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Abstract—The Open Radio Access Network (O-RAN) Alliance
is opening up traditionally closed RAN elements by defining a
new open communication interface (E2) that allows the behavior
of a RAN element to be customized and controlled in real time.
The RAN Intelligent Controller (RIC for short) is a platform
for implementing RAN control functions as microservices called
xApps. In this work, we propose and evaluate techniques to
enable xApps in the RIC platform to be fault-tolerant while
preserving high scalability. The key premise of our work is that
traditional replication techniques cannot sustain high throughput
and low latency as required by RAN elements. We propose
techniques that use state partitioning, partial replication, and
fast re-route with role awareness to decrease the overhead. We
implemented the fault tolerance techniques as a library, called
RFT (RIC Fault Tolerance), that xApp writers can employ to
easily make their xApps fault-tolerant. We present performance
results which show that RFT meets latency and throughout
requirements as the number of replicas increases.

Index Terms—5G, RAN, fault tolerance, high throughput, low
latency, partial replication

I. INTRODUCTION

The Radio Access Network (RAN) is one of the key

elements of cellular networks, providing wide-area connec-

tivity to wireless devices (User Equipment - UE). The RAN

has the non-trivial task of managing the limited spectrum

available to make UE connectivity possible even with a very

large number of users. In dense 5G networks, it becomes

even more challenging to allocate radio resources, implement

handovers, manage interference, balance load between cells,

among several other tasks the RAN is supposed to execute

[1]. Despite the fact that standards have been defined for

the RAN interfaces between network elements and wireless

devices, most implementations are typically vendor provided

closed solutions [2]–[4]. This makes it a challenge for telco

providers to develop novel services, and at the same time

makes it hard for the research community to contribute to

this important area. Projects such as srsLTE [5] and Open Air

Interface (OAI) [6] have started to address this problem by

releasing open source implementations of the 3rd Generation

Partnership Project (3GPP) standards [7]. Recently, the Open

This work was partially supported by CAPES Finance Code 001 and CNPq
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Radio Access Network Software Community (O-RAN SC) [8]

has been leading efforts to support the development of open

source software for the RAN, while addressing challenges in

terms of performance, scalability, and 3GPP alignment.

The O-RAN alliance [9] splits the RAN into components

such as the Radio Unit (RU), Distributed Unit (DU), Central-

ized Unit (CU), the near-real-time RAN Intelligent Controller

(RIC), plus other higher level non-real time components. The

focus of this work is on the RIC. The purpose of the RIC is to

provide a platform for customizing the behavior of the RAN

[10]. O-RAN is also defining a new communication interface,

E2, between the RIC and the RAN elements, allowing a RAN

element to expose its functionalities and report notifications to

the RIC. The RIC provides a platform that runs microservices,

called xApps, which use the E2 interface to access and control

the RAN elements. The interaction between RIC xApps and

RAN elements has strict requirements in terms of performance

[10]–[13]. As an example, consider a scenario in which an

xApp controls UE admission into a network to protect from

intentional or accidental DDoS attacks from IoT devices [14],

[15]. In that scenario the RIC platform and the xApps must

present low latency since valid operations should not be

delayed or the user experience can be degraded. For the same

reason, fault tolerance is also a requirement, as a faulty xApp

should not prevent a legitimate UE from joining the network.

Actually, as the failure of a RIC application can have an impact

on the reliability of the network itself, fault-tolerance is very

much needed. However, the solution must be feasible in terms

of cost: a single RIC instance must present high throughput

to handle thousands of requests per second.

The problem addressed in this work is how to implement

fault-tolerant, high throughput, and low latency xApps in

the open-source RIC platform [16] provided by the O-RAN

SC. The required approach for achieving fault tolerance is

the replication of xApps. However, even existing replication

solutions that focus on low latency and high throughput [17]

cannot meet the goal of keeping the control loop latency at

the RIC at a maximum of 2ms, while keeping the scalability

required to support tens of thousands of requests per second

[12], [13]. The 2ms limit for the control loop latency at the

RIC is derived from the assumption that the RAN scheduler

loop must operate below 10ms and the communication latency978-3-903176-32-4 ©2021 IFIP
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between the RIC and the RAN element may be as high as 4ms

in each direction.

In order to meet the challenges of high throughput and

low latency required in the RAN problem domain, we pro-

pose to employ state partitioning with approximate partial
replication and fast re-route with role awareness techniques

to meet those RAN challenges. State partitioning resembles

traditional sharding in the sense that different subsets of data

are maintained by different replicas. However, in our context,

data sharding is based on the semantics of the data, which

differs from traditional sharding techniques that rely solely

on key hashes. In the approximate partial replication strategy

adopted, data items maintained by a primary xApp replica

are replicated to one or more xApp backup replicas and

consistency guarantees can be customized (e.g., replication

frequency). Fast re-route with role awareness allows a message

to be quickly re-routed to one of the backup replicas when

the primary replica is unreachable or overloaded. The backup

replica is then able to process the message with the awareness

that it is a backup and may not have the most up to date state.

Thus the main contribution of this work consists of defining

a set of techniques to implement fault-tolerant xApps that can

support the requirements of low latency and scalable high-

throughput in the RIC platform developed by O-RAN SC.

High throughput and low latency are possible because of the

techniques described in the paper to build fault-tolerant xApps:

state partitioning with partial replication as well as fast re-route

with role awareness. These techniques were implemented as a

library called RFT (RIC Fault Tolerance) that can be used by

developers to build fault-tolerant xApps. Experimental results

show that RFT meets the RIC latency requirements as well as

provides scalable throughput up to hundreds of thousands of

requests per second.

The rest of the paper is organized as follows. Section 2

gives an overview of xApps and a classification based on the

state they maintain/require to perform their functions. Section

3 describes the proposed RFT library. The empirical evaluation

is presented in Section 4. Section 5 presents an overview

related work. Finally, Section 6 describes future work and

provides concluding remarks.

II. FAULT-TOLERANT XAPPS

In this section, we give a brief overview of the RIC and

xApps, and then drill down into the problem of how to provide

fault-tolerant high-throughput low-latency xApps.

A. RIC and the xApps

The RIC controls RAN elements via the E2 interface

through which it can subscribe to specific RAN events (e.g.,

a new UE is attempting to connect the network) and to issue

control messages (e.g., reject an attach request or hand-off a

UE from one cell to another). Each RIC instance manages a

potentially large number of RAN elements within a geographic

region.

The control logic in the RIC is implemented by microser-

vices called xApps. An xApp implements a well-defined

function to access, monitor, and control RAN elements. Ex-

amples of xApp functionalities include DDoS prevention,

Cell Selector Handover, Cell Congestion Prediction, and QoS

optimization based on the UE class (e.g., police/firefighter

devices, IoT devices, and connected vehicles). Each xApp

interacts with the RIC platform components and other xApps

using two main interfaces:

• RMR (RIC Message Router) - a messaging library that

RIC components use to send and receive messages within

a RIC instance. Message routing is policy-driven and

based on message attributes such as its type, subscription

id (described below), source and target RAN node. How-

ever, an xApp simply populates the message attributes

and sends the message without needing to specify the

target for the message. The RFT library takes advantage

of this feature to provide transparent failover services.

• SDL (Shared Data Layer) provides a key-value store ab-

straction that allows xApps to read information provided

by the RIC platform components and other xApps.

Fig. 1 illustrates the components of the RIC platform that

are relevant for this work. The E2 Term module implements

the interface to the RAN elements using the SCTP (Stream

Control Transmission Protocol) transport protocol and ASN.1

(Abstract Syntax Notation 1) message payloads. The Subscrip-
tion Manager implements the Publish-Subscribe model and al-

lows xApps to subscribe for specific RAN events. The Routing
Manager updates message routes on the RIC components. A

specific xApp may be replicated and its n replicas are referred

to as xApp1..n. Note that the current RIC platform includes

several other components but they are omitted here for clarity.

The RIC is implemented as a Kubernetes [18] cluster and its

components are deployed as pods consisting of one or more

containers. The current release of the RIC (Cherry) does not

support xApp replication.

Fig. 1. RIC architecture: components.

B. xApp State Information

To simultaneously achieve its goals of fault tolerance, high

throughput, and low latency, an xApp can be replicated and

the multiple instances can run on separate hosts. A new xApp

starts up in the RIC with a default initial state. The xApp will

keep changing its state as it receives messages and executes its

corresponding actions. In order to define a replication strategy,

it is essential to identify which kind of state information an

xApp needs to maintain to implement its function.
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xApps can be classified as stateless or stateful. A stateless
xApp only requires information it receives in a single individ-

ual message to perform its function. This means that if the

xApp is replicated, any replica can process any message with-

out prior state information (i.e., all the required information

is in the received message itself). As a result, these types of

xApps can be replicated in a straightforward fashion and any

load balancing algorithm can be applied to distribute traffic

among the replicas. The basic requirement is that a faulty

replica should be detected quickly so that traffic can then be

re-routed to the remaining correct replicas.

A stateful xApp relies on state information to process a

new message. The state of an individual replica is called its

context. The state of an xApp consists of the contexts of all

replicas of that xApp. A context includes information about

the network elements managed by the particular xApp replica.

Each context is xApp-logic dependent and is defined by the

xApp writer. Examples of context information include: the id

of a User Equipment (UE), of a group of UEs, a particular

Cell, a Cell Site, a UE class (e.g., IoT device, cellphone), the

total number of some type of device connected to the network,

among others. The information kept in a context is structured

through key-value pairs (e.g., consider a Cell context is for a

Cell; signal strength and cell utilization can be the keys with

their corresponding values).

A context can be stored and maintained in different ways.

For example, it could be stored in the SDL of the RIC or

replicated across all xApp instances. We argue that both of

these solutions are prohibitively expensive for xApps. Repli-

cation techniques that rely on stateless xApps and externalize

their state to a non-local store (e.g., SDL) cannot meet the

challenges of high throughput and low latency in this problem

domain. The reason is that the state needs to be fetched

from the external store through the network, modified locally,

and then committed in the external store. This increases the

latency when compared to maintaining the state locally in the

xApp. The extra latency is caused by the network round-

trip times as well as the natural overhead of running the

additional application to store the state. The latency can be

even worse if it is required to lock resources to access and

modify the externalized state. Full state replication would be

equally expensive, since an overhead is imposed on the latency

if it is necessary to wait for a majority of the replicas to apply

their state updates.

Therefore, we propose to partition the state of an xApp in

contexts and partially replicate them among a group of xApp

instances. For example, for the Cell context state partitioning

can be achieved very naturally by having each xApp instance

responsible for processing all the messages from a given set

of RAN elements. State partition allows each xApp instance

to process each message it receives by using (reading and

updating) only its local context information stored on local

memory. To address fault tolerance, we propose partial repli-

cation where each replica X has a dedicated set of backup

replicas (say Y and Z) where Y and Z maintain a copy of

X’s contexts and if X fails, either Y or Z can take over

processing messages targeted to X, until X recovers and can

resume its work. The xApp instance responsible for managing

a given context is the primary replica (e.g., X), while the xApp

instances that maintain copies of that context are called backup
replicas (e.g., Y and Z).

Even partial replication can be too expensive for xApps if

it is all done synchronously (i.e., any update is immediately

processed by the primary and a majority of backup replicas).

Thus, we propose asynchronous replication for xApp contexts

(i.e., only the primary is updated and backup replicas are

updated later). The design and implementation of the proposed

partial replication strategy is described in Section III.

While replication ensures that the service is available even

if an xApp instance fails, it does not ensure that the RIC will

provide a timely response right after the failure. Therefore,

we propose fast re-route with role awareness for xApps.

Specifically, if the primary replica of a given context is not

available to process a message from the RAN, the message

is immediately re-routed to one of the backup replicas that

maintain an approximate copy of that context. The backup

replica that receives the request will be aware of its role as a

backup for this particular request, and can use this awareness

to process the message considering that its context information

may not be fully up-to-date. In case the primary has crashed,

one of its backup replicas is elected as the primary for that

context.

III. THE PROPOSED SOLUTION

In this section we describe the proposed RFT (RIC Fault

Tolerance) library that can be linked by any xApp that requires

fault tolerance support. RFT employs group membership and

a message routing strategy that adapts to the current mem-

bership. RFT is used in the same way as other RIC libraries,

such as the RMR, SDL, and logging libraries. Note that simply

relying on Kubernetes to add fault tolerance to xApps is not an

alternative. While Kubernetes monitors pod health using health

checks, these checks are not comprehensive in the sense that

they do not allow fine-grained monitoring to detect changes

on the composition of a group of xApp replicas. After a

membership change is detected, replica roles (i.e., primary or

backup) and the routing rules for the RAN messages that are

to be sent to primary and backup replicas also have to be

updated.

A. Group Membership and Routing Management

RFT relies on a group membership subsystem that is based

on the Raft consensus algorithm [19]. Raft was employed to

implement stateful replication of membership changes. Group

Membership maintains information about both the group com-

position and request assignments, i.e., which xApps have been

assigned to which contexts. Each group is implemented as a

list of all replicated instances of a given xApp running on

a single RIC instance. Raft maintains the list consistent on

all members. We implemented Raft within the RFT library

instead of using an external tool such as Zookeeper [20] due

to performance concerns: a single RIC instance can potentially
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run hundreds of different xApp groups, all with very strict

latency and throughput requirements.

Fig. 2 shows how a new member is added to a group and

the corresponding routing policies are updated. We assume

that this particular context is for the RAN element. We also

assume that the group initially consists of the RFT replicas

xApp1 and xApp2. Replica xApp3 is then added. Note that

each xApp runs its corresponding RFT instance. Obviously an

RFT group can also be initialized with a single replica, i.e.,

with no replication.

2. Membership Request

11. Update Route: RAN-MSG (RAN3) | xApp3 : xApp1

1. Membership Request

5. Replicate (membership state)

6. Replicate Reply

15. RAN-MSG (RAN3) | xApp3 : xApp1

14. RFT-MSG | xApp1; xApp2; xApp3

4. Install Snapshot Reply

Routing Manager E2 Term1..n

10. Update Route: RFT-MSG | xApp1; xApp2; xApp3

3. Install Snapshot Request (membership)

xApp1

7. Update membership state

xApp2

8. Replicate (membership state)

9. Replicate Reply

12. RFT-MSG | xApp1; xApp2; xApp3

13. RFT-MSG | xApp1; xApp2; xApp3

(leader) xApp3

par

par

Fig. 2. A new replica is added to a group and the routing policies are updated.

We assume in Fig. 2 that the Raft leader (xApp1) had

been previously elected among the group members, and is

monitoring the liveness of the other members, which are Raft

followers. Liveness is monitored with heartbeat messages,

which are omitted in the figure for brevity. When xApp3
starts running, it sends membership request messages to all

current members of the group (messages 1 and 2) requesting

to join the group. Upon receiving this message, the leader

sends an Install Snapshot Request to xApp3 with group state

information (i.e., information that currently xApp1 and xApp2
are in the group). Whenever a new member joins a group it

receives a snapshot from the leader, which consists of the

current group state serialized. After installing the snapshot,

xApp3 replies to the leader acknowledging that the snapshot

is installed and indicating that the leader can start monitoring

liveness (message 4). Meanwhile, the leader also replicates

membership information to the rest of the group, informing

the other members (in this case, just xApp2) that xApp3 has

requested to join the group, as shown in message 5. After the

leader has received replies from a majority of the members

(message 6) it updates the local membership state (message

7). Next, the leader will also replicate membership updates

to xApp3, which learns that it has joined the RFT group.

Messages 8 and 9 are employed to replicate membership

updates to xApp3.

After xApp3 has fully joined the cluster, the leader has

to update the RMR routing policies to allow messages from

RAN elements as well as RFT multicast messages to be routed

to xApp3. The new multicast route is set up by sending

an Update Route message to the Routing Manager (message

10). This update informs the RMR that all messages of type

RFT-MSG should be delivered using multicast (i.e., indicated

with the semicolon) to the RFT replicas running on xApp1,

xApp2, and xApp3. The pipe is used in this rule to separate

the message type field from the group field. The RFT group

membership subsystem employs this policy to send multicast

messages from an RFT instance to all other RFT replicas of

the same group.

Next, the leader also sends an Update Route message to the

Routing Manager (message 11). This policy update specifies

that all messages of type RAN-MSG coming from RAN

element RAN3 should be sent to primary replica xApp3, and

in case it is unreachable, then the message should be re-routed

(i.e., to backup replica xApp1). Upon receiving those update

route messages, the Routing Manager replaces the updated

routing policies on the corresponding RFT members and RIC

components. After the multicast policy is installed (messages

12-14), copies of every message of type RFT-MSG are sent

to xApp1, xApp2, and xApp3. Upon the delivery of message

15 to the corresponding E2 Term components, all messages

of type RAN-MSG from RAN3 are delivered to the primary

replica xApp3, they can instead be delivered to backup replica

xApp1 if xApp3 is overloaded or unreachable.

After receiving a message with the new membership config-

uration, each RFT instance updates both the local membership

and the information about which backup replicas keep which

of its contexts. A primary selects the backup replicas for a

given context based on the updated membership information.

The next m available instances of the list of replicas are

selected as the backup replicas, where m is the number of

backup replicas.

In addition to group membership management, the Raft

leader is also in charge of determining which replica is the

primary for each new context. A new context corresponds for

instance to a new UE joining the network. This new UE sends

a message requesting to connect to some RAN element, which

needs to invoke the corresponding admission control xApps.

When a RAN element needs to communicate with xApps it

publishes its messages through the E2 Term component. In

order to select a primary for a new context, the E2 Term sends

a message to all xApps that have subscribed to that type of

message. After an xApp instance receives a message, it invokes

RFT function get role to determine its role with respect to the

corresponding context. If the outcome is None, the xApp sends

a message to the leader claiming to become the primary for

the context. The leader, which keeps a counter for the number

of times each instance is a primary, selects the one with the

lowest counter as the primary for the new context.
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Then the leader updates and replicates the new membership

information with information on the new primary to all RFT

replicas. Upon receiving this information, the chosen replica

becomes the primary for that context, selects the corresponding

backup replicas and starts the context replication. The leader

also requests the Routing Manager to update the routing

policies for the corresponding RAN element to enforce that

its RAN messages are delivered to the chosen primary replica

(see messages 11 and 15 in Fig. 2).

B. Partial State Replication

Keeping fully replicated stateful xApps can be expensive

and prevent xApps built with RFT to meet the performance

requirements of the RIC. Thus RFT employs a partial xApp

replication strategy that allows each primary to replicate its

assigned contexts on a set backup replicas previously selected

based on RFT membership information. The number of repli-

cas and the replication frequency are configuration options.

The basic unit of data that is replicated is called a log entry,

that corresponds to an operation on a context maintained by

the primary. The primary maintains all log entries sequentially

in memory using a structure which is called the log. A log

entry consists of the following fields: sequence, command,

context, key, value, and length. The sequence is an integer

that is increased monotonically each time the primary adds

a new log entry to the log. The sequence identifies each log

entry that is replicated: both the primary and backup replicas

keep track of the replicated log entries based on the sequence

field.

A partial state replication scenario is illustrated in Fig. 3,

where messages are exchanged among three RFT instances

running on the corresponding xApps. In this scenario, we note

that while the RFT instance in xApp1 is replicating contexts

to xApp2, it is also a replica of xApp3.

Fig. 3. Partial state replication: xApp2 is a replica of xApp1 and xApp3 is
a replica of xApp2.

Each replication message can transport multiple log entries

to reduce the overhead of replication messages, and to decrease

the number of acknowledgments. After receiving a Replication
Request message from the primary (xApp1), a backup replica

(xApp2) checks the lowest sequence number of the log entries

received in that message and the highest sequence number of

the log entries it has received so far. This allows the backup

replica to decide whether or not it needs to apply the log

entries and update the corresponding contexts. After applying

all log entries, the backup replica sends a Replication Reply
message back to the primary acknowledging the replication.

This information is then used by the primary to determine the

next log entry to replicate to the backup. In case a backup

replica receives a Replication Message with an unexpected

sequence number, it discards the message and replies to the

primary replica the sequence number of the next log entry it

expects to receive.

The primary replica stores log entries in local memory. As

the primary contexts are updated, more space is required to

store more log entries. Eventually, if nothing is done, this may

end up consuming all the available memory. Therefore, it is

necessary to remove stale log entries and this is done with

log cleaning. As soon as the combined sizes of log entries

reaches a threshold, log entries are serialized in a so called

snapshot. Basically, the idea of log cleaning is to delete all

log entries that are no longer required to build the state of the

last snapshot. Once a snapshot has been taken, all the prior

updates – thus all log entries up to that point – can be deleted

from the log. Furthermore, once a new snapshot is created the

primary deletes the previous one. New log entries that have

been created after the snapshot, are replicated to the backup

as described above.

RFT implements state machine replication entirely in main

memory, to minimize the latency to handle state operations.

Despite the fact that all context state is lost in case either the

whole RIC and all the replicas fail, state information becomes

stale very quickly for RAN control applications, and thus in

this case we claim it is better to reconstruct a fresh state rather

than to use a stale one retrieved from persistent storage.

IV. EMPIRICAL EVALUATION

The performance of RTF1 was evaluated using a Cell

Selector xApp that solves a practical problem in real cellular

networks. The objective of this xApp is to pick up the best

handover target cell for a User Equipment (UE) that improves

the overall network performance. Specifically, we assume the

RAN will generate UE handover requests when a UE is

observing a neighboring cell with a stronger signal strength

than its current serving cell. However, the fact that a cell has

the strongest signal strength may not automatically make the

cell the best handover destination for the UE. For example, the

cell may be congested because it is serving a large number of

UEs. Therefore, the Cell Selector xApp makes cell selection

also considering cell utilization. This is done by having the

Cell Selector keep track of cell attach and detach operations.

A simple counter is used to keep track of the number of

UEs connected to each cell. Note that a full Cell Selector

could easily use additional information such as the throughput

of the connected UEs, interference within the cell, and total

transmit/receive power, which for our evaluation purposes are

not really necessary.

1The implementation is available at https://github.com/alexandre-huff/rft
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RFT is based on partial replication, which can be achieved

in this case by having each replica keep track of the utilization

of a subset of the cell sites. A cell site comprises the radio base

stations and the network equipment installed at a given facility

to transmit and receive mobile signals. Thus, the global state

of the Cell Selector xApp can be partitioned into contexts,

each representing a given cell site.
In the evaluation, we use the RFT library to replicate the

cell site contexts an xApp primary replica maintains to another

xApp backup replica. Due to fast re-route, the backup replica

may receive messages related to the contexts managed by the

primary, however, the backup is aware of its role and that cell

utilization information may not be fully up-to-date. Because

of this, the backup replica assigns a heavier weight to signal

strength over cell utilization.
The Cell Selector xApp using RFT with an alternative

based on the Redis database [21]. We employed Redis in the

experiments due to two main reasons: Redis is currently used

in the RIC to implement the Shared Data Layer (SDL), and it

implements a highly available in-memory data structure store

with low latency for data access, high throughput, built-in

replication, as well as automatic state partitioning.

A. Experimental Setup
To run the experiments we set up a lab environment in which

containers running xApps were executed on two hosts (called

server1 and server2) connected on a Gigabit Ethernet. We used

Docker Compose to set up and run containers on each server.

Server1 ran Linux Ubuntu 18.04 on an Intel(R) Core(TM) i7-

6700HQ @ 2.6 GHz processor with 4 cores, 12 GiB DDR4

RAM and 6144K L3 cache. Server2 ran Linux Ubuntu 16.04

on an Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz processor

with 4 cores, 8 GiB DDR4 RAM and 8192K L3 cache. Five

containers were executed, two on server1 and three on server2.

A single xApp executed on each container. Backup replicas are

automatically selected by RFT as described in Section III-A.
In the Redis experiment, 5 xApps were distributed in

the same way (2 xApps/containers on server1 and 3

xApp/containers on server2). Now each xApp stores its state

(i.e., context) on a Redis master replica, which executed locally

with each xApp on the same host. Besides the 5 Redis master

replicas, 5 backup replicas were executed on the remote host

with respect to the original xApp instance.
We implemented a workload generator to quantify and

compare RFT versus Redis in terms of latency and throughput.

We ran five instances of the workload generator, each on

the same physical machine as each xApp. Each workload

generator directly sends and receives RMR messages to the

corresponding xApp replica, and implements the equivalent

combination of a RAN element and the E2 Term component.

50 rounds of 100K messages were sent both at (i) the maxi-

mum rate supported by the RMR on each machine and (ii) at

a 1 microsecond interval.

B. Experimental Results
We evaluated the throughput of the Cell Selector xApp

and results are shown in Fig. 4. xApp instances 1 and 2

were executed on server1, while xApp instances 3 to 5 were

executed on server2. The reason to run 2 instances on server1
and 3 instances on server2 is that server2 has a better CPU. For

the RFT baseline measurement, we considered a single xApp

instance (non-replicated) and one workload generator and we

observed a throughput close to 125K msg/sec. The equivalent

baseline xApp implemented using Redis reached a throughput

of slightly over 48K msg/sec. Just to be clear, we recall that

Redis is not saving data on disk, but the xApp had to access

the context information on the remote Redis container.

We then measured the performance of the two systems

in the context of partial state replication and compared the

throughput of RFT and Redis. Fig. 4 shows that in both cases

as the number of xApp instances increases, the overall system

throughput also increases. Note that there is a slightly higher

increase on the throughput after the third replica is added.

The reason is that the third replica runs on server2 which

has better hardware. This behaviour happens for both RFT

and Redis. Compared to the corresponding baseline, the RFT

throughput increases by 91.16%, 238.4%, 336.42%, and 467%

as the number of xApps increases to 2, 3, 4, and 5, respectively.

Fig. 4. Cell Selector throughput: RFT vs Redis.

Next, we ran an experiment to measure the round-trip

latency perceived by an xApp user. We measured the time

interval since a message is sent from the workload generator

to the xApps, until the corresponding reply arrives back.

We initially measured this latency by having each workload

generator send messages in a slow pace: a single message

is sent per microsecond. Fig. 5 shows the average latency

with the 95% confidence interval computed after results were

measured for 50 rounds during which 100K messages were

sent, one per microsecond. It is clear that RFT presented

lower average latency than Redis (RFT: 100 microseconds

& Redis: 240 microseconds) but both can be considered low

enough. Redis takes longer because it involves exchanging

network messages. The figure also shows a slight decrease

of the average latency when new replicas running on server2
– which has better CPU – are added to the experiment. In

the next experiment we show the results obtained when the

message rate increases.

Fig. 6 shows the average latency obtained when message
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Fig. 5. Cell Selector average latency with a load of 1 message per
microsecond.

rates increase to the maximum rates supported by the RMR

on both server1 and server2. Results are averages computed

for 50 rounds of 100K messages and are shown with the 95%

confidence interval. As can be seen in the figure, RFT was able

to keep the latency low as the number of replicas increases.

The latency measured for a single xApp was 0.944ms, as the

number of xApps increases to 5 the average increases to 1.2ms.

For the same message rates, Redis reached on average

more than 80ms of latency even when running a single xApp

instance and its corresponding Redis master replica. This

significantly higher latency is due to the fact that Redis was not

able to sustain the rate of 125K requests per second per xApp.

When Redis is used, the xApp instance must wait for Redis to

reply before it sends a reply back to the workload generator.

This causes both an increase of the latency and decreases the

throughput in comparison with RFT. Note that this experiment

is the same that was run to measure the throughput reported

above. In this way it is possible to compare how throughput

and latency fare as the number of replicas grows. Overall the

results confirm that RFT meets the latency requirements of the

RIC (less than 2ms) and provides scalable throughput, being

able to process hundreds of thousands of requests per second.

V. RELATED WORK

The problem of providing fault tolerance while guaranteeing

low latency and high throughput has been addressed in differ-

ent ways over the years. For example, LLFT (Low Latency

Fault Tolerance) [17] is based on a leader-follower replication

pattern. The system ensures strong replica consistency but

with low overhead since the primary replica can reply without

waiting for responses from backups, but message ordering

established by the primary replica ensures the other replicas

will reach the same state. While the system provides low

latency, the throughput is limited to around 20K msg/sec.

This somewhat low throughput can be explained by the fact

that the state is fully replicated and the system cannot take

advantage of concurrent processing by different replicas like

in our approach where state is only partially replicated. Chain

replication [22], achieves high throughput and high availability

Fig. 6. Average latency for the maximum message rate supported.

at the same time reducing the number of messages required

to ensure all replicas are updated. However, it requires the

replicas in a chain to update one replica at a time and as a

result the control loop latency can easily double even with 3

replicas.

The system described in [23] presents a high-availability

solution for middleboxes. The strategy assumes stateful mid-

dleboxes that must have their state properly recovered after

a failure. The system is based on classical rollback recovery,

but in order to improve performance, it employs a lightweight

logging strategy that ensures fast and correct recovery. Two

loggers are employed, for both the input and output traf-

fic. Periodic checkpoints are saved on the main memory of

switches up- and downstream. Packets are not released until

all the information needed for the retransmission of the packet

is stored. As a checkpoint is taken, the function is frozen.

The duration of the freeze, hence the impact on latency, is

proportional to how much the state has changed between

checkpoints, and is inversely proportional to the bandwidth

required by storage.

In order to achieve scalable throughput, an alternative is to

give up full replication and allow different replicas to process

different subsets of messages and to store different states. In

the database domain, sharding is an example of dividing the

state of the database into different replicas [24]. The shards

may be then replicated over many servers and can scale to

very large numbers of concurrent reads as well as updates.

Slicer [25] allows data center applications to distribute their

workload to a set of tasks through a sharding service. A

task is an application process that runs concurrently with

tasks from other applications on a multi-tenant host. Slicer

uses keys chosen by applications to define how sharding is

done, also to balance the workload across the tasks. The

system is monitored to detect hot-spots as well as failures

and does dynamic assignments in order to provide a highly

available evenly distributed load. Slicer is more focused on

load balancing than on high throughput and low latency,
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and sharding is done based on simple hash functions. RFT

focuses on high throughput, low latency, and assigns requests

from RAN elements based on the semantics of the problem.

RFT also maintains the required state on local memory and

replicates their updates, while Slicer stores the state in an

external system such as Redis.
Related to the O-RAN effort in general, the OAI (Open Air

Interface) and srsLTE are initiatives to provide open source

implementations of the 3GPP standards for the RAN and the

packet core [5], [6], [26]. The focus of those efforts is on the

implementation of evolving standards and use cases, but to

the best of our knowledge, in both projects there has been no

work done on fault tolerance.

VI. CONCLUSIONS

In this work we addressed the problem of how to implement

a fault-tolerant RAN controller that presents high sustainable

throughput and low latency, under the 2ms threshold. Our

solution relies on state partitioning with partial replication on

groups of xApps and fast context-aware routing. The policy-

based message routing strategy ensures that messages from

the RAN elements are delivered to the right xApp replica

that maintains the state needed to process the message. As a

result, consensus is only needed for membership management.

The group leader is responsible for requesting routing policy

updates to the RIC. RFT was implemented and evaluated with

a Cell Selector xApp. The solution was also compared with

an alternative based on the Redis in-memory data store. Our

experimental results show that RFT meets the RIC control loop

latency requirements while sustaining scalable throughput,

being able to process hundreds of thousands of requests per

second.
Although we ran the RFT experiments in a lab environment

with a limited number of replicas, we believe that state

partitioning with partial replication and fast re-routing with

role awareness as implemented in RFT also fits large-scale

deployments. State partitioning allows a given xApp replica to

be responsible for processing a subset of contexts, while partial

replication allows keeping the replication overhead low as the

number of replicas increases, even in large-scale deployments.

Messages of a given context are delivered to the corresponding

primary replica (or backup) by configuring particular routing

policies in the RIC platform. RFT employs fast-reroute and

is in charge of configuring the routing policies based on the

current group composition.
Future work includes addressing xApp scale-out and scale-

in, as well as dynamic context assignment employing improved

load balancing techniques. RFT will also be evaluated with

other xApps from the O-RAN community.
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