ensure that the sum of all weights w in W is 1 (Zl‘ﬂ w; = 1). These
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objectives are reached by dividing each individual weight w by the sum of all
weights in W, as shown in Equation 2. The weight normalization guarantees
that if the distinct samples are in a common range, the results will be also in
this range regardless the original weight scale.
Ywe W : - (2)
i=1 Wi
The Pearson correlation coefficients (also called r or p) represent the
degree of positive or negative linear correlation between two quantitative vari-
ables [21]. The Pearson coefficient of variables x and y is in the range [—1;1],
where -1 and 1 indicate, respectively, a negative and a positive perfect match
correlations between x and y. Furthermore, for a zeroed coefficient there is no
linear correlation between x and y. Usual interpretations of Pearson coefficients
are: 0.0 to +-0.3 (negligible correlation); +-0.3 to +-0.5 (weak correlation); +-
0.5 to +-0.7 (moderate correlation); +-0.7 to +-0.9 (strong correlation); +-0.9
to +-1.0 (very strong correlation). Equation 3 shows how the Pearson coeffi-
cient is computed for two variables « and y, which defined by samples s in S.
In summary, the Pearson coefficient is calculated by dividing the covariance of
2 and y (that provides information about the linear relation between the vari-
ables) by the square root of the product of the variance of the variables (that
maps the coefficient to the range [—1, 1], thus standardizing the interpretation
of both the correlation strength and direction).

VS (50— 502+ Y5, - 5,02

3)

2.3 Related Work

Currently, many network service deployment solutions are available to compose
[22,12,15,23,24], embed [14,25-28,16,29-31], and schedule [32-34] virtualized
network services. Furthermore, other deployment solutions tackle multiple de-
ployment tasks at the same time, for example, the composition/embedding
[35,36] and the embedding/scheduling [37] of network services. Several of the
existing solutions, such as [22,12,15,24,27,28,16,30,32,33,31], use optimiza-
tion based on a single metric (e.g., traffic ratio, latency, throughput, monetary
cost, and resource usage). Other solutions, for example [23,14,29,34], employ
more complex objective functions with two or more evaluation metrics. In all
these cases, the metrics are defined in advance and are static, i.e., cannot be
modified when a new service is deployed. Recently, we presented a customiz-
able deployment solution [38] that allows adaptive service composition based
on exhaustive search.

Some solutions allow some limited configuration of the static metrics, so
that they can be adapted on-demand. An example is the metric weighing of
[25] and [26] that allows metrics to be weighed before the solution is computed.
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Other solutions claim to allow ” customization” in different contexts. For exam-
ple, the proposal in [35] aims to customize the network services deployment by
taking into account the heterogeneous operational behavior of distinct imple-
mentations of the same network function. Furthermore, the solution proposed
in [25], besides providing a metric weighing mechanism, enables the operators
to tune several pre-defined parameters of the algorithm. It is important to no-
tice that although the UNIFY [39] and SONATA [40] projects allow pluggable
deployment solutions, as they give a choice of predefined solutions, they do
not allow the evaluation metrics to be customized. Additionally, some TEL-
COS enable end-users to customize features of the network service deployment.
However, these solutions are proprietary and thus are not available in the lit-
erature. Arguably, different types of infrastructures, customer demands, and
network services require more flexible deployment processes. The present work
attempts to fill this gap by customizing the deployment evaluation metrics in
the context of NFVaaS.

3 The Proposed Framework for Customizable NFV Deployment

In this section, we describe the proposed framework for network service deploy-
ment. The purpose of this framework is to allow the definition of a customizable
set of metrics to optimize the composition, embedding, or scheduling of net-
work services. The framework also defines an index, called Suitability Index
(SI), that allows different candidates to be compared. Recall that a candidate
is a possible solution for a deployment task. The Suitability Index shows how
good each candidate is in terms of a single value in the [0;1] range. Considering
the three stages of the network service deployment process described in the
previous section, the proposed framework tackles the evaluation and classifi-
cation of candidates, thereby adapting to any candidate definition strategy.

Let A be the set of metrics employed. Each metric v in A consists of a tuple
(objective, weight), where objective can be mazimization or minimization,
and weight is a real number. Besides the set of metrics A, this function receives
as input a set B of candidates. Each candidate § € B has an associated set G
that contains the partial results obtained by computing metrics « for candidate
B. A partial result v € G is described as tuple (a,value), where value is a
real number corresponding to the partial result for metric . The notation is
summarized in Table 1.

In order to smooth normalized weights and reduce the bias among posi-
tively correlated metrics, function prep(A, S, r) is defined. This is an optional
function that preprocesses the positively correlated metrics (with the mini-
mum value of the Pearson coefficient equal to r) in A taking into account a
sample of partial results or benchmarks (.5). To do that, let C' a set of ¢ metrics
clusters, so that positively linearly correlated metrics are in a common clus-
ter (|g| > 1), and other metrics (non-positive correlated and non-correlated
metrics) are in a dedicated cluster (|¢| = 1). Finally, eval(A, B) is the main
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Table 1 Notations of Proposed Framework Model

Notation Description
A Set of metrics
« A metric in A
B Set of candidates for deployment
B A candidate in B
G Set of partial results for all @ in A
¥ A partial result in G
C Set of clusters of metrics o in A
S A cluster in C
S Set of samples of partial results or benchmarks for all « in A
r Reference Pearson coefficient
Slg Service index for candidate 8
min(X) Function that returns the minimum value in set (X)
maz(X) Function that returns the maximum value in set (X)
sum(X) Function that returns the sum of values in set (X)
comb((};)) Function that returns all the 2-element combinations of set X
X;Y Function that returns the set operation of X U {Y'}
prep(A, S,r)  Function that executes the proposed method to smooth metric bias
eval(A, B) Function that executes the proposed evaluation/classification method

function of the proposed framework that triggers the execution of the cus-
tomizable evaluation/classification method.

Three constraints must be satisfied to ensure the correctness of the exe-
cution of the proposed framework. First, there must be at least one metric
to be evaluated (Equation 4). Thus, it is possible to compare the deployment
candidates. Second, the weight of each metric must be greater than zero (Equa-
tion 5). The weights are normalized before they are processed, thus zero- and
negative-weighed metrics are not allowed. Finally, exactly one partial result
for each metric and each candidate should be available (Equation 6). In the
end, the framework returns a comparable SI for all deployment candidates.

A#£D (4)
Va € A : cweight > 0 (5)
Vaoe A: (Ve B:dyeB.G|v.a=aq) (6)

Function prep(A, S, r) processes samples of partial results or metric evalua-
tion benchmarks (S) to find positive correlations that have a minimum Pearson
coefficient of r, creating clusters of correlated metrics (a cluster represents a
single piece of information). The weight of a cluster is the sum of weights of
all the metrics in the same cluster (C.weight), which creates an information
bias. To solve the problem that the bias can represent (i.e., overvalued infor-
mation), the cluster weight is reduced to the maximum weight of any of its
metrics, and this new weight is proportionally divided to each of the cluster’s
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metrics, taking into account their normalized original weights. Equation 7 em-
ploys function max(s) that returns the maximum weight of some metric « in
S.

Vs e C: (VYo € ¢ : aweight <

max(S) * a.weight (7)
>, acweight

Next, the surplus weight that result of this process (i.e., the cluster’s weight
before the reduction minus the weight of the cluster after the reduction —
Csurpius) is added to the weights of all metrics in a proportional way (regard-
less of the metric being in the cluster or not), as presented in Equation 8.
It is important to note that the option for a weight smoothing process in-
stead of straightforward metric exclusion is due to the fact that any r» < 1
does not imply in a perfect match correlation. In this way, correlated metrics
with a Pearson coefficient less than 1 (but greater than r) still provide some
information, even if tiny bit of it, that may be relevant to the deployment
process.

Va € A : a.weight < a.weight+
a.weight * C.surplus (8)

1 — C.surplus

Function eval(A, B) consists of three steps: POMS, smoothing, and in-
dexing. Consider functions maxz(a) and min(«) that return respectively the
maximum and minimum wvalue of some partial result v of a metric « in the
candidate set B. Every partial result obtained for that metric is contained in
the range [min(a); maz(a)]. The first step (POMS) is responsible for map-
ping the metric results from that range [min(a);maz(a)] to the maximum
absolute distance range [0;max(a) — min(a)] and then to a common range
[0; 1]. Equation 9 is used in the first step of function eval(A4, B). Observe that,
because of the resulting POMS standard range, this step enables the adoption
of different metrics defined on different ranges.

VB € B: (Vy € B.G: y.value +
v.value — min(y.a) 9)

)

maz(y.a) — min(y.q)

Next, in the smoothing step, the metrics with minimization objectives are
submitted to a complement function. This function transforms the POMS
so that a minimization problem becomes a maximization problem. Thus the
complement function maps the highest result from 1 to 0 and the lowest result
from 0 to 1. Thus, the complement function enables a uniform interpretation
of the results, as the entire evaluation consists only of maximization problems.
Equation 10 shows the complement functions.
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VB € B: (Vy € 8.G | v.a.objective =

S (10)
minimization : y.walue < 1 — y.value)
The last step (indexing) performs the weighing of the results and computes
the SI for each candidate. In the weighing phase, all metric weights are nor-
malized in the range [0; 1] as presented in Equation 11. This operation updates
the set of metrics, so that the normalized weights indicate how representative
the metrics are for the SI creation. Finally, the service indexes are computed
for each candidate 8 (SIg) as the sum of the corresponding weighed results
(Equation 12).

.weight
Va € A: cweight < % (11)
(>_:, a.weight)
B.G
Slg Z’y.value * y.a.weight | B € Bgta (12)
v

A candidate with the maximum SI (i.e., 1) has achieved the best possible
results for all metrics in comparison to the other candidates. In contrast, a
candidate with the minimum SI (i.e., 0) has got the worst results for every
requested metric. Note that a specific evaluation may not result in maximum
and minimum SIs, but still all indexes are in the range [0; 1]. The index concil-
iates multiple heterogeneous metrics, so that a set of deployment candidates
can be compared and ranked. Finally, a candidate with the highest SI may
not represent the global best result for a deployment instance (i.e., in case
the candidate definition is based on heuristics that do not guarantee global
best is always achieved), but it does represent the local best result taking into
account the available candidates and metrics.

4 Implementation Settings

The implementation of the proposed framework, called Classification and Holis-
tic Evaluation Framework (CHEF'), consists of three main functions: (i) Weight
Normalization, (ii) Prep, and (iii) Eval. WeightNormalization is presented
in Algorithm 1. It receives as input the set of metrics A and normalizes met-
ric weights. This function consists of two phases: first, the sum of all weight
values is computed and stored in variable sum (lines 2 to 5); next, the metric
weights are iteratively normalized by the quotient of the weight and sum (lines
6 to 8); finally, the raw weights are replaced by their normalized counterparts
in A. The Eval function, in turn, consists of the three steps of the proposed
evaluation/classification method and is described next.
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Algorithm 1 Metric Weights Normalization

1: function WEIGHTNORMALIZATION(A)

2: sum < 0 > O(1)
3: for each « in A do > O(n)
4: sum < sum + a.weight > O(n)
5: end for

6: for each « in A do > O(n)
7 a.weight <+ %jght > O(n)
8: end for

9: end function

The preprocessing function that smooths linear biases is described in Al-
gorithm 2. Function Prep(A,S,r) receives as input the set of metrics A, a
sample set S of partial results or metric benchmarks, and a minimum Pear-
son coefficient r to conclude that a combination of metrics is correlated. A
secondary function Clustering(a, checked, matches) creates clusters of corre-
lated metrics implemented as a recursive routine based on depth-first search.
Clustering receives a metric «, a set of already checked metrics (checked),
and a set of tuples (ag,,) producing as output pairs of correlated metrics
(matches). First, the Clustering function includes the current metric « in
the checked set (line 2) as well as in the result set o (line 3). Next, for each
combination of correlated metrics that includes « as the first element (line 4),
the current result set is recursively updated by joining with the set returned
from Clustering(ay, checked, matches) in line 5 (consider X;Y as the set op-
eration of X UY’). Note that due to the conditional “not «, in checked” in
line 3, this function is called exactly once for each correlated metric. At last,
the cluster with positively correlated metrics is returned in line 7.

Function Prep(A,S,r), which is the main function executed to smooth
metric biases, consists of three steps: correlation (lines 11-14), clustering (lines
15-17), and smoothing (lines 18-30). First, a preprocessing cluster object is
created in variable PC (line 11). This object is initialized with three empty
sets and a zeroed integer: .matches + 0, .clusters < (, .check < (), and
.surplus < 0. In the correlation phase, combinations of 2-metrics (comb(g))
are processed taking into account the samples S to find their respective Pear-
son coefficient (Pearson((ay,ay),S)) in line 12. Observe that line 13, which
includes a 2-metric correlation in PC.matches, is executed if some condition
from line 12 is satisfied: a positive Pearson coefficient greater than r and met-
rics with the same objectives, or a negative Pearson correlation less than —r
and metrics with different objectives. Lines 15 and 16 summarize the clusteri-
zation step. Note that, as PC.checked is updated after the Clustering func-
tion is executed, the recursion is called at most once for a particular metric.
Line 18 normalizes the metrics’ weight enabling the execution of the smooth-
ing step. For each cluster with multiple metrics (line 19), the maximum and
the sum of metric weights are defined (respectively, lines 20 and 21 — consider
that sum(s) returns the sum of weights of metrics « in ¢). Also, the differ-
ence between these weights (line 22) is summed up to the surplus variable.
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Algorithm 2 Biases Smoothing Preprocessing

1: function CLUSTERING(«, checked, matches)

2: check; o > O(1)
3: cluster < {a} > O(1)
4: for each (o, o) in matches that (not ay in checked) do > O(n?)
5: cluster; Clustering (o, checked, matches) > O(n)
6: end for

T: return cluster > O(1)
8: end function

9:

10: function PREP(A, S, p)

11: PC <« PreprocessCluster() > O(1)
12: for each (o, ay) in comb(g) that ((Pearson((ag,ay),S) > p and ag.objective =

ay.objective) or (Pearson((og,ay),S) < —p and oy .objective # oy .objective)) do >
O(m? xn?2)

13: PC.matches; (o, ay) > O(n?)
14: end for

15: for each « in A that (not « in C.checked) do > O(n)
16: PC.clusters; Clustering(a, PC.checked, PC.matches) > O(n?3)
17: end for

18: WeightNormalization(A) > O(n)
19: for each ¢ in PC.clusters that (|s| > 1) do > O(n)
20: Smaz  maz(s) > O(n?)
21: Ssum  sum(s) > O(n?)
22: PC.surplus <+ PC.surplus + Ssum — Smaz > O(n)
23: for each « in ¢ do > O(n?)
24: a.weight < O‘wmf;h% > O(n?)
25: end for
26: end for
27: for each « in A do > O(n)
28: a.weight < a.weight + S-weight+PC.surplus > O(n)

1—PC.surplus
29: end for

30: end function

The maximum weight is proportionally distributed to all the metrics (lines
23 and 24), replacing their original weights. Finally, lines 27 and 28 show the
proportional redistribution of the surplus weight to all the metrics in A.

The evaluation function is described in Algorithm 3. It receives as input
the set of metrics A and the set of candidates B. Note that every candidate
£ in B has information on the set of partial results G so that a metric « in
A has a corresponding value v in G. The Eval function consists of the three
steps described in the previous section: POMS, smoothing, and indexing. To
improve performance, the execution of these steps can overlap in the algorithm.
The evaluation function can be described as follows. First, the metric weight
normalization is done (line 2) and results are kept to be used later. Then, in
lines 3 to 6, the result set ST is initialized and later it is returned as the output
with the suitability indexes for each candidate. The partial result evaluation
starts in line 7; the suitability indexes are iteratively computed by processing a
single metric at a time for all candidates (line 10). The maximum and minimum
partial results for each metric are then obtained as required by POMS (lines 8
and 9). Then, the partial results are processed by POMS (line 11), followed by
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Algorithm 3 Proposed Evaluation/Classification Method
1: function EvAL(A, B)

2: Weight Normalization(A) > O(n)
3: ST« 0 > O(1)
4: for each $ in B do > O(m)
5: SI; (8,0) > O(m)
6: end for

7 for each « in A do > O(n)
8: Amaz — maz(a) > O(n xm)
9: Qmin — min(a) > O(n *m)
10: for each $ in B do > O(n *m)
11: if Qmaz # Qmin then > O(nxm)
12: Bma.value <~ m# > O(TL * m)
13: else ' > O(n *m)
14: B'y.a.value 1 > O(n * m)
15: end if

16: if a.objective = minimization then > O(nxm)
17: Bma.ualue —1-— B’y.amalue > O(TL * m)
18: end if

19: Slg.value < Slg.value 4 By o .value * . weight > O(n*m)
20: end for
21: end for
22: return ST > O(1)

23: end function

the computation of the complement in case there are metrics with minimization
objective functions (lines 16 to 18). This is followed by weighing and ST update
(line 19). Finally, the candidate suitability indexes are returned in line 22.

Consider that n is the total number of metrics and m is the total number
of samples (S) or candidates (B), the complexity of presented functions can be
computed as follows. Imported functions maz(X), min(X), and sum(X) have
linear complexity (O(n) or O(m)), function comb()z() is n quadratic (O(n?)),
and function Pearson((ag,oy),S) is quadratic on m. The Weight normaliza-
tion function (Algorithm 1) is linear with complexity f(n) = 4n + 1 (O(n)).
The clustering function (Algorithm 3) is quadratic with complexity f(n) =
n?+n+3 (O(n?)). The prepossessing function to smooth of weight biases (Al-
gorithm 3) is quartic with complexity f(n,m) = (m?*n?)+n3+5n?+6n+1
(O(m?%n?)). The evaluation/classification function (Algorithm 3) is quadratic
with complexity f(n,m)=10(n*m) + 2n+ 2m + 2 (O(n *m)).

5 Experimental Evaluation

In order to evaluate the proposed framework, CHEF was implemented us-
ing the Python3 programming language'. Experiments were run to evaluate
the execution time and also to observe how easy it is to integrate CHEF to

1 Available at https://github.com/ViniGarcia/NFV-FLERAS
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existing deployment solutions?. A case study of the evaluation of multiple cus-
tom metrics is also presented. Results were obtained by running the proposed
framework and deployment solutions on an Intel Core i5-3330@3.00Ghz server
with 8GB RAM DDR3 running Debian 8. Experiments were executed 30 times
with a confidence level of 95%.

5.1 Execution Time

The objective of this experiment is to evaluate CHEF in terms of the im-
pact it has on the execution time of the deployment solution. We refer the
reader to [15,28,16] for reference results regarding the typical execution times
of deployment solutions. As a result, we show that the proposed framework
presents predictable behavior when increasing the number of candidates and
evaluation metrics. In the first experiment, we evaluated the total execution
time for different combinations of metrics and candidates. We used random
sets A of n metrics and B of m candidates as inputs to the Eval function and
measured its execution time.

104

103

102

10!

Execution Time (ms)

109

10~1

\ \ \ \ \ \ \
51 52 53 54 55 56 57
Number of Candidates (m)

n=2 83— n=4 n=~8
-0-n=16-w- n=32-4- n=064

Fig. 2 CHEF Execution Time

2 Available in branch ”ChefExperiments” at https://github.com/ViniGarcia/NFV-
FLERAS
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Figure 2 shows the results obtained for the execution time of the pro-
posed framework. In the experiment, we gradually increased the number of
candidates evaluated by CHEF, varying from 5 to 78,125 candidates. These
candidates were evaluated considering partial results coming from 6 different
sets of metrics. Each metric set 747 is composed of 2¢ metrics, where ”i” varies
from one to six. As the number of candidates (m, X-axis) increases, we show
how the execution time performs according to the number of evaluation met-
rics (n). Also, as the number of evaluation metrics (n) increases, we show how
the execution time performs for a set of candidates (m).

As can be seen in Figure 2, the execution time increases roughly linearly as
the number of metrics and the number of candidates increase. As the number
of metrics doubles, the execution time increases by 80%. Increasing the number
of candidates five times causes the execution time to increase in average 280%.
Note that results for small numbers of candidates (m = 5 and m = 25) do
not follow the expected linear increase of the execution times. This occurs
because, operations that are independent of the number of candidates, such
as metric validations, dominate the overall processing time. After removing
outliers, the execution time increases 76% as the number of metrics doubles,
and 393% as the number of candidates is multiplied by 5. These results confirm
the previously presented algorithm complexity of O(n x m).

5.2 Integrating CHEF to NFV Deployment Solutions

In this experiment, we show that the proposed framework can be integrated
to existing deployment solutions with few code changes, so that their func-
tionality is extended to encompass the evaluation of multiple metrics with
heterogeneous objectives. Furthermore, their native metrics can also be used
with the same results. Two different deployment solutions were used: (i) the
Mehraghdam, Keller, and Karl (MKK) composer [22] and (ii) the Mijumbi,
Serrat, Gorricho, Bouten, Turck, and Davy (MSGBTD) mapping [32]. The
first deployment solution uses both exhaustive and greedy heuristic searches
to execute the definition stage in the composition of service topologies that
minimize the traffic (actually, the ratio between incoming and outgoing traf-
fic) going through the network functions. The second deployment solution, in
turn, maps a service topology to a datacenter network by defining the server
on which each network function must be placed. The definition stage of this
service mapping solution is computed using a greedy heuristic that minimizes
the service processing time and the monetary cost. These deployment solu-
tions were selected so that we could evaluate the performance of the proposed
framework applied to both the composition and the embedding tasks of the
NFV deployment process. Furthermore, the evaluation also included both ex-
haustive and heuristic searches in the definition stage.

We implemented both the MKK composer and MSGBTD mapping in
Python3. Next, we integrated the proposed framework in two ways that we
call ”indexing” and "multi-criteria”. The indexing approach corresponds
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to the two solutions using our evaluation/classification method. In this way,
the solutions compute the proposed suitability index for each candidate with
their original hard-coded evaluation metrics and objectives (i.e., minimization
of traffic ratio in MKK, and minimization of processing time and monetary
cost in MSGBTD). In the multi-criteria approach, besides integrating the pro-
posed evaluation/classification method, the solutions were also modified to
allow the selection of on-demand metrics and evaluation objectives.

Experiments were performed to quantify the similarity of the codes before
and after the integration of the proposed framework, in order to evaluate how
much effort it takes to integrate the framework to the existing deployment so-
lutions. In order to validate the extended versions, their results were compared
to those of the original strategies, changing only the evaluation/classification
method but using the same set of metrics. We executed experiments for 28
composition requests and 8 mapping requests. To check code similarity, the
cosine technique was employed, which has been used for general data com-
parison, including both source code [41] and binary code [42]. The cosine
technique converts general sets of data to vectors, which allows the estimation
of the similarity level by the computation of the cosine of the angle between
pairs of vectors. In this way, a result equal to 1 indicates that the compared
sets of data are equal, while when the result is 0 the compared sets are totally
different.

Table 2 CHEF Integration (Similarity)

Deployment Solution nge Simila}rity 4 Rgsults Simi'lari'ty 4
Indexing  Multi-criteria  Indexing  Multi-criteria
f/[’%;usme 0.996 0.982 1.000 1.000
ﬁﬁ?y 0.993 0.986 1.000 1.000
I\GA‘"Seg‘B’TD 0.996 0.952 1.000 1.000

First, the original code of the deployment solutions is compared with the
corresponding extended versions. As shown in Table 2, the amount of code
that differs between the original version of the deployment solutions and the
indexing ones corresponds to less than 0.5%. There is a small difference which
is related to adding calls to CHEF in the evaluation and classification stages.
The multi-criteria extension is also similar to the original version, but requires
a few extra functions so that the differing code portions vary from 1.4% to
4.8%. Furthermore, both the indexing and multi-criteria versions reached the
same deployment results as the original version for all submitted requests
(100% of similarity). In other words, the new versions reach the same results
as the original versions for the same metric set, which validates our strategy
and the implementation.

The previous experiments evaluate the similarity of the different versions
of the deployment solutions and their respective results. Now, we evaluate
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the time overhead of using the proposed framework integrated to the exist-
ing solutions. The overhead is caused because partial results are indexed and
the solutions are adapted to the multi-criteria evaluation. To quantify this
overhead, we conducted an experiment with four different service topologies,
presented in Figure 3. In the composer experiment, the size of the service
topology is the number of network functions requested, all of them in a linear
segment that can be ordered in different ways (i.e., functions can be allocated
to any position of the chain). In the mapping test, the service topology size is
the number of functions that must be mapped to a datacenter network with 20
servers. To keep the experiment fair, the multi-criteria version was configured
to evaluate only metrics of the original solutions.

The solutions based on heuristic search presented a small increase of the
execution time, as shown in Figure 3 (B) and (C). This occurs because of the
small number of candidates to be evaluated at each algorithm iteration (i.e.,
the decision of a position or server for a network function) — 7 candidates for
composition, and 20 for mapping. On the other hand, the solutions based on
exhaustive search show higher execution times in Figure 3 (A). This is due to
the exponential growth of the number of candidates once all possible topologies
are evaluated. This high number of candidates created by the exhaustive search
solution also presents an overhead for the proposed framework, as it requires
more time and thus resources to compute all the suitability indexes. According
to these results, it is possible to conclude that CHEF can be applied to the
solutions based on heuristic search, causing a small and predictable overhead.

5.3 Case Study: Customized Multi-criteria Composition

To evaluate the proposed framework in a customizable deployment, for dif-
ferent sets of metrics and objectives, we present a case study of the compo-
sition task. This case study considers the composition of a network service
for security and traffic control. This service consists of five functions that are
frequently deployed on datacenters [43]: Firewall (FW), Intrusion Prevention
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System (IPS), Deep Packet Inspector (DPI), Traffic Shaping (TS), and Appli-
cation Delivery Controller (ADC). The service topology is shown in Figure 4
and allows three network functions to be ordered in different ways (i.e., IPS,
DPI, and TS); this is exactly the optimization target for the composition. The
experiments were executed with the multi-criteria version of the exhaustive
MKK composer.

FW IPS DPI TS ADC
1 1 o
~E-8-8—-V-@—
| a,
[ J
~

OPTIONAL ORDERING SEGMENT

Fig. 4 Traffic Control and Security Service

In the case study, an NFVaaS customer requests the provider to deploy the
network service. The customer gives as input the profile of network functions
with three evaluation metrics: Average Traffic Ratio (ATR), Average Energy
Consumption (AEC), and Average Processing Delay (APD). The profiles are
presented in Table 3. The NFVaaS provider employs the multi-criteria version
of MKK solution to compose the customer’s service topology. In this way, the
customer is actually requesting the analysis of four different composition sce-
narios, using minimization as objective function, and the same weight applied
to all metrics: (i) ATR, (ii) ATR + AEC, (iii) ATR 4+ APD, and (iv) ATR +
AEC 4 APD. Table 4 shows the results returned for the customized scenarios.

Table 3 Network Function Profiles

FW IPS DPI TS ADC
0.75 0.9 0.85 0.95 1.0

Avg. Traffic Ratio - ATR
(Gbps Input/Gbps Output)
Avg. Energy Consumption
- AEC (Watts/Gbps)

Avg. Processing Delay

- APD (ms/pkt)

15 30 60 35 10

0.2 0.8 0.8 0.2 0.05

Table 4 Results of Customized Multi-criteria Compositions

. . Optimal Service Topolo Suitabilit,
Evaluation Scenarios p (MKK Exhaustilx)le) gy Index Y
(i) ATR FW — DPI — IPS — TS — ADC 1.000
(ii) ATR 4+ AEC FW — IPS — DPI —- TS — ADC 0.868
(iiif) ATR + APD FW — DPI — TS — IPS — ADC 0.814

(iv) ATR + AEC + APD FW — DPI — IPS — TS — ADC 0.774
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Observe that the four customized scenarios resulted in three different ser-
vice topologies. The first scenario aims to minimize the overall traffic ratio and
returns the optimal result for this single metric (suitability index of 1.000).
However, when the minimization of energy consumption and processing delay
were also included by the framework in the second and third scenarios, two
distinct chains are returned: in the first, the IPS function was allocated in
the first position of the segment because of its low energy consumption when
compared to DPI; in the second alternative, the T'S was assigned to the second
position of the optional ordering segment due to the fact that its traffic ratio
reduction is close to that of the IPS, but it presents a much smaller process-
ing delay. Finally, when all the evaluation metrics are processed together, the
same service topology of the first scenario (i.e., which just evaluates the traffic
ratio metric) was returned. Note that, in the last three scenarios, none of the
returned chains obtained suitability index equal to one. This is an indication
that some metrics were better evaluated in other chains, but the final result
represents the best cost-benefit taking into consideration the complete metric
set.

Table 5 Results of Different Weighing of Customized Multi-criteria Compositions

Evaluation Scenarios Optimal Service Topology Suitability
(Metric [Weight]) (MKK Exhaustive) Index
(&) ATR A ABC FW — IPS — DPI -+ TS — ADC 0.868
[1.0] [1.0]
(ii.1) ATR + AEC
[0.5] [1.0] FW — IPS — DPI — TS — ADC 0.912
(i.2) ATR + AEC FW — DPI — IPS — TS — ADC 0.908
[1.0] [0.5]
(iif) ATR + APD FW — DPI —» TS — IPS — ADC 0.814
[1.0] [1.0]
(iii.1) ATR 4 APD FW — DPI — TS — IPS — ADC 0.826
[0.5] [1.0]
(iii.2) ATR 4 APD FW — DPI — IPS — TS — ADC 0.866
[1.0] [0.5]
(iv) ATR + AEC + APD
[1.0] [1.0] [1.0] FW — DPI — IPS — TS — ADC 0.774
(iv.1) ATR + AEC + APD
[0.5] [0.5] [1.0] FW — DPI — IPS — TS — ADC 0.730
(iv.2) ATR + AEC + APD
[0.5] [1.0] [0.5] FW — DPI — IPS — TS — ADC 0.762
(iv.3) ATR + AEC 4+ APD - ny | ppp 5 1ps TS 5 ADC 0.830

[1.0] [0.5] [0.5]

It is important to note that, in addition to the modification of the used set
of metrics, it is possible to get different results by modifying the weights defined
for each evaluation metric. Table 5 shows the result of increasing/decreasing
different metric weights, and in different combinations, in the evaluation of new
cases from the previously described scenarios ii, iii, and iv. This experiment
consists of defining a dominant metric among the available ones. The domi-
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nance imposes a reduction of the dominated metric (dM) weights to half of the
dominant metric (DM ) weight — i.e., dM.weight = DM+”9M. Observe that,
in this way, the dominant metric will always have a higher normalized weight
in relation to the dominated metrics. However, the impact of the dominant
metric depends on the total number of metrics considered in the evaluation
(i.e., the impact reduces as the number of metrics increases). The original

a single particular metric is dominant, and all others are dominated.

For scenarios ii and iii presented in Table 5, the dominance of metrics AEC
(ii.1) and APD (iii.1) — in comparison to ATR — resulted in the same service
topologies observed when no dominance was applied to their metric weights
(respectively, ii and iii). But, in the cases of ii.1 and iii.1, the suitability indexes
did achieve a higher value than the corresponding cases ii and iii. When the
dominance is applied to the ATR metric (ii.2, iii.2, as well as iv.3), in turn,
resulted in a common service topology for all the tested scenarios. This example
reflects the importance of this particular positioning of network functions to
optimize the ATR metric (note that the positions are different of what was
observed in both ii.1 and iii.1).

Another relevant result is the fact that the evaluation and classification
of cases 1, 2, and 3 from scenario iv results in the same service topology,
regardless of the chosen dominant metric. In this scenario, the dominance
imposes a lower impact on the final result than it imposes on scenarios ii and
iii. This occurs due to the evaluation of the three metrics (one dominant and
two dominated) instead of two metrics (one dominant and one dominated). In
this way, CHEF favors the positioning of network functions that can optimize
multiple metrics for increasing the suitability index — for example, placing DPI
in the second position of the topology improves both ATR and APD. In the
same way, placing TS in the fourth position of the topology improves both
ATR and AEC. Thus, this joint metric optimization establishes for scenario
iv the worst mean (0.774) and the highest dispersion (percentage variation of
13.7%) of the suitability indexes among all tested scenarios. In comparison,
scenario ii presents a suitability index mean of 0.896 and a dispersion of 5.1%,
and scenario iii presents a suitability index mean of 0.835 and a dispersion of
6.4%.

With these results, the NFVaaS customer can choose the service topology
composition that is best suited to his/her particular demands. For example, if
green computing is a primary concern, the service topology from the second
scenario is certainly the best (ii or ii.1). Otherwise, if the customer aims to
optimize the quality of service regarding the delay metric, the third scenario
should be chosen (iii or iii.1). Finally, if all the evaluation metrics should be
taken into account, the last scenario is presented as the best option (iv).

With the popularization of the NFV paradigm, NFVaaS providers will
have to deal with complex deployment requests of diverse types complying
with customer policies. In this way, the evolution of current NFV deployment
solutions and the development of new ones must consider adopting mechanisms
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to deal with requirements defined on-demand. As shown in this section, CHEF
is a feasible approach to accomplish this task.

6 Conclusion

Network Functions Virtualization has been proposed as a novel paradigm that
allows the execution of network functions and services on a software plane by
using virtualization technologies (e.g., full virtualization, paravirtualization,
container virtualization). However, despite the multiple potential benefits of
this paradigm, such as higher flexibility for set up and management and lower
capital and operational costs, many gaps have to be addressed before the
potential of NFV is fulfilled. Some of these challenges are related to the NF'V
deployment process. The deployment process is executed to compose, embed,
and schedule a virtualized network service according to optimization criteria,
based on evaluation metrics. Current deployment solutions only allow a static
hard-coded set of evaluation metrics to be used. Ideally, multiple metrics and
particular demands from network operators and NFVaaS customers should be
taken into consideration to deploy a complex service.

In this paper, we introduced a framework (called CHEF) for NFV deploy-
ment that uses a customizable evaluation/classification according to multiple
heterogeneous metrics. This new multi-criteria framework can be integrated
to existing solutions that execute any task related to NFV deployment (i.e.,
composing, embedding, and scheduling). Considering that deployment solu-
tions often consist of three stages (definition, evaluation, and classification of
candidates), the proposed framework accomplishes both the evaluation and
classification stages, given any definition stage. A deployment solution that
adopts CHEF enables its users to customize the evaluation metrics as a partic-
ular service to be deployed. Furthermore, the evaluation objectives and relative
weights are also customizable. We demonstrated and evaluated the integration
of the proposed framework to two currently available deployment solutions
(one for service composition, and another for service embedding). The results
show that the deployment solutions present less than 5% of code dissimilarity
between their original versions and the respective extended versions. Also, we
show that an acceptable overhead is imposed to the execution time of the ex-
tended versions of the deployment solutions, even when exhaustive strategies
are employed. Finally, we presented a case study that shows the differences in
the deployment results as distinct metric sets are used, which illustrates that
custom and multi-criteria evaluation can be indeed very effective.

Future work includes the integration of CHEF to other deployment solu-
tions, thus further demonstrating its flexibility. Another future work is the
investigation of a holistic deployment platform that enables, besides the cus-
tomized evaluation of metrics, the customization of the entire deployment pro-
cess. In such a platform, the sequence of stages of each deployment task would
be defined on-demand. Thus, multiple tasks could be defined cooperatively so
that the best cost-benefit is achieved for the complete deployment result. In
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conclusion, we aim to natively provide customizable deployment solutions in
the context of FENDE [10], and NIEP [44].
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