
Int. J. Critical Computer-Based Systems, Vol. x, No. x, xxxx 1

Algorithm-based fault-tolerant parallel sorting

Edson T. Camargo*
Federal University of Technology – Parana (UTFPR),
Toledo, PR, Brazil
Email: edson@utfpr.edu.br
*Corresponding author

Elias P. Duarte Junior
Department of Informatics,
Federal University of Parana (UFPR),
Curitiba, PR, Brazil
Email: elias@inf.ufpr.br

Abstract: High performance computing (HPC) systems often require
substantial resources, and can take up to several hours or days to execute.
Upon a failure, it is important to loose as little computation as possible. In
this work we present an algorithm-based fault tolerance (ABFT) strategy for
hypercube-based parallel algorithms. The strategy assumes the virtual VCube
topology, which has several logarithmic properties that are preserved even
as nodes fail. The strategy guarantees that the algorithm does not halt even
after up to (N − 1) nodes crash, in a system of N nodes. We use parallel
sorting as a case study, describing how to make a fault-tolerant version of
three parallel sorting algorithms: HyperQuickSort, QuickMerge and Bitonic
Sort. The algorithms were implemented in MPI using ULMF to handle faults.
Experimental results are presented showing the performance and robustness
of the solution for sorting up to a billion integers in scenarios with faults.

Keywords: high performance computing; HPC; algorithm-based fault
tolerance; ABFT; user level failure mitigation; ULFM; fault tolerance.

Reference to this paper should be made as follows: Camargo, E.T. and
Duarte Jr., E.P. (xxxx) ‘Algorithm-based fault-tolerant parallel sorting’,
Int. J. Critical Computer-Based Systems, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Edson T. Camargo is an Associate Professor at the
Federal University of Technology – Paraná (UTFPR), Toledo, Brazil. He
received his PhD in Computer Science from the Federal University of Parana
(UFPR) in 2017. During his PhD, he spent one year as a PhD student at
the Universitá della Svizzera Italiana (USI). He is a member of the Brazilian
Computer Society where served as the Chair of the Special Committee on
Fault Tolerant Systems (CE-TF). His research interests include computer
networks, parallel computing and distributed systems, their dependability and
algorithms.

Copyright 20XX Inderscience Enterprises Ltd.

2 E.T. Camargo and E.P. Duarte Jr.

Elias P. Duarte Junior is a Full Professor at the Federal University of Parana,
Brazil. His research interests include computer networks and distributed
systems, their dependability and algorithms. With over 300 peer-reviewer
papers, and 130 students supervised, he is an associate editor of the
Computing (Springer) journal and IEEE Transactions on Dependable and
Secure Computing, and also has served as the Chair of more than 25
conferences and workshops, including TPC Chair of GLOBECOM‘2024,
SRDS‘2018 and ICDCS‘2021. He chaired the Brazilian National Laboratory
on Computer Networks from 2012–2016, a member of the Brazilian
Computing Society and a senior member of the IEEE.

This paper is a revised and expanded version of a paper entitled
‘An algorithm-based fault tolerance strategy for the Bitonic Sort parallel
algorithm’ presented at the 10th IEEE Latin American Symposium on
Dependable Computing (LADC), Florianópolis, Brazil, 22–25 November
2021.

1 Introduction

High performance computing (HPC) systems are based on parallel algorithms which
solve hard problems across multiple fields. Those systems run on several processors
and cores, and present high performance, being capable of executing up to 1015
(peta-scale) and 1018 (exascale) floating point operations per second (FLOPS). On the
other hand, those very large-scale systems usually present a small mean time between
failures (MTBF) (Netti et al., 2020). For instance, for the Blue Waters system – which
is a peta-scale machine – the average MTBF is of only 4.2 hours (Martino et al.,
2014). Further reductions are expected for exascale systems (Reed and Dongarra, 2015;
Al-Hashimi et al., 2017). Faults are a serious problem, as those systems usually take a
long time to execute, and have very high demands in terms of computational resources
and energy. It is thus imperative to design those systems to be fault-tolerant, in the
sense that they can continue executing as expected after faults occur, and as little work
as possible is lost.

There are several techniques to make an HPC system fault-tolerant (Egwutuoha
et al., 2013; Herault and Robert, 2015). Those techniques include, among others,
rollback recovery (Elnozahy et al., 2002), replication (Bougeret et al., 2014),
computation migration (Filiposka et al., 2019), and algorithm-based fault tolerance
(ABFT). ABFT relies on properties of the parallel algorithm itself to tolerate faults
during its execution (Huang and Abraham, 1984; Chen and Jack, 2008; Hursey and
Graham, 2011; Bagherpour et al., 2017). The algorithm is designed to be robust, and
must be able to detect or receive fault notifications and adapt itself after faults occur.

This work proposes a general ABFT technique to make any parallel algorithm
designed for hypercubes fault-tolerant. Developers can employ the proposed technique to
leverage any parallel hypercube-based algorithms to survive faults efficiently. A parallel
hypercube algorithm enhanced with the proposed technique is able to reconfigure itself
autonomously in run time, guaranteeing that it does not halt after faults are detected:
fault-free nodes continue the execution and as little work as possible is lost.

Algorithm-based fault-tolerant parallel sorting 3

Hypercubes are scalable topologies by definition, and have been extensively used
in parallel computing both as interconnection networks (Parhami, 1999) and to organise
the communication and execution of parallel and distributed algorithms (Leighton, 2014;
Foster et al., 1995). The ABFT strategy proposed in this work assumes a logical
topology – no physical hypercube required. The fault-tolerance technique relies on the
virtual topology known as the VCube (Duarte et al., 2014; Duarte and Nanya, 1998).
A VCube is a hypercube when all nodes are fault-free, but is capable of reconfiguring
itself as nodes fail (and recover) keeping several logarithmic properties. In a VCube
of d dimensions nodes are organised in hierarchical clusters of increasingly larger sizes
which are the basis for the proposed ABFT strategy. While in the hypercube each node
is connected to d predefined nodes, in the VCube a node is connected to whichever is
the first fault-free node of d clusters, if there is any. We assume the fail-stop model,
in which processes can fail by crashing, and correct processes identify which processes
are faulty. In a system of N nodes, even if up N − 1 nodes become faulty the system
autonomously reconfigures itself at runtime, and is thus able to continue the execution.

The heart of the proposed ABFT strategy for hypercube-based parallel algorithms
in this work involves the VCube in two main ways. First, after a node crashes
another fault-free node will cover the faulty node and execute its tasks. Second, nodes
communicate among themselves according to the VCube topology. As mentioned before,
when all nodes are fault-free the VCube is a hypercube. However, as nodes crash the
topology reconfigures itself keeping multiple logarithmic properties.

In order to describe how to make a parallel algorithm fault-tolerant with the proposed
technique, we describe parallel sorting as a case study. Although parallel sorting
algorithms have been proposed for more than five decades, they have become even
more relevant in the context of big data, as sequential algorithms are not feasible to
sort vast amounts of data. Fault-tolerant versions of three parallel sorting algorithms are
presented and compared: HyperQuickSort, QuickMerge and Bitonic Sort.

All three algorithms were implemented with the message passing interface (MPI)
(Fagg and Dongarra, 2000) and user level failure mitigation (ULFM) (Bland et al., 2013;
Losada et al., 2020) to handle faults. MPI is one of the most relevant programming
models for distributed-memory HPC systems. As the name implies, MPI is based
on the message passing paradigm: nodes are connected to a network over which
they communicate by sending and receiving messages. Each node has access to local
memory. Fault tolerance is achieved with ULFM, which was proposed by the MPI
Forum to avoid having to completely halt and restart MPI-based systems after failures.
ULFM allows not only the implementation of resilient MPI applications, but features
programming language constructs that enable the system to detect and react to failures
without aborting its execution. In the context of the proposed algorithms, ULFM is
basically used for failure detection. Experimental results are presented showing the
performance and robustness of the proposed fault-tolerant algorithms.

The rest of this work is organised as follows. Section 2 describes related work.
Section 3 presents the proposed technique, the system model and an overview of the
VCube topology. The application of the proposed ABFT technique to parallel sorting
is presented in Section 4. The implementations of the fault-tolerant parallel sorting
algorithms and experimental results are presented in Section 5. Conclusions follow in
Section 6.

4 E.T. Camargo and E.P. Duarte Jr.

2 Related work

This section presents related work in four different fields. The first is fault-tolerant HPC
systems, next ABFT, then fault-tolerance strategies for MPI systems, and finally parallel
sorting.

The development of techniques to improve the resiliency of HPC systems is
often preceded by the investigation of system vulnerabilities. In an extensive field
work published in 2017 (Gupta et al., 2017), the authors describe 23 different types
of hardware and software faults that can affect HPC systems. They stress that as
the number of components of these systems increase, the likelihood of failures also
increases, and worse, the complexity of managing the reliability of the system also
grows; the consequences of this fact are non-trivial. For instance, performing accurate
root-cause analysis of failures is sometimes not possible, given the complexity and
sheer number of components along some fault paths. The authors also make disturbing
observations, for instance whether recently developed components are less reliable, due
not only to ever shrinking technologies and also design goals such as energy saving.
The MTBF of the systems investigated varied from 7.45 to 22.67 hours (these results
are normalised on number of processors in the system). The conclusion is that in such
systems every single day at least one failure is expected to occur, but that number will
probably be higher. In another work (Martino et al., 2014), field data is presented for
the reliability of the Blue Waters peta-scale system and the MTBF reported is of 4.2
hours.

Rollback recovery is perhaps the most widely adopted technique to improve the
reliability of HPC systems (Egwutuoha et al., 2013). This technique consists of
establishing checkpoints to which the system can roll back in case of failures, instead
of restarting from the very beginning (Elnozahy et al., 2002). It is a challenge to
apply rollback recovery to HPC systems that take a very long time to complete its
execution and have a low MTBF. For instance, Tiwari et al. (2014) reports results for
an astrophysics application that generates 160TB of data and can take 360 hours to
complete its execution. For that particular application, taking checkpoints at every hour
can have a major impact on the system performance, especially because checkpointing
incurs on high I/O overhead. Having a larger checkpointing interval can reduce the
overhead, but it also increases the amount of work lost after crashes, which corresponds
to the interval since the last checkpoint was taken and the instant of the failure.

An alternative to checkpointing is to employ replication instead of rollback recovery.
Ferreira et al. (2011) justify the use of replication given the short mean time to interrupt
(MTTI), which corresponds to the time spent taking checkpoints. The authors also
mention that replication can be extended to deal with Byzantine faults. Hussain et al.
(2020) evaluate the impact of replication on the speedup of parallel algorithms. Their
purpose is to determine the optimal number of replicas to use, given the failure rate.

ABFT relies on the properties of the parallel algorithm itself to recover from faults
during its execution (Davies et al., 2011; Du et al., 2012; Hursey and Graham, 2011;
Wang et al., 2011). A difference of this technique to the previous ones is that those are
transparent to the application, while ABFT is not, it is actually interwoven across the
application’s algorithm. ABFT can only be used if the underlying systems provides –
usually through primitives – mechanisms for fault detection and notification.

ABFT was originally proposed by Huang and Abraham (1984) to detect and correct
errors in the context of matrix operations, caused by transient or permanent hardware

Algorithm-based fault-tolerant parallel sorting 5

faults. The technique relies on the fact that for some matrix operations there is a
relationship between the input checksum and the checksum computed for the output.
Based on that relationship, the authors designed an ABFT technique to detect, locate
and correct certain types of errors of matrix operations.

Another ABFT technique applied to matrix operations was proposed by Chen and
Dongarra also in the context of fault-tolerant HPC systems (Chen and Dongarra, 2006;
Chen and Jack, 2008). That technique assumes the fail-stop model and allows the HPC
system to tolerate faults that occur at runtime. Like Huang and Abraham, Chen and
Dongarra also make use of the relationship that exists between checksums computed for
the inputs/outputs of matrix operations, the same mentioned above. Their goal is to keep
a consistent global state so that after a fault occurs, the corresponding computations can
be re-executed. However, correct processes must wait before they continue running the
application. The system was implemented with the FT-MPI library, which is an MPI
implementation that supports fault detection and notification.

Wang et al. (2011) proposed the ABFT-hot-replacement strategy to prevent correct
nodes from having to stop and wait for nodes with faulty data to recover. Spare nodes
which are redundant nodes can replace those that became faulty. That work is also
based on the checksum relationship of matrix operations, and was implemented with an
MPICH system adapted to deal with application-level faults. Schöll et al. (2016) refine
techniques based on ABFT for operations on sparse matrices, the main purpose is to
reduce fault localisation time.

Checkpoint-on-failure (CoF) (Bland et al., 2012) is a strategy that combines AFBT
and rollback recovery. CoF does not save periodic checkpoints, instead they are triggered
by node faults. Correct nodes save a checkpoint and stop the current execution. A new
instance starts and the system recovers the checkpoints of the correct nodes, and use an
ABFT technique to recover data from faulty nodes.

Kabir and Goswami (2016) proposed an ABFT scheme that can be applied
to an entire class of applications – instead of a specific application. The authors
mention that their purpose is to overcome one of the disadvantages of ABFT, called
‘non-universality’, i.e., the fact that the technique is tied to a single specific application
or algorithm. They propose an ABFT strategy that they call generic in the sense that
it can be applied to a multiple parallel applications which present similar algorithmic
and/or communication patterns.

Chen et al. (2016) propose ABFT techniques to reduce the overhead of making
heterogeneous systems based on GPU accelerators fault-tolerant. Their ABFT scheme
takes into consideration both computing and memory storage faults. Recently, ABFT
has also been applied to tolerate data errors in the context of machine learning and also
computer vision (Roffe and George, 2020).

In a recent work, Kosaian and Rashmi (2021) have proposed a fault-tolerant neural
network based on ABFT techniques. Instead of having a single strategy that is always
applied, the strategy selects the most efficient approach to each neural network layer.
The choice is done depending on whether compute or memory-bandwidth resources are
the limiting factor. Another ABFT strategy has been proposed for convolutional neural
networks (Zhao et al., 2020). The focus of that strategy is on the protection of the
inference process against soft errors, and it is based on checksums.

Yet another recent application of ABFT has been proposed for image compression
(Bao and Zhang, 2020) in the context of the in the JPEG2000 Standard. A fault-tolerant
strategy is presented to implement the forward discrete wavelet transform (FDWT) on

6 E.T. Camargo and E.P. Duarte Jr.

GPUs. Using image matrix descriptions, the propagation of errors across a multi-level
FDWT is proposed. By analysing the relationship between the data and silent data
corruption (SDC) errors, an on-line fast error detection and correction method is
proposed.

Zhu et al. (2020) observe that it is possible to implement ABFT techniques
as libraries (e.g., libraries for numerical algorithms) in a way to make it
application-independent. They propose a strategy called FT-PBLAS, a library for
fault-tolerant parallel linear algebra computations, because it provides a series of
fault-tolerant modules. The strategy supports error detection and recovery mechanisms
based on a block-checksum approach.

Finally, closest to our work is the ABFT strategy applied to a hypercube-based
parallel computer (Banerjee et al., 1990). The strategy relies on the detection and
location of faulty nodes at runtime, based on error detection mechanisms that are
tailored for three parallel applications: matrix multiplication, Gaussian elimination, and
fast Fourier transform. The main difference to our work is that they assume a physical
hypercube (they employ a 16-processor Intel iPSC hypercube computer) while in our
case the hypercube is a logical topology, which determines how nodes communicate
assuming a fully connected underlying network which corresponds to typical HPC
network topologies.

MPI is the de facto standard for developing parallel distributed memory applications
(MPI Forum, 2015; Fagg and Dongarra, 2000). The MPI standards originally assumed
a reliable infrastructure, and there were no features to be used to program fault-tolerant
applications. Recently, the MPI Forum has specified the ULFM (Bland et al., 2013;
Losada et al., 2020) which includes several constructs to handle faults. As an
example, in our implementations we have used the MPI_COMM_REVOKE followed by
the MPI_COMM_SHRINK constructs to restore the MPI application by dropping faulty
processors (Bland et al., 2013). Rocco et al. (2022) present Legio, an alternative
framework to build parallel MPI applications fault-tolerant. The authors claim that, in
comparison with ULFM, Legio is easier to use and show that the overhead is negligible.

Related work on parallel sorting algorithms includes a few works reporting the
implementation of the algorithms with MPI (Durad et al., 2014; Camargo and Duarte,
2018). There are also implementations on hybrid systems, such as Bitonic Sort on
CUDA and MPI (White et al., 2012) and others that employ both distributed and shared
memory (Alghamdi and Alaghband, 2019; Raju et al., 2019). More details are given in
Section 4.

3 The proposed strategy

In this section we present the proposed ABFT strategy, which can be used to build
a fault-tolerant version of any parallel algorithm based on the hypercube. Processes
monitor each other and, upon detecting failures, the fault-free processes share among
themselves the tasks of the failed processes. In this section, we first give the definition
of a hypercube, an overview of the VCube virtual topologogy, and then describe the
proposed ABFT strategy.

A hypercube (Kumar et al., 2002; Leighton, 2014; Parhami, 1999) can be represented
as a graph G = (V,E), where V is a set of vertices called nodes in this work. Each node
has an identifier of length d bits, where d is the number of dimensions of the hypercube.

Algorithm-based fault-tolerant parallel sorting 7

A hypercube with dimension d has N = 2d nodes. Nodes have unique identifiers in the
interval [0, N − 1]. There is an edge (i, j) ∈ E between two nodes i and j if and only
if the identifiers of i and j differ in a single bit. A d-dimensional hypercube, d > 1,
consists of two (d− 1)-dimensional hypercubes. Figure 1 shows the construction of 2-,
3-, and 4-dimensional hypercubes each from two hypercubes of 1-, 2-, and 3-dimensions,
respectively. The construction of a d-dimensional hypercube from a d− 1-dimensional
hypercubes can be done as follows. First duplicate the d− 1-dimensional hypercube.
Extend node identifiers by 1 bit, which is set to 0 in the ids the original nodes, and set
to 1 in the ids of the newly created nodes. There is an edge connecting each node of the
original (d− 1)-dimensional hypercube with the corresponding node in newly created
(d− 1)-dimensional hypercube, as their identifiers differ in exactly one bit.

Figure 1 The construction of d-dimensional hypercube from two d− 1-dimensional
hypercubes, d = 2, 3, 4 (see online version for colours)

A hypercube is a regular graph with degree logN (all logarithms are base 2 in this
work), where N is the number of nodes. Besides the degree, the hypercube presents
several other logarithmic properties, such as the diameter, which is the maximum
shortest path between any two nodes in V and is also logN .

Table 1 Ci,s for a system with eight processes

s c0,s c1,s c2,s c3,s c4,s c5,s c6,s c7,s

1 1 0 3 2 5 4 7 6
2 2 3 3 2 0 1 1 0 6 7 7 6 4 5 5 4
3 4 5 6 7 5 4 7 6 6 7 4 5 7 6 5 4 0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0

The strategy proposed in this work is based on the VCube virtual topology (Duarte et al.,
2014; Duarte and Nanya, 1998). The system is assumed to be fully connected, in the
sense that each node can communicate with any other node directly, without the need
of intermediaries. The communication between two nodes is assumed to be reliable.
A VCube with N nodes is a hypercube when all nodes are fault-free. However, the
topology is able to autonomously reconfigure itself upon node failures, keeping several
logarithmic properties. In a VCube, nodes are organised in clusters, which are defined
per node. It is possible to say that VCube nodes communicate with clusters of nodes,
usually the first fault-free node of each cluster. The c(i, s) function returns the sequence
of nodes of the s-th cluster of node i, s varies from 1 to d = logN , which is the VCube
dimension. Thus the ci,s function is used to determine the nodes with which node i
communicates. The expression below shows how this function is computed, where ⊕
stands for the exclusive or (XOR) operation:

8 E.T. Camargo and E.P. Duarte Jr.

ci,s = (i⊕ 2s−1, ci⊕2s−1,1, ..., ci⊕2s−1,s−1)

Table 1 shows an example of ci,s, applied to a 3-dimensional VCube, thus N = 8 nodes.
For example, for node i = 0, s varies from 1 to 3, and c0,1 returns (1); c0,2 returns (2,
3); c0,3 returns (4, 5, 6, 7).

In a VCube nodes monitor their neighbours in testing intervals, which are periodic
intervals of time determined with the local clock of each node. Global synchronisation
is not required. A node can be in one of two states: faulty or fault-free. The fail-stop
model is assumed, thus nodes fail by crashing, and fault-free nodes keep information
about which nodes are faulty (Schlichting and Schneider, 1983). At each testing round
a fault-free node i tests its clusters c(i, s), s = 1, ..., log N . Nodes of each c(i, s) are
tested sequentially until a fault-free node is found. If, for example, the first node is
tested fault-free, a single test is executed. The tester then obtains information about new
events – detected by the tested node since it had been tested in the previous interval. An
event corresponds to a node crashing, thus its state changes from fault-free to faulty. If
there are no fault-free nodes, the entire cluster is tested. Let a testing round be interval
of time in which all fault-free nodes have completed their assigned tests. It has been
shown Duarte et al. (2014) that using this strategy all fault-free nodes learn about any
new event in at most logN rounds, in average much faster than that. Furthermore, using
the test assignment proposed, at most N logN tests are executed per testing interval.

According to the ABFT strategy proposed in this work, if node i is faulty, then
another fault-free node will be its cover node and execute its tasks. Function cover(i)
returns node i’s cover: this is the first fault-free node in c(i, 1). If that node is faulty,
then the first fault-free node in cluster c(i, 2) is selected, if that node is faulty but the
second node of that cluster (c(i, 2)) is fault-free, then it is the cover. If in that cluster
there is no fault-free node, the cluster size is incremented again until cluster c(i, d) is
considered.

A node that is covering a faulty node executes the fault-tolerant algorithm as itself
and also assuming the ids of the nodes it is covering. If for instance node 0 is faulty,
then its cover is node , which executes node 0’s tasks. However, if node 1 is also faulty,
then 0 is covered by node 2 because 2 is the first fault-free node in c(0, 2). If node
2 is also faulty, the next to consider is node 3, and so on. In this way, a node i can
execute the tasks of up to N − 1 faulty nodes. If N − 1 nodes are faulty, the single
fault-free node in the system executes all tasks of nodes. This ABFT strategy implies
the assumption that cover nodes have access to the data that would be used by the faulty
nodes they are covering.

4 Fault-tolerant parallel sorting

This section presents the application of the fault tolerance technique presented in the
previous section to parallel sorting algorithms. Sorting is one of the most fundamental
and well studied computing problems (Cormer et al., 2009). Given a list of N elements
L = (a1, a2, ..., ai, ..., aN) sorting consists of arranging these elements into a new list
L′ = (a′1, a′2, ..., a′i, ..., a′N) so that ∀i|0 < i < N : a′i < a′i+1. We say that L′ is sorted
in increasing order. Although the elements can also be sorted in decreasing order, i.e.,
∀i|0 ≤ i < N : ai > ai+1, in this work we only use the increasing order.

Parallel sorting algorithms have been designed to take advantage of multiple
processors to speed up sorting. Although they have been applied to diverse fields such as

Algorithm-based fault-tolerant parallel sorting 9

image processing, computational geometry and graph theory (Quinn, 2003; Durad et al.,
2014), the recent advent of big data has renewed the interest in efficient parallel sorting
strategies. Doing it in parallel may be the only choice to sort truly huge amounts of data
for which sequential sorting is not viable. A large number of parallel sorting algorithms
have been proposed along the past several decades (Akl, 1985; Kumar et al., 2002).
These algorithms have been designed for all types of parallel computing architectures
and topologies, including physical and logical topologies that organise processing nodes
in a meshes, rings, stars, hypercubes, among others.

Next we show how to make HyperQuickSort, QuickMerge and Bitonic Sort
fault-tolerant with the proposed ABFT strategy. Recall that the strategy relies on the
VCube logical topology to determine covers defined in the previous section, and also
on how nodes communicate and share the sorting tasks. In this way the algorithms
adapt themselves autonomously after faults occur, and continue running even if up to
N − 1 nodes crash. The algorithms run in sorting rounds in which nodes execute some
local processing (including locally sorting part of the data) and communicate among
themselves (including sharing data to be sorted by partners).

4.1 The fault-tolerant HyperQuickSort algorithm

The HyperQuickSort algorithm (Wagar, 1987) receives as input a list of elements L
= {a0, a1, ..., ak−1} which are sorted by a set of hypercube nodes, H = {0, 1, ...,
(N − 1)}, |H| = N is a power of 2. At first the algorithm splits the |L| elements into
equal sized sublists Li which are assigned to the |H| processes. The sorting algorithm
executes in rounds: in each round, each node i is responsible for sorting the |L|

N elements
of its assigned list using sequential QuickSort. Node i then exchanges with node j a
sublist of its sorted elements based on a pivot. The algorithm is described in detail
below. HyperQuickSort takes logN rounds to complete sorting. At the end of these
sorting rounds, the largest element of the list maintained by node i is less than or equal
to the lowest element of the list of node i+ 1, 0 ≤ i ≤ |P | − 2. The pseudocode of the
fault-tolerant version of HyperQuickSort is shown as Algorithm 1.

The algorithm works as follows. At the beginning of each round, node i must
determine which other nodes it is covering in the round (line 6). Set I is used to keep
the identifiers with which node i runs the algorithm. Initially I is set with i (line 4),
and if all nodes are fault-free than there will be no more elements. However, given the
set of faulty nodes (line 5), node i must check which of those nodes it is covering.
Those nodes are added to set I (line 7). Node i then runs the round in parallel for all
nodes whose ids are in i, i.e., itself and the nodes it is covering. After obtaining the
list to be sorted (line 9), the sequential version of QuickSort is executed locally on the
list (line 10). The algorithm runs in d = logN sorting rounds, in each round a different
dimension of the hypercube is considered, starting from the highest dimension d in the
first round, down to 1-dimensional hypercubes in the last. In each round, the fault-free
node with the lowest identifier in the hypercube of the dimension being considered is
called the root (line 11). For example, consider a 3-dimensional hypercube in which all
nodes are fault-free. In the first round, the root is node 0, which has the lowest id of
the hypercube with eight nodes (d = 3). In the next round, the two roots are node 0 and
node 4, computed for the two 2-dimensional hypercubes, of four nodes each (d = 2). In
the last round the four roots are nodes 0, 2, 4, and 6, which are computed in the four
1-dimensional hypercubes of two nodes each (d = 1).

10 E.T. Camargo and E.P. Duarte Jr.

Algorithm 1 Fault-rolerant HyperQuickSort (executed by node i)
1: Begin
2: d← logN {Dimension of the hypercube}
3: while d > 0 do
4: I ← i {Set I of identifiers to run the algorithm is initialised with i}
5: F ← set of faulty nodes in the beginning of this round
6: for all j|j ∈ F ∧ cover(j) = i do
7: I ← I ∪ j {Add j to set I , covered node}
8: for each k ∈ I in parallel do
9: list← Lk {The sublist assigned to node k}
10: Quicksort(list) {QuickSort is executed locally}
11: root← fault-free node with the smallest identifier in the d-dimensional hypercube to

which node k belongs
12: if k = root then
13: pivot ← median(list)
14: broadcast(pivot, d) {the root broadcasts the pivot to all c(root, s), s = 1, ..., d}
15: create lists(higher list, lower list, list, pivot)
16: partner ← first fault-free node in c(k, d)
17: if k > partner then
18: send(lower list, partner)
19: receive(new higher list, partner)
20: list← union(higher list, new higher list)
21: else if k < partner then
22: send(higher list, partner)
23: receive(new lower list, partner)
24: list← union(lower list, new lower list)
25: F ′ ← set of faulty nodes in the end of this round
26: if F = F ′ then
27: d← d− 1
28: QuickSort(list) {QuickSort is executed locally at node k}

End

The root computes and broadcasts a pivot to the other processes in its clusters
(lines 12–14). The pivot is employed to split a list into two sublists, one of which has
all elements lower than all elements of the other list. In the pseudocode, the pivot is
the median element of the list (line 13). After receiving the pivot from the root, each
node splits its local list in two (line 15).

In each round, the node communicates with a partner, which is the first fault-free
node of the VCube clusters described in Section 3. Thus the partners of node k are
the first fault free nodes of clusters c(k, 1), ..., c(k, d). In the first round each node
communicates with its partner in the largest cluster (c(k, d)) (line 16). Then, the cluster
size decreases (line 27). Figure 2 shows the cluster sizes for a 3-dimensional hypercube.
In the first round, the partner of node k is the first fault-free node in cluster c(k, 3); in
the next round it is the first fault-free node is cluster c(k, 2), finally in the last round it
is the the first fault-free node is cluster c(k, 1).

Now consider a pair consisting of a node and its partner. The node with the lowest
id sends the list with elements greater than the pivot to the partner which obviously has
the highest id, and receives the list of elements lower than the pivot from the partner
(lines 17–24). After these lists are exchanged, each node concatenates the received list

Algorithm-based fault-tolerant parallel sorting 11

with the sublist that had been retained (line 20 and 24). Finally, each node sorts its new
list locally with QuickSort (line 10).

Figure 2 Hypercube with 3, 2 and 1 dimensions and the respective roots

Figure 2 shows an example execution of HyperQuickSort for eight fault-free nodes.
It takes three rounds to complete sorting these elements. In the first round, the whole
system which corresponds to a 3-dimensional hypercube (d = 3) is considered, and node
0 is the root, the node with the smallest id. In this round, the following pairs of nodes
are established according to function c(i, 3): (0, 4), (1, 5), (2, 6) and (3, 7). These
pairs exchange and sort their lists according to the pivot received from the root. In the
second sorting round (d = 2), nodes 0 and 4 are the roots, the nodes with the smallest
identifiers in the two 2-dimensional hypercubes. Each root broadcasts its pivot to the
nodes of its clusters. Now the following pairs of nodes are computed with function
c(i, 2) to exchange and sort their lists: (0, 2), (1, 3), (4, 6) and (5, 7). Finally, in the
third round, the whole process is repeated considering 1-dimensional hypercubes (d =
1), the following pairs of nodes are computed with function c(i, 1) to exchange and sort
their lists: (0, 1), (2, 3), (4, 5) and (6, 7). The original list is now completely sorted.

Our ABFT strategy makes HyperQuickSort autonomously fault-tolerant as described
next. Nodes have access to a list of faulty nodes that VCube provides. At the beginning
of each sorting round, each process k sets its partner as the first fault-free node in
c(k, d). This is a main difference to the regular HyperQuickSort algorithm, in which
partners are fixed and if a partner is faulty it is not replaced. As mentioned above,
in our strategy whenever a node is faulty, it will be covered by another node that
becomes responsible executing the tasks of the faulty node. As an example, consider
a 3-dimensional hypercube and the first sorting round. Node 0’s partner is the first
fault-free process in c(0, 3) = 4, 5, 6, 7. If process 4 is fault-free, then 0 and 4 are
partners and exchange their lists according to lines 17–24 in Algorithm 1 (assuming 0
also is fault-free). However, if 4 is faulty, then 0’s partner is node 5. If all these nodes
are faulty, i.e., 5, 6 and 7 are faulty, then 0 does not have a partner in the this sorting
round. It simply sorts its local list.

Now we prove that the fault-tolerant HyperQuickSort algorithm completes in logN
rounds even if up to N − 1 nodes fail during the execution.

12 E.T. Camargo and E.P. Duarte Jr.

Theorem 1: The fault-tolerant HyperQuickSort algorithm completes sorting in logN
rounds even if N − 1 nodes become faulty during those rounds.

The proof is done by induction on the hypercube dimension.

• Basis: Consider a hypercube with dimension d = 1, consisting of two nodes. In a
single round sorting completes even if one of the nodes is faulty, as the fault-free
node will cover the faulty node and sort the complete list.

• Hypothesis: Now assume that for a hypercube of dimension d = r sorting is
completed in r rounds, even if up to 2r − 1 nodes become faulty.

• Induction step: A hypercube of dimension d = r + 1 consists of two hypercubes
of dimension r. According to the induction step, in each of those two hypercubes
sorting completes in v rounds. Now in the first sorting round of HyperQuickSort,
a fault-free node in one of those r-dimensional hypercubes will find a fault-free
partner in the other r-dimensional hypercube, if there is one. They will act as
covers for the faulty nodes within their r-dimensional hypercubes and
communicate with the partner of the other v-dimensional hypercube in that round.
If all nodes are faulty in one of those r-dimensional hypercubes, the cover(s) will
be on the other r-dimensional hypercube and run all tasks of that round.

If a node is fault-free as it starts a round and then becomes faulty during that the round,
then its tasks may not have been completed and the algorithm cannot leave the round,
which is re-started. Nodes will only proceed to the next round after all fault-free nodes
have executed their assigned tasks – including the tasks of the faulty nodes they are
covering.

Regarding performance, if there are no faulty nodes, then the sorting tasks are shared
evenly among the N nodes. However, depending on the fault-situation, i.e., which nodes
are faulty in the system, different nodes may have different shares of the sorting tasks.

4.2 Fault-tolerant QuickMerge

QuickMerge is parallel sorting algorithm proposed by Quinn (1989). As HyperQuickSort
does, QuickMerge distributes equally an input list L of elements to be sorted among a
set of nodes of hypercube H , |H| = N is a power of 2. Also, each node i locally sorts a
sublist Li in a sorting round d and then splits the sublist using a pivot, and exchange part
of the sublist with a partner. The difference between QuickMerge and HyperQuickSort
is on lines 13–17 of Algorithm 2. Node i, the first fault-free node with lowest identifier,
generates a list of elements which are called splitters, and broadcasts (line 17) the list
to all nodes. Note that this list (called splitter[] in the algorithm) is generated once,
before sorting actually begins. The list contains 2d − 1 elements, in which are all the
pivots employed in all rounds. For example, considering a 3-dimensional hypercube
and a sublist with |L|/8 = 1,024 elements, splitter[] will contain the seven elements in
positions 128, 256, 384, 512, 640, 768 and 896 of the sublist. It is important to note
that the elements of the splitter[] array are in ascending order.

Algorithm-based fault-tolerant parallel sorting 13

Algorithm 2 Fault-tolerant QuickMerge (executed by node i)
1: Begin
2: d← logN {Dimension of the hypercube}
3: r ← logN {Round index}
4: q ← 0 {increase each round helping to select the splitter}
5: while r > 0 do
6: I ← i {Set I of identifiers to run the algorithm is initialised with i}
7: F ← set of faulty nodes in the beginning of this round
8: for all j|j ∈ F ∧ cover(j) = i do
9: I ← I ∪ j {Add j to set I , covered node}
10: for each k ∈ I in parallel do
11: list← Lk {The sublist assigned to node k}
12: Quicksort(list) {QuickSort is executed locally at node i}
13: if r = d (this is the first round) then
14: if k = fault-free node with the smallest identifier in the d-dimensional hypercube

(root) then
15: for v ← 1 to N − 1 (Create the list of pivots) do
16: splitter[v]← list[(v ∗ size(list))/N]
17: broadcast(splitter[]) {the root broadcasts the list of pivots to all nodes}
18: partner ← first fault-free node in c(i, r)
19: l← k ⊙ (2d − 2d−q)⊕ 2d−q−1 {operations bit a bit: and, or respectively}
20: create lists(higher list, lower list, list, splitter[l])
21: if i > partner then
22: send(lower list, partner)
23: receive(new higher list, partner)
24: list← union(higher list, new higher list)
25: else if i < partner then
26: send(higher list, partner)
27: receive(new lower list, partner)
28: list← union(lower list, new lower list)
29: F ′ ← set of faulty nodes in the end of this round
30: if F = F ′ then
31: r ← r − 1
32: q = q + 1
33: QuickSort(list) {QuickSort is executed locally at node k}

End

Although 2d − 1 pivots are chosen and disseminated (lines 13 to 17), only d of them
are employed by each process. In each round, pairs of processes are formed to exchange
sublists (line 18). Then, according to its identifier, each node chooses one of the
elements of splitter[] as pivot (line 19) to split its list in two: a list of elements larger
than the pivot and the other with elements smaller than the pivot (line 20). In lines 21
to 28 a pair of nodes i and j exchange sublists: if i > j node i sends the sublist with
elements smaller than the pivot to node j and receives from j the list with elements
larger than the pivot. Node i concatenates the local sublist with elements larger than the
pivot with the sublist received from j (lines 24 and 28) and reorders the resulting list
(line 12). Thus, at the beginning of each round, node i has an ordered list of elements
larger than the pivot. In turn, j has an ordered list of elements smaller than or equal to
the pivot.

We actually detected a bug in the specification of the algorithm in the original paper
by Quinn (1989), the bug is in the selection of the pivots, as described below.

14 E.T. Camargo and E.P. Duarte Jr.

In order to guarantee that sorting is done correctly, all nodes that form a pair that
exchange sublists must adopt the same pivot, so that at the end of a round those nodes
have all the elements that are greater than/smaller than or equal to that pivot. For
example, in Figure 2, in the first round the clusters are formed in a 3-dimensional
hypercube (the whole system) which has eight nodes. At the end of this round,
considering that all nodes are fault-free, nodes 0, 1, 2 and 3 have all elements that are
smaller than or equal to the pivot, while the nodes with which they form pairs in this
round, respectively nodes 4, 5, 6 and have the elements that are greater than the pivot.
The bug of the original specification is that it allows different pivots to be chosen by
different nodes of a pair. Back to the example, in the second round the clusters are
formed in two 2-dimensional hypercubes, the same pivot is employed by all fault-free
nodes of each 2-dimensional hypercube, but each of those 2-dimensional hypercubes
can use a pivot that is different from the other. Finally, in the third round a single
pivot is employed by all pairs of nodes of the clusters formed in the four 1-dimensional
hypercubes.

In the present work we fix the bug of the original QuickMerge specification. Our
version is shown as Algorithm 2. The main difference to the original specification is in
line 19. Considering the same example as before, the following pivots are now selected:
all nodes in the first round select splitter[4]. In the second round, the processes of
the first 2-dimensional hypercube select splitter[2] as the pivot, while the nodes of the
second 2-dimensional hypercube select splitter[6]. Then, in the last round the nodes of
the four 1-dimensional hypercubes select the following pivots: splitter[1], splitter[3],
splitter[5] and splitter[7].

As except for the selection of pivots QuickMerge employs exactly the same sorting
procedure as HyperQuickSort, Theorem 1 also proofs the correctness of the fault-tolerant
version of QuickMerge.

In terms of performance, as stated in Quinn (1989), HyperQuickSort and
QuickMerge have different strategies for dividing the elements among the nodes.
HyperQuickSort requires more messages, as in each round the corresponding root
computes and broadcasts the pivot. Quinn also notes that due to the pivot selection
strategy, HyperQuickSort generates a more balanced distribution of elements between
the nodes. Thus QuickMerge sends longer messages and always takes more time to
sort the same elements in comparison with HyperQuickSort. In order to improve of
performance of the algorithm, Quinn (1989) suggests a modified QuickMerge version,
in which the splitter[] list of pivots is not anymore computed/broadcast by a single
node in the beginning: this is done by all nodes. After a node has received the splitter[]
lists from all other fault-free nodes, it computes a list of averages, of which an entry
is the average of the corresponding entries of all splitter[i] lists received. In order to
modify the version presented as Algorithm 2 all that is required is to remove line 14,
and add code to receive and compute the splitter[] list of averages. Note that this
version of the algorithm is more expensive than the original version, as it involves all
nodes broadcasting messages to all other nodes. In Section 5 we report results from
implementations of both these versions, and none is more efficient that HyperQuickSort.

4.3 Bitonic Sort algorithm

The Bitonic Sort algorithm (Batcher, 1968; Lee and Batcher, 1994) is another of
the classic parallel sorting algorithms. This algorithm is based on the comparison

Algorithm-based fault-tolerant parallel sorting 15

of elements of predefined sequences which are called ‘bitonic sequences’. These
comparisons are carried out in a way that does not depend on the input data. A bitonic
sequence is a sequence of elements seq = (a0, a1, ..., am−1) with the following
properties:

1 there is an index i, 0 ≤ i ≤ m− 1, such that (a0, ..., ai) is monotonically
increasing and (ai+1, ..., am−1) is monotonically decreasing

2 there is a cyclic rotation that satisfies 1.

For example, (2, 3, 6, 8, 7, 5, 4, 1) is a bitonic sequence for i = 3, consisting of a
monotonically increasing sequence (2, 3, 6, 8) followed by the monotonically decreasing
sequence (7, 5, 4, 1). As an example of cyclic rotation of seq consider for instance (6,
8, 7, 5, 4, 1, 2, 3), in this case, the element in the frontier of the increasing/decreasing
(8) subsequences is in position i = 1. Any subsequence of a bitonic sequence is also
bitonic.

Next, we describe how a bitonic sequence seq is sorted so that the resulting
sequence is monotonically increasing. Initially, seq is divided in half, generating the
sequences seq1 and seq2 both of size m/2. Thereafter, the first element of the
seq1 sequence is compared with the first element of sequence seq2. The smallest
element is assigned to sequence seq1 and the largest element to sequence seq2,
that is: seq1 = (min{a0, am/2},min{a1, am/2+1}, ...,min{am/2−1, am−1}) and seq2 =
(max{a0, am/2},max{a1, am/2+1}, ...,max{am/2−1, am−1}). Considering the example
sequence seq = (2, 3, 6, 8, 7, 5, 4, 1) presented above the result after the first step is
the following: seq1 = (2, 3, 4, 1) and seq2 = (7, 5, 6, 8). Both seq1 and seq2 are also
bitonic sequences. Note that all elements of seq1 are less than those contained in seq2.
The next step is to apply the same method to each of the new sequences, and repeat it
recursively until the sequences of 2 elements are ordered. In the end, all subsequences
are joined to form the ordered original sequence.

The procedure of dividing a sequence of size m into two bitonic subsequences is
called a bitonic split. The generation of an ordered sequence from bitonic subsequences
is called a bitonic merge. Any bitonic sequence can be ordered by applying a bitonic
split, followed by element comparisons, and bitonic merge of the ordered sequences
in the end. Bitonic Sort can be adapted to different parallel topologies, including the
hypercube as described next.

The N nodes that run the algorithm are organised as a d-dimensional VCube, where
d = logN . As in the previous algorithms, each node has a unique identifier i, 0 ≤ i ≤
N . Sorting is performed in s rounds, where 1 ≤ s ≤ d. In each round, node i forms a
pair with the first fault-free node of cluster c(i, s). Nodes i and j exchange elements
with each other and make comparisons based on the elements exchanged in a given
round. If i < j, node i keeps the smallest elements, node j keeps the largest elements.
At the end of a round, the largest element of node i is less than or equal to the smallest
element of node j.

Mapping a bitonic sequence to a hypercube can be done as follows. If the size of
the sequence (m) is equal to the number of nodes (m = N), then each single element
is mapped to a single hypercube node, i.e., element ai is mapped to node i. If the size
of the sequence is greater than the number of nodes (m > N), then m/N elements are
mapped to each node. Note that if a node is faulty, then its sequence it assigned to
its covering node. For the sake of simplicity, we first present the fault-tolerant parallel

16 E.T. Camargo and E.P. Duarte Jr.

Bitonic Sort algorithm considering the simple case in which m = N and each element
is mapped to a single node. This simpler version is presented as Algorithm 3.

Algorithm 3 Fault-tolerant Bitonic Sort with m = n (executed by node i)
1: Begin
2: d← logN {VCube dimension}
3: while d > 0 do
4: I ← i {Set I of identifiers to run the algorithm is initialised with i}
5: F ← set of faulty nodes in the beginning of this round
6: for all j|j ∈ F ∧ cover(j) = i do
7: I ← I ∪ j {Add j to set I , covered node}
8: for each k ∈ I in parallel do
9: list← ak {The element assigned to node k}
10: partner ← first fault-free node in c(k, d)
11: if k < partner then
12: compare exchange min(k, partner)
13: else
14: compare exchange max(k, partner)
15: F ′ ← set of faulty nodes in the end of this round
16: if F = F ′ then
17: d← d− 1

End

Figure 3 Bitonic Sort on a 3-dimensional VCube: first, second and third sorting rounds

Note: Node ids are shown in the circles, the element a node keeps is shown on its side.

The compare exchange procedure (lines 12 and 14) causes two nodes to exchange and
compare elements. For example, consider the sequence seq = (2, 3, 6, 8, 7, 5, 4,
1) assigned to a VCube with eight fault-free nodes. Figure 3 shows how sorting is
executed. Element ai is mapped to node i. In the first round, a single 3-dimensional
hypercube is considered and the following pairs of nodes are formed (line 10): (0, 4),
(1, 5), (2, 6) and (3, 7). The node with smallest identifier keeps the smallest element
and the node with the largest identifier keeps the largest element (lines 12 and 14,
respectively). For example, nodes 0 and 4 keep elements 2 and 7, respectively. After
the exchange and comparison procedure, both nodes keep the same elements. Nodes
of other pairs, such as (2, 6) and (3, 7) do not keep their original elements after the
execution of compare exchange. In the next round two 2-dimensional hypercubes are
considered, and new pair of nodes are formed according to line 4. Nodes exchange
and compare their elements again. Note that from the start all elements of the

Algorithm-based fault-tolerant parallel sorting 17

2-dimensional hypercube of which nodes have lower ids are all smaller than those of
the other 2-dimensional hypercube. In the last round, pairs of nodes are formed in four
1-dimensional hypercubes, each of two nodes. As in the previous rounds, in case i < j,
then node i will keep an element that is less than or equal to the element maintained
by node j.

Now consider the general case in which m > N . In this case, each node receives
m/N elements. In case there are faulty nodes, then the corresponding covers receive
their elements. This version of the algorithm employs a compare exchange procedure
that is more general: instead of exchanging and comparing a single element, it exchanges
and compares entire sequences of elements between the nodes of a pair (i, j). Then,
each node makes comparisons according to the sequence indexes. Thus node i executes
seqi[k]← min(seqi[k], seqj [k]) and node j executes seqj [k]← max(seqi[k], seqj [k]).
As a result, if i < j then all elements of seqi are smaller than or equal to the elements
of seqj .

Algorithm 4 Fault-tolerant Bitonic Sort for any sequence (executed by node i)
1: Begin
2: d← logN {VCube dimension}
3: for s← 0 to d− 1 do
4: t← s
5: while t ≥ 0 do
6: I ← i {Set I of identifiers to run the algorithm is initialised with i}
7: F ← set of faulty nodes in the beginning of this round
8: for all j|j ∈ F ∧ cover(j) = i do
9: I ← I ∪ j {Add j to set I , covered node}
10: for each k ∈ I in parallel do
11: list← ak {The element assigned to node k}
12: partner ← first fault-free node in c(k, t+ 1)
13: if (s+ 1)th bit of k ̸= tth bit of k then
14: compare exchange min(k, partner)
15: else
16: compare exchange max(k, partner)
17: F ′ ← set of faulty nodes in the end of this round
18: if F = F ′ then
19: t← t− 1

End

The version of Bitonic Sort presented as Algorithm 4 can receive as input any sequence,
it is not restricted to bitonic ones. The first step is to transform the input sequence
into a bitonic sequence. This is accomplished by repeatedly creating bitonic sequences
of increasing size. To start with, note that any sequence of two elements is a bitonic
sequence. Now in order to merge two bitonic sequences into a double sized bitonic
sequence, a simple and cheap condition must be met: the first sequence must be
increasing and the second sequence must be decreasing. Figure 4 illustrates the ordering
process for the input sequence seq = (7, 3, 6, 8, 1, 2, 5, 4) in a 3-dimensional hypercube.
In Figure 4 symbols ⊕ and ⊖ represent the comparisons between the elements of the
sequence. ⊕ defines that the comparisons should generate an increasing sequence and
⊖ a decreasing sequence.

Each node sends its local sequence to its partner. The pairs of nodes defined in
line 12 in the first round for the example in the figure are: (0, 1), (2, 3), (4, 5), (6,

18 E.T. Camargo and E.P. Duarte Jr.

7). Line 13 is a clever implementation proposed in Kumar et al. (2002) to determine
whether the node keeps the smallest elements or the largest elements. If the (s+ i)th

bit and the tth bit are equal/different, then the node keeps the smallest/largest element,
respectively. Otherwise, the node keeps the largest element. Thus considering the first
pair of nodes, node 0 keeps element 3 and node 1 keeps element 7 since these nodes
must generate an increasing sequence (see Figure 4). The elements contained in node
4 and 5 are maintained since they already formed an increasing sequence. In turn, the
pairs nodes (2, 3), (6, 7) generate decreasing sequences. So node 2 keeps element 8 and
node 3 keeps element 6. Nodes 6 and 7 keep their original elements.

Figure 4 An example execution of Bitonic Sort for an input sequence that is not bitonic on a
3-dimensional hypercube

In the second round, when s← 1, the exchange and comparison process is repeated
considering two 2-dimensional hypercubes and then four 1-dimensional hypercubes.
Finally, the last round of Algorithm 4 is equivalent to Algorithm 3 (see Figures 3 and
4). Note that in the last round, the ordering process starts with the bitonic sequence seq
= (3, 6, 7, 8, 5, 4, 2, 1). At the end, the algorithm generates the sequence seq = (1, 2,
3, 4, 5, 6, 7, 8).

Now we prove that the fault-tolerant Bitonic Sort algorithm completes in logN
rounds even if up to N − 1 nodes fail during the execution.

Algorithm-based fault-tolerant parallel sorting 19

Theorem 2: The fault-tolerant Bitonic Sort algorithm completes sorting in logN rounds
even if N − 1 nodes become faulty during those rounds.

The proof is done by induction on the VCube dimension.

• Basis: Consider a hypercube with dimension d = 1, consisting of two nodes. In a
single round sorting completes even if one of the nodes is faulty, as the fault-free
node will cover the faulty node and sort the complete list.

• Hypothesis: Now assume that for a VCube of dimension d = r sorting is
completed in r rounds, even if up to 2r − 1 nodes become faulty.

• Induction step: A VCube with dimension d = r + 1 consists of two VCubes of
dimension r. According to the induction step, in each of those two VCubes
sorting completes in v rounds. Now in the first sorting round of Bitonic Sort, a
fault-free node in one of those r-dimensional VCubes will find a fault-free partner
in the other r-dimensional VCube, if there is one. They will act as covers for the
faulty nodes within their r-dimensional VCubes and communicate with the
partner of the other v-dimensional VCube in that round. If all nodes are faulty in
one of those r-dimensional VCubes, the cover(s) will be on the other
r-dimensional VCube and run all tasks of that round.

If a node is fault-free as it starts a round and then becomes faulty during that the round,
then its tasks may not have been completed and the algorithm cannot leave the round,
which is re-started. Nodes will only proceed to the next round after all fault-free nodes
have executed their assigned tasks – including the tasks of the faulty nodes they are
covering.

Regarding performance, if there are no faulty nodes, then the sorting tasks are shared
evenly among the N nodes. However, depending on the fault-situation, i.e., which nodes
are faulty in the system, different nodes may have different shares of the sorting tasks.

5 Evaluation

In this section we describe the implementation using MPI/ULFM of the proposed
fault-tolerant version of the three parallel sorting algorithms and the results obtained.

5.1 Implementation

The algorithms were implemented using ULFM constructors to handle faults. It is
worth mentioning that by default ULFM fault detection is local, in the sense that a
fault is detected as a node tries to communicate with another node that has become
faulty. From this point on in this section we use the term ‘node’ corresponding to an
MPI process. Thus, it is only possible to determine that a node has become faulty by
trying to communicate with that node. After a node detects some fault, ULFM also
provides means for that node to communicate the information to the remaining nodes,
as described below.

Function FaultDetection() is executed in the beginning of each round so that
all faulty nodes can be detected. Initially, this function invokes primitive MPI_Barrier

20 E.T. Camargo and E.P. Duarte Jr.

to synchronise all correct nodes, which communicate to check if there are new faults.
If there is at least one faulty node MPI_Barrier returns an error which can be either
MPI_ERR_PROC_FAILED or MPI_ERR_REVOKED. Next, all fault-free nodes execute a
function to agree on the set of faulty nodes: MPI_Comm_agree(). In case some node is
faulty, this function notifies all nodes that the MPI communicator is invalid. Next, the
communicator is revoked by running primitive MPI_Comm_revoke().

Next, primitives MPI_Comm_failure_ack() and MPI_Comm_failure_get_
acked() are invoked to identify which nodes within the communicator are faulty.
After that, function MPI_Comm_shrink() creates a new MPI communicator, removing
all faulty nodes. Another step is then executed, which allows the nodes in the new
communicator to keep the same identifier (rank) they had before the failure.

Each node keeps locally an array with the state of all nodes (faulty or fault-free),
which is update by function FaultDetection(). This array is employed by the
fault-tolerant parallel sorting algorithms presented in Section 4 to determine which nodes
are fault-free.

The algorithm was implemented in the C language using Open MPI and
the ULFM 2.0 Library (MPI Forum, 2020). The source code is available at:
https://bitbucket.org/etcamargo/parallelsorting/. The experiments were executed on a
machine with 32 Intel Core i7 processors running the Linux operating system (Kernel
4.4.0).

The algorithms were evaluated in four different scenarios. In the first scenario all
nodes are correct and remain so. In the second scenario a single node fails. In the third
scenario half the nodes fail. In the last scenario n− 1 nodes fail. In order to evaluate
scenarios with faults, function FaultInject() was employed. This function makes a
random selection of nodes that will become faulty in each round. The function receives
as input the number of nodes to fail, and determines the round as well as which nodes
will fail randomly. Thus in principle any node can fail at any round. A node is caused
to crash through the execution of the SIGKILL signal.

Results obtained for the fault-tolerant versions of the parallel sorting algorithms are
described next. It is important to mention that the purpose here is not to increase the
speedup of the algorithms in comparison with existing versions, but to confirm that they
are robust and keep on executing even after a massive (up to N − 1 out of N) number
of nodes fail at runtime.

5.2 Results

Each experiment consisted of sorting 1 billion of randomly generated integers. The total
number of nodes N varied from 4, 8, 16 up to 32 nodes. Each experiment was repeated
10 times, results presented are averages.

As mentioned above, four scenarios were evaluated. After showing results for a
baseline scenario with

1 no faults.

Three different scenarios varied in terms of the number of nodes that became faulty

2 a single node

3 half the node

Algorithm-based fault-tolerant parallel sorting 21

4 N − 1 nodes.

Figure 5 shows the performance of our fault-tolerant version of HyperQuickSort in the
four fault scenarios executed by 4, 8, 16 and 32 nodes to sort 1 billion integers randomly
generated. In the first scenario with no faults, the algorithm took approximately 150
seconds to complete when N = 4 nodes. As the number of nodes increases, the time to
sort decreases progressively to approximately 72 seconds when 32 nodes are used.

Figure 5 Fault-tolerant HyperQuickSort executed by N = 4, 8, 16, 32 nodes to sort 230
integers (see online version for colours)

Figure 6 Fault-tolerant QuickMerge executed by N = 4, 8, 16, 32 nodes to sort 230 integers
(see online version for colours)

22 E.T. Camargo and E.P. Duarte Jr.

Figure 7 Fault-tolerant modified QuickMerge executed by N = 4, 8, 16, 32 nodes to sort 230
integers (see online version for colours)

Figure 8 Comparison of HyperQuickSort, QuickMerge and modified QuickMerge in the
fault-free scenario (see online version for colours)

In the scenarios with faults, the execution time of the algorithm also decreases
progressively as the total number of nodes used increases. However, the occurrence of
faults increases the overall time to run the algorithm, since the correct nodes take over
the computation of the faulty nodes. In the scenario with 1 fault, the execution time
for N = 4 nodes is approximately 178 seconds, which decreases to approximately 92
seconds as N increases to 32 nodes (1 of which fails). In the third scenario in which
half the nodes become faulty during the execution, the execution time is approximately
201 and 116 seconds for 4 and 32 nodes, respectively. In the last scenario, as N − 1
nodes are faulty, a single correct node executes until the end of the experiment and the

Algorithm-based fault-tolerant parallel sorting 23

time to sort measured in all cases is very similar, as expected. It is important to highlight
that although the execution time increases as the number of faulty nodes increases, the
algorithm continues its execution despite the occurrence of failures, as expected.

Next we report an experiment executed to evaluate the fault-tolerant version
of QuickMerge, both the original and modified versions were implemented. In this
experiment we also evaluated how well balanced the solution is. We compared the
fault-tolerant versions of QuickMerge with HyperQuickSort. The algorithms were
executed on 10 different samples of 230 (1 billion) randomly generated integers all in
the interval from –231 to 231 – 1. For each sample each algorithm was executed three
times, and averages are presented. The same four different scenarios of the previous
experiment were used here, i.e., the number of faulty nodes in each is 0, 1, N/2 and
N − 1.

Figure 9 Results measured for the fault-tolerant version of Bitonic Sort (see online version
for colours)

Figures 6 and 7 show the execution time of the fault-tolerant versions of QuickMerge
and modified QuickMerge algorithms, respectively. Note that the execution time for
4, 8, 16 and 32 nodes presents a similar pattern to that of HyperQuickSort, i.e.,
as the number of nodes increases, the execution time decreases. Furthermore, faults
increase the execution time. Nevertheless, QuickMerge presents worse results when it
is compared to HyperQuickSort (Figure 5). HyperQuickSort presents the lowest (best)
execution times in all cases. For example, in the fault-free scenario with 4 nodes, the
execution time is approximately 253, 167 and 156 seconds for QuickMerge, modified
QuickMerge and HyperQuickSort, respectively. Actually, the difference between the
execution times measured for modified QuickMerge and HyperQuickSort is small for 4,
16 and 32 processes, as shown in Figure 8.

The main difference between HyperQuickSort, QuickMerge and modified
QuickMerge algorithms is in the selection and distribution of the pivots. Recall that
the pivots directly affect the sizes of the sequences of elements exchanged between the
nodes with an impact both on the time to sort local sequences and also on the number of

24 E.T. Camargo and E.P. Duarte Jr.

messages produced and the time required to exchange those messages. In other words,
the pivot selection strategy has an impact on how well balanced the tasks assigned to
the different nodes are, in terms of the sizes of the sequences they get to sort.

The largest difference to the ideal sequence size produced was less than 0.2%. The
modified QuickMerge algorithm presents results that are orders of magnitude better than
the other two algorithms. Unfortunately this fact does not make modified QuickMerge
the best algorithm, as it is expensive to reach this balancing. The fault-tolerant
version of the original QuickMerge algorithm presented the worst results, followed by
HyperQuickSort.

Figure 9 shows the results obtained for Bitonic Sort. It can be seen that the execution
time of Bitonic Sort increases as the number of processes grows in all scenarios, both
in the fault-free and with faulty nodes. To illustrate this fact, consider the four scenarios
with N = 8 nodes and with 0, 1, N/2 and N − 1 faulty nodes; Bitonic Sort takes 437 s,
465 s, 550 s and 821 s, respectively, to sort 230 integers. Furthermore, it is also possible
to observe that as the number of nodes increases, the execution times do not dimish.
This situation is probably due to the fact that Bitonic Sort relies heavily on having
nodes exchange sequences of elements. Thus, as the number of processes grow, more
sorting rounds are required with a corresponding increase of the number of messages
exchanged. As mentioned in Lan and Mohamed (1992), the predictability of Bitonic
Sort can be one of its disadvantages: the join and swap operations take more and more
time as the hypercube size increases.

6 Conclusions

In this work we introduced a novel ABFT technique applied to hypercube-based parallel
sorting algorithms. The technique relies on features of the underlying topology, which
is assumed to be a VCube – if all nodes are fault-free they communicate according
to a logical hypercube, if there are faults, the topology reconfigures autonomically at
runtime, preserving several logarithmic properties. The technique is based on defining
covers which are nodes that execute the tasks of those that are faulty, as well as defining
the communication pattern under faults according to the VCube.

The fault-tolerant versions of the HyperQuickSort, QuickMerge and Bitonic Sort
parallel algorithms were specified and implemented in MPI/ULFM and executed on
4, 8, 16 and 32 nodes. Results were obtained for the algorithm under four different
scenarios: fault-free, 1 single fault, half the nodes are faulty, and all but a single node
is fault-free. The algorithms executed correctly on all experiments, i.e., being able to
detect and survive the occurrence of faults not loosing any of the work that was done
before faults occurred.

Future work includes the application of the proposed ABFT strategy to other
parallel hypercube-based algorithms. We also do believe several other types of
algorithms besides those for parallel sorting can benefit from the ability to
detect/reconfigure/continue their executions despite the occurrence of faults at runtime.
Building an application programming interface (API) can make the task of programming
a fault-tolerant version of an arbitrary algorithm easier. Another related future work is
to develop similar ABFT techniques for parallel algorithms based on other topologies –
exploring features of the topology to allow fast and reliable algorithm reconfiguration
is certainly a promising field of work. The development of similar techniques for

Algorithm-based fault-tolerant parallel sorting 25

the shared memory paradigm is also relevant future work, as there are several
mission-critical systems and applications that take a long time to execute based on that
important and popular paradigm.

Acknowledgements

This work was partially supported by the Brazilian Research Council (CNPq) Grant
308959/2020-5, and the São Paulo Research Foundation (FAPESP), CINEMA Project,
Process 21/06923-0.

References

Akl, S.G. (1985) Parallel Sorting Algorithms, 1st ed., Academic Press, USA.
Alghamdi, T. and Alaghband, G. (2019) ‘High performance parallel sort for shared and distributed

memory MIMD’, in International Conference on Applied Computing 2019, November,
pp.113–122.

Al-Hashimi, M.A., Abulnaja, O.A., Saleh, M.E. and Ikram, M.J. (2017) ‘Evaluating power and
energy efficiency of bitonic mergesort on graphics processing unit’, IEEE Access, Vol. 5,
pp.16429–16440.

Bagherpour, N., Hammarling, S., Higham, N., Dongarra, J. and Zounon, M. (2017) D6.6
– Algorithm-based Fault Tolerance Techniques, Technical Report, NLAFET Consortium –
H2020–FETHPC–2014: GA 671633.

Banerjee, P., Rahmeh, J.T., Stunkel, C., Nair, V.S., Roy, K., Balasubramanian, V. and Abraham, J.A.
(1990) ‘Algorithm-based fault tolerance on a hypercube multiprocessor’, IEEE Transactions on
Computers, Vol. 39, No. 9, pp.1132–1145.

Bao, C. and Zhang, S. (2020) ‘Algorithm-based fault tolerance for discrete wavelet transform
implemented on GPUs’, Journal of Systems Architecture, Vol. 108, p.101823.

Batcher, K.E. (1968) ‘Sorting networks and their applications’, in Proceedings of the April 30–May
2, 1968, Spring Joint Computer Conference, AFIPS ‘68, Spring, ACM, New York, NY, USA,
pp.307–314.

Bland, W., Du, P., Bouteiller, A., Herault, T., Bosilca, G. and Dongarra, J. (2012) ‘A
checkpoint-on-failure protocol for algorithm-based recovery in standard MPI’, in The 18th
International Conference on Parallel Processing, Euro-Par ‘12, Springer-Verlag, Berlin,
Heidelberg, pp.477–488.

Bland, W., Bouteiller, A., Hérault, T., Bosilca, G. and Dongarra, J. (2013) ‘Post-failure recovery of
MPI communication capability: design and rationale’, IJHPCA, Vol. 27, No. 3, pp.244–254.

Bougeret, M., Casanova, H., Robert, Y., Vivien, F. and Zaidouni, D. (2014) ‘Using group replication
for resilience on exascale systems’, The International Journal of High Performance Computing
Applications, Vol. 28, No. 2, pp.210–224.

Camargo, E. and Duarte Jr., E. (2018) ‘Running resilient MPI applications on a dynamic group of
recommended processes’, Journal of the Brazilian Computer Society, December, Vol. 24.

Chen, Z. and Dongarra, J. (2006) ‘Algorithm-based checkpoint-free fault tolerance for parallel matrix
computations on volatile resources’, in IPDPS, 10pp.

Chen, Z. and Jack, D. (2008) ‘Algorithm-based fault tolerance for fail-stop failures’, IEEE Trans.
Parallel Distrib. Syst., pp.1628–1641.

26 E.T. Camargo and E.P. Duarte Jr.

Chen, J., Li, S. and Chen, Z. (2016) ‘GPU-ABFT: optimizing algorithm-based fault tolerance for
heterogeneous systems with GPUs’, in 2016 IEEE International Conference on Networking,
Architecture and Storage (NAS), pp.1–2.

Cormer, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (2009) Introductions to Algorithms’, The
MIT Press.

Davies, T., Karlsson, C., Liu, H., Ding, C. and Chen, Z. (2011) ‘High performance linpack benchmark:
a fault tolerant implementation without checkpointing’, in ICS, pp.162–171.

Du, P., Bouteiller, A., Bosilca, G., Herault, T. and Dongarra, J. (2012) ‘Algorithm-based fault tolerance
for dense matrix factorizations’, in PPoPP, pp.225–234.

Duarte Jr., E.P. and Nanya, T. (1998) ‘A hierarchical adaptive distributed system-level diagnosis
algorithm’, IEEE Transactions on Computers, January, Vol. 47, No. 1, pp.34–45.

Duarte, E.P., Bona, L.C.E. and Ruoso, V.K. (2014) ‘Vcube: a provably scalable distributed diagnosis
algorithm’, in 2014 5th Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems, November, pp.17–22.

Durad, M.H., Akhtar, M.N. and Irfan-ul-Haq (2014) ‘Performance analysis of parallel sorting
algorithms using MPI’, in 2014 12th International Conference on Frontiers of Information
Technology, pp.202–207.

Egwutuoha, I.P., Levy, D., Selic, B. and Chen, S. (2013) ‘A survey of fault tolerance mechanisms
and checkpoint/restart implementations for high performance computing systems’, The Journal
of Supercomputing, Vol. 65, No. 3, pp.1302–1326.

Elnozahy, E.N.M., Alvisi, L., Wang, Y-M. and Johnson, D.B. (2002) ‘A survey of rollback-recovery
protocols in message-passing systems’, ACM Comput. Surv., September, Vol. 34, No. 3,
pp.375–408.

Fagg, G.E. and Dongarra, J. (2000) ‘FT-MPI: fault tolerant mpi, supporting dynamic applications in
a dynamic world’, in Proceedings of the 7th European PVM/MPI Users’ Group Meeting on
Recent Advances in Parallel Virtual Machine and Message Passing Interface, Springer-Verlag,
London, UK, pp.346–353.

Ferreira, K.B., Stearley, J., Laros III, J.H., Oldfield, R., Pedretti, K.T., Brightwell, R., Riesen, R.,
Bridges, P.G. and Arnold, D. (2011) ‘Evaluating the viability of process replication reliability
for exascale systems’, in SC, p.44.

Filiposka, S., Mishev, A. and Gilly, K. (2019) ‘Multidimensional hierarchical VM migration
management for HPC cloud environments’, J. Supercomput., Vol. 75, No. 8, pp.5324–5346.

Foster, I., Foster, I.T. and Foster, J. (1995) Designing and Building Parallel Programs: Concepts and
Tools for Parallel Software Engineering, Literature and Philosophy, Addison-Wesley.

Gupta, S., Patel, T., Engelmann, C. and Tiwari, D. (2017) ‘Failures in large scale systems: long-term
measurement, analysis, and implications’, in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC ‘17, Association for
Computing Machinery, New York, NY, USA, pp.1–12.

Herault, T. and Robert, Y. (2015) Fault-Tolerance Techniques for High-Performance Computing, 1st
ed., Springer Publishing Company, Incorporated.

Huang, K-H. and Abraham, J.A. (1984) ‘Algorithm-based fault tolerance for matrix operations’, IEEE
Transactions on Computers (TOC), June, Vol. C-33, No. 7, pp.518–528.

Hursey, J. and Graham, R.L. (2011) ‘Building a fault tolerant MPI application: a ring communication
example’, in IPDPS Workshops, pp.1549–1556.

Hussain, Z., Znati, T. and Melhem, R. (2020) ‘Enhancing reliability-aware speedup modelling via
replication’, in 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp.528–539.

Kabir, U. and Goswami, D. (2016) ‘An ABFT scheme based on communication characteristics’, in
2016 IEEE International Conference on Cluster Computing (CLUSTER), pp.515–523.

Algorithm-based fault-tolerant parallel sorting 27

Kosaian, J. and Rashmi, K.V. (2021) ‘Arithmetic-intensity-guided fault tolerance for neural network
inference on GPUs’, in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp.1–15.

Kumar, V. (2002) Introduction to Parallel Computing, 2nd ed., Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

Lan, Y. and Mohamed, M.A. (1992) ‘Parallel quicksort in hypercubes’, in Proceedings of the 1992
ACM/SIGAPP Symposium on Applied Computing: Technological Challenges of the 1990s, SAC
‘92, ACM, New York, NY, USA, pp.740–746.

Lee, D. and Batcher, K.E. (1994) ‘On sorting multiple bitonic sequences’, in 1994 International
Conference on Parallel Processing, August, Vol. 1, pp.121–125.

Leighton, F.T. (2014) Introduction to Parallel Algorithms and Architectures: Arrays · Trees ·
Hypercubes, Elsevier Science.

Losada, N., González, P., Martín, M.J., Bosilca, G., Bouteiller, A. and Teranishi, K. (2020) ‘Fault
tolerance of MPI applications in exascale systems: the ULFM solution’, Future Generation
Computer Systems, Vol. 106, pp.467–481.

Martino, C.D., Kalbarczyk, Z., Iyer, R.K., Baccanico, F., Fullop, J. and Kramer, W. (2014) ‘Lessons
learned from the analysis of system failures at peta-scale: the case of blue waters’, in
44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, June,
pp.610–621.

MPI Forum (2015) Document for A Standard Message-Passing Interface 3.1, Technical Report,
University of Tennessee.

MPI Forum (2020) User-Level Failure Mitigation [online] https://bitbucket.org/icldistcomp/ulfm2/src/
ulfm/ (accessed 26 September 2020).

Netti, A., Kiziltan, Z., Babaoglu, O., Sîrbu, A., Bartolini, A. and Borghesi, A. (2020) ‘A machine
learning approach to online fault classification in HPC systems’, Future Generation Computer
Systems, Vol. 110, pp.1009–1022.

Parhami, B. (1999) Introduction to Parallel Processing: Algorithms and Architectures, Kluwer
Academic Publishers, Norwell, MA, USA.

Quinn, M.J. (1989) ‘Analysis and benchmarking of two parallel sorting algorithms: HyperQuickSort
and QuickMerge’, BIT Numerical Mathematics, June, Vol. 29, No. 2, pp.239–250.

Quinn, M.J. (2003) Parallel Programming in C with MPI and OpenMP, McGraw-Hill.
Raju, K., Chiplunkar, N.N. and Rajanikanth, K. (2019) ‘A CPU-GPU cooperative sorting approach’,

in 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), Vol. 1, pp.1–5.
Reed, D.A. and Dongarra, J. (2015) ‘Exascale computing and big data’, Commun. ACM, June, Vol. 58,

No. 7, pp.56–68.
Rocco, R., Gadioli, D. and Palermo, G. (2022) ‘Legio: fault resiliency for embarrassingly parallel

MPI applications’, J. Supercomput., February, Vol. 78, No. 2, pp.2175–2195.
Roffe, S. and George, A.D. (2020) ‘Evaluation of algorithm-based fault tolerance for machine learning

and computer vision under neutron radiation’, in 2020 IEEE Aerospace Conference, pp.1–9.
Schlichting, R.D. and Schneider, F.B. (1983) ‘Fail-stop processors: an approach to designing

fault-tolerant computing systems’, ACM Trans. Comput. Syst., Vol. 1, No. 3, pp.222–238.
Schöll, A., Braun, C., Kochte, M.A. and Wunderlich, H. (2016) ‘Efficient algorithm-based fault

tolerance for sparse matrix operations’, in 2016 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pp.251–262.

Tiwari, D., Gupta, S. and Vazhkudai, S.S. (2014) ‘Lazy checkpointing: exploiting temporal locality
in failures to mitigate checkpointing overheads on extreme-scale systems’, in DSN, pp.25–36.

Wagar, B. (1987) ‘HyperQuickSort: a fast sorting algorithm for hypercubes’, in Proc. of the 2nd
Conf. on Hypercube Multiprocessors, pp.292–299.

28 E.T. Camargo and E.P. Duarte Jr.

Wang, R., Yao, E., Chen, M., Tan, G., Balaji, P. and Buntinas, D. (2011) ‘Building algorithmically
nonstop fault tolerant MPI programs’, in HiPC, pp.1–9.

White, S., Verosky, N. and Newhall, T. (2012) ‘A CUDA-MPI hybrid bitonic sorting algorithm
for GPU clusters’, in 2012 41st International Conference on Parallel Processing Workshops,
pp.588–589.

Zhao, K., Di, S., Li, S., Liang, X., Zhai, Y., Chen, J., Ouyang, K., Cappello, F. and Chen, Z. (2020)
‘FT-CNN: algorithm-based fault tolerance for convolutional neural networks’, IEEE Transactions
on Parallel and Distributed Systems, Vol. 32, No. 7, pp.1677–1689.

Zhu, Y., Liu, Y. and Zhang, G. (2020) ‘FT-PBLAS: PBLAS-based fault-tolerant linear algebra
computation on high-performance computing systems’, IEEE Access, Vol. 8, pp.42674–42688.

